xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision ba2a92db1ff682c16730b1d7f156bac61928f04d)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42 
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48 
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 
53 /*
54  * PCI bus number (or SID) is not reliable since the device is usaully
55  * initalized before guest can configure the PCI bridge
56  * (SECONDARY_BUS_NUMBER).
57  */
58 struct vtd_as_key {
59     PCIBus *bus;
60     uint8_t devfn;
61     uint32_t pasid;
62 };
63 
64 struct vtd_iotlb_key {
65     uint64_t gfn;
66     uint32_t pasid;
67     uint32_t level;
68     uint16_t sid;
69 };
70 
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
73 
74 static void vtd_panic_require_caching_mode(void)
75 {
76     error_report("We need to set caching-mode=on for intel-iommu to enable "
77                  "device assignment with IOMMU protection.");
78     exit(1);
79 }
80 
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82                             uint64_t wmask, uint64_t w1cmask)
83 {
84     stq_le_p(&s->csr[addr], val);
85     stq_le_p(&s->wmask[addr], wmask);
86     stq_le_p(&s->w1cmask[addr], w1cmask);
87 }
88 
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
90 {
91     stq_le_p(&s->womask[addr], mask);
92 }
93 
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95                             uint32_t wmask, uint32_t w1cmask)
96 {
97     stl_le_p(&s->csr[addr], val);
98     stl_le_p(&s->wmask[addr], wmask);
99     stl_le_p(&s->w1cmask[addr], w1cmask);
100 }
101 
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
103 {
104     stl_le_p(&s->womask[addr], mask);
105 }
106 
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
109 {
110     uint64_t oldval = ldq_le_p(&s->csr[addr]);
111     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113     stq_le_p(&s->csr[addr],
114              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
115 }
116 
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
118 {
119     uint32_t oldval = ldl_le_p(&s->csr[addr]);
120     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122     stl_le_p(&s->csr[addr],
123              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
124 }
125 
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
127 {
128     uint64_t val = ldq_le_p(&s->csr[addr]);
129     uint64_t womask = ldq_le_p(&s->womask[addr]);
130     return val & ~womask;
131 }
132 
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
134 {
135     uint32_t val = ldl_le_p(&s->csr[addr]);
136     uint32_t womask = ldl_le_p(&s->womask[addr]);
137     return val & ~womask;
138 }
139 
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
142 {
143     return ldq_le_p(&s->csr[addr]);
144 }
145 
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
147 {
148     return ldl_le_p(&s->csr[addr]);
149 }
150 
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
152 {
153     stq_le_p(&s->csr[addr], val);
154 }
155 
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157                                         uint32_t clear, uint32_t mask)
158 {
159     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160     stl_le_p(&s->csr[addr], new_val);
161     return new_val;
162 }
163 
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165                                         uint64_t clear, uint64_t mask)
166 {
167     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168     stq_le_p(&s->csr[addr], new_val);
169     return new_val;
170 }
171 
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
173 {
174     qemu_mutex_lock(&s->iommu_lock);
175 }
176 
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
178 {
179     qemu_mutex_unlock(&s->iommu_lock);
180 }
181 
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
183 {
184     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
185 
186     if (s->scalable_mode) {
187         s->root_scalable = val & VTD_RTADDR_SMT;
188     }
189 }
190 
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
192 {
193     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
194 
195     if (s->ecap & VTD_ECAP_SMTS &&
196         val & VTD_IQA_DW_MASK) {
197         s->iq_dw = true;
198     } else {
199         s->iq_dw = false;
200     }
201 }
202 
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
205 {
206     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
207 }
208 
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
211 {
212     const struct vtd_iotlb_key *key1 = v1;
213     const struct vtd_iotlb_key *key2 = v2;
214 
215     return key1->sid == key2->sid &&
216            key1->pasid == key2->pasid &&
217            key1->level == key2->level &&
218            key1->gfn == key2->gfn;
219 }
220 
221 static guint vtd_iotlb_hash(gconstpointer v)
222 {
223     const struct vtd_iotlb_key *key = v;
224 
225     return key->gfn | ((key->sid) << VTD_IOTLB_SID_SHIFT) |
226            (key->level) << VTD_IOTLB_LVL_SHIFT |
227            (key->pasid) << VTD_IOTLB_PASID_SHIFT;
228 }
229 
230 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
231 {
232     const struct vtd_as_key *key1 = v1;
233     const struct vtd_as_key *key2 = v2;
234 
235     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
236            (key1->pasid == key2->pasid);
237 }
238 
239 /*
240  * Note that we use pointer to PCIBus as the key, so hashing/shifting
241  * based on the pointer value is intended. Note that we deal with
242  * collisions through vtd_as_equal().
243  */
244 static guint vtd_as_hash(gconstpointer v)
245 {
246     const struct vtd_as_key *key = v;
247     guint value = (guint)(uintptr_t)key->bus;
248 
249     return (guint)(value << 8 | key->devfn);
250 }
251 
252 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
253                                           gpointer user_data)
254 {
255     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
256     uint16_t domain_id = *(uint16_t *)user_data;
257     return entry->domain_id == domain_id;
258 }
259 
260 /* The shift of an addr for a certain level of paging structure */
261 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
262 {
263     assert(level != 0);
264     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
265 }
266 
267 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
268 {
269     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
270 }
271 
272 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
273                                         gpointer user_data)
274 {
275     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
276     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
277     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
278     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
279     return (entry->domain_id == info->domain_id) &&
280             (((entry->gfn & info->mask) == gfn) ||
281              (entry->gfn == gfn_tlb));
282 }
283 
284 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
285  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
286  */
287 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
288 {
289     VTDAddressSpace *vtd_as;
290     GHashTableIter as_it;
291 
292     trace_vtd_context_cache_reset();
293 
294     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
295 
296     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
297         vtd_as->context_cache_entry.context_cache_gen = 0;
298     }
299     s->context_cache_gen = 1;
300 }
301 
302 /* Must be called with IOMMU lock held. */
303 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
304 {
305     assert(s->iotlb);
306     g_hash_table_remove_all(s->iotlb);
307 }
308 
309 static void vtd_reset_iotlb(IntelIOMMUState *s)
310 {
311     vtd_iommu_lock(s);
312     vtd_reset_iotlb_locked(s);
313     vtd_iommu_unlock(s);
314 }
315 
316 static void vtd_reset_caches(IntelIOMMUState *s)
317 {
318     vtd_iommu_lock(s);
319     vtd_reset_iotlb_locked(s);
320     vtd_reset_context_cache_locked(s);
321     vtd_iommu_unlock(s);
322 }
323 
324 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
325 {
326     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
327 }
328 
329 /* Must be called with IOMMU lock held */
330 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
331                                        uint32_t pasid, hwaddr addr)
332 {
333     struct vtd_iotlb_key key;
334     VTDIOTLBEntry *entry;
335     int level;
336 
337     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
338         key.gfn = vtd_get_iotlb_gfn(addr, level);
339         key.level = level;
340         key.sid = source_id;
341         key.pasid = pasid;
342         entry = g_hash_table_lookup(s->iotlb, &key);
343         if (entry) {
344             goto out;
345         }
346     }
347 
348 out:
349     return entry;
350 }
351 
352 /* Must be with IOMMU lock held */
353 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
354                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
355                              uint8_t access_flags, uint32_t level,
356                              uint32_t pasid)
357 {
358     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
359     struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
360     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
361 
362     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
363     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
364         trace_vtd_iotlb_reset("iotlb exceeds size limit");
365         vtd_reset_iotlb_locked(s);
366     }
367 
368     entry->gfn = gfn;
369     entry->domain_id = domain_id;
370     entry->slpte = slpte;
371     entry->access_flags = access_flags;
372     entry->mask = vtd_slpt_level_page_mask(level);
373     entry->pasid = pasid;
374 
375     key->gfn = gfn;
376     key->sid = source_id;
377     key->level = level;
378     key->pasid = pasid;
379 
380     g_hash_table_replace(s->iotlb, key, entry);
381 }
382 
383 /* Given the reg addr of both the message data and address, generate an
384  * interrupt via MSI.
385  */
386 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
387                                    hwaddr mesg_data_reg)
388 {
389     MSIMessage msi;
390 
391     assert(mesg_data_reg < DMAR_REG_SIZE);
392     assert(mesg_addr_reg < DMAR_REG_SIZE);
393 
394     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
395     msi.data = vtd_get_long_raw(s, mesg_data_reg);
396 
397     trace_vtd_irq_generate(msi.address, msi.data);
398 
399     apic_get_class(NULL)->send_msi(&msi);
400 }
401 
402 /* Generate a fault event to software via MSI if conditions are met.
403  * Notice that the value of FSTS_REG being passed to it should be the one
404  * before any update.
405  */
406 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
407 {
408     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
409         pre_fsts & VTD_FSTS_IQE) {
410         error_report_once("There are previous interrupt conditions "
411                           "to be serviced by software, fault event "
412                           "is not generated");
413         return;
414     }
415     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
416     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
417         error_report_once("Interrupt Mask set, irq is not generated");
418     } else {
419         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
420         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
421     }
422 }
423 
424 /* Check if the Fault (F) field of the Fault Recording Register referenced by
425  * @index is Set.
426  */
427 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
428 {
429     /* Each reg is 128-bit */
430     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
431     addr += 8; /* Access the high 64-bit half */
432 
433     assert(index < DMAR_FRCD_REG_NR);
434 
435     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
436 }
437 
438 /* Update the PPF field of Fault Status Register.
439  * Should be called whenever change the F field of any fault recording
440  * registers.
441  */
442 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
443 {
444     uint32_t i;
445     uint32_t ppf_mask = 0;
446 
447     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
448         if (vtd_is_frcd_set(s, i)) {
449             ppf_mask = VTD_FSTS_PPF;
450             break;
451         }
452     }
453     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
454     trace_vtd_fsts_ppf(!!ppf_mask);
455 }
456 
457 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
458 {
459     /* Each reg is 128-bit */
460     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
461     addr += 8; /* Access the high 64-bit half */
462 
463     assert(index < DMAR_FRCD_REG_NR);
464 
465     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
466     vtd_update_fsts_ppf(s);
467 }
468 
469 /* Must not update F field now, should be done later */
470 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
471                             uint16_t source_id, hwaddr addr,
472                             VTDFaultReason fault, bool is_write,
473                             bool is_pasid, uint32_t pasid)
474 {
475     uint64_t hi = 0, lo;
476     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
477 
478     assert(index < DMAR_FRCD_REG_NR);
479 
480     lo = VTD_FRCD_FI(addr);
481     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
482          VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
483     if (!is_write) {
484         hi |= VTD_FRCD_T;
485     }
486     vtd_set_quad_raw(s, frcd_reg_addr, lo);
487     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
488 
489     trace_vtd_frr_new(index, hi, lo);
490 }
491 
492 /* Try to collapse multiple pending faults from the same requester */
493 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
494 {
495     uint32_t i;
496     uint64_t frcd_reg;
497     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
498 
499     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
500         frcd_reg = vtd_get_quad_raw(s, addr);
501         if ((frcd_reg & VTD_FRCD_F) &&
502             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
503             return true;
504         }
505         addr += 16; /* 128-bit for each */
506     }
507     return false;
508 }
509 
510 /* Log and report an DMAR (address translation) fault to software */
511 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
512                                   hwaddr addr, VTDFaultReason fault,
513                                   bool is_write, bool is_pasid,
514                                   uint32_t pasid)
515 {
516     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
517 
518     assert(fault < VTD_FR_MAX);
519 
520     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
521 
522     if (fsts_reg & VTD_FSTS_PFO) {
523         error_report_once("New fault is not recorded due to "
524                           "Primary Fault Overflow");
525         return;
526     }
527 
528     if (vtd_try_collapse_fault(s, source_id)) {
529         error_report_once("New fault is not recorded due to "
530                           "compression of faults");
531         return;
532     }
533 
534     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
535         error_report_once("Next Fault Recording Reg is used, "
536                           "new fault is not recorded, set PFO field");
537         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
538         return;
539     }
540 
541     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
542                     is_write, is_pasid, pasid);
543 
544     if (fsts_reg & VTD_FSTS_PPF) {
545         error_report_once("There are pending faults already, "
546                           "fault event is not generated");
547         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
548         s->next_frcd_reg++;
549         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
550             s->next_frcd_reg = 0;
551         }
552     } else {
553         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
554                                 VTD_FSTS_FRI(s->next_frcd_reg));
555         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
556         s->next_frcd_reg++;
557         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
558             s->next_frcd_reg = 0;
559         }
560         /* This case actually cause the PPF to be Set.
561          * So generate fault event (interrupt).
562          */
563          vtd_generate_fault_event(s, fsts_reg);
564     }
565 }
566 
567 /* Handle Invalidation Queue Errors of queued invalidation interface error
568  * conditions.
569  */
570 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
571 {
572     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
573 
574     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
575     vtd_generate_fault_event(s, fsts_reg);
576 }
577 
578 /* Set the IWC field and try to generate an invalidation completion interrupt */
579 static void vtd_generate_completion_event(IntelIOMMUState *s)
580 {
581     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
582         trace_vtd_inv_desc_wait_irq("One pending, skip current");
583         return;
584     }
585     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
586     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
587     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
588         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
589                                     "new event not generated");
590         return;
591     } else {
592         /* Generate the interrupt event */
593         trace_vtd_inv_desc_wait_irq("Generating complete event");
594         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
595         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
596     }
597 }
598 
599 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
600                                           VTDRootEntry *re,
601                                           uint8_t devfn)
602 {
603     if (s->root_scalable && devfn > UINT8_MAX / 2) {
604         return re->hi & VTD_ROOT_ENTRY_P;
605     }
606 
607     return re->lo & VTD_ROOT_ENTRY_P;
608 }
609 
610 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
611                               VTDRootEntry *re)
612 {
613     dma_addr_t addr;
614 
615     addr = s->root + index * sizeof(*re);
616     if (dma_memory_read(&address_space_memory, addr,
617                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
618         re->lo = 0;
619         return -VTD_FR_ROOT_TABLE_INV;
620     }
621     re->lo = le64_to_cpu(re->lo);
622     re->hi = le64_to_cpu(re->hi);
623     return 0;
624 }
625 
626 static inline bool vtd_ce_present(VTDContextEntry *context)
627 {
628     return context->lo & VTD_CONTEXT_ENTRY_P;
629 }
630 
631 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
632                                            VTDRootEntry *re,
633                                            uint8_t index,
634                                            VTDContextEntry *ce)
635 {
636     dma_addr_t addr, ce_size;
637 
638     /* we have checked that root entry is present */
639     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
640               VTD_CTX_ENTRY_LEGACY_SIZE;
641 
642     if (s->root_scalable && index > UINT8_MAX / 2) {
643         index = index & (~VTD_DEVFN_CHECK_MASK);
644         addr = re->hi & VTD_ROOT_ENTRY_CTP;
645     } else {
646         addr = re->lo & VTD_ROOT_ENTRY_CTP;
647     }
648 
649     addr = addr + index * ce_size;
650     if (dma_memory_read(&address_space_memory, addr,
651                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
652         return -VTD_FR_CONTEXT_TABLE_INV;
653     }
654 
655     ce->lo = le64_to_cpu(ce->lo);
656     ce->hi = le64_to_cpu(ce->hi);
657     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
658         ce->val[2] = le64_to_cpu(ce->val[2]);
659         ce->val[3] = le64_to_cpu(ce->val[3]);
660     }
661     return 0;
662 }
663 
664 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
665 {
666     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
667 }
668 
669 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
670 {
671     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
672 }
673 
674 /* Whether the pte indicates the address of the page frame */
675 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
676 {
677     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
678 }
679 
680 /* Get the content of a spte located in @base_addr[@index] */
681 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
682 {
683     uint64_t slpte;
684 
685     assert(index < VTD_SL_PT_ENTRY_NR);
686 
687     if (dma_memory_read(&address_space_memory,
688                         base_addr + index * sizeof(slpte),
689                         &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
690         slpte = (uint64_t)-1;
691         return slpte;
692     }
693     slpte = le64_to_cpu(slpte);
694     return slpte;
695 }
696 
697 /* Given an iova and the level of paging structure, return the offset
698  * of current level.
699  */
700 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
701 {
702     return (iova >> vtd_slpt_level_shift(level)) &
703             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
704 }
705 
706 /* Check Capability Register to see if the @level of page-table is supported */
707 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
708 {
709     return VTD_CAP_SAGAW_MASK & s->cap &
710            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
711 }
712 
713 /* Return true if check passed, otherwise false */
714 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
715                                      VTDPASIDEntry *pe)
716 {
717     switch (VTD_PE_GET_TYPE(pe)) {
718     case VTD_SM_PASID_ENTRY_FLT:
719     case VTD_SM_PASID_ENTRY_SLT:
720     case VTD_SM_PASID_ENTRY_NESTED:
721         break;
722     case VTD_SM_PASID_ENTRY_PT:
723         if (!x86_iommu->pt_supported) {
724             return false;
725         }
726         break;
727     default:
728         /* Unknown type */
729         return false;
730     }
731     return true;
732 }
733 
734 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
735 {
736     return pdire->val & 1;
737 }
738 
739 /**
740  * Caller of this function should check present bit if wants
741  * to use pdir entry for further usage except for fpd bit check.
742  */
743 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
744                                          uint32_t pasid,
745                                          VTDPASIDDirEntry *pdire)
746 {
747     uint32_t index;
748     dma_addr_t addr, entry_size;
749 
750     index = VTD_PASID_DIR_INDEX(pasid);
751     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
752     addr = pasid_dir_base + index * entry_size;
753     if (dma_memory_read(&address_space_memory, addr,
754                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
755         return -VTD_FR_PASID_TABLE_INV;
756     }
757 
758     return 0;
759 }
760 
761 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
762 {
763     return pe->val[0] & VTD_PASID_ENTRY_P;
764 }
765 
766 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
767                                           uint32_t pasid,
768                                           dma_addr_t addr,
769                                           VTDPASIDEntry *pe)
770 {
771     uint32_t index;
772     dma_addr_t entry_size;
773     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
774 
775     index = VTD_PASID_TABLE_INDEX(pasid);
776     entry_size = VTD_PASID_ENTRY_SIZE;
777     addr = addr + index * entry_size;
778     if (dma_memory_read(&address_space_memory, addr,
779                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
780         return -VTD_FR_PASID_TABLE_INV;
781     }
782 
783     /* Do translation type check */
784     if (!vtd_pe_type_check(x86_iommu, pe)) {
785         return -VTD_FR_PASID_TABLE_INV;
786     }
787 
788     if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
789         return -VTD_FR_PASID_TABLE_INV;
790     }
791 
792     return 0;
793 }
794 
795 /**
796  * Caller of this function should check present bit if wants
797  * to use pasid entry for further usage except for fpd bit check.
798  */
799 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
800                                  uint32_t pasid,
801                                  VTDPASIDDirEntry *pdire,
802                                  VTDPASIDEntry *pe)
803 {
804     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
805 
806     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
807 }
808 
809 /**
810  * This function gets a pasid entry from a specified pasid
811  * table (includes dir and leaf table) with a specified pasid.
812  * Sanity check should be done to ensure return a present
813  * pasid entry to caller.
814  */
815 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
816                                        dma_addr_t pasid_dir_base,
817                                        uint32_t pasid,
818                                        VTDPASIDEntry *pe)
819 {
820     int ret;
821     VTDPASIDDirEntry pdire;
822 
823     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
824                                         pasid, &pdire);
825     if (ret) {
826         return ret;
827     }
828 
829     if (!vtd_pdire_present(&pdire)) {
830         return -VTD_FR_PASID_TABLE_INV;
831     }
832 
833     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
834     if (ret) {
835         return ret;
836     }
837 
838     if (!vtd_pe_present(pe)) {
839         return -VTD_FR_PASID_TABLE_INV;
840     }
841 
842     return 0;
843 }
844 
845 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
846                                       VTDContextEntry *ce,
847                                       VTDPASIDEntry *pe,
848                                       uint32_t pasid)
849 {
850     dma_addr_t pasid_dir_base;
851     int ret = 0;
852 
853     if (pasid == PCI_NO_PASID) {
854         pasid = VTD_CE_GET_RID2PASID(ce);
855     }
856     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
857     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
858 
859     return ret;
860 }
861 
862 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
863                                 VTDContextEntry *ce,
864                                 bool *pe_fpd_set,
865                                 uint32_t pasid)
866 {
867     int ret;
868     dma_addr_t pasid_dir_base;
869     VTDPASIDDirEntry pdire;
870     VTDPASIDEntry pe;
871 
872     if (pasid == PCI_NO_PASID) {
873         pasid = VTD_CE_GET_RID2PASID(ce);
874     }
875     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
876 
877     /*
878      * No present bit check since fpd is meaningful even
879      * if the present bit is clear.
880      */
881     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
882     if (ret) {
883         return ret;
884     }
885 
886     if (pdire.val & VTD_PASID_DIR_FPD) {
887         *pe_fpd_set = true;
888         return 0;
889     }
890 
891     if (!vtd_pdire_present(&pdire)) {
892         return -VTD_FR_PASID_TABLE_INV;
893     }
894 
895     /*
896      * No present bit check since fpd is meaningful even
897      * if the present bit is clear.
898      */
899     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
900     if (ret) {
901         return ret;
902     }
903 
904     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
905         *pe_fpd_set = true;
906     }
907 
908     return 0;
909 }
910 
911 /* Get the page-table level that hardware should use for the second-level
912  * page-table walk from the Address Width field of context-entry.
913  */
914 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
915 {
916     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
917 }
918 
919 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
920                                    VTDContextEntry *ce,
921                                    uint32_t pasid)
922 {
923     VTDPASIDEntry pe;
924 
925     if (s->root_scalable) {
926         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
927         return VTD_PE_GET_LEVEL(&pe);
928     }
929 
930     return vtd_ce_get_level(ce);
931 }
932 
933 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
934 {
935     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
936 }
937 
938 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
939                                   VTDContextEntry *ce,
940                                   uint32_t pasid)
941 {
942     VTDPASIDEntry pe;
943 
944     if (s->root_scalable) {
945         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
946         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
947     }
948 
949     return vtd_ce_get_agaw(ce);
950 }
951 
952 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
953 {
954     return ce->lo & VTD_CONTEXT_ENTRY_TT;
955 }
956 
957 /* Only for Legacy Mode. Return true if check passed, otherwise false */
958 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
959                                      VTDContextEntry *ce)
960 {
961     switch (vtd_ce_get_type(ce)) {
962     case VTD_CONTEXT_TT_MULTI_LEVEL:
963         /* Always supported */
964         break;
965     case VTD_CONTEXT_TT_DEV_IOTLB:
966         if (!x86_iommu->dt_supported) {
967             error_report_once("%s: DT specified but not supported", __func__);
968             return false;
969         }
970         break;
971     case VTD_CONTEXT_TT_PASS_THROUGH:
972         if (!x86_iommu->pt_supported) {
973             error_report_once("%s: PT specified but not supported", __func__);
974             return false;
975         }
976         break;
977     default:
978         /* Unknown type */
979         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
980                           vtd_ce_get_type(ce));
981         return false;
982     }
983     return true;
984 }
985 
986 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
987                                       VTDContextEntry *ce, uint8_t aw,
988                                       uint32_t pasid)
989 {
990     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
991     return 1ULL << MIN(ce_agaw, aw);
992 }
993 
994 /* Return true if IOVA passes range check, otherwise false. */
995 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
996                                         uint64_t iova, VTDContextEntry *ce,
997                                         uint8_t aw, uint32_t pasid)
998 {
999     /*
1000      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1001      * in CAP_REG and AW in context-entry.
1002      */
1003     return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1004 }
1005 
1006 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1007                                           VTDContextEntry *ce,
1008                                           uint32_t pasid)
1009 {
1010     VTDPASIDEntry pe;
1011 
1012     if (s->root_scalable) {
1013         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1014         return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1015     }
1016 
1017     return vtd_ce_get_slpt_base(ce);
1018 }
1019 
1020 /*
1021  * Rsvd field masks for spte:
1022  *     vtd_spte_rsvd 4k pages
1023  *     vtd_spte_rsvd_large large pages
1024  */
1025 static uint64_t vtd_spte_rsvd[5];
1026 static uint64_t vtd_spte_rsvd_large[5];
1027 
1028 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1029 {
1030     uint64_t rsvd_mask = vtd_spte_rsvd[level];
1031 
1032     if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1033         (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1034         /* large page */
1035         rsvd_mask = vtd_spte_rsvd_large[level];
1036     }
1037 
1038     return slpte & rsvd_mask;
1039 }
1040 
1041 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1042  * of the translation, can be used for deciding the size of large page.
1043  */
1044 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1045                              uint64_t iova, bool is_write,
1046                              uint64_t *slptep, uint32_t *slpte_level,
1047                              bool *reads, bool *writes, uint8_t aw_bits,
1048                              uint32_t pasid)
1049 {
1050     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1051     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1052     uint32_t offset;
1053     uint64_t slpte;
1054     uint64_t access_right_check;
1055     uint64_t xlat, size;
1056 
1057     if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1058         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1059                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1060         return -VTD_FR_ADDR_BEYOND_MGAW;
1061     }
1062 
1063     /* FIXME: what is the Atomics request here? */
1064     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1065 
1066     while (true) {
1067         offset = vtd_iova_level_offset(iova, level);
1068         slpte = vtd_get_slpte(addr, offset);
1069 
1070         if (slpte == (uint64_t)-1) {
1071             error_report_once("%s: detected read error on DMAR slpte "
1072                               "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1073                               __func__, iova, pasid);
1074             if (level == vtd_get_iova_level(s, ce, pasid)) {
1075                 /* Invalid programming of context-entry */
1076                 return -VTD_FR_CONTEXT_ENTRY_INV;
1077             } else {
1078                 return -VTD_FR_PAGING_ENTRY_INV;
1079             }
1080         }
1081         *reads = (*reads) && (slpte & VTD_SL_R);
1082         *writes = (*writes) && (slpte & VTD_SL_W);
1083         if (!(slpte & access_right_check)) {
1084             error_report_once("%s: detected slpte permission error "
1085                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1086                               "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1087                               PRIx32 ")", __func__, iova, level,
1088                               slpte, is_write, pasid);
1089             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1090         }
1091         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1092             error_report_once("%s: detected splte reserve non-zero "
1093                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1094                               "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1095                               __func__, iova, level, slpte, pasid);
1096             return -VTD_FR_PAGING_ENTRY_RSVD;
1097         }
1098 
1099         if (vtd_is_last_slpte(slpte, level)) {
1100             *slptep = slpte;
1101             *slpte_level = level;
1102             break;
1103         }
1104         addr = vtd_get_slpte_addr(slpte, aw_bits);
1105         level--;
1106     }
1107 
1108     xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1109     size = ~vtd_slpt_level_page_mask(level) + 1;
1110 
1111     /*
1112      * From VT-d spec 3.14: Untranslated requests and translation
1113      * requests that result in an address in the interrupt range will be
1114      * blocked with condition code LGN.4 or SGN.8.
1115      */
1116     if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1117          xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1118         return 0;
1119     } else {
1120         error_report_once("%s: xlat address is in interrupt range "
1121                           "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1122                           "slpte=0x%" PRIx64 ", write=%d, "
1123                           "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1124                           "pasid=0x%" PRIx32 ")",
1125                           __func__, iova, level, slpte, is_write,
1126                           xlat, size, pasid);
1127         return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1128                                   -VTD_FR_INTERRUPT_ADDR;
1129     }
1130 }
1131 
1132 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1133 
1134 /**
1135  * Constant information used during page walking
1136  *
1137  * @hook_fn: hook func to be called when detected page
1138  * @private: private data to be passed into hook func
1139  * @notify_unmap: whether we should notify invalid entries
1140  * @as: VT-d address space of the device
1141  * @aw: maximum address width
1142  * @domain: domain ID of the page walk
1143  */
1144 typedef struct {
1145     VTDAddressSpace *as;
1146     vtd_page_walk_hook hook_fn;
1147     void *private;
1148     bool notify_unmap;
1149     uint8_t aw;
1150     uint16_t domain_id;
1151 } vtd_page_walk_info;
1152 
1153 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1154 {
1155     VTDAddressSpace *as = info->as;
1156     vtd_page_walk_hook hook_fn = info->hook_fn;
1157     void *private = info->private;
1158     IOMMUTLBEntry *entry = &event->entry;
1159     DMAMap target = {
1160         .iova = entry->iova,
1161         .size = entry->addr_mask,
1162         .translated_addr = entry->translated_addr,
1163         .perm = entry->perm,
1164     };
1165     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1166 
1167     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1168         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1169         return 0;
1170     }
1171 
1172     assert(hook_fn);
1173 
1174     /* Update local IOVA mapped ranges */
1175     if (event->type == IOMMU_NOTIFIER_MAP) {
1176         if (mapped) {
1177             /* If it's exactly the same translation, skip */
1178             if (!memcmp(mapped, &target, sizeof(target))) {
1179                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1180                                                  entry->translated_addr);
1181                 return 0;
1182             } else {
1183                 /*
1184                  * Translation changed.  Normally this should not
1185                  * happen, but it can happen when with buggy guest
1186                  * OSes.  Note that there will be a small window that
1187                  * we don't have map at all.  But that's the best
1188                  * effort we can do.  The ideal way to emulate this is
1189                  * atomically modify the PTE to follow what has
1190                  * changed, but we can't.  One example is that vfio
1191                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1192                  * interface to modify a mapping (meanwhile it seems
1193                  * meaningless to even provide one).  Anyway, let's
1194                  * mark this as a TODO in case one day we'll have
1195                  * a better solution.
1196                  */
1197                 IOMMUAccessFlags cache_perm = entry->perm;
1198                 int ret;
1199 
1200                 /* Emulate an UNMAP */
1201                 event->type = IOMMU_NOTIFIER_UNMAP;
1202                 entry->perm = IOMMU_NONE;
1203                 trace_vtd_page_walk_one(info->domain_id,
1204                                         entry->iova,
1205                                         entry->translated_addr,
1206                                         entry->addr_mask,
1207                                         entry->perm);
1208                 ret = hook_fn(event, private);
1209                 if (ret) {
1210                     return ret;
1211                 }
1212                 /* Drop any existing mapping */
1213                 iova_tree_remove(as->iova_tree, target);
1214                 /* Recover the correct type */
1215                 event->type = IOMMU_NOTIFIER_MAP;
1216                 entry->perm = cache_perm;
1217             }
1218         }
1219         iova_tree_insert(as->iova_tree, &target);
1220     } else {
1221         if (!mapped) {
1222             /* Skip since we didn't map this range at all */
1223             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1224             return 0;
1225         }
1226         iova_tree_remove(as->iova_tree, target);
1227     }
1228 
1229     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1230                             entry->translated_addr, entry->addr_mask,
1231                             entry->perm);
1232     return hook_fn(event, private);
1233 }
1234 
1235 /**
1236  * vtd_page_walk_level - walk over specific level for IOVA range
1237  *
1238  * @addr: base GPA addr to start the walk
1239  * @start: IOVA range start address
1240  * @end: IOVA range end address (start <= addr < end)
1241  * @read: whether parent level has read permission
1242  * @write: whether parent level has write permission
1243  * @info: constant information for the page walk
1244  */
1245 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1246                                uint64_t end, uint32_t level, bool read,
1247                                bool write, vtd_page_walk_info *info)
1248 {
1249     bool read_cur, write_cur, entry_valid;
1250     uint32_t offset;
1251     uint64_t slpte;
1252     uint64_t subpage_size, subpage_mask;
1253     IOMMUTLBEvent event;
1254     uint64_t iova = start;
1255     uint64_t iova_next;
1256     int ret = 0;
1257 
1258     trace_vtd_page_walk_level(addr, level, start, end);
1259 
1260     subpage_size = 1ULL << vtd_slpt_level_shift(level);
1261     subpage_mask = vtd_slpt_level_page_mask(level);
1262 
1263     while (iova < end) {
1264         iova_next = (iova & subpage_mask) + subpage_size;
1265 
1266         offset = vtd_iova_level_offset(iova, level);
1267         slpte = vtd_get_slpte(addr, offset);
1268 
1269         if (slpte == (uint64_t)-1) {
1270             trace_vtd_page_walk_skip_read(iova, iova_next);
1271             goto next;
1272         }
1273 
1274         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1275             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1276             goto next;
1277         }
1278 
1279         /* Permissions are stacked with parents' */
1280         read_cur = read && (slpte & VTD_SL_R);
1281         write_cur = write && (slpte & VTD_SL_W);
1282 
1283         /*
1284          * As long as we have either read/write permission, this is a
1285          * valid entry. The rule works for both page entries and page
1286          * table entries.
1287          */
1288         entry_valid = read_cur | write_cur;
1289 
1290         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1291             /*
1292              * This is a valid PDE (or even bigger than PDE).  We need
1293              * to walk one further level.
1294              */
1295             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1296                                       iova, MIN(iova_next, end), level - 1,
1297                                       read_cur, write_cur, info);
1298         } else {
1299             /*
1300              * This means we are either:
1301              *
1302              * (1) the real page entry (either 4K page, or huge page)
1303              * (2) the whole range is invalid
1304              *
1305              * In either case, we send an IOTLB notification down.
1306              */
1307             event.entry.target_as = &address_space_memory;
1308             event.entry.iova = iova & subpage_mask;
1309             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1310             event.entry.addr_mask = ~subpage_mask;
1311             /* NOTE: this is only meaningful if entry_valid == true */
1312             event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1313             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1314                                             IOMMU_NOTIFIER_UNMAP;
1315             ret = vtd_page_walk_one(&event, info);
1316         }
1317 
1318         if (ret < 0) {
1319             return ret;
1320         }
1321 
1322 next:
1323         iova = iova_next;
1324     }
1325 
1326     return 0;
1327 }
1328 
1329 /**
1330  * vtd_page_walk - walk specific IOVA range, and call the hook
1331  *
1332  * @s: intel iommu state
1333  * @ce: context entry to walk upon
1334  * @start: IOVA address to start the walk
1335  * @end: IOVA range end address (start <= addr < end)
1336  * @info: page walking information struct
1337  */
1338 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1339                          uint64_t start, uint64_t end,
1340                          vtd_page_walk_info *info,
1341                          uint32_t pasid)
1342 {
1343     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1344     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1345 
1346     if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1347         return -VTD_FR_ADDR_BEYOND_MGAW;
1348     }
1349 
1350     if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1351         /* Fix end so that it reaches the maximum */
1352         end = vtd_iova_limit(s, ce, info->aw, pasid);
1353     }
1354 
1355     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1356 }
1357 
1358 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1359                                           VTDRootEntry *re)
1360 {
1361     /* Legacy Mode reserved bits check */
1362     if (!s->root_scalable &&
1363         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1364         goto rsvd_err;
1365 
1366     /* Scalable Mode reserved bits check */
1367     if (s->root_scalable &&
1368         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1369          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1370         goto rsvd_err;
1371 
1372     return 0;
1373 
1374 rsvd_err:
1375     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1376                       ", lo=0x%"PRIx64,
1377                       __func__, re->hi, re->lo);
1378     return -VTD_FR_ROOT_ENTRY_RSVD;
1379 }
1380 
1381 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1382                                                     VTDContextEntry *ce)
1383 {
1384     if (!s->root_scalable &&
1385         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1386          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1387         error_report_once("%s: invalid context entry: hi=%"PRIx64
1388                           ", lo=%"PRIx64" (reserved nonzero)",
1389                           __func__, ce->hi, ce->lo);
1390         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1391     }
1392 
1393     if (s->root_scalable &&
1394         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1395          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1396          ce->val[2] ||
1397          ce->val[3])) {
1398         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1399                           ", val[2]=%"PRIx64
1400                           ", val[1]=%"PRIx64
1401                           ", val[0]=%"PRIx64" (reserved nonzero)",
1402                           __func__, ce->val[3], ce->val[2],
1403                           ce->val[1], ce->val[0]);
1404         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1405     }
1406 
1407     return 0;
1408 }
1409 
1410 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1411                                   VTDContextEntry *ce)
1412 {
1413     VTDPASIDEntry pe;
1414 
1415     /*
1416      * Make sure in Scalable Mode, a present context entry
1417      * has valid rid2pasid setting, which includes valid
1418      * rid2pasid field and corresponding pasid entry setting
1419      */
1420     return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1421 }
1422 
1423 /* Map a device to its corresponding domain (context-entry) */
1424 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1425                                     uint8_t devfn, VTDContextEntry *ce)
1426 {
1427     VTDRootEntry re;
1428     int ret_fr;
1429     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1430 
1431     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1432     if (ret_fr) {
1433         return ret_fr;
1434     }
1435 
1436     if (!vtd_root_entry_present(s, &re, devfn)) {
1437         /* Not error - it's okay we don't have root entry. */
1438         trace_vtd_re_not_present(bus_num);
1439         return -VTD_FR_ROOT_ENTRY_P;
1440     }
1441 
1442     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1443     if (ret_fr) {
1444         return ret_fr;
1445     }
1446 
1447     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1448     if (ret_fr) {
1449         return ret_fr;
1450     }
1451 
1452     if (!vtd_ce_present(ce)) {
1453         /* Not error - it's okay we don't have context entry. */
1454         trace_vtd_ce_not_present(bus_num, devfn);
1455         return -VTD_FR_CONTEXT_ENTRY_P;
1456     }
1457 
1458     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1459     if (ret_fr) {
1460         return ret_fr;
1461     }
1462 
1463     /* Check if the programming of context-entry is valid */
1464     if (!s->root_scalable &&
1465         !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1466         error_report_once("%s: invalid context entry: hi=%"PRIx64
1467                           ", lo=%"PRIx64" (level %d not supported)",
1468                           __func__, ce->hi, ce->lo,
1469                           vtd_ce_get_level(ce));
1470         return -VTD_FR_CONTEXT_ENTRY_INV;
1471     }
1472 
1473     if (!s->root_scalable) {
1474         /* Do translation type check */
1475         if (!vtd_ce_type_check(x86_iommu, ce)) {
1476             /* Errors dumped in vtd_ce_type_check() */
1477             return -VTD_FR_CONTEXT_ENTRY_INV;
1478         }
1479     } else {
1480         /*
1481          * Check if the programming of context-entry.rid2pasid
1482          * and corresponding pasid setting is valid, and thus
1483          * avoids to check pasid entry fetching result in future
1484          * helper function calling.
1485          */
1486         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1487         if (ret_fr) {
1488             return ret_fr;
1489         }
1490     }
1491 
1492     return 0;
1493 }
1494 
1495 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1496                                      void *private)
1497 {
1498     memory_region_notify_iommu(private, 0, *event);
1499     return 0;
1500 }
1501 
1502 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1503                                   VTDContextEntry *ce,
1504                                   uint32_t pasid)
1505 {
1506     VTDPASIDEntry pe;
1507 
1508     if (s->root_scalable) {
1509         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1510         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1511     }
1512 
1513     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1514 }
1515 
1516 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1517                                             VTDContextEntry *ce,
1518                                             hwaddr addr, hwaddr size)
1519 {
1520     IntelIOMMUState *s = vtd_as->iommu_state;
1521     vtd_page_walk_info info = {
1522         .hook_fn = vtd_sync_shadow_page_hook,
1523         .private = (void *)&vtd_as->iommu,
1524         .notify_unmap = true,
1525         .aw = s->aw_bits,
1526         .as = vtd_as,
1527         .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1528     };
1529 
1530     return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1531 }
1532 
1533 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1534 {
1535     int ret;
1536     VTDContextEntry ce;
1537     IOMMUNotifier *n;
1538 
1539     /* If no MAP notifier registered, we simply invalidate all the cache */
1540     if (!vtd_as_has_map_notifier(vtd_as)) {
1541         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1542             memory_region_unmap_iommu_notifier_range(n);
1543         }
1544         return 0;
1545     }
1546 
1547     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1548                                    pci_bus_num(vtd_as->bus),
1549                                    vtd_as->devfn, &ce);
1550     if (ret) {
1551         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1552             /*
1553              * It's a valid scenario to have a context entry that is
1554              * not present.  For example, when a device is removed
1555              * from an existing domain then the context entry will be
1556              * zeroed by the guest before it was put into another
1557              * domain.  When this happens, instead of synchronizing
1558              * the shadow pages we should invalidate all existing
1559              * mappings and notify the backends.
1560              */
1561             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1562                 vtd_address_space_unmap(vtd_as, n);
1563             }
1564             ret = 0;
1565         }
1566         return ret;
1567     }
1568 
1569     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1570 }
1571 
1572 /*
1573  * Check if specific device is configured to bypass address
1574  * translation for DMA requests. In Scalable Mode, bypass
1575  * 1st-level translation or 2nd-level translation, it depends
1576  * on PGTT setting.
1577  */
1578 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1579                                uint32_t pasid)
1580 {
1581     VTDPASIDEntry pe;
1582     int ret;
1583 
1584     if (s->root_scalable) {
1585         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1586         if (ret) {
1587             /*
1588              * This error is guest triggerable. We should assumt PT
1589              * not enabled for safety.
1590              */
1591             return false;
1592         }
1593         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1594     }
1595 
1596     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1597 
1598 }
1599 
1600 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1601 {
1602     IntelIOMMUState *s;
1603     VTDContextEntry ce;
1604 
1605     assert(as);
1606 
1607     s = as->iommu_state;
1608     if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1609                                  &ce)) {
1610         /*
1611          * Possibly failed to parse the context entry for some reason
1612          * (e.g., during init, or any guest configuration errors on
1613          * context entries). We should assume PT not enabled for
1614          * safety.
1615          */
1616         return false;
1617     }
1618 
1619     return vtd_dev_pt_enabled(s, &ce, as->pasid);
1620 }
1621 
1622 /* Return whether the device is using IOMMU translation. */
1623 static bool vtd_switch_address_space(VTDAddressSpace *as)
1624 {
1625     bool use_iommu, pt;
1626     /* Whether we need to take the BQL on our own */
1627     bool take_bql = !qemu_mutex_iothread_locked();
1628 
1629     assert(as);
1630 
1631     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1632     pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1633 
1634     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1635                                    VTD_PCI_SLOT(as->devfn),
1636                                    VTD_PCI_FUNC(as->devfn),
1637                                    use_iommu);
1638 
1639     /*
1640      * It's possible that we reach here without BQL, e.g., when called
1641      * from vtd_pt_enable_fast_path(). However the memory APIs need
1642      * it. We'd better make sure we have had it already, or, take it.
1643      */
1644     if (take_bql) {
1645         qemu_mutex_lock_iothread();
1646     }
1647 
1648     /* Turn off first then on the other */
1649     if (use_iommu) {
1650         memory_region_set_enabled(&as->nodmar, false);
1651         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1652         /*
1653          * vt-d spec v3.4 3.14:
1654          *
1655          * """
1656          * Requests-with-PASID with input address in range 0xFEEx_xxxx
1657          * are translated normally like any other request-with-PASID
1658          * through DMA-remapping hardware.
1659          * """
1660          *
1661          * Need to disable ir for as with PASID.
1662          */
1663         if (as->pasid != PCI_NO_PASID) {
1664             memory_region_set_enabled(&as->iommu_ir, false);
1665         } else {
1666             memory_region_set_enabled(&as->iommu_ir, true);
1667         }
1668     } else {
1669         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1670         memory_region_set_enabled(&as->nodmar, true);
1671     }
1672 
1673     /*
1674      * vtd-spec v3.4 3.14:
1675      *
1676      * """
1677      * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1678      * translated normally like any other request-with-PASID through
1679      * DMA-remapping hardware. However, if such a request is processed
1680      * using pass-through translation, it will be blocked as described
1681      * in the paragraph below.
1682      *
1683      * Software must not program paging-structure entries to remap any
1684      * address to the interrupt address range. Untranslated requests
1685      * and translation requests that result in an address in the
1686      * interrupt range will be blocked with condition code LGN.4 or
1687      * SGN.8.
1688      * """
1689      *
1690      * We enable per as memory region (iommu_ir_fault) for catching
1691      * the tranlsation for interrupt range through PASID + PT.
1692      */
1693     if (pt && as->pasid != PCI_NO_PASID) {
1694         memory_region_set_enabled(&as->iommu_ir_fault, true);
1695     } else {
1696         memory_region_set_enabled(&as->iommu_ir_fault, false);
1697     }
1698 
1699     if (take_bql) {
1700         qemu_mutex_unlock_iothread();
1701     }
1702 
1703     return use_iommu;
1704 }
1705 
1706 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1707 {
1708     VTDAddressSpace *vtd_as;
1709     GHashTableIter iter;
1710 
1711     g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1712     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1713         vtd_switch_address_space(vtd_as);
1714     }
1715 }
1716 
1717 static const bool vtd_qualified_faults[] = {
1718     [VTD_FR_RESERVED] = false,
1719     [VTD_FR_ROOT_ENTRY_P] = false,
1720     [VTD_FR_CONTEXT_ENTRY_P] = true,
1721     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1722     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1723     [VTD_FR_WRITE] = true,
1724     [VTD_FR_READ] = true,
1725     [VTD_FR_PAGING_ENTRY_INV] = true,
1726     [VTD_FR_ROOT_TABLE_INV] = false,
1727     [VTD_FR_CONTEXT_TABLE_INV] = false,
1728     [VTD_FR_INTERRUPT_ADDR] = true,
1729     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1730     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1731     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1732     [VTD_FR_PASID_TABLE_INV] = false,
1733     [VTD_FR_SM_INTERRUPT_ADDR] = true,
1734     [VTD_FR_MAX] = false,
1735 };
1736 
1737 /* To see if a fault condition is "qualified", which is reported to software
1738  * only if the FPD field in the context-entry used to process the faulting
1739  * request is 0.
1740  */
1741 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1742 {
1743     return vtd_qualified_faults[fault];
1744 }
1745 
1746 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1747 {
1748     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1749 }
1750 
1751 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1752                                    gpointer user_data)
1753 {
1754     struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1755     uint16_t target_sid = *(uint16_t *)user_data;
1756     uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1757     return sid == target_sid;
1758 }
1759 
1760 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1761 {
1762     uint8_t bus_num = PCI_BUS_NUM(sid);
1763     VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1764 
1765     if (vtd_as &&
1766         (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1767         return vtd_as;
1768     }
1769 
1770     vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1771     s->vtd_as_cache[bus_num] = vtd_as;
1772 
1773     return vtd_as;
1774 }
1775 
1776 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1777 {
1778     VTDAddressSpace *vtd_as;
1779     bool success = false;
1780 
1781     vtd_as = vtd_get_as_by_sid(s, source_id);
1782     if (!vtd_as) {
1783         goto out;
1784     }
1785 
1786     if (vtd_switch_address_space(vtd_as) == false) {
1787         /* We switched off IOMMU region successfully. */
1788         success = true;
1789     }
1790 
1791 out:
1792     trace_vtd_pt_enable_fast_path(source_id, success);
1793 }
1794 
1795 static void vtd_report_fault(IntelIOMMUState *s,
1796                              int err, bool is_fpd_set,
1797                              uint16_t source_id,
1798                              hwaddr addr,
1799                              bool is_write,
1800                              bool is_pasid,
1801                              uint32_t pasid)
1802 {
1803     if (is_fpd_set && vtd_is_qualified_fault(err)) {
1804         trace_vtd_fault_disabled();
1805     } else {
1806         vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1807                               is_pasid, pasid);
1808     }
1809 }
1810 
1811 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1812  * translation.
1813  *
1814  * Called from RCU critical section.
1815  *
1816  * @bus_num: The bus number
1817  * @devfn: The devfn, which is the  combined of device and function number
1818  * @is_write: The access is a write operation
1819  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1820  *
1821  * Returns true if translation is successful, otherwise false.
1822  */
1823 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1824                                    uint8_t devfn, hwaddr addr, bool is_write,
1825                                    IOMMUTLBEntry *entry)
1826 {
1827     IntelIOMMUState *s = vtd_as->iommu_state;
1828     VTDContextEntry ce;
1829     uint8_t bus_num = pci_bus_num(bus);
1830     VTDContextCacheEntry *cc_entry;
1831     uint64_t slpte, page_mask;
1832     uint32_t level, pasid = vtd_as->pasid;
1833     uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1834     int ret_fr;
1835     bool is_fpd_set = false;
1836     bool reads = true;
1837     bool writes = true;
1838     uint8_t access_flags;
1839     bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1840     VTDIOTLBEntry *iotlb_entry;
1841 
1842     /*
1843      * We have standalone memory region for interrupt addresses, we
1844      * should never receive translation requests in this region.
1845      */
1846     assert(!vtd_is_interrupt_addr(addr));
1847 
1848     vtd_iommu_lock(s);
1849 
1850     cc_entry = &vtd_as->context_cache_entry;
1851 
1852     /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1853     if (!rid2pasid) {
1854         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1855         if (iotlb_entry) {
1856             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1857                                      iotlb_entry->domain_id);
1858             slpte = iotlb_entry->slpte;
1859             access_flags = iotlb_entry->access_flags;
1860             page_mask = iotlb_entry->mask;
1861             goto out;
1862         }
1863     }
1864 
1865     /* Try to fetch context-entry from cache first */
1866     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1867         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1868                                cc_entry->context_entry.lo,
1869                                cc_entry->context_cache_gen);
1870         ce = cc_entry->context_entry;
1871         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1872         if (!is_fpd_set && s->root_scalable) {
1873             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1874             if (ret_fr) {
1875                 vtd_report_fault(s, -ret_fr, is_fpd_set,
1876                                  source_id, addr, is_write,
1877                                  false, 0);
1878                 goto error;
1879             }
1880         }
1881     } else {
1882         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1883         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1884         if (!ret_fr && !is_fpd_set && s->root_scalable) {
1885             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1886         }
1887         if (ret_fr) {
1888             vtd_report_fault(s, -ret_fr, is_fpd_set,
1889                              source_id, addr, is_write,
1890                              false, 0);
1891             goto error;
1892         }
1893         /* Update context-cache */
1894         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1895                                   cc_entry->context_cache_gen,
1896                                   s->context_cache_gen);
1897         cc_entry->context_entry = ce;
1898         cc_entry->context_cache_gen = s->context_cache_gen;
1899     }
1900 
1901     if (rid2pasid) {
1902         pasid = VTD_CE_GET_RID2PASID(&ce);
1903     }
1904 
1905     /*
1906      * We don't need to translate for pass-through context entries.
1907      * Also, let's ignore IOTLB caching as well for PT devices.
1908      */
1909     if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1910         entry->iova = addr & VTD_PAGE_MASK_4K;
1911         entry->translated_addr = entry->iova;
1912         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1913         entry->perm = IOMMU_RW;
1914         trace_vtd_translate_pt(source_id, entry->iova);
1915 
1916         /*
1917          * When this happens, it means firstly caching-mode is not
1918          * enabled, and this is the first passthrough translation for
1919          * the device. Let's enable the fast path for passthrough.
1920          *
1921          * When passthrough is disabled again for the device, we can
1922          * capture it via the context entry invalidation, then the
1923          * IOMMU region can be swapped back.
1924          */
1925         vtd_pt_enable_fast_path(s, source_id);
1926         vtd_iommu_unlock(s);
1927         return true;
1928     }
1929 
1930     /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1931     if (rid2pasid) {
1932         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1933         if (iotlb_entry) {
1934             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1935                                      iotlb_entry->domain_id);
1936             slpte = iotlb_entry->slpte;
1937             access_flags = iotlb_entry->access_flags;
1938             page_mask = iotlb_entry->mask;
1939             goto out;
1940         }
1941     }
1942 
1943     ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1944                                &reads, &writes, s->aw_bits, pasid);
1945     if (ret_fr) {
1946         vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1947                          addr, is_write, pasid != PCI_NO_PASID, pasid);
1948         goto error;
1949     }
1950 
1951     page_mask = vtd_slpt_level_page_mask(level);
1952     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1953     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1954                      addr, slpte, access_flags, level, pasid);
1955 out:
1956     vtd_iommu_unlock(s);
1957     entry->iova = addr & page_mask;
1958     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1959     entry->addr_mask = ~page_mask;
1960     entry->perm = access_flags;
1961     return true;
1962 
1963 error:
1964     vtd_iommu_unlock(s);
1965     entry->iova = 0;
1966     entry->translated_addr = 0;
1967     entry->addr_mask = 0;
1968     entry->perm = IOMMU_NONE;
1969     return false;
1970 }
1971 
1972 static void vtd_root_table_setup(IntelIOMMUState *s)
1973 {
1974     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1975     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1976 
1977     vtd_update_scalable_state(s);
1978 
1979     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1980 }
1981 
1982 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1983                                uint32_t index, uint32_t mask)
1984 {
1985     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1986 }
1987 
1988 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1989 {
1990     uint64_t value = 0;
1991     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1992     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1993     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1994     s->intr_eime = value & VTD_IRTA_EIME;
1995 
1996     /* Notify global invalidation */
1997     vtd_iec_notify_all(s, true, 0, 0);
1998 
1999     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2000 }
2001 
2002 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2003 {
2004     VTDAddressSpace *vtd_as;
2005 
2006     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2007         vtd_address_space_sync(vtd_as);
2008     }
2009 }
2010 
2011 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2012 {
2013     trace_vtd_inv_desc_cc_global();
2014     /* Protects context cache */
2015     vtd_iommu_lock(s);
2016     s->context_cache_gen++;
2017     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2018         vtd_reset_context_cache_locked(s);
2019     }
2020     vtd_iommu_unlock(s);
2021     vtd_address_space_refresh_all(s);
2022     /*
2023      * From VT-d spec 6.5.2.1, a global context entry invalidation
2024      * should be followed by a IOTLB global invalidation, so we should
2025      * be safe even without this. Hoewever, let's replay the region as
2026      * well to be safer, and go back here when we need finer tunes for
2027      * VT-d emulation codes.
2028      */
2029     vtd_iommu_replay_all(s);
2030 }
2031 
2032 /* Do a context-cache device-selective invalidation.
2033  * @func_mask: FM field after shifting
2034  */
2035 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2036                                           uint16_t source_id,
2037                                           uint16_t func_mask)
2038 {
2039     GHashTableIter as_it;
2040     uint16_t mask;
2041     VTDAddressSpace *vtd_as;
2042     uint8_t bus_n, devfn;
2043 
2044     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2045 
2046     switch (func_mask & 3) {
2047     case 0:
2048         mask = 0;   /* No bits in the SID field masked */
2049         break;
2050     case 1:
2051         mask = 4;   /* Mask bit 2 in the SID field */
2052         break;
2053     case 2:
2054         mask = 6;   /* Mask bit 2:1 in the SID field */
2055         break;
2056     case 3:
2057         mask = 7;   /* Mask bit 2:0 in the SID field */
2058         break;
2059     default:
2060         g_assert_not_reached();
2061     }
2062     mask = ~mask;
2063 
2064     bus_n = VTD_SID_TO_BUS(source_id);
2065     devfn = VTD_SID_TO_DEVFN(source_id);
2066 
2067     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2068     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2069         if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2070             (vtd_as->devfn & mask) == (devfn & mask)) {
2071             trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2072                                          VTD_PCI_FUNC(vtd_as->devfn));
2073             vtd_iommu_lock(s);
2074             vtd_as->context_cache_entry.context_cache_gen = 0;
2075             vtd_iommu_unlock(s);
2076             /*
2077              * Do switch address space when needed, in case if the
2078              * device passthrough bit is switched.
2079              */
2080             vtd_switch_address_space(vtd_as);
2081             /*
2082              * So a device is moving out of (or moving into) a
2083              * domain, resync the shadow page table.
2084              * This won't bring bad even if we have no such
2085              * notifier registered - the IOMMU notification
2086              * framework will skip MAP notifications if that
2087              * happened.
2088              */
2089             vtd_address_space_sync(vtd_as);
2090         }
2091     }
2092 }
2093 
2094 /* Context-cache invalidation
2095  * Returns the Context Actual Invalidation Granularity.
2096  * @val: the content of the CCMD_REG
2097  */
2098 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2099 {
2100     uint64_t caig;
2101     uint64_t type = val & VTD_CCMD_CIRG_MASK;
2102 
2103     switch (type) {
2104     case VTD_CCMD_DOMAIN_INVL:
2105         /* Fall through */
2106     case VTD_CCMD_GLOBAL_INVL:
2107         caig = VTD_CCMD_GLOBAL_INVL_A;
2108         vtd_context_global_invalidate(s);
2109         break;
2110 
2111     case VTD_CCMD_DEVICE_INVL:
2112         caig = VTD_CCMD_DEVICE_INVL_A;
2113         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2114         break;
2115 
2116     default:
2117         error_report_once("%s: invalid context: 0x%" PRIx64,
2118                           __func__, val);
2119         caig = 0;
2120     }
2121     return caig;
2122 }
2123 
2124 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2125 {
2126     trace_vtd_inv_desc_iotlb_global();
2127     vtd_reset_iotlb(s);
2128     vtd_iommu_replay_all(s);
2129 }
2130 
2131 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2132 {
2133     VTDContextEntry ce;
2134     VTDAddressSpace *vtd_as;
2135 
2136     trace_vtd_inv_desc_iotlb_domain(domain_id);
2137 
2138     vtd_iommu_lock(s);
2139     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2140                                 &domain_id);
2141     vtd_iommu_unlock(s);
2142 
2143     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2144         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2145                                       vtd_as->devfn, &ce) &&
2146             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2147             vtd_address_space_sync(vtd_as);
2148         }
2149     }
2150 }
2151 
2152 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2153                                            uint16_t domain_id, hwaddr addr,
2154                                              uint8_t am, uint32_t pasid)
2155 {
2156     VTDAddressSpace *vtd_as;
2157     VTDContextEntry ce;
2158     int ret;
2159     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2160 
2161     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2162         if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2163             continue;
2164         }
2165         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2166                                        vtd_as->devfn, &ce);
2167         if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2168             if (vtd_as_has_map_notifier(vtd_as)) {
2169                 /*
2170                  * As long as we have MAP notifications registered in
2171                  * any of our IOMMU notifiers, we need to sync the
2172                  * shadow page table.
2173                  */
2174                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2175             } else {
2176                 /*
2177                  * For UNMAP-only notifiers, we don't need to walk the
2178                  * page tables.  We just deliver the PSI down to
2179                  * invalidate caches.
2180                  */
2181                 IOMMUTLBEvent event = {
2182                     .type = IOMMU_NOTIFIER_UNMAP,
2183                     .entry = {
2184                         .target_as = &address_space_memory,
2185                         .iova = addr,
2186                         .translated_addr = 0,
2187                         .addr_mask = size - 1,
2188                         .perm = IOMMU_NONE,
2189                     },
2190                 };
2191                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2192             }
2193         }
2194     }
2195 }
2196 
2197 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2198                                       hwaddr addr, uint8_t am)
2199 {
2200     VTDIOTLBPageInvInfo info;
2201 
2202     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2203 
2204     assert(am <= VTD_MAMV);
2205     info.domain_id = domain_id;
2206     info.addr = addr;
2207     info.mask = ~((1 << am) - 1);
2208     vtd_iommu_lock(s);
2209     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2210     vtd_iommu_unlock(s);
2211     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2212 }
2213 
2214 /* Flush IOTLB
2215  * Returns the IOTLB Actual Invalidation Granularity.
2216  * @val: the content of the IOTLB_REG
2217  */
2218 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2219 {
2220     uint64_t iaig;
2221     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2222     uint16_t domain_id;
2223     hwaddr addr;
2224     uint8_t am;
2225 
2226     switch (type) {
2227     case VTD_TLB_GLOBAL_FLUSH:
2228         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2229         vtd_iotlb_global_invalidate(s);
2230         break;
2231 
2232     case VTD_TLB_DSI_FLUSH:
2233         domain_id = VTD_TLB_DID(val);
2234         iaig = VTD_TLB_DSI_FLUSH_A;
2235         vtd_iotlb_domain_invalidate(s, domain_id);
2236         break;
2237 
2238     case VTD_TLB_PSI_FLUSH:
2239         domain_id = VTD_TLB_DID(val);
2240         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2241         am = VTD_IVA_AM(addr);
2242         addr = VTD_IVA_ADDR(addr);
2243         if (am > VTD_MAMV) {
2244             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2245                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2246             iaig = 0;
2247             break;
2248         }
2249         iaig = VTD_TLB_PSI_FLUSH_A;
2250         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2251         break;
2252 
2253     default:
2254         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2255                           __func__, val);
2256         iaig = 0;
2257     }
2258     return iaig;
2259 }
2260 
2261 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2262 
2263 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2264 {
2265     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2266            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2267 }
2268 
2269 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2270 {
2271     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2272 
2273     trace_vtd_inv_qi_enable(en);
2274 
2275     if (en) {
2276         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2277         /* 2^(x+8) entries */
2278         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2279         s->qi_enabled = true;
2280         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2281         /* Ok - report back to driver */
2282         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2283 
2284         if (s->iq_tail != 0) {
2285             /*
2286              * This is a spec violation but Windows guests are known to set up
2287              * Queued Invalidation this way so we allow the write and process
2288              * Invalidation Descriptors right away.
2289              */
2290             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2291             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2292                 vtd_fetch_inv_desc(s);
2293             }
2294         }
2295     } else {
2296         if (vtd_queued_inv_disable_check(s)) {
2297             /* disable Queued Invalidation */
2298             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2299             s->iq_head = 0;
2300             s->qi_enabled = false;
2301             /* Ok - report back to driver */
2302             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2303         } else {
2304             error_report_once("%s: detected improper state when disable QI "
2305                               "(head=0x%x, tail=0x%x, last_type=%d)",
2306                               __func__,
2307                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2308         }
2309     }
2310 }
2311 
2312 /* Set Root Table Pointer */
2313 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2314 {
2315     vtd_root_table_setup(s);
2316     /* Ok - report back to driver */
2317     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2318     vtd_reset_caches(s);
2319     vtd_address_space_refresh_all(s);
2320 }
2321 
2322 /* Set Interrupt Remap Table Pointer */
2323 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2324 {
2325     vtd_interrupt_remap_table_setup(s);
2326     /* Ok - report back to driver */
2327     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2328 }
2329 
2330 /* Handle Translation Enable/Disable */
2331 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2332 {
2333     if (s->dmar_enabled == en) {
2334         return;
2335     }
2336 
2337     trace_vtd_dmar_enable(en);
2338 
2339     if (en) {
2340         s->dmar_enabled = true;
2341         /* Ok - report back to driver */
2342         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2343     } else {
2344         s->dmar_enabled = false;
2345 
2346         /* Clear the index of Fault Recording Register */
2347         s->next_frcd_reg = 0;
2348         /* Ok - report back to driver */
2349         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2350     }
2351 
2352     vtd_reset_caches(s);
2353     vtd_address_space_refresh_all(s);
2354 }
2355 
2356 /* Handle Interrupt Remap Enable/Disable */
2357 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2358 {
2359     trace_vtd_ir_enable(en);
2360 
2361     if (en) {
2362         s->intr_enabled = true;
2363         /* Ok - report back to driver */
2364         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2365     } else {
2366         s->intr_enabled = false;
2367         /* Ok - report back to driver */
2368         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2369     }
2370 }
2371 
2372 /* Handle write to Global Command Register */
2373 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2374 {
2375     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2376     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2377     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2378     uint32_t changed = status ^ val;
2379 
2380     trace_vtd_reg_write_gcmd(status, val);
2381     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2382         /* Translation enable/disable */
2383         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2384     }
2385     if (val & VTD_GCMD_SRTP) {
2386         /* Set/update the root-table pointer */
2387         vtd_handle_gcmd_srtp(s);
2388     }
2389     if (changed & VTD_GCMD_QIE) {
2390         /* Queued Invalidation Enable */
2391         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2392     }
2393     if (val & VTD_GCMD_SIRTP) {
2394         /* Set/update the interrupt remapping root-table pointer */
2395         vtd_handle_gcmd_sirtp(s);
2396     }
2397     if ((changed & VTD_GCMD_IRE) &&
2398         x86_iommu_ir_supported(x86_iommu)) {
2399         /* Interrupt remap enable/disable */
2400         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2401     }
2402 }
2403 
2404 /* Handle write to Context Command Register */
2405 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2406 {
2407     uint64_t ret;
2408     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2409 
2410     /* Context-cache invalidation request */
2411     if (val & VTD_CCMD_ICC) {
2412         if (s->qi_enabled) {
2413             error_report_once("Queued Invalidation enabled, "
2414                               "should not use register-based invalidation");
2415             return;
2416         }
2417         ret = vtd_context_cache_invalidate(s, val);
2418         /* Invalidation completed. Change something to show */
2419         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2420         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2421                                       ret);
2422     }
2423 }
2424 
2425 /* Handle write to IOTLB Invalidation Register */
2426 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2427 {
2428     uint64_t ret;
2429     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2430 
2431     /* IOTLB invalidation request */
2432     if (val & VTD_TLB_IVT) {
2433         if (s->qi_enabled) {
2434             error_report_once("Queued Invalidation enabled, "
2435                               "should not use register-based invalidation");
2436             return;
2437         }
2438         ret = vtd_iotlb_flush(s, val);
2439         /* Invalidation completed. Change something to show */
2440         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2441         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2442                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2443     }
2444 }
2445 
2446 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2447 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2448                              VTDInvDesc *inv_desc)
2449 {
2450     dma_addr_t base_addr = s->iq;
2451     uint32_t offset = s->iq_head;
2452     uint32_t dw = s->iq_dw ? 32 : 16;
2453     dma_addr_t addr = base_addr + offset * dw;
2454 
2455     if (dma_memory_read(&address_space_memory, addr,
2456                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2457         error_report_once("Read INV DESC failed.");
2458         return false;
2459     }
2460     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2461     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2462     if (dw == 32) {
2463         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2464         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2465     }
2466     return true;
2467 }
2468 
2469 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2470 {
2471     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2472         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2473         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2474                           " (reserved nonzero)", __func__, inv_desc->hi,
2475                           inv_desc->lo);
2476         return false;
2477     }
2478     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2479         /* Status Write */
2480         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2481                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2482 
2483         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2484 
2485         /* FIXME: need to be masked with HAW? */
2486         dma_addr_t status_addr = inv_desc->hi;
2487         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2488         status_data = cpu_to_le32(status_data);
2489         if (dma_memory_write(&address_space_memory, status_addr,
2490                              &status_data, sizeof(status_data),
2491                              MEMTXATTRS_UNSPECIFIED)) {
2492             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2493             return false;
2494         }
2495     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2496         /* Interrupt flag */
2497         vtd_generate_completion_event(s);
2498     } else {
2499         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2500                           " (unknown type)", __func__, inv_desc->hi,
2501                           inv_desc->lo);
2502         return false;
2503     }
2504     return true;
2505 }
2506 
2507 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2508                                            VTDInvDesc *inv_desc)
2509 {
2510     uint16_t sid, fmask;
2511 
2512     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2513         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2514                           " (reserved nonzero)", __func__, inv_desc->hi,
2515                           inv_desc->lo);
2516         return false;
2517     }
2518     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2519     case VTD_INV_DESC_CC_DOMAIN:
2520         trace_vtd_inv_desc_cc_domain(
2521             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2522         /* Fall through */
2523     case VTD_INV_DESC_CC_GLOBAL:
2524         vtd_context_global_invalidate(s);
2525         break;
2526 
2527     case VTD_INV_DESC_CC_DEVICE:
2528         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2529         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2530         vtd_context_device_invalidate(s, sid, fmask);
2531         break;
2532 
2533     default:
2534         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2535                           " (invalid type)", __func__, inv_desc->hi,
2536                           inv_desc->lo);
2537         return false;
2538     }
2539     return true;
2540 }
2541 
2542 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2543 {
2544     uint16_t domain_id;
2545     uint8_t am;
2546     hwaddr addr;
2547 
2548     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2549         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2550         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2551                           ", lo=0x%"PRIx64" (reserved bits unzero)",
2552                           __func__, inv_desc->hi, inv_desc->lo);
2553         return false;
2554     }
2555 
2556     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2557     case VTD_INV_DESC_IOTLB_GLOBAL:
2558         vtd_iotlb_global_invalidate(s);
2559         break;
2560 
2561     case VTD_INV_DESC_IOTLB_DOMAIN:
2562         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2563         vtd_iotlb_domain_invalidate(s, domain_id);
2564         break;
2565 
2566     case VTD_INV_DESC_IOTLB_PAGE:
2567         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2568         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2569         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2570         if (am > VTD_MAMV) {
2571             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2572                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2573                               __func__, inv_desc->hi, inv_desc->lo,
2574                               am, (unsigned)VTD_MAMV);
2575             return false;
2576         }
2577         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2578         break;
2579 
2580     default:
2581         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2582                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2583                           __func__, inv_desc->hi, inv_desc->lo,
2584                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2585         return false;
2586     }
2587     return true;
2588 }
2589 
2590 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2591                                      VTDInvDesc *inv_desc)
2592 {
2593     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2594                            inv_desc->iec.index,
2595                            inv_desc->iec.index_mask);
2596 
2597     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2598                        inv_desc->iec.index,
2599                        inv_desc->iec.index_mask);
2600     return true;
2601 }
2602 
2603 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2604                                           VTDInvDesc *inv_desc)
2605 {
2606     VTDAddressSpace *vtd_dev_as;
2607     IOMMUTLBEvent event;
2608     hwaddr addr;
2609     uint64_t sz;
2610     uint16_t sid;
2611     bool size;
2612 
2613     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2614     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2615     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2616 
2617     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2618         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2619         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2620                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
2621                           inv_desc->hi, inv_desc->lo);
2622         return false;
2623     }
2624 
2625     /*
2626      * Using sid is OK since the guest should have finished the
2627      * initialization of both the bus and device.
2628      */
2629     vtd_dev_as = vtd_get_as_by_sid(s, sid);
2630     if (!vtd_dev_as) {
2631         goto done;
2632     }
2633 
2634     /* According to ATS spec table 2.4:
2635      * S = 0, bits 15:12 = xxxx     range size: 4K
2636      * S = 1, bits 15:12 = xxx0     range size: 8K
2637      * S = 1, bits 15:12 = xx01     range size: 16K
2638      * S = 1, bits 15:12 = x011     range size: 32K
2639      * S = 1, bits 15:12 = 0111     range size: 64K
2640      * ...
2641      */
2642     if (size) {
2643         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2644         addr &= ~(sz - 1);
2645     } else {
2646         sz = VTD_PAGE_SIZE;
2647     }
2648 
2649     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2650     event.entry.target_as = &vtd_dev_as->as;
2651     event.entry.addr_mask = sz - 1;
2652     event.entry.iova = addr;
2653     event.entry.perm = IOMMU_NONE;
2654     event.entry.translated_addr = 0;
2655     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2656 
2657 done:
2658     return true;
2659 }
2660 
2661 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2662 {
2663     VTDInvDesc inv_desc;
2664     uint8_t desc_type;
2665 
2666     trace_vtd_inv_qi_head(s->iq_head);
2667     if (!vtd_get_inv_desc(s, &inv_desc)) {
2668         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2669         return false;
2670     }
2671 
2672     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2673     /* FIXME: should update at first or at last? */
2674     s->iq_last_desc_type = desc_type;
2675 
2676     switch (desc_type) {
2677     case VTD_INV_DESC_CC:
2678         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2679         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2680             return false;
2681         }
2682         break;
2683 
2684     case VTD_INV_DESC_IOTLB:
2685         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2686         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2687             return false;
2688         }
2689         break;
2690 
2691     /*
2692      * TODO: the entity of below two cases will be implemented in future series.
2693      * To make guest (which integrates scalable mode support patch set in
2694      * iommu driver) work, just return true is enough so far.
2695      */
2696     case VTD_INV_DESC_PC:
2697         break;
2698 
2699     case VTD_INV_DESC_PIOTLB:
2700         break;
2701 
2702     case VTD_INV_DESC_WAIT:
2703         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2704         if (!vtd_process_wait_desc(s, &inv_desc)) {
2705             return false;
2706         }
2707         break;
2708 
2709     case VTD_INV_DESC_IEC:
2710         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2711         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2712             return false;
2713         }
2714         break;
2715 
2716     case VTD_INV_DESC_DEVICE:
2717         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2718         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2719             return false;
2720         }
2721         break;
2722 
2723     default:
2724         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2725                           " (unknown type)", __func__, inv_desc.hi,
2726                           inv_desc.lo);
2727         return false;
2728     }
2729     s->iq_head++;
2730     if (s->iq_head == s->iq_size) {
2731         s->iq_head = 0;
2732     }
2733     return true;
2734 }
2735 
2736 /* Try to fetch and process more Invalidation Descriptors */
2737 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2738 {
2739     int qi_shift;
2740 
2741     /* Refer to 10.4.23 of VT-d spec 3.0 */
2742     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2743 
2744     trace_vtd_inv_qi_fetch();
2745 
2746     if (s->iq_tail >= s->iq_size) {
2747         /* Detects an invalid Tail pointer */
2748         error_report_once("%s: detected invalid QI tail "
2749                           "(tail=0x%x, size=0x%x)",
2750                           __func__, s->iq_tail, s->iq_size);
2751         vtd_handle_inv_queue_error(s);
2752         return;
2753     }
2754     while (s->iq_head != s->iq_tail) {
2755         if (!vtd_process_inv_desc(s)) {
2756             /* Invalidation Queue Errors */
2757             vtd_handle_inv_queue_error(s);
2758             break;
2759         }
2760         /* Must update the IQH_REG in time */
2761         vtd_set_quad_raw(s, DMAR_IQH_REG,
2762                          (((uint64_t)(s->iq_head)) << qi_shift) &
2763                          VTD_IQH_QH_MASK);
2764     }
2765 }
2766 
2767 /* Handle write to Invalidation Queue Tail Register */
2768 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2769 {
2770     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2771 
2772     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2773         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2774                           __func__, val);
2775         return;
2776     }
2777     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2778     trace_vtd_inv_qi_tail(s->iq_tail);
2779 
2780     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2781         /* Process Invalidation Queue here */
2782         vtd_fetch_inv_desc(s);
2783     }
2784 }
2785 
2786 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2787 {
2788     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2789     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2790     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2791 
2792     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2793         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2794         trace_vtd_fsts_clear_ip();
2795     }
2796     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2797      * Descriptors if there are any when Queued Invalidation is enabled?
2798      */
2799 }
2800 
2801 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2802 {
2803     uint32_t fectl_reg;
2804     /* FIXME: when software clears the IM field, check the IP field. But do we
2805      * need to compare the old value and the new value to conclude that
2806      * software clears the IM field? Or just check if the IM field is zero?
2807      */
2808     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2809 
2810     trace_vtd_reg_write_fectl(fectl_reg);
2811 
2812     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2813         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2814         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2815     }
2816 }
2817 
2818 static void vtd_handle_ics_write(IntelIOMMUState *s)
2819 {
2820     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2821     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2822 
2823     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2824         trace_vtd_reg_ics_clear_ip();
2825         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2826     }
2827 }
2828 
2829 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2830 {
2831     uint32_t iectl_reg;
2832     /* FIXME: when software clears the IM field, check the IP field. But do we
2833      * need to compare the old value and the new value to conclude that
2834      * software clears the IM field? Or just check if the IM field is zero?
2835      */
2836     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2837 
2838     trace_vtd_reg_write_iectl(iectl_reg);
2839 
2840     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2841         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2842         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2843     }
2844 }
2845 
2846 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2847 {
2848     IntelIOMMUState *s = opaque;
2849     uint64_t val;
2850 
2851     trace_vtd_reg_read(addr, size);
2852 
2853     if (addr + size > DMAR_REG_SIZE) {
2854         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2855                           " size=0x%x", __func__, addr, size);
2856         return (uint64_t)-1;
2857     }
2858 
2859     switch (addr) {
2860     /* Root Table Address Register, 64-bit */
2861     case DMAR_RTADDR_REG:
2862         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2863         if (size == 4) {
2864             val = val & ((1ULL << 32) - 1);
2865         }
2866         break;
2867 
2868     case DMAR_RTADDR_REG_HI:
2869         assert(size == 4);
2870         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2871         break;
2872 
2873     /* Invalidation Queue Address Register, 64-bit */
2874     case DMAR_IQA_REG:
2875         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2876         if (size == 4) {
2877             val = val & ((1ULL << 32) - 1);
2878         }
2879         break;
2880 
2881     case DMAR_IQA_REG_HI:
2882         assert(size == 4);
2883         val = s->iq >> 32;
2884         break;
2885 
2886     default:
2887         if (size == 4) {
2888             val = vtd_get_long(s, addr);
2889         } else {
2890             val = vtd_get_quad(s, addr);
2891         }
2892     }
2893 
2894     return val;
2895 }
2896 
2897 static void vtd_mem_write(void *opaque, hwaddr addr,
2898                           uint64_t val, unsigned size)
2899 {
2900     IntelIOMMUState *s = opaque;
2901 
2902     trace_vtd_reg_write(addr, size, val);
2903 
2904     if (addr + size > DMAR_REG_SIZE) {
2905         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2906                           " size=0x%x", __func__, addr, size);
2907         return;
2908     }
2909 
2910     switch (addr) {
2911     /* Global Command Register, 32-bit */
2912     case DMAR_GCMD_REG:
2913         vtd_set_long(s, addr, val);
2914         vtd_handle_gcmd_write(s);
2915         break;
2916 
2917     /* Context Command Register, 64-bit */
2918     case DMAR_CCMD_REG:
2919         if (size == 4) {
2920             vtd_set_long(s, addr, val);
2921         } else {
2922             vtd_set_quad(s, addr, val);
2923             vtd_handle_ccmd_write(s);
2924         }
2925         break;
2926 
2927     case DMAR_CCMD_REG_HI:
2928         assert(size == 4);
2929         vtd_set_long(s, addr, val);
2930         vtd_handle_ccmd_write(s);
2931         break;
2932 
2933     /* IOTLB Invalidation Register, 64-bit */
2934     case DMAR_IOTLB_REG:
2935         if (size == 4) {
2936             vtd_set_long(s, addr, val);
2937         } else {
2938             vtd_set_quad(s, addr, val);
2939             vtd_handle_iotlb_write(s);
2940         }
2941         break;
2942 
2943     case DMAR_IOTLB_REG_HI:
2944         assert(size == 4);
2945         vtd_set_long(s, addr, val);
2946         vtd_handle_iotlb_write(s);
2947         break;
2948 
2949     /* Invalidate Address Register, 64-bit */
2950     case DMAR_IVA_REG:
2951         if (size == 4) {
2952             vtd_set_long(s, addr, val);
2953         } else {
2954             vtd_set_quad(s, addr, val);
2955         }
2956         break;
2957 
2958     case DMAR_IVA_REG_HI:
2959         assert(size == 4);
2960         vtd_set_long(s, addr, val);
2961         break;
2962 
2963     /* Fault Status Register, 32-bit */
2964     case DMAR_FSTS_REG:
2965         assert(size == 4);
2966         vtd_set_long(s, addr, val);
2967         vtd_handle_fsts_write(s);
2968         break;
2969 
2970     /* Fault Event Control Register, 32-bit */
2971     case DMAR_FECTL_REG:
2972         assert(size == 4);
2973         vtd_set_long(s, addr, val);
2974         vtd_handle_fectl_write(s);
2975         break;
2976 
2977     /* Fault Event Data Register, 32-bit */
2978     case DMAR_FEDATA_REG:
2979         assert(size == 4);
2980         vtd_set_long(s, addr, val);
2981         break;
2982 
2983     /* Fault Event Address Register, 32-bit */
2984     case DMAR_FEADDR_REG:
2985         if (size == 4) {
2986             vtd_set_long(s, addr, val);
2987         } else {
2988             /*
2989              * While the register is 32-bit only, some guests (Xen...) write to
2990              * it with 64-bit.
2991              */
2992             vtd_set_quad(s, addr, val);
2993         }
2994         break;
2995 
2996     /* Fault Event Upper Address Register, 32-bit */
2997     case DMAR_FEUADDR_REG:
2998         assert(size == 4);
2999         vtd_set_long(s, addr, val);
3000         break;
3001 
3002     /* Protected Memory Enable Register, 32-bit */
3003     case DMAR_PMEN_REG:
3004         assert(size == 4);
3005         vtd_set_long(s, addr, val);
3006         break;
3007 
3008     /* Root Table Address Register, 64-bit */
3009     case DMAR_RTADDR_REG:
3010         if (size == 4) {
3011             vtd_set_long(s, addr, val);
3012         } else {
3013             vtd_set_quad(s, addr, val);
3014         }
3015         break;
3016 
3017     case DMAR_RTADDR_REG_HI:
3018         assert(size == 4);
3019         vtd_set_long(s, addr, val);
3020         break;
3021 
3022     /* Invalidation Queue Tail Register, 64-bit */
3023     case DMAR_IQT_REG:
3024         if (size == 4) {
3025             vtd_set_long(s, addr, val);
3026         } else {
3027             vtd_set_quad(s, addr, val);
3028         }
3029         vtd_handle_iqt_write(s);
3030         break;
3031 
3032     case DMAR_IQT_REG_HI:
3033         assert(size == 4);
3034         vtd_set_long(s, addr, val);
3035         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3036         break;
3037 
3038     /* Invalidation Queue Address Register, 64-bit */
3039     case DMAR_IQA_REG:
3040         if (size == 4) {
3041             vtd_set_long(s, addr, val);
3042         } else {
3043             vtd_set_quad(s, addr, val);
3044         }
3045         vtd_update_iq_dw(s);
3046         break;
3047 
3048     case DMAR_IQA_REG_HI:
3049         assert(size == 4);
3050         vtd_set_long(s, addr, val);
3051         break;
3052 
3053     /* Invalidation Completion Status Register, 32-bit */
3054     case DMAR_ICS_REG:
3055         assert(size == 4);
3056         vtd_set_long(s, addr, val);
3057         vtd_handle_ics_write(s);
3058         break;
3059 
3060     /* Invalidation Event Control Register, 32-bit */
3061     case DMAR_IECTL_REG:
3062         assert(size == 4);
3063         vtd_set_long(s, addr, val);
3064         vtd_handle_iectl_write(s);
3065         break;
3066 
3067     /* Invalidation Event Data Register, 32-bit */
3068     case DMAR_IEDATA_REG:
3069         assert(size == 4);
3070         vtd_set_long(s, addr, val);
3071         break;
3072 
3073     /* Invalidation Event Address Register, 32-bit */
3074     case DMAR_IEADDR_REG:
3075         assert(size == 4);
3076         vtd_set_long(s, addr, val);
3077         break;
3078 
3079     /* Invalidation Event Upper Address Register, 32-bit */
3080     case DMAR_IEUADDR_REG:
3081         assert(size == 4);
3082         vtd_set_long(s, addr, val);
3083         break;
3084 
3085     /* Fault Recording Registers, 128-bit */
3086     case DMAR_FRCD_REG_0_0:
3087         if (size == 4) {
3088             vtd_set_long(s, addr, val);
3089         } else {
3090             vtd_set_quad(s, addr, val);
3091         }
3092         break;
3093 
3094     case DMAR_FRCD_REG_0_1:
3095         assert(size == 4);
3096         vtd_set_long(s, addr, val);
3097         break;
3098 
3099     case DMAR_FRCD_REG_0_2:
3100         if (size == 4) {
3101             vtd_set_long(s, addr, val);
3102         } else {
3103             vtd_set_quad(s, addr, val);
3104             /* May clear bit 127 (Fault), update PPF */
3105             vtd_update_fsts_ppf(s);
3106         }
3107         break;
3108 
3109     case DMAR_FRCD_REG_0_3:
3110         assert(size == 4);
3111         vtd_set_long(s, addr, val);
3112         /* May clear bit 127 (Fault), update PPF */
3113         vtd_update_fsts_ppf(s);
3114         break;
3115 
3116     case DMAR_IRTA_REG:
3117         if (size == 4) {
3118             vtd_set_long(s, addr, val);
3119         } else {
3120             vtd_set_quad(s, addr, val);
3121         }
3122         break;
3123 
3124     case DMAR_IRTA_REG_HI:
3125         assert(size == 4);
3126         vtd_set_long(s, addr, val);
3127         break;
3128 
3129     default:
3130         if (size == 4) {
3131             vtd_set_long(s, addr, val);
3132         } else {
3133             vtd_set_quad(s, addr, val);
3134         }
3135     }
3136 }
3137 
3138 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3139                                          IOMMUAccessFlags flag, int iommu_idx)
3140 {
3141     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3142     IntelIOMMUState *s = vtd_as->iommu_state;
3143     IOMMUTLBEntry iotlb = {
3144         /* We'll fill in the rest later. */
3145         .target_as = &address_space_memory,
3146     };
3147     bool success;
3148 
3149     if (likely(s->dmar_enabled)) {
3150         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3151                                          addr, flag & IOMMU_WO, &iotlb);
3152     } else {
3153         /* DMAR disabled, passthrough, use 4k-page*/
3154         iotlb.iova = addr & VTD_PAGE_MASK_4K;
3155         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3156         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3157         iotlb.perm = IOMMU_RW;
3158         success = true;
3159     }
3160 
3161     if (likely(success)) {
3162         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3163                                  VTD_PCI_SLOT(vtd_as->devfn),
3164                                  VTD_PCI_FUNC(vtd_as->devfn),
3165                                  iotlb.iova, iotlb.translated_addr,
3166                                  iotlb.addr_mask);
3167     } else {
3168         error_report_once("%s: detected translation failure "
3169                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3170                           __func__, pci_bus_num(vtd_as->bus),
3171                           VTD_PCI_SLOT(vtd_as->devfn),
3172                           VTD_PCI_FUNC(vtd_as->devfn),
3173                           addr);
3174     }
3175 
3176     return iotlb;
3177 }
3178 
3179 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3180                                          IOMMUNotifierFlag old,
3181                                          IOMMUNotifierFlag new,
3182                                          Error **errp)
3183 {
3184     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3185     IntelIOMMUState *s = vtd_as->iommu_state;
3186     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3187 
3188     /* TODO: add support for VFIO and vhost users */
3189     if (s->snoop_control) {
3190         error_setg_errno(errp, ENOTSUP,
3191                          "Snoop Control with vhost or VFIO is not supported");
3192         return -ENOTSUP;
3193     }
3194     if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3195         error_setg_errno(errp, ENOTSUP,
3196                          "device %02x.%02x.%x requires caching mode",
3197                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3198                          PCI_FUNC(vtd_as->devfn));
3199         return -ENOTSUP;
3200     }
3201     if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3202         error_setg_errno(errp, ENOTSUP,
3203                          "device %02x.%02x.%x requires device IOTLB mode",
3204                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3205                          PCI_FUNC(vtd_as->devfn));
3206         return -ENOTSUP;
3207     }
3208 
3209     /* Update per-address-space notifier flags */
3210     vtd_as->notifier_flags = new;
3211 
3212     if (old == IOMMU_NOTIFIER_NONE) {
3213         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3214     } else if (new == IOMMU_NOTIFIER_NONE) {
3215         QLIST_REMOVE(vtd_as, next);
3216     }
3217     return 0;
3218 }
3219 
3220 static int vtd_post_load(void *opaque, int version_id)
3221 {
3222     IntelIOMMUState *iommu = opaque;
3223 
3224     /*
3225      * We don't need to migrate the root_scalable because we can
3226      * simply do the calculation after the loading is complete.  We
3227      * can actually do similar things with root, dmar_enabled, etc.
3228      * however since we've had them already so we'd better keep them
3229      * for compatibility of migration.
3230      */
3231     vtd_update_scalable_state(iommu);
3232 
3233     vtd_update_iq_dw(iommu);
3234 
3235     /*
3236      * Memory regions are dynamically turned on/off depending on
3237      * context entry configurations from the guest. After migration,
3238      * we need to make sure the memory regions are still correct.
3239      */
3240     vtd_switch_address_space_all(iommu);
3241 
3242     return 0;
3243 }
3244 
3245 static const VMStateDescription vtd_vmstate = {
3246     .name = "iommu-intel",
3247     .version_id = 1,
3248     .minimum_version_id = 1,
3249     .priority = MIG_PRI_IOMMU,
3250     .post_load = vtd_post_load,
3251     .fields = (VMStateField[]) {
3252         VMSTATE_UINT64(root, IntelIOMMUState),
3253         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3254         VMSTATE_UINT64(iq, IntelIOMMUState),
3255         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3256         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3257         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3258         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3259         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3260         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3261         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3262         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3263         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3264         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3265         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3266         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3267         VMSTATE_END_OF_LIST()
3268     }
3269 };
3270 
3271 static const MemoryRegionOps vtd_mem_ops = {
3272     .read = vtd_mem_read,
3273     .write = vtd_mem_write,
3274     .endianness = DEVICE_LITTLE_ENDIAN,
3275     .impl = {
3276         .min_access_size = 4,
3277         .max_access_size = 8,
3278     },
3279     .valid = {
3280         .min_access_size = 4,
3281         .max_access_size = 8,
3282     },
3283 };
3284 
3285 static Property vtd_properties[] = {
3286     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3287     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3288                             ON_OFF_AUTO_AUTO),
3289     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3290     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3291                       VTD_HOST_ADDRESS_WIDTH),
3292     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3293     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3294     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3295     DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3296     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3297     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3298     DEFINE_PROP_END_OF_LIST(),
3299 };
3300 
3301 /* Read IRTE entry with specific index */
3302 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3303                         VTD_IR_TableEntry *entry, uint16_t sid)
3304 {
3305     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3306         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3307     dma_addr_t addr = 0x00;
3308     uint16_t mask, source_id;
3309     uint8_t bus, bus_max, bus_min;
3310 
3311     if (index >= iommu->intr_size) {
3312         error_report_once("%s: index too large: ind=0x%x",
3313                           __func__, index);
3314         return -VTD_FR_IR_INDEX_OVER;
3315     }
3316 
3317     addr = iommu->intr_root + index * sizeof(*entry);
3318     if (dma_memory_read(&address_space_memory, addr,
3319                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3320         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3321                           __func__, index, addr);
3322         return -VTD_FR_IR_ROOT_INVAL;
3323     }
3324 
3325     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3326                           le64_to_cpu(entry->data[0]));
3327 
3328     if (!entry->irte.present) {
3329         error_report_once("%s: detected non-present IRTE "
3330                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3331                           __func__, index, le64_to_cpu(entry->data[1]),
3332                           le64_to_cpu(entry->data[0]));
3333         return -VTD_FR_IR_ENTRY_P;
3334     }
3335 
3336     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3337         entry->irte.__reserved_2) {
3338         error_report_once("%s: detected non-zero reserved IRTE "
3339                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3340                           __func__, index, le64_to_cpu(entry->data[1]),
3341                           le64_to_cpu(entry->data[0]));
3342         return -VTD_FR_IR_IRTE_RSVD;
3343     }
3344 
3345     if (sid != X86_IOMMU_SID_INVALID) {
3346         /* Validate IRTE SID */
3347         source_id = le32_to_cpu(entry->irte.source_id);
3348         switch (entry->irte.sid_vtype) {
3349         case VTD_SVT_NONE:
3350             break;
3351 
3352         case VTD_SVT_ALL:
3353             mask = vtd_svt_mask[entry->irte.sid_q];
3354             if ((source_id & mask) != (sid & mask)) {
3355                 error_report_once("%s: invalid IRTE SID "
3356                                   "(index=%u, sid=%u, source_id=%u)",
3357                                   __func__, index, sid, source_id);
3358                 return -VTD_FR_IR_SID_ERR;
3359             }
3360             break;
3361 
3362         case VTD_SVT_BUS:
3363             bus_max = source_id >> 8;
3364             bus_min = source_id & 0xff;
3365             bus = sid >> 8;
3366             if (bus > bus_max || bus < bus_min) {
3367                 error_report_once("%s: invalid SVT_BUS "
3368                                   "(index=%u, bus=%u, min=%u, max=%u)",
3369                                   __func__, index, bus, bus_min, bus_max);
3370                 return -VTD_FR_IR_SID_ERR;
3371             }
3372             break;
3373 
3374         default:
3375             error_report_once("%s: detected invalid IRTE SVT "
3376                               "(index=%u, type=%d)", __func__,
3377                               index, entry->irte.sid_vtype);
3378             /* Take this as verification failure. */
3379             return -VTD_FR_IR_SID_ERR;
3380         }
3381     }
3382 
3383     return 0;
3384 }
3385 
3386 /* Fetch IRQ information of specific IR index */
3387 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3388                              X86IOMMUIrq *irq, uint16_t sid)
3389 {
3390     VTD_IR_TableEntry irte = {};
3391     int ret = 0;
3392 
3393     ret = vtd_irte_get(iommu, index, &irte, sid);
3394     if (ret) {
3395         return ret;
3396     }
3397 
3398     irq->trigger_mode = irte.irte.trigger_mode;
3399     irq->vector = irte.irte.vector;
3400     irq->delivery_mode = irte.irte.delivery_mode;
3401     irq->dest = le32_to_cpu(irte.irte.dest_id);
3402     if (!iommu->intr_eime) {
3403 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3404 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3405         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3406             VTD_IR_APIC_DEST_SHIFT;
3407     }
3408     irq->dest_mode = irte.irte.dest_mode;
3409     irq->redir_hint = irte.irte.redir_hint;
3410 
3411     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3412                        irq->delivery_mode, irq->dest, irq->dest_mode);
3413 
3414     return 0;
3415 }
3416 
3417 /* Interrupt remapping for MSI/MSI-X entry */
3418 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3419                                    MSIMessage *origin,
3420                                    MSIMessage *translated,
3421                                    uint16_t sid)
3422 {
3423     int ret = 0;
3424     VTD_IR_MSIAddress addr;
3425     uint16_t index;
3426     X86IOMMUIrq irq = {};
3427 
3428     assert(origin && translated);
3429 
3430     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3431 
3432     if (!iommu || !iommu->intr_enabled) {
3433         memcpy(translated, origin, sizeof(*origin));
3434         goto out;
3435     }
3436 
3437     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3438         error_report_once("%s: MSI address high 32 bits non-zero detected: "
3439                           "address=0x%" PRIx64, __func__, origin->address);
3440         return -VTD_FR_IR_REQ_RSVD;
3441     }
3442 
3443     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3444     if (addr.addr.__head != 0xfee) {
3445         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3446                           __func__, addr.data);
3447         return -VTD_FR_IR_REQ_RSVD;
3448     }
3449 
3450     /* This is compatible mode. */
3451     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3452         memcpy(translated, origin, sizeof(*origin));
3453         goto out;
3454     }
3455 
3456     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3457 
3458 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3459 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3460 
3461     if (addr.addr.sub_valid) {
3462         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3463         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3464     }
3465 
3466     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3467     if (ret) {
3468         return ret;
3469     }
3470 
3471     if (addr.addr.sub_valid) {
3472         trace_vtd_ir_remap_type("MSI");
3473         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3474             error_report_once("%s: invalid IR MSI "
3475                               "(sid=%u, address=0x%" PRIx64
3476                               ", data=0x%" PRIx32 ")",
3477                               __func__, sid, origin->address, origin->data);
3478             return -VTD_FR_IR_REQ_RSVD;
3479         }
3480     } else {
3481         uint8_t vector = origin->data & 0xff;
3482         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3483 
3484         trace_vtd_ir_remap_type("IOAPIC");
3485         /* IOAPIC entry vector should be aligned with IRTE vector
3486          * (see vt-d spec 5.1.5.1). */
3487         if (vector != irq.vector) {
3488             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3489         }
3490 
3491         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3492          * (see vt-d spec 5.1.5.1). */
3493         if (trigger_mode != irq.trigger_mode) {
3494             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3495                                       irq.trigger_mode);
3496         }
3497     }
3498 
3499     /*
3500      * We'd better keep the last two bits, assuming that guest OS
3501      * might modify it. Keep it does not hurt after all.
3502      */
3503     irq.msi_addr_last_bits = addr.addr.__not_care;
3504 
3505     /* Translate X86IOMMUIrq to MSI message */
3506     x86_iommu_irq_to_msi_message(&irq, translated);
3507 
3508 out:
3509     trace_vtd_ir_remap_msi(origin->address, origin->data,
3510                            translated->address, translated->data);
3511     return 0;
3512 }
3513 
3514 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3515                          MSIMessage *dst, uint16_t sid)
3516 {
3517     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3518                                    src, dst, sid);
3519 }
3520 
3521 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3522                                    uint64_t *data, unsigned size,
3523                                    MemTxAttrs attrs)
3524 {
3525     return MEMTX_OK;
3526 }
3527 
3528 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3529                                     uint64_t value, unsigned size,
3530                                     MemTxAttrs attrs)
3531 {
3532     int ret = 0;
3533     MSIMessage from = {}, to = {};
3534     uint16_t sid = X86_IOMMU_SID_INVALID;
3535 
3536     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3537     from.data = (uint32_t) value;
3538 
3539     if (!attrs.unspecified) {
3540         /* We have explicit Source ID */
3541         sid = attrs.requester_id;
3542     }
3543 
3544     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3545     if (ret) {
3546         /* TODO: report error */
3547         /* Drop this interrupt */
3548         return MEMTX_ERROR;
3549     }
3550 
3551     apic_get_class(NULL)->send_msi(&to);
3552 
3553     return MEMTX_OK;
3554 }
3555 
3556 static const MemoryRegionOps vtd_mem_ir_ops = {
3557     .read_with_attrs = vtd_mem_ir_read,
3558     .write_with_attrs = vtd_mem_ir_write,
3559     .endianness = DEVICE_LITTLE_ENDIAN,
3560     .impl = {
3561         .min_access_size = 4,
3562         .max_access_size = 4,
3563     },
3564     .valid = {
3565         .min_access_size = 4,
3566         .max_access_size = 4,
3567     },
3568 };
3569 
3570 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3571                                          hwaddr addr, bool is_write)
3572 {
3573     IntelIOMMUState *s = vtd_as->iommu_state;
3574     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3575     uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3576     bool is_fpd_set = false;
3577     VTDContextEntry ce;
3578 
3579     assert(vtd_as->pasid != PCI_NO_PASID);
3580 
3581     /* Try out best to fetch FPD, we can't do anything more */
3582     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3583         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3584         if (!is_fpd_set && s->root_scalable) {
3585             vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3586         }
3587     }
3588 
3589     vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3590                      is_fpd_set, sid, addr, is_write,
3591                      true, vtd_as->pasid);
3592 }
3593 
3594 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3595                                          uint64_t *data, unsigned size,
3596                                          MemTxAttrs attrs)
3597 {
3598     vtd_report_ir_illegal_access(opaque, addr, false);
3599 
3600     return MEMTX_ERROR;
3601 }
3602 
3603 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3604                                           uint64_t value, unsigned size,
3605                                           MemTxAttrs attrs)
3606 {
3607     vtd_report_ir_illegal_access(opaque, addr, true);
3608 
3609     return MEMTX_ERROR;
3610 }
3611 
3612 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3613     .read_with_attrs = vtd_mem_ir_fault_read,
3614     .write_with_attrs = vtd_mem_ir_fault_write,
3615     .endianness = DEVICE_LITTLE_ENDIAN,
3616     .impl = {
3617         .min_access_size = 1,
3618         .max_access_size = 8,
3619     },
3620     .valid = {
3621         .min_access_size = 1,
3622         .max_access_size = 8,
3623     },
3624 };
3625 
3626 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3627                                  int devfn, unsigned int pasid)
3628 {
3629     /*
3630      * We can't simply use sid here since the bus number might not be
3631      * initialized by the guest.
3632      */
3633     struct vtd_as_key key = {
3634         .bus = bus,
3635         .devfn = devfn,
3636         .pasid = pasid,
3637     };
3638     VTDAddressSpace *vtd_dev_as;
3639     char name[128];
3640 
3641     vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3642     if (!vtd_dev_as) {
3643         struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3644 
3645         new_key->bus = bus;
3646         new_key->devfn = devfn;
3647         new_key->pasid = pasid;
3648 
3649         if (pasid == PCI_NO_PASID) {
3650             snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3651                      PCI_FUNC(devfn));
3652         } else {
3653             snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3654                      PCI_FUNC(devfn), pasid);
3655         }
3656 
3657         vtd_dev_as = g_new0(VTDAddressSpace, 1);
3658 
3659         vtd_dev_as->bus = bus;
3660         vtd_dev_as->devfn = (uint8_t)devfn;
3661         vtd_dev_as->pasid = pasid;
3662         vtd_dev_as->iommu_state = s;
3663         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3664         vtd_dev_as->iova_tree = iova_tree_new();
3665 
3666         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3667         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3668 
3669         /*
3670          * Build the DMAR-disabled container with aliases to the
3671          * shared MRs.  Note that aliasing to a shared memory region
3672          * could help the memory API to detect same FlatViews so we
3673          * can have devices to share the same FlatView when DMAR is
3674          * disabled (either by not providing "intel_iommu=on" or with
3675          * "iommu=pt").  It will greatly reduce the total number of
3676          * FlatViews of the system hence VM runs faster.
3677          */
3678         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3679                                  "vtd-nodmar", &s->mr_nodmar, 0,
3680                                  memory_region_size(&s->mr_nodmar));
3681 
3682         /*
3683          * Build the per-device DMAR-enabled container.
3684          *
3685          * TODO: currently we have per-device IOMMU memory region only
3686          * because we have per-device IOMMU notifiers for devices.  If
3687          * one day we can abstract the IOMMU notifiers out of the
3688          * memory regions then we can also share the same memory
3689          * region here just like what we've done above with the nodmar
3690          * region.
3691          */
3692         strcat(name, "-dmar");
3693         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3694                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3695                                  name, UINT64_MAX);
3696         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3697                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3698         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3699                                             VTD_INTERRUPT_ADDR_FIRST,
3700                                             &vtd_dev_as->iommu_ir, 1);
3701 
3702         /*
3703          * This region is used for catching fault to access interrupt
3704          * range via passthrough + PASID. See also
3705          * vtd_switch_address_space(). We can't use alias since we
3706          * need to know the sid which is valid for MSI who uses
3707          * bus_master_as (see msi_send_message()).
3708          */
3709         memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3710                               &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3711                               VTD_INTERRUPT_ADDR_SIZE);
3712         /*
3713          * Hook to root since when PT is enabled vtd_dev_as->iommu
3714          * will be disabled.
3715          */
3716         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3717                                             VTD_INTERRUPT_ADDR_FIRST,
3718                                             &vtd_dev_as->iommu_ir_fault, 2);
3719 
3720         /*
3721          * Hook both the containers under the root container, we
3722          * switch between DMAR & noDMAR by enable/disable
3723          * corresponding sub-containers
3724          */
3725         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3726                                             MEMORY_REGION(&vtd_dev_as->iommu),
3727                                             0);
3728         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3729                                             &vtd_dev_as->nodmar, 0);
3730 
3731         vtd_switch_address_space(vtd_dev_as);
3732 
3733         g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3734     }
3735     return vtd_dev_as;
3736 }
3737 
3738 /* Unmap the whole range in the notifier's scope. */
3739 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3740 {
3741     hwaddr size, remain;
3742     hwaddr start = n->start;
3743     hwaddr end = n->end;
3744     IntelIOMMUState *s = as->iommu_state;
3745     DMAMap map;
3746 
3747     /*
3748      * Note: all the codes in this function has a assumption that IOVA
3749      * bits are no more than VTD_MGAW bits (which is restricted by
3750      * VT-d spec), otherwise we need to consider overflow of 64 bits.
3751      */
3752 
3753     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3754         /*
3755          * Don't need to unmap regions that is bigger than the whole
3756          * VT-d supported address space size
3757          */
3758         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3759     }
3760 
3761     assert(start <= end);
3762     size = remain = end - start + 1;
3763 
3764     while (remain >= VTD_PAGE_SIZE) {
3765         IOMMUTLBEvent event;
3766         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3767         uint64_t size = mask + 1;
3768 
3769         assert(size);
3770 
3771         event.type = IOMMU_NOTIFIER_UNMAP;
3772         event.entry.iova = start;
3773         event.entry.addr_mask = mask;
3774         event.entry.target_as = &address_space_memory;
3775         event.entry.perm = IOMMU_NONE;
3776         /* This field is meaningless for unmap */
3777         event.entry.translated_addr = 0;
3778 
3779         memory_region_notify_iommu_one(n, &event);
3780 
3781         start += size;
3782         remain -= size;
3783     }
3784 
3785     assert(!remain);
3786 
3787     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3788                              VTD_PCI_SLOT(as->devfn),
3789                              VTD_PCI_FUNC(as->devfn),
3790                              n->start, size);
3791 
3792     map.iova = n->start;
3793     map.size = size;
3794     iova_tree_remove(as->iova_tree, map);
3795 }
3796 
3797 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3798 {
3799     VTDAddressSpace *vtd_as;
3800     IOMMUNotifier *n;
3801 
3802     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3803         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3804             vtd_address_space_unmap(vtd_as, n);
3805         }
3806     }
3807 }
3808 
3809 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3810 {
3811     vtd_address_space_unmap_all(s);
3812     vtd_switch_address_space_all(s);
3813 }
3814 
3815 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3816 {
3817     memory_region_notify_iommu_one(private, event);
3818     return 0;
3819 }
3820 
3821 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3822 {
3823     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3824     IntelIOMMUState *s = vtd_as->iommu_state;
3825     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3826     VTDContextEntry ce;
3827 
3828     /*
3829      * The replay can be triggered by either a invalidation or a newly
3830      * created entry. No matter what, we release existing mappings
3831      * (it means flushing caches for UNMAP-only registers).
3832      */
3833     vtd_address_space_unmap(vtd_as, n);
3834 
3835     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3836         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3837                                   "legacy mode",
3838                                   bus_n, PCI_SLOT(vtd_as->devfn),
3839                                   PCI_FUNC(vtd_as->devfn),
3840                                   vtd_get_domain_id(s, &ce, vtd_as->pasid),
3841                                   ce.hi, ce.lo);
3842         if (vtd_as_has_map_notifier(vtd_as)) {
3843             /* This is required only for MAP typed notifiers */
3844             vtd_page_walk_info info = {
3845                 .hook_fn = vtd_replay_hook,
3846                 .private = (void *)n,
3847                 .notify_unmap = false,
3848                 .aw = s->aw_bits,
3849                 .as = vtd_as,
3850                 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3851             };
3852 
3853             vtd_page_walk(s, &ce, n->start, n->end, &info, vtd_as->pasid);
3854         }
3855     } else {
3856         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3857                                     PCI_FUNC(vtd_as->devfn));
3858     }
3859 
3860     return;
3861 }
3862 
3863 /* Do the initialization. It will also be called when reset, so pay
3864  * attention when adding new initialization stuff.
3865  */
3866 static void vtd_init(IntelIOMMUState *s)
3867 {
3868     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3869 
3870     memset(s->csr, 0, DMAR_REG_SIZE);
3871     memset(s->wmask, 0, DMAR_REG_SIZE);
3872     memset(s->w1cmask, 0, DMAR_REG_SIZE);
3873     memset(s->womask, 0, DMAR_REG_SIZE);
3874 
3875     s->root = 0;
3876     s->root_scalable = false;
3877     s->dmar_enabled = false;
3878     s->intr_enabled = false;
3879     s->iq_head = 0;
3880     s->iq_tail = 0;
3881     s->iq = 0;
3882     s->iq_size = 0;
3883     s->qi_enabled = false;
3884     s->iq_last_desc_type = VTD_INV_DESC_NONE;
3885     s->iq_dw = false;
3886     s->next_frcd_reg = 0;
3887     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3888              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3889              VTD_CAP_MGAW(s->aw_bits);
3890     if (s->dma_drain) {
3891         s->cap |= VTD_CAP_DRAIN;
3892     }
3893     if (s->dma_translation) {
3894             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3895                     s->cap |= VTD_CAP_SAGAW_39bit;
3896             }
3897             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3898                     s->cap |= VTD_CAP_SAGAW_48bit;
3899             }
3900     }
3901     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3902 
3903     /*
3904      * Rsvd field masks for spte
3905      */
3906     vtd_spte_rsvd[0] = ~0ULL;
3907     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3908                                                   x86_iommu->dt_supported);
3909     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3910     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3911     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3912 
3913     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3914                                                          x86_iommu->dt_supported);
3915     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3916                                                          x86_iommu->dt_supported);
3917 
3918     if (s->scalable_mode || s->snoop_control) {
3919         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3920         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3921         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3922     }
3923 
3924     if (x86_iommu_ir_supported(x86_iommu)) {
3925         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3926         if (s->intr_eim == ON_OFF_AUTO_ON) {
3927             s->ecap |= VTD_ECAP_EIM;
3928         }
3929         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3930     }
3931 
3932     if (x86_iommu->dt_supported) {
3933         s->ecap |= VTD_ECAP_DT;
3934     }
3935 
3936     if (x86_iommu->pt_supported) {
3937         s->ecap |= VTD_ECAP_PT;
3938     }
3939 
3940     if (s->caching_mode) {
3941         s->cap |= VTD_CAP_CM;
3942     }
3943 
3944     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3945     if (s->scalable_mode) {
3946         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3947     }
3948 
3949     if (s->snoop_control) {
3950         s->ecap |= VTD_ECAP_SC;
3951     }
3952 
3953     if (s->pasid) {
3954         s->ecap |= VTD_ECAP_PASID;
3955     }
3956 
3957     vtd_reset_caches(s);
3958 
3959     /* Define registers with default values and bit semantics */
3960     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3961     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3962     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3963     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3964     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3965     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3966     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3967     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3968     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3969 
3970     /* Advanced Fault Logging not supported */
3971     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3972     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3973     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3974     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3975 
3976     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3977      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3978      */
3979     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3980 
3981     /* Treated as RO for implementations that PLMR and PHMR fields reported
3982      * as Clear in the CAP_REG.
3983      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3984      */
3985     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3986 
3987     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3988     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3989     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3990     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3991     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3992     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3993     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3994     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3995     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3996 
3997     /* IOTLB registers */
3998     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3999     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4000     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4001 
4002     /* Fault Recording Registers, 128-bit */
4003     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4004     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4005 
4006     /*
4007      * Interrupt remapping registers.
4008      */
4009     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4010 }
4011 
4012 /* Should not reset address_spaces when reset because devices will still use
4013  * the address space they got at first (won't ask the bus again).
4014  */
4015 static void vtd_reset(DeviceState *dev)
4016 {
4017     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4018 
4019     vtd_init(s);
4020     vtd_address_space_refresh_all(s);
4021 }
4022 
4023 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4024 {
4025     IntelIOMMUState *s = opaque;
4026     VTDAddressSpace *vtd_as;
4027 
4028     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4029 
4030     vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4031     return &vtd_as->as;
4032 }
4033 
4034 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4035 {
4036     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4037 
4038     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4039         error_setg(errp, "eim=on cannot be selected without intremap=on");
4040         return false;
4041     }
4042 
4043     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4044         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4045                       && x86_iommu_ir_supported(x86_iommu) ?
4046                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4047     }
4048     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4049         if (!kvm_irqchip_is_split()) {
4050             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4051             return false;
4052         }
4053         if (!kvm_enable_x2apic()) {
4054             error_setg(errp, "eim=on requires support on the KVM side"
4055                              "(X2APIC_API, first shipped in v4.7)");
4056             return false;
4057         }
4058     }
4059 
4060     /* Currently only address widths supported are 39 and 48 bits */
4061     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4062         (s->aw_bits != VTD_HOST_AW_48BIT)) {
4063         error_setg(errp, "Supported values for aw-bits are: %d, %d",
4064                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4065         return false;
4066     }
4067 
4068     if (s->scalable_mode && !s->dma_drain) {
4069         error_setg(errp, "Need to set dma_drain for scalable mode");
4070         return false;
4071     }
4072 
4073     if (s->pasid && !s->scalable_mode) {
4074         error_setg(errp, "Need to set scalable mode for PASID");
4075         return false;
4076     }
4077 
4078     return true;
4079 }
4080 
4081 static int vtd_machine_done_notify_one(Object *child, void *unused)
4082 {
4083     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4084 
4085     /*
4086      * We hard-coded here because vfio-pci is the only special case
4087      * here.  Let's be more elegant in the future when we can, but so
4088      * far there seems to be no better way.
4089      */
4090     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4091         vtd_panic_require_caching_mode();
4092     }
4093 
4094     return 0;
4095 }
4096 
4097 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4098 {
4099     object_child_foreach_recursive(object_get_root(),
4100                                    vtd_machine_done_notify_one, NULL);
4101 }
4102 
4103 static Notifier vtd_machine_done_notify = {
4104     .notify = vtd_machine_done_hook,
4105 };
4106 
4107 static void vtd_realize(DeviceState *dev, Error **errp)
4108 {
4109     MachineState *ms = MACHINE(qdev_get_machine());
4110     PCMachineState *pcms = PC_MACHINE(ms);
4111     X86MachineState *x86ms = X86_MACHINE(ms);
4112     PCIBus *bus = pcms->bus;
4113     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4114     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4115 
4116     if (s->pasid && x86_iommu->dt_supported) {
4117         /*
4118          * PASID-based-Device-TLB Invalidate Descriptor is not
4119          * implemented and it requires support from vhost layer which
4120          * needs to be implemented in the future.
4121          */
4122         error_setg(errp, "PASID based device IOTLB is not supported");
4123         return;
4124     }
4125 
4126     if (!vtd_decide_config(s, errp)) {
4127         return;
4128     }
4129 
4130     QLIST_INIT(&s->vtd_as_with_notifiers);
4131     qemu_mutex_init(&s->iommu_lock);
4132     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4133                           "intel_iommu", DMAR_REG_SIZE);
4134 
4135     /* Create the shared memory regions by all devices */
4136     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4137                        UINT64_MAX);
4138     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4139                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4140     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4141                              "vtd-sys-alias", get_system_memory(), 0,
4142                              memory_region_size(get_system_memory()));
4143     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4144                                         &s->mr_sys_alias, 0);
4145     memory_region_add_subregion_overlap(&s->mr_nodmar,
4146                                         VTD_INTERRUPT_ADDR_FIRST,
4147                                         &s->mr_ir, 1);
4148 
4149     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4150     /* No corresponding destroy */
4151     s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4152                                      g_free, g_free);
4153     s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4154                                       g_free, g_free);
4155     vtd_init(s);
4156     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4157     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4158     /* Pseudo address space under root PCI bus. */
4159     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4160     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4161 }
4162 
4163 static void vtd_class_init(ObjectClass *klass, void *data)
4164 {
4165     DeviceClass *dc = DEVICE_CLASS(klass);
4166     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4167 
4168     dc->reset = vtd_reset;
4169     dc->vmsd = &vtd_vmstate;
4170     device_class_set_props(dc, vtd_properties);
4171     dc->hotpluggable = false;
4172     x86_class->realize = vtd_realize;
4173     x86_class->int_remap = vtd_int_remap;
4174     /* Supported by the pc-q35-* machine types */
4175     dc->user_creatable = true;
4176     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4177     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4178 }
4179 
4180 static const TypeInfo vtd_info = {
4181     .name          = TYPE_INTEL_IOMMU_DEVICE,
4182     .parent        = TYPE_X86_IOMMU_DEVICE,
4183     .instance_size = sizeof(IntelIOMMUState),
4184     .class_init    = vtd_class_init,
4185 };
4186 
4187 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4188                                                      void *data)
4189 {
4190     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4191 
4192     imrc->translate = vtd_iommu_translate;
4193     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4194     imrc->replay = vtd_iommu_replay;
4195 }
4196 
4197 static const TypeInfo vtd_iommu_memory_region_info = {
4198     .parent = TYPE_IOMMU_MEMORY_REGION,
4199     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4200     .class_init = vtd_iommu_memory_region_class_init,
4201 };
4202 
4203 static void vtd_register_types(void)
4204 {
4205     type_register_static(&vtd_info);
4206     type_register_static(&vtd_iommu_memory_region_info);
4207 }
4208 
4209 type_init(vtd_register_types)
4210