xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision 32f0c394bbf7fb2be635658cbf84c72a124720a0)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42 
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48 
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 
53 /*
54  * PCI bus number (or SID) is not reliable since the device is usaully
55  * initialized before guest can configure the PCI bridge
56  * (SECONDARY_BUS_NUMBER).
57  */
58 struct vtd_as_key {
59     PCIBus *bus;
60     uint8_t devfn;
61     uint32_t pasid;
62 };
63 
64 struct vtd_iotlb_key {
65     uint64_t gfn;
66     uint32_t pasid;
67     uint16_t sid;
68     uint8_t level;
69 };
70 
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
73 
74 static void vtd_panic_require_caching_mode(void)
75 {
76     error_report("We need to set caching-mode=on for intel-iommu to enable "
77                  "device assignment with IOMMU protection.");
78     exit(1);
79 }
80 
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82                             uint64_t wmask, uint64_t w1cmask)
83 {
84     stq_le_p(&s->csr[addr], val);
85     stq_le_p(&s->wmask[addr], wmask);
86     stq_le_p(&s->w1cmask[addr], w1cmask);
87 }
88 
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
90 {
91     stq_le_p(&s->womask[addr], mask);
92 }
93 
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95                             uint32_t wmask, uint32_t w1cmask)
96 {
97     stl_le_p(&s->csr[addr], val);
98     stl_le_p(&s->wmask[addr], wmask);
99     stl_le_p(&s->w1cmask[addr], w1cmask);
100 }
101 
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
103 {
104     stl_le_p(&s->womask[addr], mask);
105 }
106 
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
109 {
110     uint64_t oldval = ldq_le_p(&s->csr[addr]);
111     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113     stq_le_p(&s->csr[addr],
114              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
115 }
116 
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
118 {
119     uint32_t oldval = ldl_le_p(&s->csr[addr]);
120     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122     stl_le_p(&s->csr[addr],
123              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
124 }
125 
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
127 {
128     uint64_t val = ldq_le_p(&s->csr[addr]);
129     uint64_t womask = ldq_le_p(&s->womask[addr]);
130     return val & ~womask;
131 }
132 
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
134 {
135     uint32_t val = ldl_le_p(&s->csr[addr]);
136     uint32_t womask = ldl_le_p(&s->womask[addr]);
137     return val & ~womask;
138 }
139 
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
142 {
143     return ldq_le_p(&s->csr[addr]);
144 }
145 
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
147 {
148     return ldl_le_p(&s->csr[addr]);
149 }
150 
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
152 {
153     stq_le_p(&s->csr[addr], val);
154 }
155 
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157                                         uint32_t clear, uint32_t mask)
158 {
159     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160     stl_le_p(&s->csr[addr], new_val);
161     return new_val;
162 }
163 
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165                                         uint64_t clear, uint64_t mask)
166 {
167     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168     stq_le_p(&s->csr[addr], new_val);
169     return new_val;
170 }
171 
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
173 {
174     qemu_mutex_lock(&s->iommu_lock);
175 }
176 
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
178 {
179     qemu_mutex_unlock(&s->iommu_lock);
180 }
181 
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
183 {
184     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
185 
186     if (s->scalable_mode) {
187         s->root_scalable = val & VTD_RTADDR_SMT;
188     }
189 }
190 
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
192 {
193     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
194 
195     if (s->ecap & VTD_ECAP_SMTS &&
196         val & VTD_IQA_DW_MASK) {
197         s->iq_dw = true;
198     } else {
199         s->iq_dw = false;
200     }
201 }
202 
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
205 {
206     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
207 }
208 
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
211 {
212     const struct vtd_iotlb_key *key1 = v1;
213     const struct vtd_iotlb_key *key2 = v2;
214 
215     return key1->sid == key2->sid &&
216            key1->pasid == key2->pasid &&
217            key1->level == key2->level &&
218            key1->gfn == key2->gfn;
219 }
220 
221 static guint vtd_iotlb_hash(gconstpointer v)
222 {
223     const struct vtd_iotlb_key *key = v;
224     uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
225         (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
226         (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
227 
228     return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
229 }
230 
231 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
232 {
233     const struct vtd_as_key *key1 = v1;
234     const struct vtd_as_key *key2 = v2;
235 
236     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
237            (key1->pasid == key2->pasid);
238 }
239 
240 /*
241  * Note that we use pointer to PCIBus as the key, so hashing/shifting
242  * based on the pointer value is intended. Note that we deal with
243  * collisions through vtd_as_equal().
244  */
245 static guint vtd_as_hash(gconstpointer v)
246 {
247     const struct vtd_as_key *key = v;
248     guint value = (guint)(uintptr_t)key->bus;
249 
250     return (guint)(value << 8 | key->devfn);
251 }
252 
253 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
254                                           gpointer user_data)
255 {
256     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
257     uint16_t domain_id = *(uint16_t *)user_data;
258     return entry->domain_id == domain_id;
259 }
260 
261 /* The shift of an addr for a certain level of paging structure */
262 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
263 {
264     assert(level != 0);
265     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
266 }
267 
268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
269 {
270     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
271 }
272 
273 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
274                                         gpointer user_data)
275 {
276     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
277     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
278     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
279     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
280     return (entry->domain_id == info->domain_id) &&
281             (((entry->gfn & info->mask) == gfn) ||
282              (entry->gfn == gfn_tlb));
283 }
284 
285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
286  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
287  */
288 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
289 {
290     VTDAddressSpace *vtd_as;
291     GHashTableIter as_it;
292 
293     trace_vtd_context_cache_reset();
294 
295     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
296 
297     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
298         vtd_as->context_cache_entry.context_cache_gen = 0;
299     }
300     s->context_cache_gen = 1;
301 }
302 
303 /* Must be called with IOMMU lock held. */
304 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
305 {
306     assert(s->iotlb);
307     g_hash_table_remove_all(s->iotlb);
308 }
309 
310 static void vtd_reset_iotlb(IntelIOMMUState *s)
311 {
312     vtd_iommu_lock(s);
313     vtd_reset_iotlb_locked(s);
314     vtd_iommu_unlock(s);
315 }
316 
317 static void vtd_reset_caches(IntelIOMMUState *s)
318 {
319     vtd_iommu_lock(s);
320     vtd_reset_iotlb_locked(s);
321     vtd_reset_context_cache_locked(s);
322     vtd_iommu_unlock(s);
323 }
324 
325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
326 {
327     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
328 }
329 
330 /* Must be called with IOMMU lock held */
331 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
332                                        uint32_t pasid, hwaddr addr)
333 {
334     struct vtd_iotlb_key key;
335     VTDIOTLBEntry *entry;
336     int level;
337 
338     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
339         key.gfn = vtd_get_iotlb_gfn(addr, level);
340         key.level = level;
341         key.sid = source_id;
342         key.pasid = pasid;
343         entry = g_hash_table_lookup(s->iotlb, &key);
344         if (entry) {
345             goto out;
346         }
347     }
348 
349 out:
350     return entry;
351 }
352 
353 /* Must be with IOMMU lock held */
354 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
355                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
356                              uint8_t access_flags, uint32_t level,
357                              uint32_t pasid)
358 {
359     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
360     struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
361     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
362 
363     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
364     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
365         trace_vtd_iotlb_reset("iotlb exceeds size limit");
366         vtd_reset_iotlb_locked(s);
367     }
368 
369     entry->gfn = gfn;
370     entry->domain_id = domain_id;
371     entry->slpte = slpte;
372     entry->access_flags = access_flags;
373     entry->mask = vtd_slpt_level_page_mask(level);
374     entry->pasid = pasid;
375 
376     key->gfn = gfn;
377     key->sid = source_id;
378     key->level = level;
379     key->pasid = pasid;
380 
381     g_hash_table_replace(s->iotlb, key, entry);
382 }
383 
384 /* Given the reg addr of both the message data and address, generate an
385  * interrupt via MSI.
386  */
387 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
388                                    hwaddr mesg_data_reg)
389 {
390     MSIMessage msi;
391 
392     assert(mesg_data_reg < DMAR_REG_SIZE);
393     assert(mesg_addr_reg < DMAR_REG_SIZE);
394 
395     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
396     msi.data = vtd_get_long_raw(s, mesg_data_reg);
397 
398     trace_vtd_irq_generate(msi.address, msi.data);
399 
400     apic_get_class(NULL)->send_msi(&msi);
401 }
402 
403 /* Generate a fault event to software via MSI if conditions are met.
404  * Notice that the value of FSTS_REG being passed to it should be the one
405  * before any update.
406  */
407 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
408 {
409     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
410         pre_fsts & VTD_FSTS_IQE) {
411         error_report_once("There are previous interrupt conditions "
412                           "to be serviced by software, fault event "
413                           "is not generated");
414         return;
415     }
416     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
417     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
418         error_report_once("Interrupt Mask set, irq is not generated");
419     } else {
420         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
421         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
422     }
423 }
424 
425 /* Check if the Fault (F) field of the Fault Recording Register referenced by
426  * @index is Set.
427  */
428 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
429 {
430     /* Each reg is 128-bit */
431     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432     addr += 8; /* Access the high 64-bit half */
433 
434     assert(index < DMAR_FRCD_REG_NR);
435 
436     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
437 }
438 
439 /* Update the PPF field of Fault Status Register.
440  * Should be called whenever change the F field of any fault recording
441  * registers.
442  */
443 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
444 {
445     uint32_t i;
446     uint32_t ppf_mask = 0;
447 
448     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
449         if (vtd_is_frcd_set(s, i)) {
450             ppf_mask = VTD_FSTS_PPF;
451             break;
452         }
453     }
454     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
455     trace_vtd_fsts_ppf(!!ppf_mask);
456 }
457 
458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
459 {
460     /* Each reg is 128-bit */
461     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
462     addr += 8; /* Access the high 64-bit half */
463 
464     assert(index < DMAR_FRCD_REG_NR);
465 
466     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
467     vtd_update_fsts_ppf(s);
468 }
469 
470 /* Must not update F field now, should be done later */
471 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
472                             uint64_t hi, uint64_t lo)
473 {
474     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
475 
476     assert(index < DMAR_FRCD_REG_NR);
477 
478     vtd_set_quad_raw(s, frcd_reg_addr, lo);
479     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
480 
481     trace_vtd_frr_new(index, hi, lo);
482 }
483 
484 /* Try to collapse multiple pending faults from the same requester */
485 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
486 {
487     uint32_t i;
488     uint64_t frcd_reg;
489     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
490 
491     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
492         frcd_reg = vtd_get_quad_raw(s, addr);
493         if ((frcd_reg & VTD_FRCD_F) &&
494             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
495             return true;
496         }
497         addr += 16; /* 128-bit for each */
498     }
499     return false;
500 }
501 
502 /* Log and report an DMAR (address translation) fault to software */
503 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
504                                   uint64_t hi, uint64_t lo)
505 {
506     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
507 
508     if (fsts_reg & VTD_FSTS_PFO) {
509         error_report_once("New fault is not recorded due to "
510                           "Primary Fault Overflow");
511         return;
512     }
513 
514     if (vtd_try_collapse_fault(s, source_id)) {
515         error_report_once("New fault is not recorded due to "
516                           "compression of faults");
517         return;
518     }
519 
520     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
521         error_report_once("Next Fault Recording Reg is used, "
522                           "new fault is not recorded, set PFO field");
523         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
524         return;
525     }
526 
527     vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
528 
529     if (fsts_reg & VTD_FSTS_PPF) {
530         error_report_once("There are pending faults already, "
531                           "fault event is not generated");
532         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
533         s->next_frcd_reg++;
534         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
535             s->next_frcd_reg = 0;
536         }
537     } else {
538         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
539                                 VTD_FSTS_FRI(s->next_frcd_reg));
540         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
541         s->next_frcd_reg++;
542         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
543             s->next_frcd_reg = 0;
544         }
545         /* This case actually cause the PPF to be Set.
546          * So generate fault event (interrupt).
547          */
548          vtd_generate_fault_event(s, fsts_reg);
549     }
550 }
551 
552 /* Log and report an DMAR (address translation) fault to software */
553 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
554                                   hwaddr addr, VTDFaultReason fault,
555                                   bool is_write, bool is_pasid,
556                                   uint32_t pasid)
557 {
558     uint64_t hi, lo;
559 
560     assert(fault < VTD_FR_MAX);
561 
562     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
563 
564     lo = VTD_FRCD_FI(addr);
565     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
566          VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
567     if (!is_write) {
568         hi |= VTD_FRCD_T;
569     }
570 
571     vtd_report_frcd_fault(s, source_id, hi, lo);
572 }
573 
574 
575 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
576                                 VTDFaultReason fault, uint16_t index)
577 {
578     uint64_t hi, lo;
579 
580     lo = VTD_FRCD_IR_IDX(index);
581     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
582 
583     vtd_report_frcd_fault(s, source_id, hi, lo);
584 }
585 
586 /* Handle Invalidation Queue Errors of queued invalidation interface error
587  * conditions.
588  */
589 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
590 {
591     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
592 
593     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
594     vtd_generate_fault_event(s, fsts_reg);
595 }
596 
597 /* Set the IWC field and try to generate an invalidation completion interrupt */
598 static void vtd_generate_completion_event(IntelIOMMUState *s)
599 {
600     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
601         trace_vtd_inv_desc_wait_irq("One pending, skip current");
602         return;
603     }
604     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
605     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
606     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
607         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
608                                     "new event not generated");
609         return;
610     } else {
611         /* Generate the interrupt event */
612         trace_vtd_inv_desc_wait_irq("Generating complete event");
613         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
614         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
615     }
616 }
617 
618 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
619                                           VTDRootEntry *re,
620                                           uint8_t devfn)
621 {
622     if (s->root_scalable && devfn > UINT8_MAX / 2) {
623         return re->hi & VTD_ROOT_ENTRY_P;
624     }
625 
626     return re->lo & VTD_ROOT_ENTRY_P;
627 }
628 
629 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
630                               VTDRootEntry *re)
631 {
632     dma_addr_t addr;
633 
634     addr = s->root + index * sizeof(*re);
635     if (dma_memory_read(&address_space_memory, addr,
636                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
637         re->lo = 0;
638         return -VTD_FR_ROOT_TABLE_INV;
639     }
640     re->lo = le64_to_cpu(re->lo);
641     re->hi = le64_to_cpu(re->hi);
642     return 0;
643 }
644 
645 static inline bool vtd_ce_present(VTDContextEntry *context)
646 {
647     return context->lo & VTD_CONTEXT_ENTRY_P;
648 }
649 
650 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
651                                            VTDRootEntry *re,
652                                            uint8_t index,
653                                            VTDContextEntry *ce)
654 {
655     dma_addr_t addr, ce_size;
656 
657     /* we have checked that root entry is present */
658     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
659               VTD_CTX_ENTRY_LEGACY_SIZE;
660 
661     if (s->root_scalable && index > UINT8_MAX / 2) {
662         index = index & (~VTD_DEVFN_CHECK_MASK);
663         addr = re->hi & VTD_ROOT_ENTRY_CTP;
664     } else {
665         addr = re->lo & VTD_ROOT_ENTRY_CTP;
666     }
667 
668     addr = addr + index * ce_size;
669     if (dma_memory_read(&address_space_memory, addr,
670                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
671         return -VTD_FR_CONTEXT_TABLE_INV;
672     }
673 
674     ce->lo = le64_to_cpu(ce->lo);
675     ce->hi = le64_to_cpu(ce->hi);
676     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
677         ce->val[2] = le64_to_cpu(ce->val[2]);
678         ce->val[3] = le64_to_cpu(ce->val[3]);
679     }
680     return 0;
681 }
682 
683 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
684 {
685     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
686 }
687 
688 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
689 {
690     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
691 }
692 
693 /* Whether the pte indicates the address of the page frame */
694 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
695 {
696     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
697 }
698 
699 /* Get the content of a spte located in @base_addr[@index] */
700 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
701 {
702     uint64_t slpte;
703 
704     assert(index < VTD_SL_PT_ENTRY_NR);
705 
706     if (dma_memory_read(&address_space_memory,
707                         base_addr + index * sizeof(slpte),
708                         &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
709         slpte = (uint64_t)-1;
710         return slpte;
711     }
712     slpte = le64_to_cpu(slpte);
713     return slpte;
714 }
715 
716 /* Given an iova and the level of paging structure, return the offset
717  * of current level.
718  */
719 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
720 {
721     return (iova >> vtd_slpt_level_shift(level)) &
722             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
723 }
724 
725 /* Check Capability Register to see if the @level of page-table is supported */
726 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
727 {
728     return VTD_CAP_SAGAW_MASK & s->cap &
729            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
730 }
731 
732 /* Return true if check passed, otherwise false */
733 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
734                                      VTDPASIDEntry *pe)
735 {
736     switch (VTD_PE_GET_TYPE(pe)) {
737     case VTD_SM_PASID_ENTRY_FLT:
738     case VTD_SM_PASID_ENTRY_SLT:
739     case VTD_SM_PASID_ENTRY_NESTED:
740         break;
741     case VTD_SM_PASID_ENTRY_PT:
742         if (!x86_iommu->pt_supported) {
743             return false;
744         }
745         break;
746     default:
747         /* Unknown type */
748         return false;
749     }
750     return true;
751 }
752 
753 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
754 {
755     return pdire->val & 1;
756 }
757 
758 /**
759  * Caller of this function should check present bit if wants
760  * to use pdir entry for further usage except for fpd bit check.
761  */
762 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
763                                          uint32_t pasid,
764                                          VTDPASIDDirEntry *pdire)
765 {
766     uint32_t index;
767     dma_addr_t addr, entry_size;
768 
769     index = VTD_PASID_DIR_INDEX(pasid);
770     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
771     addr = pasid_dir_base + index * entry_size;
772     if (dma_memory_read(&address_space_memory, addr,
773                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
774         return -VTD_FR_PASID_TABLE_INV;
775     }
776 
777     pdire->val = le64_to_cpu(pdire->val);
778 
779     return 0;
780 }
781 
782 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
783 {
784     return pe->val[0] & VTD_PASID_ENTRY_P;
785 }
786 
787 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
788                                           uint32_t pasid,
789                                           dma_addr_t addr,
790                                           VTDPASIDEntry *pe)
791 {
792     uint32_t index;
793     dma_addr_t entry_size;
794     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
795 
796     index = VTD_PASID_TABLE_INDEX(pasid);
797     entry_size = VTD_PASID_ENTRY_SIZE;
798     addr = addr + index * entry_size;
799     if (dma_memory_read(&address_space_memory, addr,
800                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
801         return -VTD_FR_PASID_TABLE_INV;
802     }
803     for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
804         pe->val[i] = le64_to_cpu(pe->val[i]);
805     }
806 
807     /* Do translation type check */
808     if (!vtd_pe_type_check(x86_iommu, pe)) {
809         return -VTD_FR_PASID_TABLE_INV;
810     }
811 
812     if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
813         return -VTD_FR_PASID_TABLE_INV;
814     }
815 
816     return 0;
817 }
818 
819 /**
820  * Caller of this function should check present bit if wants
821  * to use pasid entry for further usage except for fpd bit check.
822  */
823 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
824                                  uint32_t pasid,
825                                  VTDPASIDDirEntry *pdire,
826                                  VTDPASIDEntry *pe)
827 {
828     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
829 
830     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
831 }
832 
833 /**
834  * This function gets a pasid entry from a specified pasid
835  * table (includes dir and leaf table) with a specified pasid.
836  * Sanity check should be done to ensure return a present
837  * pasid entry to caller.
838  */
839 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
840                                        dma_addr_t pasid_dir_base,
841                                        uint32_t pasid,
842                                        VTDPASIDEntry *pe)
843 {
844     int ret;
845     VTDPASIDDirEntry pdire;
846 
847     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
848                                         pasid, &pdire);
849     if (ret) {
850         return ret;
851     }
852 
853     if (!vtd_pdire_present(&pdire)) {
854         return -VTD_FR_PASID_TABLE_INV;
855     }
856 
857     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
858     if (ret) {
859         return ret;
860     }
861 
862     if (!vtd_pe_present(pe)) {
863         return -VTD_FR_PASID_TABLE_INV;
864     }
865 
866     return 0;
867 }
868 
869 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
870                                       VTDContextEntry *ce,
871                                       VTDPASIDEntry *pe,
872                                       uint32_t pasid)
873 {
874     dma_addr_t pasid_dir_base;
875     int ret = 0;
876 
877     if (pasid == PCI_NO_PASID) {
878         pasid = VTD_CE_GET_RID2PASID(ce);
879     }
880     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
881     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
882 
883     return ret;
884 }
885 
886 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
887                                 VTDContextEntry *ce,
888                                 bool *pe_fpd_set,
889                                 uint32_t pasid)
890 {
891     int ret;
892     dma_addr_t pasid_dir_base;
893     VTDPASIDDirEntry pdire;
894     VTDPASIDEntry pe;
895 
896     if (pasid == PCI_NO_PASID) {
897         pasid = VTD_CE_GET_RID2PASID(ce);
898     }
899     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
900 
901     /*
902      * No present bit check since fpd is meaningful even
903      * if the present bit is clear.
904      */
905     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
906     if (ret) {
907         return ret;
908     }
909 
910     if (pdire.val & VTD_PASID_DIR_FPD) {
911         *pe_fpd_set = true;
912         return 0;
913     }
914 
915     if (!vtd_pdire_present(&pdire)) {
916         return -VTD_FR_PASID_TABLE_INV;
917     }
918 
919     /*
920      * No present bit check since fpd is meaningful even
921      * if the present bit is clear.
922      */
923     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
924     if (ret) {
925         return ret;
926     }
927 
928     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
929         *pe_fpd_set = true;
930     }
931 
932     return 0;
933 }
934 
935 /* Get the page-table level that hardware should use for the second-level
936  * page-table walk from the Address Width field of context-entry.
937  */
938 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
939 {
940     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
941 }
942 
943 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
944                                    VTDContextEntry *ce,
945                                    uint32_t pasid)
946 {
947     VTDPASIDEntry pe;
948 
949     if (s->root_scalable) {
950         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
951         return VTD_PE_GET_LEVEL(&pe);
952     }
953 
954     return vtd_ce_get_level(ce);
955 }
956 
957 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
958 {
959     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
960 }
961 
962 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
963                                   VTDContextEntry *ce,
964                                   uint32_t pasid)
965 {
966     VTDPASIDEntry pe;
967 
968     if (s->root_scalable) {
969         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
970         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
971     }
972 
973     return vtd_ce_get_agaw(ce);
974 }
975 
976 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
977 {
978     return ce->lo & VTD_CONTEXT_ENTRY_TT;
979 }
980 
981 /* Only for Legacy Mode. Return true if check passed, otherwise false */
982 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
983                                      VTDContextEntry *ce)
984 {
985     switch (vtd_ce_get_type(ce)) {
986     case VTD_CONTEXT_TT_MULTI_LEVEL:
987         /* Always supported */
988         break;
989     case VTD_CONTEXT_TT_DEV_IOTLB:
990         if (!x86_iommu->dt_supported) {
991             error_report_once("%s: DT specified but not supported", __func__);
992             return false;
993         }
994         break;
995     case VTD_CONTEXT_TT_PASS_THROUGH:
996         if (!x86_iommu->pt_supported) {
997             error_report_once("%s: PT specified but not supported", __func__);
998             return false;
999         }
1000         break;
1001     default:
1002         /* Unknown type */
1003         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1004                           vtd_ce_get_type(ce));
1005         return false;
1006     }
1007     return true;
1008 }
1009 
1010 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1011                                       VTDContextEntry *ce, uint8_t aw,
1012                                       uint32_t pasid)
1013 {
1014     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1015     return 1ULL << MIN(ce_agaw, aw);
1016 }
1017 
1018 /* Return true if IOVA passes range check, otherwise false. */
1019 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1020                                         uint64_t iova, VTDContextEntry *ce,
1021                                         uint8_t aw, uint32_t pasid)
1022 {
1023     /*
1024      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1025      * in CAP_REG and AW in context-entry.
1026      */
1027     return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1028 }
1029 
1030 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1031                                           VTDContextEntry *ce,
1032                                           uint32_t pasid)
1033 {
1034     VTDPASIDEntry pe;
1035 
1036     if (s->root_scalable) {
1037         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1038         return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1039     }
1040 
1041     return vtd_ce_get_slpt_base(ce);
1042 }
1043 
1044 /*
1045  * Rsvd field masks for spte:
1046  *     vtd_spte_rsvd 4k pages
1047  *     vtd_spte_rsvd_large large pages
1048  *
1049  * We support only 3-level and 4-level page tables (see vtd_init() which
1050  * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1051  */
1052 #define VTD_SPTE_RSVD_LEN 5
1053 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1054 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1055 
1056 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1057 {
1058     uint64_t rsvd_mask;
1059 
1060     /*
1061      * We should have caught a guest-mis-programmed level earlier,
1062      * via vtd_is_level_supported.
1063      */
1064     assert(level < VTD_SPTE_RSVD_LEN);
1065     /*
1066      * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and
1067      * checked by vtd_is_last_slpte().
1068      */
1069     assert(level);
1070 
1071     if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1072         (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1073         /* large page */
1074         rsvd_mask = vtd_spte_rsvd_large[level];
1075     } else {
1076         rsvd_mask = vtd_spte_rsvd[level];
1077     }
1078 
1079     return slpte & rsvd_mask;
1080 }
1081 
1082 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1083  * of the translation, can be used for deciding the size of large page.
1084  */
1085 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1086                              uint64_t iova, bool is_write,
1087                              uint64_t *slptep, uint32_t *slpte_level,
1088                              bool *reads, bool *writes, uint8_t aw_bits,
1089                              uint32_t pasid)
1090 {
1091     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1092     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1093     uint32_t offset;
1094     uint64_t slpte;
1095     uint64_t access_right_check;
1096     uint64_t xlat, size;
1097 
1098     if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1099         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1100                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1101         return -VTD_FR_ADDR_BEYOND_MGAW;
1102     }
1103 
1104     /* FIXME: what is the Atomics request here? */
1105     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1106 
1107     while (true) {
1108         offset = vtd_iova_level_offset(iova, level);
1109         slpte = vtd_get_slpte(addr, offset);
1110 
1111         if (slpte == (uint64_t)-1) {
1112             error_report_once("%s: detected read error on DMAR slpte "
1113                               "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1114                               __func__, iova, pasid);
1115             if (level == vtd_get_iova_level(s, ce, pasid)) {
1116                 /* Invalid programming of context-entry */
1117                 return -VTD_FR_CONTEXT_ENTRY_INV;
1118             } else {
1119                 return -VTD_FR_PAGING_ENTRY_INV;
1120             }
1121         }
1122         *reads = (*reads) && (slpte & VTD_SL_R);
1123         *writes = (*writes) && (slpte & VTD_SL_W);
1124         if (!(slpte & access_right_check)) {
1125             error_report_once("%s: detected slpte permission error "
1126                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1127                               "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1128                               PRIx32 ")", __func__, iova, level,
1129                               slpte, is_write, pasid);
1130             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1131         }
1132         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1133             error_report_once("%s: detected splte reserve non-zero "
1134                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1135                               "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1136                               __func__, iova, level, slpte, pasid);
1137             return -VTD_FR_PAGING_ENTRY_RSVD;
1138         }
1139 
1140         if (vtd_is_last_slpte(slpte, level)) {
1141             *slptep = slpte;
1142             *slpte_level = level;
1143             break;
1144         }
1145         addr = vtd_get_slpte_addr(slpte, aw_bits);
1146         level--;
1147     }
1148 
1149     xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1150     size = ~vtd_slpt_level_page_mask(level) + 1;
1151 
1152     /*
1153      * From VT-d spec 3.14: Untranslated requests and translation
1154      * requests that result in an address in the interrupt range will be
1155      * blocked with condition code LGN.4 or SGN.8.
1156      */
1157     if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1158          xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1159         return 0;
1160     } else {
1161         error_report_once("%s: xlat address is in interrupt range "
1162                           "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1163                           "slpte=0x%" PRIx64 ", write=%d, "
1164                           "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1165                           "pasid=0x%" PRIx32 ")",
1166                           __func__, iova, level, slpte, is_write,
1167                           xlat, size, pasid);
1168         return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1169                                   -VTD_FR_INTERRUPT_ADDR;
1170     }
1171 }
1172 
1173 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1174 
1175 /**
1176  * Constant information used during page walking
1177  *
1178  * @hook_fn: hook func to be called when detected page
1179  * @private: private data to be passed into hook func
1180  * @notify_unmap: whether we should notify invalid entries
1181  * @as: VT-d address space of the device
1182  * @aw: maximum address width
1183  * @domain: domain ID of the page walk
1184  */
1185 typedef struct {
1186     VTDAddressSpace *as;
1187     vtd_page_walk_hook hook_fn;
1188     void *private;
1189     bool notify_unmap;
1190     uint8_t aw;
1191     uint16_t domain_id;
1192 } vtd_page_walk_info;
1193 
1194 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1195 {
1196     VTDAddressSpace *as = info->as;
1197     vtd_page_walk_hook hook_fn = info->hook_fn;
1198     void *private = info->private;
1199     IOMMUTLBEntry *entry = &event->entry;
1200     DMAMap target = {
1201         .iova = entry->iova,
1202         .size = entry->addr_mask,
1203         .translated_addr = entry->translated_addr,
1204         .perm = entry->perm,
1205     };
1206     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1207 
1208     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1209         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1210         return 0;
1211     }
1212 
1213     assert(hook_fn);
1214 
1215     /* Update local IOVA mapped ranges */
1216     if (event->type == IOMMU_NOTIFIER_MAP) {
1217         if (mapped) {
1218             /* If it's exactly the same translation, skip */
1219             if (!memcmp(mapped, &target, sizeof(target))) {
1220                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1221                                                  entry->translated_addr);
1222                 return 0;
1223             } else {
1224                 /*
1225                  * Translation changed.  Normally this should not
1226                  * happen, but it can happen when with buggy guest
1227                  * OSes.  Note that there will be a small window that
1228                  * we don't have map at all.  But that's the best
1229                  * effort we can do.  The ideal way to emulate this is
1230                  * atomically modify the PTE to follow what has
1231                  * changed, but we can't.  One example is that vfio
1232                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1233                  * interface to modify a mapping (meanwhile it seems
1234                  * meaningless to even provide one).  Anyway, let's
1235                  * mark this as a TODO in case one day we'll have
1236                  * a better solution.
1237                  */
1238                 IOMMUAccessFlags cache_perm = entry->perm;
1239                 int ret;
1240 
1241                 /* Emulate an UNMAP */
1242                 event->type = IOMMU_NOTIFIER_UNMAP;
1243                 entry->perm = IOMMU_NONE;
1244                 trace_vtd_page_walk_one(info->domain_id,
1245                                         entry->iova,
1246                                         entry->translated_addr,
1247                                         entry->addr_mask,
1248                                         entry->perm);
1249                 ret = hook_fn(event, private);
1250                 if (ret) {
1251                     return ret;
1252                 }
1253                 /* Drop any existing mapping */
1254                 iova_tree_remove(as->iova_tree, target);
1255                 /* Recover the correct type */
1256                 event->type = IOMMU_NOTIFIER_MAP;
1257                 entry->perm = cache_perm;
1258             }
1259         }
1260         iova_tree_insert(as->iova_tree, &target);
1261     } else {
1262         if (!mapped) {
1263             /* Skip since we didn't map this range at all */
1264             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1265             return 0;
1266         }
1267         iova_tree_remove(as->iova_tree, target);
1268     }
1269 
1270     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1271                             entry->translated_addr, entry->addr_mask,
1272                             entry->perm);
1273     return hook_fn(event, private);
1274 }
1275 
1276 /**
1277  * vtd_page_walk_level - walk over specific level for IOVA range
1278  *
1279  * @addr: base GPA addr to start the walk
1280  * @start: IOVA range start address
1281  * @end: IOVA range end address (start <= addr < end)
1282  * @read: whether parent level has read permission
1283  * @write: whether parent level has write permission
1284  * @info: constant information for the page walk
1285  */
1286 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1287                                uint64_t end, uint32_t level, bool read,
1288                                bool write, vtd_page_walk_info *info)
1289 {
1290     bool read_cur, write_cur, entry_valid;
1291     uint32_t offset;
1292     uint64_t slpte;
1293     uint64_t subpage_size, subpage_mask;
1294     IOMMUTLBEvent event;
1295     uint64_t iova = start;
1296     uint64_t iova_next;
1297     int ret = 0;
1298 
1299     trace_vtd_page_walk_level(addr, level, start, end);
1300 
1301     subpage_size = 1ULL << vtd_slpt_level_shift(level);
1302     subpage_mask = vtd_slpt_level_page_mask(level);
1303 
1304     while (iova < end) {
1305         iova_next = (iova & subpage_mask) + subpage_size;
1306 
1307         offset = vtd_iova_level_offset(iova, level);
1308         slpte = vtd_get_slpte(addr, offset);
1309 
1310         if (slpte == (uint64_t)-1) {
1311             trace_vtd_page_walk_skip_read(iova, iova_next);
1312             goto next;
1313         }
1314 
1315         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1316             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1317             goto next;
1318         }
1319 
1320         /* Permissions are stacked with parents' */
1321         read_cur = read && (slpte & VTD_SL_R);
1322         write_cur = write && (slpte & VTD_SL_W);
1323 
1324         /*
1325          * As long as we have either read/write permission, this is a
1326          * valid entry. The rule works for both page entries and page
1327          * table entries.
1328          */
1329         entry_valid = read_cur | write_cur;
1330 
1331         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1332             /*
1333              * This is a valid PDE (or even bigger than PDE).  We need
1334              * to walk one further level.
1335              */
1336             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1337                                       iova, MIN(iova_next, end), level - 1,
1338                                       read_cur, write_cur, info);
1339         } else {
1340             /*
1341              * This means we are either:
1342              *
1343              * (1) the real page entry (either 4K page, or huge page)
1344              * (2) the whole range is invalid
1345              *
1346              * In either case, we send an IOTLB notification down.
1347              */
1348             event.entry.target_as = &address_space_memory;
1349             event.entry.iova = iova & subpage_mask;
1350             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1351             event.entry.addr_mask = ~subpage_mask;
1352             /* NOTE: this is only meaningful if entry_valid == true */
1353             event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1354             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1355                                             IOMMU_NOTIFIER_UNMAP;
1356             ret = vtd_page_walk_one(&event, info);
1357         }
1358 
1359         if (ret < 0) {
1360             return ret;
1361         }
1362 
1363 next:
1364         iova = iova_next;
1365     }
1366 
1367     return 0;
1368 }
1369 
1370 /**
1371  * vtd_page_walk - walk specific IOVA range, and call the hook
1372  *
1373  * @s: intel iommu state
1374  * @ce: context entry to walk upon
1375  * @start: IOVA address to start the walk
1376  * @end: IOVA range end address (start <= addr < end)
1377  * @info: page walking information struct
1378  */
1379 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1380                          uint64_t start, uint64_t end,
1381                          vtd_page_walk_info *info,
1382                          uint32_t pasid)
1383 {
1384     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1385     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1386 
1387     if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1388         return -VTD_FR_ADDR_BEYOND_MGAW;
1389     }
1390 
1391     if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1392         /* Fix end so that it reaches the maximum */
1393         end = vtd_iova_limit(s, ce, info->aw, pasid);
1394     }
1395 
1396     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1397 }
1398 
1399 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1400                                           VTDRootEntry *re)
1401 {
1402     /* Legacy Mode reserved bits check */
1403     if (!s->root_scalable &&
1404         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1405         goto rsvd_err;
1406 
1407     /* Scalable Mode reserved bits check */
1408     if (s->root_scalable &&
1409         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1410          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1411         goto rsvd_err;
1412 
1413     return 0;
1414 
1415 rsvd_err:
1416     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1417                       ", lo=0x%"PRIx64,
1418                       __func__, re->hi, re->lo);
1419     return -VTD_FR_ROOT_ENTRY_RSVD;
1420 }
1421 
1422 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1423                                                     VTDContextEntry *ce)
1424 {
1425     if (!s->root_scalable &&
1426         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1427          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1428         error_report_once("%s: invalid context entry: hi=%"PRIx64
1429                           ", lo=%"PRIx64" (reserved nonzero)",
1430                           __func__, ce->hi, ce->lo);
1431         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1432     }
1433 
1434     if (s->root_scalable &&
1435         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1436          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1437          ce->val[2] ||
1438          ce->val[3])) {
1439         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1440                           ", val[2]=%"PRIx64
1441                           ", val[1]=%"PRIx64
1442                           ", val[0]=%"PRIx64" (reserved nonzero)",
1443                           __func__, ce->val[3], ce->val[2],
1444                           ce->val[1], ce->val[0]);
1445         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1446     }
1447 
1448     return 0;
1449 }
1450 
1451 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1452                                   VTDContextEntry *ce)
1453 {
1454     VTDPASIDEntry pe;
1455 
1456     /*
1457      * Make sure in Scalable Mode, a present context entry
1458      * has valid rid2pasid setting, which includes valid
1459      * rid2pasid field and corresponding pasid entry setting
1460      */
1461     return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1462 }
1463 
1464 /* Map a device to its corresponding domain (context-entry) */
1465 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1466                                     uint8_t devfn, VTDContextEntry *ce)
1467 {
1468     VTDRootEntry re;
1469     int ret_fr;
1470     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1471 
1472     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1473     if (ret_fr) {
1474         return ret_fr;
1475     }
1476 
1477     if (!vtd_root_entry_present(s, &re, devfn)) {
1478         /* Not error - it's okay we don't have root entry. */
1479         trace_vtd_re_not_present(bus_num);
1480         return -VTD_FR_ROOT_ENTRY_P;
1481     }
1482 
1483     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1484     if (ret_fr) {
1485         return ret_fr;
1486     }
1487 
1488     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1489     if (ret_fr) {
1490         return ret_fr;
1491     }
1492 
1493     if (!vtd_ce_present(ce)) {
1494         /* Not error - it's okay we don't have context entry. */
1495         trace_vtd_ce_not_present(bus_num, devfn);
1496         return -VTD_FR_CONTEXT_ENTRY_P;
1497     }
1498 
1499     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1500     if (ret_fr) {
1501         return ret_fr;
1502     }
1503 
1504     /* Check if the programming of context-entry is valid */
1505     if (!s->root_scalable &&
1506         !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1507         error_report_once("%s: invalid context entry: hi=%"PRIx64
1508                           ", lo=%"PRIx64" (level %d not supported)",
1509                           __func__, ce->hi, ce->lo,
1510                           vtd_ce_get_level(ce));
1511         return -VTD_FR_CONTEXT_ENTRY_INV;
1512     }
1513 
1514     if (!s->root_scalable) {
1515         /* Do translation type check */
1516         if (!vtd_ce_type_check(x86_iommu, ce)) {
1517             /* Errors dumped in vtd_ce_type_check() */
1518             return -VTD_FR_CONTEXT_ENTRY_INV;
1519         }
1520     } else {
1521         /*
1522          * Check if the programming of context-entry.rid2pasid
1523          * and corresponding pasid setting is valid, and thus
1524          * avoids to check pasid entry fetching result in future
1525          * helper function calling.
1526          */
1527         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1528         if (ret_fr) {
1529             return ret_fr;
1530         }
1531     }
1532 
1533     return 0;
1534 }
1535 
1536 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1537                                      void *private)
1538 {
1539     memory_region_notify_iommu(private, 0, *event);
1540     return 0;
1541 }
1542 
1543 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1544                                   VTDContextEntry *ce,
1545                                   uint32_t pasid)
1546 {
1547     VTDPASIDEntry pe;
1548 
1549     if (s->root_scalable) {
1550         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1551         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1552     }
1553 
1554     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1555 }
1556 
1557 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1558                                             VTDContextEntry *ce,
1559                                             hwaddr addr, hwaddr size)
1560 {
1561     IntelIOMMUState *s = vtd_as->iommu_state;
1562     vtd_page_walk_info info = {
1563         .hook_fn = vtd_sync_shadow_page_hook,
1564         .private = (void *)&vtd_as->iommu,
1565         .notify_unmap = true,
1566         .aw = s->aw_bits,
1567         .as = vtd_as,
1568         .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1569     };
1570 
1571     return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1572 }
1573 
1574 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1575 {
1576     int ret;
1577     VTDContextEntry ce;
1578     IOMMUNotifier *n;
1579 
1580     /* If no MAP notifier registered, we simply invalidate all the cache */
1581     if (!vtd_as_has_map_notifier(vtd_as)) {
1582         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1583             memory_region_unmap_iommu_notifier_range(n);
1584         }
1585         return 0;
1586     }
1587 
1588     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1589                                    pci_bus_num(vtd_as->bus),
1590                                    vtd_as->devfn, &ce);
1591     if (ret) {
1592         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1593             /*
1594              * It's a valid scenario to have a context entry that is
1595              * not present.  For example, when a device is removed
1596              * from an existing domain then the context entry will be
1597              * zeroed by the guest before it was put into another
1598              * domain.  When this happens, instead of synchronizing
1599              * the shadow pages we should invalidate all existing
1600              * mappings and notify the backends.
1601              */
1602             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1603                 vtd_address_space_unmap(vtd_as, n);
1604             }
1605             ret = 0;
1606         }
1607         return ret;
1608     }
1609 
1610     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1611 }
1612 
1613 /*
1614  * Check if specific device is configured to bypass address
1615  * translation for DMA requests. In Scalable Mode, bypass
1616  * 1st-level translation or 2nd-level translation, it depends
1617  * on PGTT setting.
1618  */
1619 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1620                                uint32_t pasid)
1621 {
1622     VTDPASIDEntry pe;
1623     int ret;
1624 
1625     if (s->root_scalable) {
1626         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1627         if (ret) {
1628             /*
1629              * This error is guest triggerable. We should assumt PT
1630              * not enabled for safety.
1631              */
1632             return false;
1633         }
1634         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1635     }
1636 
1637     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1638 
1639 }
1640 
1641 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1642 {
1643     IntelIOMMUState *s;
1644     VTDContextEntry ce;
1645 
1646     assert(as);
1647 
1648     s = as->iommu_state;
1649     if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1650                                  &ce)) {
1651         /*
1652          * Possibly failed to parse the context entry for some reason
1653          * (e.g., during init, or any guest configuration errors on
1654          * context entries). We should assume PT not enabled for
1655          * safety.
1656          */
1657         return false;
1658     }
1659 
1660     return vtd_dev_pt_enabled(s, &ce, as->pasid);
1661 }
1662 
1663 /* Return whether the device is using IOMMU translation. */
1664 static bool vtd_switch_address_space(VTDAddressSpace *as)
1665 {
1666     bool use_iommu, pt;
1667     /* Whether we need to take the BQL on our own */
1668     bool take_bql = !bql_locked();
1669 
1670     assert(as);
1671 
1672     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1673     pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1674 
1675     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1676                                    VTD_PCI_SLOT(as->devfn),
1677                                    VTD_PCI_FUNC(as->devfn),
1678                                    use_iommu);
1679 
1680     /*
1681      * It's possible that we reach here without BQL, e.g., when called
1682      * from vtd_pt_enable_fast_path(). However the memory APIs need
1683      * it. We'd better make sure we have had it already, or, take it.
1684      */
1685     if (take_bql) {
1686         bql_lock();
1687     }
1688 
1689     /* Turn off first then on the other */
1690     if (use_iommu) {
1691         memory_region_set_enabled(&as->nodmar, false);
1692         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1693         /*
1694          * vt-d spec v3.4 3.14:
1695          *
1696          * """
1697          * Requests-with-PASID with input address in range 0xFEEx_xxxx
1698          * are translated normally like any other request-with-PASID
1699          * through DMA-remapping hardware.
1700          * """
1701          *
1702          * Need to disable ir for as with PASID.
1703          */
1704         if (as->pasid != PCI_NO_PASID) {
1705             memory_region_set_enabled(&as->iommu_ir, false);
1706         } else {
1707             memory_region_set_enabled(&as->iommu_ir, true);
1708         }
1709     } else {
1710         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1711         memory_region_set_enabled(&as->nodmar, true);
1712     }
1713 
1714     /*
1715      * vtd-spec v3.4 3.14:
1716      *
1717      * """
1718      * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1719      * translated normally like any other request-with-PASID through
1720      * DMA-remapping hardware. However, if such a request is processed
1721      * using pass-through translation, it will be blocked as described
1722      * in the paragraph below.
1723      *
1724      * Software must not program paging-structure entries to remap any
1725      * address to the interrupt address range. Untranslated requests
1726      * and translation requests that result in an address in the
1727      * interrupt range will be blocked with condition code LGN.4 or
1728      * SGN.8.
1729      * """
1730      *
1731      * We enable per as memory region (iommu_ir_fault) for catching
1732      * the translation for interrupt range through PASID + PT.
1733      */
1734     if (pt && as->pasid != PCI_NO_PASID) {
1735         memory_region_set_enabled(&as->iommu_ir_fault, true);
1736     } else {
1737         memory_region_set_enabled(&as->iommu_ir_fault, false);
1738     }
1739 
1740     if (take_bql) {
1741         bql_unlock();
1742     }
1743 
1744     return use_iommu;
1745 }
1746 
1747 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1748 {
1749     VTDAddressSpace *vtd_as;
1750     GHashTableIter iter;
1751 
1752     g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1753     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1754         vtd_switch_address_space(vtd_as);
1755     }
1756 }
1757 
1758 static const bool vtd_qualified_faults[] = {
1759     [VTD_FR_RESERVED] = false,
1760     [VTD_FR_ROOT_ENTRY_P] = false,
1761     [VTD_FR_CONTEXT_ENTRY_P] = true,
1762     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1763     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1764     [VTD_FR_WRITE] = true,
1765     [VTD_FR_READ] = true,
1766     [VTD_FR_PAGING_ENTRY_INV] = true,
1767     [VTD_FR_ROOT_TABLE_INV] = false,
1768     [VTD_FR_CONTEXT_TABLE_INV] = false,
1769     [VTD_FR_INTERRUPT_ADDR] = true,
1770     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1771     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1772     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1773     [VTD_FR_PASID_TABLE_INV] = false,
1774     [VTD_FR_SM_INTERRUPT_ADDR] = true,
1775     [VTD_FR_MAX] = false,
1776 };
1777 
1778 /* To see if a fault condition is "qualified", which is reported to software
1779  * only if the FPD field in the context-entry used to process the faulting
1780  * request is 0.
1781  */
1782 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1783 {
1784     return vtd_qualified_faults[fault];
1785 }
1786 
1787 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1788 {
1789     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1790 }
1791 
1792 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1793                                    gpointer user_data)
1794 {
1795     struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1796     uint16_t target_sid = *(uint16_t *)user_data;
1797     uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1798     return sid == target_sid;
1799 }
1800 
1801 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1802 {
1803     uint8_t bus_num = PCI_BUS_NUM(sid);
1804     VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1805 
1806     if (vtd_as &&
1807         (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1808         return vtd_as;
1809     }
1810 
1811     vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1812     s->vtd_as_cache[bus_num] = vtd_as;
1813 
1814     return vtd_as;
1815 }
1816 
1817 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1818 {
1819     VTDAddressSpace *vtd_as;
1820     bool success = false;
1821 
1822     vtd_as = vtd_get_as_by_sid(s, source_id);
1823     if (!vtd_as) {
1824         goto out;
1825     }
1826 
1827     if (vtd_switch_address_space(vtd_as) == false) {
1828         /* We switched off IOMMU region successfully. */
1829         success = true;
1830     }
1831 
1832 out:
1833     trace_vtd_pt_enable_fast_path(source_id, success);
1834 }
1835 
1836 static void vtd_report_fault(IntelIOMMUState *s,
1837                              int err, bool is_fpd_set,
1838                              uint16_t source_id,
1839                              hwaddr addr,
1840                              bool is_write,
1841                              bool is_pasid,
1842                              uint32_t pasid)
1843 {
1844     if (is_fpd_set && vtd_is_qualified_fault(err)) {
1845         trace_vtd_fault_disabled();
1846     } else {
1847         vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1848                               is_pasid, pasid);
1849     }
1850 }
1851 
1852 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1853  * translation.
1854  *
1855  * Called from RCU critical section.
1856  *
1857  * @bus_num: The bus number
1858  * @devfn: The devfn, which is the  combined of device and function number
1859  * @is_write: The access is a write operation
1860  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1861  *
1862  * Returns true if translation is successful, otherwise false.
1863  */
1864 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1865                                    uint8_t devfn, hwaddr addr, bool is_write,
1866                                    IOMMUTLBEntry *entry)
1867 {
1868     IntelIOMMUState *s = vtd_as->iommu_state;
1869     VTDContextEntry ce;
1870     uint8_t bus_num = pci_bus_num(bus);
1871     VTDContextCacheEntry *cc_entry;
1872     uint64_t slpte, page_mask;
1873     uint32_t level, pasid = vtd_as->pasid;
1874     uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1875     int ret_fr;
1876     bool is_fpd_set = false;
1877     bool reads = true;
1878     bool writes = true;
1879     uint8_t access_flags;
1880     bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1881     VTDIOTLBEntry *iotlb_entry;
1882 
1883     /*
1884      * We have standalone memory region for interrupt addresses, we
1885      * should never receive translation requests in this region.
1886      */
1887     assert(!vtd_is_interrupt_addr(addr));
1888 
1889     vtd_iommu_lock(s);
1890 
1891     cc_entry = &vtd_as->context_cache_entry;
1892 
1893     /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1894     if (!rid2pasid) {
1895         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1896         if (iotlb_entry) {
1897             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1898                                      iotlb_entry->domain_id);
1899             slpte = iotlb_entry->slpte;
1900             access_flags = iotlb_entry->access_flags;
1901             page_mask = iotlb_entry->mask;
1902             goto out;
1903         }
1904     }
1905 
1906     /* Try to fetch context-entry from cache first */
1907     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1908         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1909                                cc_entry->context_entry.lo,
1910                                cc_entry->context_cache_gen);
1911         ce = cc_entry->context_entry;
1912         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1913         if (!is_fpd_set && s->root_scalable) {
1914             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1915             if (ret_fr) {
1916                 vtd_report_fault(s, -ret_fr, is_fpd_set,
1917                                  source_id, addr, is_write,
1918                                  false, 0);
1919                 goto error;
1920             }
1921         }
1922     } else {
1923         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1924         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1925         if (!ret_fr && !is_fpd_set && s->root_scalable) {
1926             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1927         }
1928         if (ret_fr) {
1929             vtd_report_fault(s, -ret_fr, is_fpd_set,
1930                              source_id, addr, is_write,
1931                              false, 0);
1932             goto error;
1933         }
1934         /* Update context-cache */
1935         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1936                                   cc_entry->context_cache_gen,
1937                                   s->context_cache_gen);
1938         cc_entry->context_entry = ce;
1939         cc_entry->context_cache_gen = s->context_cache_gen;
1940     }
1941 
1942     if (rid2pasid) {
1943         pasid = VTD_CE_GET_RID2PASID(&ce);
1944     }
1945 
1946     /*
1947      * We don't need to translate for pass-through context entries.
1948      * Also, let's ignore IOTLB caching as well for PT devices.
1949      */
1950     if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1951         entry->iova = addr & VTD_PAGE_MASK_4K;
1952         entry->translated_addr = entry->iova;
1953         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1954         entry->perm = IOMMU_RW;
1955         trace_vtd_translate_pt(source_id, entry->iova);
1956 
1957         /*
1958          * When this happens, it means firstly caching-mode is not
1959          * enabled, and this is the first passthrough translation for
1960          * the device. Let's enable the fast path for passthrough.
1961          *
1962          * When passthrough is disabled again for the device, we can
1963          * capture it via the context entry invalidation, then the
1964          * IOMMU region can be swapped back.
1965          */
1966         vtd_pt_enable_fast_path(s, source_id);
1967         vtd_iommu_unlock(s);
1968         return true;
1969     }
1970 
1971     /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1972     if (rid2pasid) {
1973         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1974         if (iotlb_entry) {
1975             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1976                                      iotlb_entry->domain_id);
1977             slpte = iotlb_entry->slpte;
1978             access_flags = iotlb_entry->access_flags;
1979             page_mask = iotlb_entry->mask;
1980             goto out;
1981         }
1982     }
1983 
1984     ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1985                                &reads, &writes, s->aw_bits, pasid);
1986     if (ret_fr) {
1987         vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1988                          addr, is_write, pasid != PCI_NO_PASID, pasid);
1989         goto error;
1990     }
1991 
1992     page_mask = vtd_slpt_level_page_mask(level);
1993     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1994     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1995                      addr, slpte, access_flags, level, pasid);
1996 out:
1997     vtd_iommu_unlock(s);
1998     entry->iova = addr & page_mask;
1999     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
2000     entry->addr_mask = ~page_mask;
2001     entry->perm = access_flags;
2002     return true;
2003 
2004 error:
2005     vtd_iommu_unlock(s);
2006     entry->iova = 0;
2007     entry->translated_addr = 0;
2008     entry->addr_mask = 0;
2009     entry->perm = IOMMU_NONE;
2010     return false;
2011 }
2012 
2013 static void vtd_root_table_setup(IntelIOMMUState *s)
2014 {
2015     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2016     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2017 
2018     vtd_update_scalable_state(s);
2019 
2020     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2021 }
2022 
2023 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2024                                uint32_t index, uint32_t mask)
2025 {
2026     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2027 }
2028 
2029 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2030 {
2031     uint64_t value = 0;
2032     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2033     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2034     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2035     s->intr_eime = value & VTD_IRTA_EIME;
2036 
2037     /* Notify global invalidation */
2038     vtd_iec_notify_all(s, true, 0, 0);
2039 
2040     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2041 }
2042 
2043 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2044 {
2045     VTDAddressSpace *vtd_as;
2046 
2047     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2048         vtd_address_space_sync(vtd_as);
2049     }
2050 }
2051 
2052 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2053 {
2054     trace_vtd_inv_desc_cc_global();
2055     /* Protects context cache */
2056     vtd_iommu_lock(s);
2057     s->context_cache_gen++;
2058     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2059         vtd_reset_context_cache_locked(s);
2060     }
2061     vtd_iommu_unlock(s);
2062     vtd_address_space_refresh_all(s);
2063     /*
2064      * From VT-d spec 6.5.2.1, a global context entry invalidation
2065      * should be followed by a IOTLB global invalidation, so we should
2066      * be safe even without this. Hoewever, let's replay the region as
2067      * well to be safer, and go back here when we need finer tunes for
2068      * VT-d emulation codes.
2069      */
2070     vtd_iommu_replay_all(s);
2071 }
2072 
2073 /* Do a context-cache device-selective invalidation.
2074  * @func_mask: FM field after shifting
2075  */
2076 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2077                                           uint16_t source_id,
2078                                           uint16_t func_mask)
2079 {
2080     GHashTableIter as_it;
2081     uint16_t mask;
2082     VTDAddressSpace *vtd_as;
2083     uint8_t bus_n, devfn;
2084 
2085     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2086 
2087     switch (func_mask & 3) {
2088     case 0:
2089         mask = 0;   /* No bits in the SID field masked */
2090         break;
2091     case 1:
2092         mask = 4;   /* Mask bit 2 in the SID field */
2093         break;
2094     case 2:
2095         mask = 6;   /* Mask bit 2:1 in the SID field */
2096         break;
2097     case 3:
2098         mask = 7;   /* Mask bit 2:0 in the SID field */
2099         break;
2100     default:
2101         g_assert_not_reached();
2102     }
2103     mask = ~mask;
2104 
2105     bus_n = VTD_SID_TO_BUS(source_id);
2106     devfn = VTD_SID_TO_DEVFN(source_id);
2107 
2108     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2109     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2110         if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2111             (vtd_as->devfn & mask) == (devfn & mask)) {
2112             trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2113                                          VTD_PCI_FUNC(vtd_as->devfn));
2114             vtd_iommu_lock(s);
2115             vtd_as->context_cache_entry.context_cache_gen = 0;
2116             vtd_iommu_unlock(s);
2117             /*
2118              * Do switch address space when needed, in case if the
2119              * device passthrough bit is switched.
2120              */
2121             vtd_switch_address_space(vtd_as);
2122             /*
2123              * So a device is moving out of (or moving into) a
2124              * domain, resync the shadow page table.
2125              * This won't bring bad even if we have no such
2126              * notifier registered - the IOMMU notification
2127              * framework will skip MAP notifications if that
2128              * happened.
2129              */
2130             vtd_address_space_sync(vtd_as);
2131         }
2132     }
2133 }
2134 
2135 /* Context-cache invalidation
2136  * Returns the Context Actual Invalidation Granularity.
2137  * @val: the content of the CCMD_REG
2138  */
2139 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2140 {
2141     uint64_t caig;
2142     uint64_t type = val & VTD_CCMD_CIRG_MASK;
2143 
2144     switch (type) {
2145     case VTD_CCMD_DOMAIN_INVL:
2146         /* Fall through */
2147     case VTD_CCMD_GLOBAL_INVL:
2148         caig = VTD_CCMD_GLOBAL_INVL_A;
2149         vtd_context_global_invalidate(s);
2150         break;
2151 
2152     case VTD_CCMD_DEVICE_INVL:
2153         caig = VTD_CCMD_DEVICE_INVL_A;
2154         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2155         break;
2156 
2157     default:
2158         error_report_once("%s: invalid context: 0x%" PRIx64,
2159                           __func__, val);
2160         caig = 0;
2161     }
2162     return caig;
2163 }
2164 
2165 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2166 {
2167     trace_vtd_inv_desc_iotlb_global();
2168     vtd_reset_iotlb(s);
2169     vtd_iommu_replay_all(s);
2170 }
2171 
2172 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2173 {
2174     VTDContextEntry ce;
2175     VTDAddressSpace *vtd_as;
2176 
2177     trace_vtd_inv_desc_iotlb_domain(domain_id);
2178 
2179     vtd_iommu_lock(s);
2180     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2181                                 &domain_id);
2182     vtd_iommu_unlock(s);
2183 
2184     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2185         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2186                                       vtd_as->devfn, &ce) &&
2187             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2188             vtd_address_space_sync(vtd_as);
2189         }
2190     }
2191 }
2192 
2193 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2194                                            uint16_t domain_id, hwaddr addr,
2195                                              uint8_t am, uint32_t pasid)
2196 {
2197     VTDAddressSpace *vtd_as;
2198     VTDContextEntry ce;
2199     int ret;
2200     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2201 
2202     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2203         if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2204             continue;
2205         }
2206         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2207                                        vtd_as->devfn, &ce);
2208         if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2209             if (vtd_as_has_map_notifier(vtd_as)) {
2210                 /*
2211                  * As long as we have MAP notifications registered in
2212                  * any of our IOMMU notifiers, we need to sync the
2213                  * shadow page table.
2214                  */
2215                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2216             } else {
2217                 /*
2218                  * For UNMAP-only notifiers, we don't need to walk the
2219                  * page tables.  We just deliver the PSI down to
2220                  * invalidate caches.
2221                  */
2222                 IOMMUTLBEvent event = {
2223                     .type = IOMMU_NOTIFIER_UNMAP,
2224                     .entry = {
2225                         .target_as = &address_space_memory,
2226                         .iova = addr,
2227                         .translated_addr = 0,
2228                         .addr_mask = size - 1,
2229                         .perm = IOMMU_NONE,
2230                     },
2231                 };
2232                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2233             }
2234         }
2235     }
2236 }
2237 
2238 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2239                                       hwaddr addr, uint8_t am)
2240 {
2241     VTDIOTLBPageInvInfo info;
2242 
2243     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2244 
2245     assert(am <= VTD_MAMV);
2246     info.domain_id = domain_id;
2247     info.addr = addr;
2248     info.mask = ~((1 << am) - 1);
2249     vtd_iommu_lock(s);
2250     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2251     vtd_iommu_unlock(s);
2252     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2253 }
2254 
2255 /* Flush IOTLB
2256  * Returns the IOTLB Actual Invalidation Granularity.
2257  * @val: the content of the IOTLB_REG
2258  */
2259 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2260 {
2261     uint64_t iaig;
2262     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2263     uint16_t domain_id;
2264     hwaddr addr;
2265     uint8_t am;
2266 
2267     switch (type) {
2268     case VTD_TLB_GLOBAL_FLUSH:
2269         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2270         vtd_iotlb_global_invalidate(s);
2271         break;
2272 
2273     case VTD_TLB_DSI_FLUSH:
2274         domain_id = VTD_TLB_DID(val);
2275         iaig = VTD_TLB_DSI_FLUSH_A;
2276         vtd_iotlb_domain_invalidate(s, domain_id);
2277         break;
2278 
2279     case VTD_TLB_PSI_FLUSH:
2280         domain_id = VTD_TLB_DID(val);
2281         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2282         am = VTD_IVA_AM(addr);
2283         addr = VTD_IVA_ADDR(addr);
2284         if (am > VTD_MAMV) {
2285             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2286                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2287             iaig = 0;
2288             break;
2289         }
2290         iaig = VTD_TLB_PSI_FLUSH_A;
2291         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2292         break;
2293 
2294     default:
2295         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2296                           __func__, val);
2297         iaig = 0;
2298     }
2299     return iaig;
2300 }
2301 
2302 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2303 
2304 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2305 {
2306     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2307            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2308 }
2309 
2310 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2311 {
2312     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2313 
2314     trace_vtd_inv_qi_enable(en);
2315 
2316     if (en) {
2317         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2318         /* 2^(x+8) entries */
2319         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2320         s->qi_enabled = true;
2321         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2322         /* Ok - report back to driver */
2323         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2324 
2325         if (s->iq_tail != 0) {
2326             /*
2327              * This is a spec violation but Windows guests are known to set up
2328              * Queued Invalidation this way so we allow the write and process
2329              * Invalidation Descriptors right away.
2330              */
2331             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2332             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2333                 vtd_fetch_inv_desc(s);
2334             }
2335         }
2336     } else {
2337         if (vtd_queued_inv_disable_check(s)) {
2338             /* disable Queued Invalidation */
2339             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2340             s->iq_head = 0;
2341             s->qi_enabled = false;
2342             /* Ok - report back to driver */
2343             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2344         } else {
2345             error_report_once("%s: detected improper state when disable QI "
2346                               "(head=0x%x, tail=0x%x, last_type=%d)",
2347                               __func__,
2348                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2349         }
2350     }
2351 }
2352 
2353 /* Set Root Table Pointer */
2354 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2355 {
2356     vtd_root_table_setup(s);
2357     /* Ok - report back to driver */
2358     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2359     vtd_reset_caches(s);
2360     vtd_address_space_refresh_all(s);
2361 }
2362 
2363 /* Set Interrupt Remap Table Pointer */
2364 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2365 {
2366     vtd_interrupt_remap_table_setup(s);
2367     /* Ok - report back to driver */
2368     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2369 }
2370 
2371 /* Handle Translation Enable/Disable */
2372 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2373 {
2374     if (s->dmar_enabled == en) {
2375         return;
2376     }
2377 
2378     trace_vtd_dmar_enable(en);
2379 
2380     if (en) {
2381         s->dmar_enabled = true;
2382         /* Ok - report back to driver */
2383         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2384     } else {
2385         s->dmar_enabled = false;
2386 
2387         /* Clear the index of Fault Recording Register */
2388         s->next_frcd_reg = 0;
2389         /* Ok - report back to driver */
2390         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2391     }
2392 
2393     vtd_reset_caches(s);
2394     vtd_address_space_refresh_all(s);
2395 }
2396 
2397 /* Handle Interrupt Remap Enable/Disable */
2398 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2399 {
2400     trace_vtd_ir_enable(en);
2401 
2402     if (en) {
2403         s->intr_enabled = true;
2404         /* Ok - report back to driver */
2405         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2406     } else {
2407         s->intr_enabled = false;
2408         /* Ok - report back to driver */
2409         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2410     }
2411 }
2412 
2413 /* Handle write to Global Command Register */
2414 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2415 {
2416     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2417     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2418     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2419     uint32_t changed = status ^ val;
2420 
2421     trace_vtd_reg_write_gcmd(status, val);
2422     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2423         /* Translation enable/disable */
2424         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2425     }
2426     if (val & VTD_GCMD_SRTP) {
2427         /* Set/update the root-table pointer */
2428         vtd_handle_gcmd_srtp(s);
2429     }
2430     if (changed & VTD_GCMD_QIE) {
2431         /* Queued Invalidation Enable */
2432         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2433     }
2434     if (val & VTD_GCMD_SIRTP) {
2435         /* Set/update the interrupt remapping root-table pointer */
2436         vtd_handle_gcmd_sirtp(s);
2437     }
2438     if ((changed & VTD_GCMD_IRE) &&
2439         x86_iommu_ir_supported(x86_iommu)) {
2440         /* Interrupt remap enable/disable */
2441         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2442     }
2443 }
2444 
2445 /* Handle write to Context Command Register */
2446 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2447 {
2448     uint64_t ret;
2449     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2450 
2451     /* Context-cache invalidation request */
2452     if (val & VTD_CCMD_ICC) {
2453         if (s->qi_enabled) {
2454             error_report_once("Queued Invalidation enabled, "
2455                               "should not use register-based invalidation");
2456             return;
2457         }
2458         ret = vtd_context_cache_invalidate(s, val);
2459         /* Invalidation completed. Change something to show */
2460         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2461         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2462                                       ret);
2463     }
2464 }
2465 
2466 /* Handle write to IOTLB Invalidation Register */
2467 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2468 {
2469     uint64_t ret;
2470     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2471 
2472     /* IOTLB invalidation request */
2473     if (val & VTD_TLB_IVT) {
2474         if (s->qi_enabled) {
2475             error_report_once("Queued Invalidation enabled, "
2476                               "should not use register-based invalidation");
2477             return;
2478         }
2479         ret = vtd_iotlb_flush(s, val);
2480         /* Invalidation completed. Change something to show */
2481         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2482         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2483                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2484     }
2485 }
2486 
2487 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2488 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2489                              VTDInvDesc *inv_desc)
2490 {
2491     dma_addr_t base_addr = s->iq;
2492     uint32_t offset = s->iq_head;
2493     uint32_t dw = s->iq_dw ? 32 : 16;
2494     dma_addr_t addr = base_addr + offset * dw;
2495 
2496     if (dma_memory_read(&address_space_memory, addr,
2497                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2498         error_report_once("Read INV DESC failed.");
2499         return false;
2500     }
2501     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2502     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2503     if (dw == 32) {
2504         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2505         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2506     }
2507     return true;
2508 }
2509 
2510 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2511 {
2512     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2513         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2514         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2515                           " (reserved nonzero)", __func__, inv_desc->hi,
2516                           inv_desc->lo);
2517         return false;
2518     }
2519     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2520         /* Status Write */
2521         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2522                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2523 
2524         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2525 
2526         /* FIXME: need to be masked with HAW? */
2527         dma_addr_t status_addr = inv_desc->hi;
2528         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2529         status_data = cpu_to_le32(status_data);
2530         if (dma_memory_write(&address_space_memory, status_addr,
2531                              &status_data, sizeof(status_data),
2532                              MEMTXATTRS_UNSPECIFIED)) {
2533             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2534             return false;
2535         }
2536     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2537         /* Interrupt flag */
2538         vtd_generate_completion_event(s);
2539     } else {
2540         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2541                           " (unknown type)", __func__, inv_desc->hi,
2542                           inv_desc->lo);
2543         return false;
2544     }
2545     return true;
2546 }
2547 
2548 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2549                                            VTDInvDesc *inv_desc)
2550 {
2551     uint16_t sid, fmask;
2552 
2553     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2554         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2555                           " (reserved nonzero)", __func__, inv_desc->hi,
2556                           inv_desc->lo);
2557         return false;
2558     }
2559     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2560     case VTD_INV_DESC_CC_DOMAIN:
2561         trace_vtd_inv_desc_cc_domain(
2562             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2563         /* Fall through */
2564     case VTD_INV_DESC_CC_GLOBAL:
2565         vtd_context_global_invalidate(s);
2566         break;
2567 
2568     case VTD_INV_DESC_CC_DEVICE:
2569         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2570         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2571         vtd_context_device_invalidate(s, sid, fmask);
2572         break;
2573 
2574     default:
2575         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2576                           " (invalid type)", __func__, inv_desc->hi,
2577                           inv_desc->lo);
2578         return false;
2579     }
2580     return true;
2581 }
2582 
2583 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2584 {
2585     uint16_t domain_id;
2586     uint8_t am;
2587     hwaddr addr;
2588 
2589     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2590         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2591         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2592                           ", lo=0x%"PRIx64" (reserved bits unzero)",
2593                           __func__, inv_desc->hi, inv_desc->lo);
2594         return false;
2595     }
2596 
2597     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2598     case VTD_INV_DESC_IOTLB_GLOBAL:
2599         vtd_iotlb_global_invalidate(s);
2600         break;
2601 
2602     case VTD_INV_DESC_IOTLB_DOMAIN:
2603         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2604         vtd_iotlb_domain_invalidate(s, domain_id);
2605         break;
2606 
2607     case VTD_INV_DESC_IOTLB_PAGE:
2608         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2609         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2610         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2611         if (am > VTD_MAMV) {
2612             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2613                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2614                               __func__, inv_desc->hi, inv_desc->lo,
2615                               am, (unsigned)VTD_MAMV);
2616             return false;
2617         }
2618         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2619         break;
2620 
2621     default:
2622         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2623                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2624                           __func__, inv_desc->hi, inv_desc->lo,
2625                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2626         return false;
2627     }
2628     return true;
2629 }
2630 
2631 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2632                                      VTDInvDesc *inv_desc)
2633 {
2634     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2635                            inv_desc->iec.index,
2636                            inv_desc->iec.index_mask);
2637 
2638     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2639                        inv_desc->iec.index,
2640                        inv_desc->iec.index_mask);
2641     return true;
2642 }
2643 
2644 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2645                                           VTDInvDesc *inv_desc)
2646 {
2647     VTDAddressSpace *vtd_dev_as;
2648     IOMMUTLBEvent event;
2649     hwaddr addr;
2650     uint64_t sz;
2651     uint16_t sid;
2652     bool size;
2653 
2654     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2655     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2656     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2657 
2658     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2659         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2660         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2661                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
2662                           inv_desc->hi, inv_desc->lo);
2663         return false;
2664     }
2665 
2666     /*
2667      * Using sid is OK since the guest should have finished the
2668      * initialization of both the bus and device.
2669      */
2670     vtd_dev_as = vtd_get_as_by_sid(s, sid);
2671     if (!vtd_dev_as) {
2672         goto done;
2673     }
2674 
2675     /* According to ATS spec table 2.4:
2676      * S = 0, bits 15:12 = xxxx     range size: 4K
2677      * S = 1, bits 15:12 = xxx0     range size: 8K
2678      * S = 1, bits 15:12 = xx01     range size: 16K
2679      * S = 1, bits 15:12 = x011     range size: 32K
2680      * S = 1, bits 15:12 = 0111     range size: 64K
2681      * ...
2682      */
2683     if (size) {
2684         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2685         addr &= ~(sz - 1);
2686     } else {
2687         sz = VTD_PAGE_SIZE;
2688     }
2689 
2690     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2691     event.entry.target_as = &vtd_dev_as->as;
2692     event.entry.addr_mask = sz - 1;
2693     event.entry.iova = addr;
2694     event.entry.perm = IOMMU_NONE;
2695     event.entry.translated_addr = 0;
2696     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2697 
2698 done:
2699     return true;
2700 }
2701 
2702 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2703 {
2704     VTDInvDesc inv_desc;
2705     uint8_t desc_type;
2706 
2707     trace_vtd_inv_qi_head(s->iq_head);
2708     if (!vtd_get_inv_desc(s, &inv_desc)) {
2709         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2710         return false;
2711     }
2712 
2713     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2714     /* FIXME: should update at first or at last? */
2715     s->iq_last_desc_type = desc_type;
2716 
2717     switch (desc_type) {
2718     case VTD_INV_DESC_CC:
2719         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2720         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2721             return false;
2722         }
2723         break;
2724 
2725     case VTD_INV_DESC_IOTLB:
2726         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2727         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2728             return false;
2729         }
2730         break;
2731 
2732     /*
2733      * TODO: the entity of below two cases will be implemented in future series.
2734      * To make guest (which integrates scalable mode support patch set in
2735      * iommu driver) work, just return true is enough so far.
2736      */
2737     case VTD_INV_DESC_PC:
2738         break;
2739 
2740     case VTD_INV_DESC_PIOTLB:
2741         break;
2742 
2743     case VTD_INV_DESC_WAIT:
2744         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2745         if (!vtd_process_wait_desc(s, &inv_desc)) {
2746             return false;
2747         }
2748         break;
2749 
2750     case VTD_INV_DESC_IEC:
2751         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2752         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2753             return false;
2754         }
2755         break;
2756 
2757     case VTD_INV_DESC_DEVICE:
2758         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2759         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2760             return false;
2761         }
2762         break;
2763 
2764     default:
2765         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2766                           " (unknown type)", __func__, inv_desc.hi,
2767                           inv_desc.lo);
2768         return false;
2769     }
2770     s->iq_head++;
2771     if (s->iq_head == s->iq_size) {
2772         s->iq_head = 0;
2773     }
2774     return true;
2775 }
2776 
2777 /* Try to fetch and process more Invalidation Descriptors */
2778 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2779 {
2780     int qi_shift;
2781 
2782     /* Refer to 10.4.23 of VT-d spec 3.0 */
2783     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2784 
2785     trace_vtd_inv_qi_fetch();
2786 
2787     if (s->iq_tail >= s->iq_size) {
2788         /* Detects an invalid Tail pointer */
2789         error_report_once("%s: detected invalid QI tail "
2790                           "(tail=0x%x, size=0x%x)",
2791                           __func__, s->iq_tail, s->iq_size);
2792         vtd_handle_inv_queue_error(s);
2793         return;
2794     }
2795     while (s->iq_head != s->iq_tail) {
2796         if (!vtd_process_inv_desc(s)) {
2797             /* Invalidation Queue Errors */
2798             vtd_handle_inv_queue_error(s);
2799             break;
2800         }
2801         /* Must update the IQH_REG in time */
2802         vtd_set_quad_raw(s, DMAR_IQH_REG,
2803                          (((uint64_t)(s->iq_head)) << qi_shift) &
2804                          VTD_IQH_QH_MASK);
2805     }
2806 }
2807 
2808 /* Handle write to Invalidation Queue Tail Register */
2809 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2810 {
2811     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2812 
2813     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2814         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2815                           __func__, val);
2816         return;
2817     }
2818     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2819     trace_vtd_inv_qi_tail(s->iq_tail);
2820 
2821     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2822         /* Process Invalidation Queue here */
2823         vtd_fetch_inv_desc(s);
2824     }
2825 }
2826 
2827 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2828 {
2829     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2830     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2831     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2832 
2833     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2834         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2835         trace_vtd_fsts_clear_ip();
2836     }
2837     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2838      * Descriptors if there are any when Queued Invalidation is enabled?
2839      */
2840 }
2841 
2842 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2843 {
2844     uint32_t fectl_reg;
2845     /* FIXME: when software clears the IM field, check the IP field. But do we
2846      * need to compare the old value and the new value to conclude that
2847      * software clears the IM field? Or just check if the IM field is zero?
2848      */
2849     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2850 
2851     trace_vtd_reg_write_fectl(fectl_reg);
2852 
2853     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2854         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2855         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2856     }
2857 }
2858 
2859 static void vtd_handle_ics_write(IntelIOMMUState *s)
2860 {
2861     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2862     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2863 
2864     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2865         trace_vtd_reg_ics_clear_ip();
2866         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2867     }
2868 }
2869 
2870 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2871 {
2872     uint32_t iectl_reg;
2873     /* FIXME: when software clears the IM field, check the IP field. But do we
2874      * need to compare the old value and the new value to conclude that
2875      * software clears the IM field? Or just check if the IM field is zero?
2876      */
2877     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2878 
2879     trace_vtd_reg_write_iectl(iectl_reg);
2880 
2881     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2882         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2883         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2884     }
2885 }
2886 
2887 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2888 {
2889     IntelIOMMUState *s = opaque;
2890     uint64_t val;
2891 
2892     trace_vtd_reg_read(addr, size);
2893 
2894     if (addr + size > DMAR_REG_SIZE) {
2895         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2896                           " size=0x%x", __func__, addr, size);
2897         return (uint64_t)-1;
2898     }
2899 
2900     switch (addr) {
2901     /* Root Table Address Register, 64-bit */
2902     case DMAR_RTADDR_REG:
2903         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2904         if (size == 4) {
2905             val = val & ((1ULL << 32) - 1);
2906         }
2907         break;
2908 
2909     case DMAR_RTADDR_REG_HI:
2910         assert(size == 4);
2911         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2912         break;
2913 
2914     /* Invalidation Queue Address Register, 64-bit */
2915     case DMAR_IQA_REG:
2916         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2917         if (size == 4) {
2918             val = val & ((1ULL << 32) - 1);
2919         }
2920         break;
2921 
2922     case DMAR_IQA_REG_HI:
2923         assert(size == 4);
2924         val = s->iq >> 32;
2925         break;
2926 
2927     default:
2928         if (size == 4) {
2929             val = vtd_get_long(s, addr);
2930         } else {
2931             val = vtd_get_quad(s, addr);
2932         }
2933     }
2934 
2935     return val;
2936 }
2937 
2938 static void vtd_mem_write(void *opaque, hwaddr addr,
2939                           uint64_t val, unsigned size)
2940 {
2941     IntelIOMMUState *s = opaque;
2942 
2943     trace_vtd_reg_write(addr, size, val);
2944 
2945     if (addr + size > DMAR_REG_SIZE) {
2946         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2947                           " size=0x%x", __func__, addr, size);
2948         return;
2949     }
2950 
2951     switch (addr) {
2952     /* Global Command Register, 32-bit */
2953     case DMAR_GCMD_REG:
2954         vtd_set_long(s, addr, val);
2955         vtd_handle_gcmd_write(s);
2956         break;
2957 
2958     /* Context Command Register, 64-bit */
2959     case DMAR_CCMD_REG:
2960         if (size == 4) {
2961             vtd_set_long(s, addr, val);
2962         } else {
2963             vtd_set_quad(s, addr, val);
2964             vtd_handle_ccmd_write(s);
2965         }
2966         break;
2967 
2968     case DMAR_CCMD_REG_HI:
2969         assert(size == 4);
2970         vtd_set_long(s, addr, val);
2971         vtd_handle_ccmd_write(s);
2972         break;
2973 
2974     /* IOTLB Invalidation Register, 64-bit */
2975     case DMAR_IOTLB_REG:
2976         if (size == 4) {
2977             vtd_set_long(s, addr, val);
2978         } else {
2979             vtd_set_quad(s, addr, val);
2980             vtd_handle_iotlb_write(s);
2981         }
2982         break;
2983 
2984     case DMAR_IOTLB_REG_HI:
2985         assert(size == 4);
2986         vtd_set_long(s, addr, val);
2987         vtd_handle_iotlb_write(s);
2988         break;
2989 
2990     /* Invalidate Address Register, 64-bit */
2991     case DMAR_IVA_REG:
2992         if (size == 4) {
2993             vtd_set_long(s, addr, val);
2994         } else {
2995             vtd_set_quad(s, addr, val);
2996         }
2997         break;
2998 
2999     case DMAR_IVA_REG_HI:
3000         assert(size == 4);
3001         vtd_set_long(s, addr, val);
3002         break;
3003 
3004     /* Fault Status Register, 32-bit */
3005     case DMAR_FSTS_REG:
3006         assert(size == 4);
3007         vtd_set_long(s, addr, val);
3008         vtd_handle_fsts_write(s);
3009         break;
3010 
3011     /* Fault Event Control Register, 32-bit */
3012     case DMAR_FECTL_REG:
3013         assert(size == 4);
3014         vtd_set_long(s, addr, val);
3015         vtd_handle_fectl_write(s);
3016         break;
3017 
3018     /* Fault Event Data Register, 32-bit */
3019     case DMAR_FEDATA_REG:
3020         assert(size == 4);
3021         vtd_set_long(s, addr, val);
3022         break;
3023 
3024     /* Fault Event Address Register, 32-bit */
3025     case DMAR_FEADDR_REG:
3026         if (size == 4) {
3027             vtd_set_long(s, addr, val);
3028         } else {
3029             /*
3030              * While the register is 32-bit only, some guests (Xen...) write to
3031              * it with 64-bit.
3032              */
3033             vtd_set_quad(s, addr, val);
3034         }
3035         break;
3036 
3037     /* Fault Event Upper Address Register, 32-bit */
3038     case DMAR_FEUADDR_REG:
3039         assert(size == 4);
3040         vtd_set_long(s, addr, val);
3041         break;
3042 
3043     /* Protected Memory Enable Register, 32-bit */
3044     case DMAR_PMEN_REG:
3045         assert(size == 4);
3046         vtd_set_long(s, addr, val);
3047         break;
3048 
3049     /* Root Table Address Register, 64-bit */
3050     case DMAR_RTADDR_REG:
3051         if (size == 4) {
3052             vtd_set_long(s, addr, val);
3053         } else {
3054             vtd_set_quad(s, addr, val);
3055         }
3056         break;
3057 
3058     case DMAR_RTADDR_REG_HI:
3059         assert(size == 4);
3060         vtd_set_long(s, addr, val);
3061         break;
3062 
3063     /* Invalidation Queue Tail Register, 64-bit */
3064     case DMAR_IQT_REG:
3065         if (size == 4) {
3066             vtd_set_long(s, addr, val);
3067         } else {
3068             vtd_set_quad(s, addr, val);
3069         }
3070         vtd_handle_iqt_write(s);
3071         break;
3072 
3073     case DMAR_IQT_REG_HI:
3074         assert(size == 4);
3075         vtd_set_long(s, addr, val);
3076         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3077         break;
3078 
3079     /* Invalidation Queue Address Register, 64-bit */
3080     case DMAR_IQA_REG:
3081         if (size == 4) {
3082             vtd_set_long(s, addr, val);
3083         } else {
3084             vtd_set_quad(s, addr, val);
3085         }
3086         vtd_update_iq_dw(s);
3087         break;
3088 
3089     case DMAR_IQA_REG_HI:
3090         assert(size == 4);
3091         vtd_set_long(s, addr, val);
3092         break;
3093 
3094     /* Invalidation Completion Status Register, 32-bit */
3095     case DMAR_ICS_REG:
3096         assert(size == 4);
3097         vtd_set_long(s, addr, val);
3098         vtd_handle_ics_write(s);
3099         break;
3100 
3101     /* Invalidation Event Control Register, 32-bit */
3102     case DMAR_IECTL_REG:
3103         assert(size == 4);
3104         vtd_set_long(s, addr, val);
3105         vtd_handle_iectl_write(s);
3106         break;
3107 
3108     /* Invalidation Event Data Register, 32-bit */
3109     case DMAR_IEDATA_REG:
3110         assert(size == 4);
3111         vtd_set_long(s, addr, val);
3112         break;
3113 
3114     /* Invalidation Event Address Register, 32-bit */
3115     case DMAR_IEADDR_REG:
3116         assert(size == 4);
3117         vtd_set_long(s, addr, val);
3118         break;
3119 
3120     /* Invalidation Event Upper Address Register, 32-bit */
3121     case DMAR_IEUADDR_REG:
3122         assert(size == 4);
3123         vtd_set_long(s, addr, val);
3124         break;
3125 
3126     /* Fault Recording Registers, 128-bit */
3127     case DMAR_FRCD_REG_0_0:
3128         if (size == 4) {
3129             vtd_set_long(s, addr, val);
3130         } else {
3131             vtd_set_quad(s, addr, val);
3132         }
3133         break;
3134 
3135     case DMAR_FRCD_REG_0_1:
3136         assert(size == 4);
3137         vtd_set_long(s, addr, val);
3138         break;
3139 
3140     case DMAR_FRCD_REG_0_2:
3141         if (size == 4) {
3142             vtd_set_long(s, addr, val);
3143         } else {
3144             vtd_set_quad(s, addr, val);
3145             /* May clear bit 127 (Fault), update PPF */
3146             vtd_update_fsts_ppf(s);
3147         }
3148         break;
3149 
3150     case DMAR_FRCD_REG_0_3:
3151         assert(size == 4);
3152         vtd_set_long(s, addr, val);
3153         /* May clear bit 127 (Fault), update PPF */
3154         vtd_update_fsts_ppf(s);
3155         break;
3156 
3157     case DMAR_IRTA_REG:
3158         if (size == 4) {
3159             vtd_set_long(s, addr, val);
3160         } else {
3161             vtd_set_quad(s, addr, val);
3162         }
3163         break;
3164 
3165     case DMAR_IRTA_REG_HI:
3166         assert(size == 4);
3167         vtd_set_long(s, addr, val);
3168         break;
3169 
3170     default:
3171         if (size == 4) {
3172             vtd_set_long(s, addr, val);
3173         } else {
3174             vtd_set_quad(s, addr, val);
3175         }
3176     }
3177 }
3178 
3179 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3180                                          IOMMUAccessFlags flag, int iommu_idx)
3181 {
3182     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3183     IntelIOMMUState *s = vtd_as->iommu_state;
3184     IOMMUTLBEntry iotlb = {
3185         /* We'll fill in the rest later. */
3186         .target_as = &address_space_memory,
3187     };
3188     bool success;
3189 
3190     if (likely(s->dmar_enabled)) {
3191         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3192                                          addr, flag & IOMMU_WO, &iotlb);
3193     } else {
3194         /* DMAR disabled, passthrough, use 4k-page*/
3195         iotlb.iova = addr & VTD_PAGE_MASK_4K;
3196         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3197         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3198         iotlb.perm = IOMMU_RW;
3199         success = true;
3200     }
3201 
3202     if (likely(success)) {
3203         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3204                                  VTD_PCI_SLOT(vtd_as->devfn),
3205                                  VTD_PCI_FUNC(vtd_as->devfn),
3206                                  iotlb.iova, iotlb.translated_addr,
3207                                  iotlb.addr_mask);
3208     } else {
3209         error_report_once("%s: detected translation failure "
3210                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3211                           __func__, pci_bus_num(vtd_as->bus),
3212                           VTD_PCI_SLOT(vtd_as->devfn),
3213                           VTD_PCI_FUNC(vtd_as->devfn),
3214                           addr);
3215     }
3216 
3217     return iotlb;
3218 }
3219 
3220 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3221                                          IOMMUNotifierFlag old,
3222                                          IOMMUNotifierFlag new,
3223                                          Error **errp)
3224 {
3225     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3226     IntelIOMMUState *s = vtd_as->iommu_state;
3227     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3228 
3229     /* TODO: add support for VFIO and vhost users */
3230     if (s->snoop_control) {
3231         error_setg_errno(errp, ENOTSUP,
3232                          "Snoop Control with vhost or VFIO is not supported");
3233         return -ENOTSUP;
3234     }
3235     if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3236         error_setg_errno(errp, ENOTSUP,
3237                          "device %02x.%02x.%x requires caching mode",
3238                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3239                          PCI_FUNC(vtd_as->devfn));
3240         return -ENOTSUP;
3241     }
3242     if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3243         error_setg_errno(errp, ENOTSUP,
3244                          "device %02x.%02x.%x requires device IOTLB mode",
3245                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3246                          PCI_FUNC(vtd_as->devfn));
3247         return -ENOTSUP;
3248     }
3249 
3250     /* Update per-address-space notifier flags */
3251     vtd_as->notifier_flags = new;
3252 
3253     if (old == IOMMU_NOTIFIER_NONE) {
3254         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3255     } else if (new == IOMMU_NOTIFIER_NONE) {
3256         QLIST_REMOVE(vtd_as, next);
3257     }
3258     return 0;
3259 }
3260 
3261 static int vtd_post_load(void *opaque, int version_id)
3262 {
3263     IntelIOMMUState *iommu = opaque;
3264 
3265     /*
3266      * We don't need to migrate the root_scalable because we can
3267      * simply do the calculation after the loading is complete.  We
3268      * can actually do similar things with root, dmar_enabled, etc.
3269      * however since we've had them already so we'd better keep them
3270      * for compatibility of migration.
3271      */
3272     vtd_update_scalable_state(iommu);
3273 
3274     vtd_update_iq_dw(iommu);
3275 
3276     /*
3277      * Memory regions are dynamically turned on/off depending on
3278      * context entry configurations from the guest. After migration,
3279      * we need to make sure the memory regions are still correct.
3280      */
3281     vtd_switch_address_space_all(iommu);
3282 
3283     return 0;
3284 }
3285 
3286 static const VMStateDescription vtd_vmstate = {
3287     .name = "iommu-intel",
3288     .version_id = 1,
3289     .minimum_version_id = 1,
3290     .priority = MIG_PRI_IOMMU,
3291     .post_load = vtd_post_load,
3292     .fields = (const VMStateField[]) {
3293         VMSTATE_UINT64(root, IntelIOMMUState),
3294         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3295         VMSTATE_UINT64(iq, IntelIOMMUState),
3296         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3297         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3298         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3299         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3300         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3301         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3302         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3303         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3304         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3305         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3306         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3307         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3308         VMSTATE_END_OF_LIST()
3309     }
3310 };
3311 
3312 static const MemoryRegionOps vtd_mem_ops = {
3313     .read = vtd_mem_read,
3314     .write = vtd_mem_write,
3315     .endianness = DEVICE_LITTLE_ENDIAN,
3316     .impl = {
3317         .min_access_size = 4,
3318         .max_access_size = 8,
3319     },
3320     .valid = {
3321         .min_access_size = 4,
3322         .max_access_size = 8,
3323     },
3324 };
3325 
3326 static Property vtd_properties[] = {
3327     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3328     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3329                             ON_OFF_AUTO_AUTO),
3330     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3331     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3332                       VTD_HOST_ADDRESS_WIDTH),
3333     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3334     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3335     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3336     DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3337     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3338     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3339     DEFINE_PROP_END_OF_LIST(),
3340 };
3341 
3342 /* Read IRTE entry with specific index */
3343 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3344                          VTD_IR_TableEntry *entry, uint16_t sid,
3345                          bool do_fault)
3346 {
3347     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3348         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3349     dma_addr_t addr = 0x00;
3350     uint16_t mask, source_id;
3351     uint8_t bus, bus_max, bus_min;
3352 
3353     if (index >= iommu->intr_size) {
3354         error_report_once("%s: index too large: ind=0x%x",
3355                           __func__, index);
3356         if (do_fault) {
3357             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3358         }
3359         return false;
3360     }
3361 
3362     addr = iommu->intr_root + index * sizeof(*entry);
3363     if (dma_memory_read(&address_space_memory, addr,
3364                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3365         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3366                           __func__, index, addr);
3367         if (do_fault) {
3368             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3369         }
3370         return false;
3371     }
3372 
3373     entry->data[0] = le64_to_cpu(entry->data[0]);
3374     entry->data[1] = le64_to_cpu(entry->data[1]);
3375 
3376     trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3377 
3378     /*
3379      * The remaining potential fault conditions are "qualified" by the
3380      * Fault Processing Disable bit in the IRTE. Even "not present".
3381      * So just clear the do_fault flag if PFD is set, which will
3382      * prevent faults being raised.
3383      */
3384     if (entry->irte.fault_disable) {
3385         do_fault = false;
3386     }
3387 
3388     if (!entry->irte.present) {
3389         error_report_once("%s: detected non-present IRTE "
3390                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3391                           __func__, index, entry->data[1], entry->data[0]);
3392         if (do_fault) {
3393             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3394         }
3395         return false;
3396     }
3397 
3398     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3399         entry->irte.__reserved_2) {
3400         error_report_once("%s: detected non-zero reserved IRTE "
3401                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3402                           __func__, index, entry->data[1], entry->data[0]);
3403         if (do_fault) {
3404             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3405         }
3406         return false;
3407     }
3408 
3409     if (sid != X86_IOMMU_SID_INVALID) {
3410         /* Validate IRTE SID */
3411         source_id = entry->irte.source_id;
3412         switch (entry->irte.sid_vtype) {
3413         case VTD_SVT_NONE:
3414             break;
3415 
3416         case VTD_SVT_ALL:
3417             mask = vtd_svt_mask[entry->irte.sid_q];
3418             if ((source_id & mask) != (sid & mask)) {
3419                 error_report_once("%s: invalid IRTE SID "
3420                                   "(index=%u, sid=%u, source_id=%u)",
3421                                   __func__, index, sid, source_id);
3422                 if (do_fault) {
3423                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3424                 }
3425                 return false;
3426             }
3427             break;
3428 
3429         case VTD_SVT_BUS:
3430             bus_max = source_id >> 8;
3431             bus_min = source_id & 0xff;
3432             bus = sid >> 8;
3433             if (bus > bus_max || bus < bus_min) {
3434                 error_report_once("%s: invalid SVT_BUS "
3435                                   "(index=%u, bus=%u, min=%u, max=%u)",
3436                                   __func__, index, bus, bus_min, bus_max);
3437                 if (do_fault) {
3438                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3439                 }
3440                 return false;
3441             }
3442             break;
3443 
3444         default:
3445             error_report_once("%s: detected invalid IRTE SVT "
3446                               "(index=%u, type=%d)", __func__,
3447                               index, entry->irte.sid_vtype);
3448             /* Take this as verification failure. */
3449             if (do_fault) {
3450                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3451             }
3452             return false;
3453         }
3454     }
3455 
3456     return true;
3457 }
3458 
3459 /* Fetch IRQ information of specific IR index */
3460 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3461                               X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3462 {
3463     VTD_IR_TableEntry irte = {};
3464 
3465     if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3466         return false;
3467     }
3468 
3469     irq->trigger_mode = irte.irte.trigger_mode;
3470     irq->vector = irte.irte.vector;
3471     irq->delivery_mode = irte.irte.delivery_mode;
3472     irq->dest = irte.irte.dest_id;
3473     if (!iommu->intr_eime) {
3474 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3475 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3476         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3477             VTD_IR_APIC_DEST_SHIFT;
3478     }
3479     irq->dest_mode = irte.irte.dest_mode;
3480     irq->redir_hint = irte.irte.redir_hint;
3481 
3482     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3483                        irq->delivery_mode, irq->dest, irq->dest_mode);
3484 
3485     return true;
3486 }
3487 
3488 /* Interrupt remapping for MSI/MSI-X entry */
3489 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3490                                    MSIMessage *origin,
3491                                    MSIMessage *translated,
3492                                    uint16_t sid, bool do_fault)
3493 {
3494     VTD_IR_MSIAddress addr;
3495     uint16_t index;
3496     X86IOMMUIrq irq = {};
3497 
3498     assert(origin && translated);
3499 
3500     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3501 
3502     if (!iommu || !iommu->intr_enabled) {
3503         memcpy(translated, origin, sizeof(*origin));
3504         goto out;
3505     }
3506 
3507     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3508         error_report_once("%s: MSI address high 32 bits non-zero detected: "
3509                           "address=0x%" PRIx64, __func__, origin->address);
3510         if (do_fault) {
3511             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3512         }
3513         return -EINVAL;
3514     }
3515 
3516     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3517     if (addr.addr.__head != 0xfee) {
3518         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3519                           __func__, addr.data);
3520         if (do_fault) {
3521             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3522         }
3523         return -EINVAL;
3524     }
3525 
3526     /* This is compatible mode. */
3527     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3528         memcpy(translated, origin, sizeof(*origin));
3529         goto out;
3530     }
3531 
3532     index = addr.addr.index_h << 15 | addr.addr.index_l;
3533 
3534 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3535 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3536 
3537     if (addr.addr.sub_valid) {
3538         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3539         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3540     }
3541 
3542     if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
3543         return -EINVAL;
3544     }
3545 
3546     if (addr.addr.sub_valid) {
3547         trace_vtd_ir_remap_type("MSI");
3548         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3549             error_report_once("%s: invalid IR MSI "
3550                               "(sid=%u, address=0x%" PRIx64
3551                               ", data=0x%" PRIx32 ")",
3552                               __func__, sid, origin->address, origin->data);
3553             if (do_fault) {
3554                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3555             }
3556             return -EINVAL;
3557         }
3558     } else {
3559         uint8_t vector = origin->data & 0xff;
3560         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3561 
3562         trace_vtd_ir_remap_type("IOAPIC");
3563         /* IOAPIC entry vector should be aligned with IRTE vector
3564          * (see vt-d spec 5.1.5.1). */
3565         if (vector != irq.vector) {
3566             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3567         }
3568 
3569         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3570          * (see vt-d spec 5.1.5.1). */
3571         if (trigger_mode != irq.trigger_mode) {
3572             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3573                                       irq.trigger_mode);
3574         }
3575     }
3576 
3577     /*
3578      * We'd better keep the last two bits, assuming that guest OS
3579      * might modify it. Keep it does not hurt after all.
3580      */
3581     irq.msi_addr_last_bits = addr.addr.__not_care;
3582 
3583     /* Translate X86IOMMUIrq to MSI message */
3584     x86_iommu_irq_to_msi_message(&irq, translated);
3585 
3586 out:
3587     trace_vtd_ir_remap_msi(origin->address, origin->data,
3588                            translated->address, translated->data);
3589     return 0;
3590 }
3591 
3592 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3593                          MSIMessage *dst, uint16_t sid)
3594 {
3595     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3596                                    src, dst, sid, false);
3597 }
3598 
3599 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3600                                    uint64_t *data, unsigned size,
3601                                    MemTxAttrs attrs)
3602 {
3603     return MEMTX_OK;
3604 }
3605 
3606 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3607                                     uint64_t value, unsigned size,
3608                                     MemTxAttrs attrs)
3609 {
3610     int ret = 0;
3611     MSIMessage from = {}, to = {};
3612     uint16_t sid = X86_IOMMU_SID_INVALID;
3613 
3614     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3615     from.data = (uint32_t) value;
3616 
3617     if (!attrs.unspecified) {
3618         /* We have explicit Source ID */
3619         sid = attrs.requester_id;
3620     }
3621 
3622     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
3623     if (ret) {
3624         /* Drop this interrupt */
3625         return MEMTX_ERROR;
3626     }
3627 
3628     apic_get_class(NULL)->send_msi(&to);
3629 
3630     return MEMTX_OK;
3631 }
3632 
3633 static const MemoryRegionOps vtd_mem_ir_ops = {
3634     .read_with_attrs = vtd_mem_ir_read,
3635     .write_with_attrs = vtd_mem_ir_write,
3636     .endianness = DEVICE_LITTLE_ENDIAN,
3637     .impl = {
3638         .min_access_size = 4,
3639         .max_access_size = 4,
3640     },
3641     .valid = {
3642         .min_access_size = 4,
3643         .max_access_size = 4,
3644     },
3645 };
3646 
3647 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3648                                          hwaddr addr, bool is_write)
3649 {
3650     IntelIOMMUState *s = vtd_as->iommu_state;
3651     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3652     uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3653     bool is_fpd_set = false;
3654     VTDContextEntry ce;
3655 
3656     assert(vtd_as->pasid != PCI_NO_PASID);
3657 
3658     /* Try out best to fetch FPD, we can't do anything more */
3659     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3660         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3661         if (!is_fpd_set && s->root_scalable) {
3662             vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3663         }
3664     }
3665 
3666     vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3667                      is_fpd_set, sid, addr, is_write,
3668                      true, vtd_as->pasid);
3669 }
3670 
3671 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3672                                          uint64_t *data, unsigned size,
3673                                          MemTxAttrs attrs)
3674 {
3675     vtd_report_ir_illegal_access(opaque, addr, false);
3676 
3677     return MEMTX_ERROR;
3678 }
3679 
3680 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3681                                           uint64_t value, unsigned size,
3682                                           MemTxAttrs attrs)
3683 {
3684     vtd_report_ir_illegal_access(opaque, addr, true);
3685 
3686     return MEMTX_ERROR;
3687 }
3688 
3689 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3690     .read_with_attrs = vtd_mem_ir_fault_read,
3691     .write_with_attrs = vtd_mem_ir_fault_write,
3692     .endianness = DEVICE_LITTLE_ENDIAN,
3693     .impl = {
3694         .min_access_size = 1,
3695         .max_access_size = 8,
3696     },
3697     .valid = {
3698         .min_access_size = 1,
3699         .max_access_size = 8,
3700     },
3701 };
3702 
3703 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3704                                  int devfn, unsigned int pasid)
3705 {
3706     /*
3707      * We can't simply use sid here since the bus number might not be
3708      * initialized by the guest.
3709      */
3710     struct vtd_as_key key = {
3711         .bus = bus,
3712         .devfn = devfn,
3713         .pasid = pasid,
3714     };
3715     VTDAddressSpace *vtd_dev_as;
3716     char name[128];
3717 
3718     vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3719     if (!vtd_dev_as) {
3720         struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3721 
3722         new_key->bus = bus;
3723         new_key->devfn = devfn;
3724         new_key->pasid = pasid;
3725 
3726         if (pasid == PCI_NO_PASID) {
3727             snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3728                      PCI_FUNC(devfn));
3729         } else {
3730             snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3731                      PCI_FUNC(devfn), pasid);
3732         }
3733 
3734         vtd_dev_as = g_new0(VTDAddressSpace, 1);
3735 
3736         vtd_dev_as->bus = bus;
3737         vtd_dev_as->devfn = (uint8_t)devfn;
3738         vtd_dev_as->pasid = pasid;
3739         vtd_dev_as->iommu_state = s;
3740         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3741         vtd_dev_as->iova_tree = iova_tree_new();
3742 
3743         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3744         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3745 
3746         /*
3747          * Build the DMAR-disabled container with aliases to the
3748          * shared MRs.  Note that aliasing to a shared memory region
3749          * could help the memory API to detect same FlatViews so we
3750          * can have devices to share the same FlatView when DMAR is
3751          * disabled (either by not providing "intel_iommu=on" or with
3752          * "iommu=pt").  It will greatly reduce the total number of
3753          * FlatViews of the system hence VM runs faster.
3754          */
3755         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3756                                  "vtd-nodmar", &s->mr_nodmar, 0,
3757                                  memory_region_size(&s->mr_nodmar));
3758 
3759         /*
3760          * Build the per-device DMAR-enabled container.
3761          *
3762          * TODO: currently we have per-device IOMMU memory region only
3763          * because we have per-device IOMMU notifiers for devices.  If
3764          * one day we can abstract the IOMMU notifiers out of the
3765          * memory regions then we can also share the same memory
3766          * region here just like what we've done above with the nodmar
3767          * region.
3768          */
3769         strcat(name, "-dmar");
3770         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3771                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3772                                  name, UINT64_MAX);
3773         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3774                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3775         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3776                                             VTD_INTERRUPT_ADDR_FIRST,
3777                                             &vtd_dev_as->iommu_ir, 1);
3778 
3779         /*
3780          * This region is used for catching fault to access interrupt
3781          * range via passthrough + PASID. See also
3782          * vtd_switch_address_space(). We can't use alias since we
3783          * need to know the sid which is valid for MSI who uses
3784          * bus_master_as (see msi_send_message()).
3785          */
3786         memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3787                               &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3788                               VTD_INTERRUPT_ADDR_SIZE);
3789         /*
3790          * Hook to root since when PT is enabled vtd_dev_as->iommu
3791          * will be disabled.
3792          */
3793         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3794                                             VTD_INTERRUPT_ADDR_FIRST,
3795                                             &vtd_dev_as->iommu_ir_fault, 2);
3796 
3797         /*
3798          * Hook both the containers under the root container, we
3799          * switch between DMAR & noDMAR by enable/disable
3800          * corresponding sub-containers
3801          */
3802         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3803                                             MEMORY_REGION(&vtd_dev_as->iommu),
3804                                             0);
3805         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3806                                             &vtd_dev_as->nodmar, 0);
3807 
3808         vtd_switch_address_space(vtd_dev_as);
3809 
3810         g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3811     }
3812     return vtd_dev_as;
3813 }
3814 
3815 /* Unmap the whole range in the notifier's scope. */
3816 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3817 {
3818     hwaddr total, remain;
3819     hwaddr start = n->start;
3820     hwaddr end = n->end;
3821     IntelIOMMUState *s = as->iommu_state;
3822     DMAMap map;
3823 
3824     /*
3825      * Note: all the codes in this function has a assumption that IOVA
3826      * bits are no more than VTD_MGAW bits (which is restricted by
3827      * VT-d spec), otherwise we need to consider overflow of 64 bits.
3828      */
3829 
3830     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3831         /*
3832          * Don't need to unmap regions that is bigger than the whole
3833          * VT-d supported address space size
3834          */
3835         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3836     }
3837 
3838     assert(start <= end);
3839     total = remain = end - start + 1;
3840 
3841     while (remain >= VTD_PAGE_SIZE) {
3842         IOMMUTLBEvent event;
3843         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3844         uint64_t size = mask + 1;
3845 
3846         assert(size);
3847 
3848         event.type = IOMMU_NOTIFIER_UNMAP;
3849         event.entry.iova = start;
3850         event.entry.addr_mask = mask;
3851         event.entry.target_as = &address_space_memory;
3852         event.entry.perm = IOMMU_NONE;
3853         /* This field is meaningless for unmap */
3854         event.entry.translated_addr = 0;
3855 
3856         memory_region_notify_iommu_one(n, &event);
3857 
3858         start += size;
3859         remain -= size;
3860     }
3861 
3862     assert(!remain);
3863 
3864     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3865                              VTD_PCI_SLOT(as->devfn),
3866                              VTD_PCI_FUNC(as->devfn),
3867                              n->start, total);
3868 
3869     map.iova = n->start;
3870     map.size = total - 1; /* Inclusive */
3871     iova_tree_remove(as->iova_tree, map);
3872 }
3873 
3874 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3875 {
3876     VTDAddressSpace *vtd_as;
3877     IOMMUNotifier *n;
3878 
3879     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3880         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3881             vtd_address_space_unmap(vtd_as, n);
3882         }
3883     }
3884 }
3885 
3886 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3887 {
3888     vtd_address_space_unmap_all(s);
3889     vtd_switch_address_space_all(s);
3890 }
3891 
3892 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3893 {
3894     memory_region_notify_iommu_one(private, event);
3895     return 0;
3896 }
3897 
3898 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3899 {
3900     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3901     IntelIOMMUState *s = vtd_as->iommu_state;
3902     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3903     VTDContextEntry ce;
3904     DMAMap map = { .iova = 0, .size = HWADDR_MAX };
3905 
3906     /* replay is protected by BQL, page walk will re-setup it safely */
3907     iova_tree_remove(vtd_as->iova_tree, map);
3908 
3909     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3910         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3911                                   "legacy mode",
3912                                   bus_n, PCI_SLOT(vtd_as->devfn),
3913                                   PCI_FUNC(vtd_as->devfn),
3914                                   vtd_get_domain_id(s, &ce, vtd_as->pasid),
3915                                   ce.hi, ce.lo);
3916         if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
3917             /* This is required only for MAP typed notifiers */
3918             vtd_page_walk_info info = {
3919                 .hook_fn = vtd_replay_hook,
3920                 .private = (void *)n,
3921                 .notify_unmap = false,
3922                 .aw = s->aw_bits,
3923                 .as = vtd_as,
3924                 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3925             };
3926 
3927             vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3928         }
3929     } else {
3930         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3931                                     PCI_FUNC(vtd_as->devfn));
3932     }
3933 
3934     return;
3935 }
3936 
3937 /* Do the initialization. It will also be called when reset, so pay
3938  * attention when adding new initialization stuff.
3939  */
3940 static void vtd_init(IntelIOMMUState *s)
3941 {
3942     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3943 
3944     memset(s->csr, 0, DMAR_REG_SIZE);
3945     memset(s->wmask, 0, DMAR_REG_SIZE);
3946     memset(s->w1cmask, 0, DMAR_REG_SIZE);
3947     memset(s->womask, 0, DMAR_REG_SIZE);
3948 
3949     s->root = 0;
3950     s->root_scalable = false;
3951     s->dmar_enabled = false;
3952     s->intr_enabled = false;
3953     s->iq_head = 0;
3954     s->iq_tail = 0;
3955     s->iq = 0;
3956     s->iq_size = 0;
3957     s->qi_enabled = false;
3958     s->iq_last_desc_type = VTD_INV_DESC_NONE;
3959     s->iq_dw = false;
3960     s->next_frcd_reg = 0;
3961     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3962              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3963              VTD_CAP_MGAW(s->aw_bits);
3964     if (s->dma_drain) {
3965         s->cap |= VTD_CAP_DRAIN;
3966     }
3967     if (s->dma_translation) {
3968             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3969                     s->cap |= VTD_CAP_SAGAW_39bit;
3970             }
3971             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3972                     s->cap |= VTD_CAP_SAGAW_48bit;
3973             }
3974     }
3975     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3976 
3977     /*
3978      * Rsvd field masks for spte
3979      */
3980     vtd_spte_rsvd[0] = ~0ULL;
3981     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3982                                                   x86_iommu->dt_supported);
3983     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3984     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3985     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3986 
3987     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3988                                                          x86_iommu->dt_supported);
3989     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3990                                                          x86_iommu->dt_supported);
3991 
3992     if (s->scalable_mode || s->snoop_control) {
3993         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3994         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3995         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3996     }
3997 
3998     if (x86_iommu_ir_supported(x86_iommu)) {
3999         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4000         if (s->intr_eim == ON_OFF_AUTO_ON) {
4001             s->ecap |= VTD_ECAP_EIM;
4002         }
4003         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4004     }
4005 
4006     if (x86_iommu->dt_supported) {
4007         s->ecap |= VTD_ECAP_DT;
4008     }
4009 
4010     if (x86_iommu->pt_supported) {
4011         s->ecap |= VTD_ECAP_PT;
4012     }
4013 
4014     if (s->caching_mode) {
4015         s->cap |= VTD_CAP_CM;
4016     }
4017 
4018     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4019     if (s->scalable_mode) {
4020         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4021     }
4022 
4023     if (s->snoop_control) {
4024         s->ecap |= VTD_ECAP_SC;
4025     }
4026 
4027     if (s->pasid) {
4028         s->ecap |= VTD_ECAP_PASID;
4029     }
4030 
4031     vtd_reset_caches(s);
4032 
4033     /* Define registers with default values and bit semantics */
4034     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4035     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4036     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4037     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4038     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4039     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4040     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4041     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4042     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4043 
4044     /* Advanced Fault Logging not supported */
4045     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4046     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4047     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4048     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4049 
4050     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4051      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4052      */
4053     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4054 
4055     /* Treated as RO for implementations that PLMR and PHMR fields reported
4056      * as Clear in the CAP_REG.
4057      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4058      */
4059     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4060 
4061     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4062     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4063     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4064     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4065     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4066     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4067     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4068     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4069     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4070 
4071     /* IOTLB registers */
4072     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4073     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4074     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4075 
4076     /* Fault Recording Registers, 128-bit */
4077     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4078     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4079 
4080     /*
4081      * Interrupt remapping registers.
4082      */
4083     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4084 }
4085 
4086 /* Should not reset address_spaces when reset because devices will still use
4087  * the address space they got at first (won't ask the bus again).
4088  */
4089 static void vtd_reset(DeviceState *dev)
4090 {
4091     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4092 
4093     vtd_init(s);
4094     vtd_address_space_refresh_all(s);
4095 }
4096 
4097 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4098 {
4099     IntelIOMMUState *s = opaque;
4100     VTDAddressSpace *vtd_as;
4101 
4102     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4103 
4104     vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4105     return &vtd_as->as;
4106 }
4107 
4108 static PCIIOMMUOps vtd_iommu_ops = {
4109     .get_address_space = vtd_host_dma_iommu,
4110 };
4111 
4112 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4113 {
4114     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4115 
4116     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4117         error_setg(errp, "eim=on cannot be selected without intremap=on");
4118         return false;
4119     }
4120 
4121     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4122         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4123                       && x86_iommu_ir_supported(x86_iommu) ?
4124                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4125     }
4126     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4127         if (!kvm_irqchip_is_split()) {
4128             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4129             return false;
4130         }
4131         if (kvm_enabled() && !kvm_enable_x2apic()) {
4132             error_setg(errp, "eim=on requires support on the KVM side"
4133                              "(X2APIC_API, first shipped in v4.7)");
4134             return false;
4135         }
4136     }
4137 
4138     /* Currently only address widths supported are 39 and 48 bits */
4139     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4140         (s->aw_bits != VTD_HOST_AW_48BIT)) {
4141         error_setg(errp, "Supported values for aw-bits are: %d, %d",
4142                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4143         return false;
4144     }
4145 
4146     if (s->scalable_mode && !s->dma_drain) {
4147         error_setg(errp, "Need to set dma_drain for scalable mode");
4148         return false;
4149     }
4150 
4151     if (s->pasid && !s->scalable_mode) {
4152         error_setg(errp, "Need to set scalable mode for PASID");
4153         return false;
4154     }
4155 
4156     return true;
4157 }
4158 
4159 static int vtd_machine_done_notify_one(Object *child, void *unused)
4160 {
4161     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4162 
4163     /*
4164      * We hard-coded here because vfio-pci is the only special case
4165      * here.  Let's be more elegant in the future when we can, but so
4166      * far there seems to be no better way.
4167      */
4168     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4169         vtd_panic_require_caching_mode();
4170     }
4171 
4172     return 0;
4173 }
4174 
4175 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4176 {
4177     object_child_foreach_recursive(object_get_root(),
4178                                    vtd_machine_done_notify_one, NULL);
4179 }
4180 
4181 static Notifier vtd_machine_done_notify = {
4182     .notify = vtd_machine_done_hook,
4183 };
4184 
4185 static void vtd_realize(DeviceState *dev, Error **errp)
4186 {
4187     MachineState *ms = MACHINE(qdev_get_machine());
4188     PCMachineState *pcms = PC_MACHINE(ms);
4189     X86MachineState *x86ms = X86_MACHINE(ms);
4190     PCIBus *bus = pcms->bus;
4191     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4192     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4193 
4194     if (s->pasid && x86_iommu->dt_supported) {
4195         /*
4196          * PASID-based-Device-TLB Invalidate Descriptor is not
4197          * implemented and it requires support from vhost layer which
4198          * needs to be implemented in the future.
4199          */
4200         error_setg(errp, "PASID based device IOTLB is not supported");
4201         return;
4202     }
4203 
4204     if (!vtd_decide_config(s, errp)) {
4205         return;
4206     }
4207 
4208     QLIST_INIT(&s->vtd_as_with_notifiers);
4209     qemu_mutex_init(&s->iommu_lock);
4210     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4211                           "intel_iommu", DMAR_REG_SIZE);
4212     memory_region_add_subregion(get_system_memory(),
4213                                 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4214 
4215     /* Create the shared memory regions by all devices */
4216     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4217                        UINT64_MAX);
4218     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4219                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4220     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4221                              "vtd-sys-alias", get_system_memory(), 0,
4222                              memory_region_size(get_system_memory()));
4223     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4224                                         &s->mr_sys_alias, 0);
4225     memory_region_add_subregion_overlap(&s->mr_nodmar,
4226                                         VTD_INTERRUPT_ADDR_FIRST,
4227                                         &s->mr_ir, 1);
4228     /* No corresponding destroy */
4229     s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4230                                      g_free, g_free);
4231     s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4232                                       g_free, g_free);
4233     vtd_init(s);
4234     pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4235     /* Pseudo address space under root PCI bus. */
4236     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4237     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4238 }
4239 
4240 static void vtd_class_init(ObjectClass *klass, void *data)
4241 {
4242     DeviceClass *dc = DEVICE_CLASS(klass);
4243     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4244 
4245     dc->reset = vtd_reset;
4246     dc->vmsd = &vtd_vmstate;
4247     device_class_set_props(dc, vtd_properties);
4248     dc->hotpluggable = false;
4249     x86_class->realize = vtd_realize;
4250     x86_class->int_remap = vtd_int_remap;
4251     /* Supported by the pc-q35-* machine types */
4252     dc->user_creatable = true;
4253     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4254     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4255 }
4256 
4257 static const TypeInfo vtd_info = {
4258     .name          = TYPE_INTEL_IOMMU_DEVICE,
4259     .parent        = TYPE_X86_IOMMU_DEVICE,
4260     .instance_size = sizeof(IntelIOMMUState),
4261     .class_init    = vtd_class_init,
4262 };
4263 
4264 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4265                                                      void *data)
4266 {
4267     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4268 
4269     imrc->translate = vtd_iommu_translate;
4270     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4271     imrc->replay = vtd_iommu_replay;
4272 }
4273 
4274 static const TypeInfo vtd_iommu_memory_region_info = {
4275     .parent = TYPE_IOMMU_MEMORY_REGION,
4276     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4277     .class_init = vtd_iommu_memory_region_class_init,
4278 };
4279 
4280 static void vtd_register_types(void)
4281 {
4282     type_register_static(&vtd_info);
4283     type_register_static(&vtd_iommu_memory_region_info);
4284 }
4285 
4286 type_init(vtd_register_types)
4287