11da12ec4SLe Tan /* 21da12ec4SLe Tan * QEMU emulation of an Intel IOMMU (VT-d) 31da12ec4SLe Tan * (DMA Remapping device) 41da12ec4SLe Tan * 51da12ec4SLe Tan * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 61da12ec4SLe Tan * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 71da12ec4SLe Tan * 81da12ec4SLe Tan * This program is free software; you can redistribute it and/or modify 91da12ec4SLe Tan * it under the terms of the GNU General Public License as published by 101da12ec4SLe Tan * the Free Software Foundation; either version 2 of the License, or 111da12ec4SLe Tan * (at your option) any later version. 121da12ec4SLe Tan 131da12ec4SLe Tan * This program is distributed in the hope that it will be useful, 141da12ec4SLe Tan * but WITHOUT ANY WARRANTY; without even the implied warranty of 151da12ec4SLe Tan * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 161da12ec4SLe Tan * GNU General Public License for more details. 171da12ec4SLe Tan 181da12ec4SLe Tan * You should have received a copy of the GNU General Public License along 191da12ec4SLe Tan * with this program; if not, see <http://www.gnu.org/licenses/>. 201da12ec4SLe Tan */ 211da12ec4SLe Tan 221da12ec4SLe Tan #include "hw/sysbus.h" 231da12ec4SLe Tan #include "exec/address-spaces.h" 241da12ec4SLe Tan #include "intel_iommu_internal.h" 251da12ec4SLe Tan 261da12ec4SLe Tan /*#define DEBUG_INTEL_IOMMU*/ 271da12ec4SLe Tan #ifdef DEBUG_INTEL_IOMMU 281da12ec4SLe Tan enum { 291da12ec4SLe Tan DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG, 301da12ec4SLe Tan }; 311da12ec4SLe Tan #define VTD_DBGBIT(x) (1 << DEBUG_##x) 321da12ec4SLe Tan static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR); 331da12ec4SLe Tan 341da12ec4SLe Tan #define VTD_DPRINTF(what, fmt, ...) do { \ 351da12ec4SLe Tan if (vtd_dbgflags & VTD_DBGBIT(what)) { \ 361da12ec4SLe Tan fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \ 371da12ec4SLe Tan ## __VA_ARGS__); } \ 381da12ec4SLe Tan } while (0) 391da12ec4SLe Tan #else 401da12ec4SLe Tan #define VTD_DPRINTF(what, fmt, ...) do {} while (0) 411da12ec4SLe Tan #endif 421da12ec4SLe Tan 431da12ec4SLe Tan static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 441da12ec4SLe Tan uint64_t wmask, uint64_t w1cmask) 451da12ec4SLe Tan { 461da12ec4SLe Tan stq_le_p(&s->csr[addr], val); 471da12ec4SLe Tan stq_le_p(&s->wmask[addr], wmask); 481da12ec4SLe Tan stq_le_p(&s->w1cmask[addr], w1cmask); 491da12ec4SLe Tan } 501da12ec4SLe Tan 511da12ec4SLe Tan static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 521da12ec4SLe Tan { 531da12ec4SLe Tan stq_le_p(&s->womask[addr], mask); 541da12ec4SLe Tan } 551da12ec4SLe Tan 561da12ec4SLe Tan static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 571da12ec4SLe Tan uint32_t wmask, uint32_t w1cmask) 581da12ec4SLe Tan { 591da12ec4SLe Tan stl_le_p(&s->csr[addr], val); 601da12ec4SLe Tan stl_le_p(&s->wmask[addr], wmask); 611da12ec4SLe Tan stl_le_p(&s->w1cmask[addr], w1cmask); 621da12ec4SLe Tan } 631da12ec4SLe Tan 641da12ec4SLe Tan static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 651da12ec4SLe Tan { 661da12ec4SLe Tan stl_le_p(&s->womask[addr], mask); 671da12ec4SLe Tan } 681da12ec4SLe Tan 691da12ec4SLe Tan /* "External" get/set operations */ 701da12ec4SLe Tan static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 711da12ec4SLe Tan { 721da12ec4SLe Tan uint64_t oldval = ldq_le_p(&s->csr[addr]); 731da12ec4SLe Tan uint64_t wmask = ldq_le_p(&s->wmask[addr]); 741da12ec4SLe Tan uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 751da12ec4SLe Tan stq_le_p(&s->csr[addr], 761da12ec4SLe Tan ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 771da12ec4SLe Tan } 781da12ec4SLe Tan 791da12ec4SLe Tan static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 801da12ec4SLe Tan { 811da12ec4SLe Tan uint32_t oldval = ldl_le_p(&s->csr[addr]); 821da12ec4SLe Tan uint32_t wmask = ldl_le_p(&s->wmask[addr]); 831da12ec4SLe Tan uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 841da12ec4SLe Tan stl_le_p(&s->csr[addr], 851da12ec4SLe Tan ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 861da12ec4SLe Tan } 871da12ec4SLe Tan 881da12ec4SLe Tan static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 891da12ec4SLe Tan { 901da12ec4SLe Tan uint64_t val = ldq_le_p(&s->csr[addr]); 911da12ec4SLe Tan uint64_t womask = ldq_le_p(&s->womask[addr]); 921da12ec4SLe Tan return val & ~womask; 931da12ec4SLe Tan } 941da12ec4SLe Tan 951da12ec4SLe Tan static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 961da12ec4SLe Tan { 971da12ec4SLe Tan uint32_t val = ldl_le_p(&s->csr[addr]); 981da12ec4SLe Tan uint32_t womask = ldl_le_p(&s->womask[addr]); 991da12ec4SLe Tan return val & ~womask; 1001da12ec4SLe Tan } 1011da12ec4SLe Tan 1021da12ec4SLe Tan /* "Internal" get/set operations */ 1031da12ec4SLe Tan static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 1041da12ec4SLe Tan { 1051da12ec4SLe Tan return ldq_le_p(&s->csr[addr]); 1061da12ec4SLe Tan } 1071da12ec4SLe Tan 1081da12ec4SLe Tan static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 1091da12ec4SLe Tan { 1101da12ec4SLe Tan return ldl_le_p(&s->csr[addr]); 1111da12ec4SLe Tan } 1121da12ec4SLe Tan 1131da12ec4SLe Tan static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 1141da12ec4SLe Tan { 1151da12ec4SLe Tan stq_le_p(&s->csr[addr], val); 1161da12ec4SLe Tan } 1171da12ec4SLe Tan 1181da12ec4SLe Tan static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 1191da12ec4SLe Tan uint32_t clear, uint32_t mask) 1201da12ec4SLe Tan { 1211da12ec4SLe Tan uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 1221da12ec4SLe Tan stl_le_p(&s->csr[addr], new_val); 1231da12ec4SLe Tan return new_val; 1241da12ec4SLe Tan } 1251da12ec4SLe Tan 1261da12ec4SLe Tan static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 1271da12ec4SLe Tan uint64_t clear, uint64_t mask) 1281da12ec4SLe Tan { 1291da12ec4SLe Tan uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 1301da12ec4SLe Tan stq_le_p(&s->csr[addr], new_val); 1311da12ec4SLe Tan return new_val; 1321da12ec4SLe Tan } 1331da12ec4SLe Tan 1341da12ec4SLe Tan /* Given the reg addr of both the message data and address, generate an 1351da12ec4SLe Tan * interrupt via MSI. 1361da12ec4SLe Tan */ 1371da12ec4SLe Tan static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 1381da12ec4SLe Tan hwaddr mesg_data_reg) 1391da12ec4SLe Tan { 1401da12ec4SLe Tan hwaddr addr; 1411da12ec4SLe Tan uint32_t data; 1421da12ec4SLe Tan 1431da12ec4SLe Tan assert(mesg_data_reg < DMAR_REG_SIZE); 1441da12ec4SLe Tan assert(mesg_addr_reg < DMAR_REG_SIZE); 1451da12ec4SLe Tan 1461da12ec4SLe Tan addr = vtd_get_long_raw(s, mesg_addr_reg); 1471da12ec4SLe Tan data = vtd_get_long_raw(s, mesg_data_reg); 1481da12ec4SLe Tan 1491da12ec4SLe Tan VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data); 1501da12ec4SLe Tan stl_le_phys(&address_space_memory, addr, data); 1511da12ec4SLe Tan } 1521da12ec4SLe Tan 1531da12ec4SLe Tan /* Generate a fault event to software via MSI if conditions are met. 1541da12ec4SLe Tan * Notice that the value of FSTS_REG being passed to it should be the one 1551da12ec4SLe Tan * before any update. 1561da12ec4SLe Tan */ 1571da12ec4SLe Tan static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 1581da12ec4SLe Tan { 1591da12ec4SLe Tan if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 1601da12ec4SLe Tan pre_fsts & VTD_FSTS_IQE) { 1611da12ec4SLe Tan VTD_DPRINTF(FLOG, "there are previous interrupt conditions " 1621da12ec4SLe Tan "to be serviced by software, fault event is not generated " 1631da12ec4SLe Tan "(FSTS_REG 0x%"PRIx32 ")", pre_fsts); 1641da12ec4SLe Tan return; 1651da12ec4SLe Tan } 1661da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 1671da12ec4SLe Tan if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 1681da12ec4SLe Tan VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated"); 1691da12ec4SLe Tan } else { 1701da12ec4SLe Tan vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 1711da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 1721da12ec4SLe Tan } 1731da12ec4SLe Tan } 1741da12ec4SLe Tan 1751da12ec4SLe Tan /* Check if the Fault (F) field of the Fault Recording Register referenced by 1761da12ec4SLe Tan * @index is Set. 1771da12ec4SLe Tan */ 1781da12ec4SLe Tan static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 1791da12ec4SLe Tan { 1801da12ec4SLe Tan /* Each reg is 128-bit */ 1811da12ec4SLe Tan hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 1821da12ec4SLe Tan addr += 8; /* Access the high 64-bit half */ 1831da12ec4SLe Tan 1841da12ec4SLe Tan assert(index < DMAR_FRCD_REG_NR); 1851da12ec4SLe Tan 1861da12ec4SLe Tan return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 1871da12ec4SLe Tan } 1881da12ec4SLe Tan 1891da12ec4SLe Tan /* Update the PPF field of Fault Status Register. 1901da12ec4SLe Tan * Should be called whenever change the F field of any fault recording 1911da12ec4SLe Tan * registers. 1921da12ec4SLe Tan */ 1931da12ec4SLe Tan static void vtd_update_fsts_ppf(IntelIOMMUState *s) 1941da12ec4SLe Tan { 1951da12ec4SLe Tan uint32_t i; 1961da12ec4SLe Tan uint32_t ppf_mask = 0; 1971da12ec4SLe Tan 1981da12ec4SLe Tan for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 1991da12ec4SLe Tan if (vtd_is_frcd_set(s, i)) { 2001da12ec4SLe Tan ppf_mask = VTD_FSTS_PPF; 2011da12ec4SLe Tan break; 2021da12ec4SLe Tan } 2031da12ec4SLe Tan } 2041da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 2051da12ec4SLe Tan VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0); 2061da12ec4SLe Tan } 2071da12ec4SLe Tan 2081da12ec4SLe Tan static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 2091da12ec4SLe Tan { 2101da12ec4SLe Tan /* Each reg is 128-bit */ 2111da12ec4SLe Tan hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 2121da12ec4SLe Tan addr += 8; /* Access the high 64-bit half */ 2131da12ec4SLe Tan 2141da12ec4SLe Tan assert(index < DMAR_FRCD_REG_NR); 2151da12ec4SLe Tan 2161da12ec4SLe Tan vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 2171da12ec4SLe Tan vtd_update_fsts_ppf(s); 2181da12ec4SLe Tan } 2191da12ec4SLe Tan 2201da12ec4SLe Tan /* Must not update F field now, should be done later */ 2211da12ec4SLe Tan static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 2221da12ec4SLe Tan uint16_t source_id, hwaddr addr, 2231da12ec4SLe Tan VTDFaultReason fault, bool is_write) 2241da12ec4SLe Tan { 2251da12ec4SLe Tan uint64_t hi = 0, lo; 2261da12ec4SLe Tan hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 2271da12ec4SLe Tan 2281da12ec4SLe Tan assert(index < DMAR_FRCD_REG_NR); 2291da12ec4SLe Tan 2301da12ec4SLe Tan lo = VTD_FRCD_FI(addr); 2311da12ec4SLe Tan hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); 2321da12ec4SLe Tan if (!is_write) { 2331da12ec4SLe Tan hi |= VTD_FRCD_T; 2341da12ec4SLe Tan } 2351da12ec4SLe Tan vtd_set_quad_raw(s, frcd_reg_addr, lo); 2361da12ec4SLe Tan vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 2371da12ec4SLe Tan VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64 2381da12ec4SLe Tan ", lo 0x%"PRIx64, index, hi, lo); 2391da12ec4SLe Tan } 2401da12ec4SLe Tan 2411da12ec4SLe Tan /* Try to collapse multiple pending faults from the same requester */ 2421da12ec4SLe Tan static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 2431da12ec4SLe Tan { 2441da12ec4SLe Tan uint32_t i; 2451da12ec4SLe Tan uint64_t frcd_reg; 2461da12ec4SLe Tan hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 2471da12ec4SLe Tan 2481da12ec4SLe Tan for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 2491da12ec4SLe Tan frcd_reg = vtd_get_quad_raw(s, addr); 2501da12ec4SLe Tan VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg); 2511da12ec4SLe Tan if ((frcd_reg & VTD_FRCD_F) && 2521da12ec4SLe Tan ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 2531da12ec4SLe Tan return true; 2541da12ec4SLe Tan } 2551da12ec4SLe Tan addr += 16; /* 128-bit for each */ 2561da12ec4SLe Tan } 2571da12ec4SLe Tan return false; 2581da12ec4SLe Tan } 2591da12ec4SLe Tan 2601da12ec4SLe Tan /* Log and report an DMAR (address translation) fault to software */ 2611da12ec4SLe Tan static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 2621da12ec4SLe Tan hwaddr addr, VTDFaultReason fault, 2631da12ec4SLe Tan bool is_write) 2641da12ec4SLe Tan { 2651da12ec4SLe Tan uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2661da12ec4SLe Tan 2671da12ec4SLe Tan assert(fault < VTD_FR_MAX); 2681da12ec4SLe Tan 2691da12ec4SLe Tan if (fault == VTD_FR_RESERVED_ERR) { 2701da12ec4SLe Tan /* This is not a normal fault reason case. Drop it. */ 2711da12ec4SLe Tan return; 2721da12ec4SLe Tan } 2731da12ec4SLe Tan VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64 2741da12ec4SLe Tan ", is_write %d", source_id, fault, addr, is_write); 2751da12ec4SLe Tan if (fsts_reg & VTD_FSTS_PFO) { 2761da12ec4SLe Tan VTD_DPRINTF(FLOG, "new fault is not recorded due to " 2771da12ec4SLe Tan "Primary Fault Overflow"); 2781da12ec4SLe Tan return; 2791da12ec4SLe Tan } 2801da12ec4SLe Tan if (vtd_try_collapse_fault(s, source_id)) { 2811da12ec4SLe Tan VTD_DPRINTF(FLOG, "new fault is not recorded due to " 2821da12ec4SLe Tan "compression of faults"); 2831da12ec4SLe Tan return; 2841da12ec4SLe Tan } 2851da12ec4SLe Tan if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 2861da12ec4SLe Tan VTD_DPRINTF(FLOG, "Primary Fault Overflow and " 2871da12ec4SLe Tan "new fault is not recorded, set PFO field"); 2881da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 2891da12ec4SLe Tan return; 2901da12ec4SLe Tan } 2911da12ec4SLe Tan 2921da12ec4SLe Tan vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write); 2931da12ec4SLe Tan 2941da12ec4SLe Tan if (fsts_reg & VTD_FSTS_PPF) { 2951da12ec4SLe Tan VTD_DPRINTF(FLOG, "there are pending faults already, " 2961da12ec4SLe Tan "fault event is not generated"); 2971da12ec4SLe Tan vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 2981da12ec4SLe Tan s->next_frcd_reg++; 2991da12ec4SLe Tan if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 3001da12ec4SLe Tan s->next_frcd_reg = 0; 3011da12ec4SLe Tan } 3021da12ec4SLe Tan } else { 3031da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 3041da12ec4SLe Tan VTD_FSTS_FRI(s->next_frcd_reg)); 3051da12ec4SLe Tan vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 3061da12ec4SLe Tan s->next_frcd_reg++; 3071da12ec4SLe Tan if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 3081da12ec4SLe Tan s->next_frcd_reg = 0; 3091da12ec4SLe Tan } 3101da12ec4SLe Tan /* This case actually cause the PPF to be Set. 3111da12ec4SLe Tan * So generate fault event (interrupt). 3121da12ec4SLe Tan */ 3131da12ec4SLe Tan vtd_generate_fault_event(s, fsts_reg); 3141da12ec4SLe Tan } 3151da12ec4SLe Tan } 3161da12ec4SLe Tan 317*ed7b8fbcSLe Tan /* Handle Invalidation Queue Errors of queued invalidation interface error 318*ed7b8fbcSLe Tan * conditions. 319*ed7b8fbcSLe Tan */ 320*ed7b8fbcSLe Tan static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 321*ed7b8fbcSLe Tan { 322*ed7b8fbcSLe Tan uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 323*ed7b8fbcSLe Tan 324*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 325*ed7b8fbcSLe Tan vtd_generate_fault_event(s, fsts_reg); 326*ed7b8fbcSLe Tan } 327*ed7b8fbcSLe Tan 328*ed7b8fbcSLe Tan /* Set the IWC field and try to generate an invalidation completion interrupt */ 329*ed7b8fbcSLe Tan static void vtd_generate_completion_event(IntelIOMMUState *s) 330*ed7b8fbcSLe Tan { 331*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "completes an invalidation wait command with " 332*ed7b8fbcSLe Tan "Interrupt Flag"); 333*ed7b8fbcSLe Tan if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 334*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "there is a previous interrupt condition to be " 335*ed7b8fbcSLe Tan "serviced by software, " 336*ed7b8fbcSLe Tan "new invalidation event is not generated"); 337*ed7b8fbcSLe Tan return; 338*ed7b8fbcSLe Tan } 339*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 340*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 341*ed7b8fbcSLe Tan if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 342*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation " 343*ed7b8fbcSLe Tan "event is not generated"); 344*ed7b8fbcSLe Tan return; 345*ed7b8fbcSLe Tan } else { 346*ed7b8fbcSLe Tan /* Generate the interrupt event */ 347*ed7b8fbcSLe Tan vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 348*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 349*ed7b8fbcSLe Tan } 350*ed7b8fbcSLe Tan } 351*ed7b8fbcSLe Tan 3521da12ec4SLe Tan static inline bool vtd_root_entry_present(VTDRootEntry *root) 3531da12ec4SLe Tan { 3541da12ec4SLe Tan return root->val & VTD_ROOT_ENTRY_P; 3551da12ec4SLe Tan } 3561da12ec4SLe Tan 3571da12ec4SLe Tan static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 3581da12ec4SLe Tan VTDRootEntry *re) 3591da12ec4SLe Tan { 3601da12ec4SLe Tan dma_addr_t addr; 3611da12ec4SLe Tan 3621da12ec4SLe Tan addr = s->root + index * sizeof(*re); 3631da12ec4SLe Tan if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) { 3641da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64 3651da12ec4SLe Tan " + %"PRIu8, s->root, index); 3661da12ec4SLe Tan re->val = 0; 3671da12ec4SLe Tan return -VTD_FR_ROOT_TABLE_INV; 3681da12ec4SLe Tan } 3691da12ec4SLe Tan re->val = le64_to_cpu(re->val); 3701da12ec4SLe Tan return 0; 3711da12ec4SLe Tan } 3721da12ec4SLe Tan 3731da12ec4SLe Tan static inline bool vtd_context_entry_present(VTDContextEntry *context) 3741da12ec4SLe Tan { 3751da12ec4SLe Tan return context->lo & VTD_CONTEXT_ENTRY_P; 3761da12ec4SLe Tan } 3771da12ec4SLe Tan 3781da12ec4SLe Tan static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index, 3791da12ec4SLe Tan VTDContextEntry *ce) 3801da12ec4SLe Tan { 3811da12ec4SLe Tan dma_addr_t addr; 3821da12ec4SLe Tan 3831da12ec4SLe Tan if (!vtd_root_entry_present(root)) { 3841da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: root-entry is not present"); 3851da12ec4SLe Tan return -VTD_FR_ROOT_ENTRY_P; 3861da12ec4SLe Tan } 3871da12ec4SLe Tan addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce); 3881da12ec4SLe Tan if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) { 3891da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64 3901da12ec4SLe Tan " + %"PRIu8, 3911da12ec4SLe Tan (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index); 3921da12ec4SLe Tan return -VTD_FR_CONTEXT_TABLE_INV; 3931da12ec4SLe Tan } 3941da12ec4SLe Tan ce->lo = le64_to_cpu(ce->lo); 3951da12ec4SLe Tan ce->hi = le64_to_cpu(ce->hi); 3961da12ec4SLe Tan return 0; 3971da12ec4SLe Tan } 3981da12ec4SLe Tan 3991da12ec4SLe Tan static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce) 4001da12ec4SLe Tan { 4011da12ec4SLe Tan return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 4021da12ec4SLe Tan } 4031da12ec4SLe Tan 4041da12ec4SLe Tan /* The shift of an addr for a certain level of paging structure */ 4051da12ec4SLe Tan static inline uint32_t vtd_slpt_level_shift(uint32_t level) 4061da12ec4SLe Tan { 4071da12ec4SLe Tan return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 4081da12ec4SLe Tan } 4091da12ec4SLe Tan 4101da12ec4SLe Tan static inline uint64_t vtd_get_slpte_addr(uint64_t slpte) 4111da12ec4SLe Tan { 4121da12ec4SLe Tan return slpte & VTD_SL_PT_BASE_ADDR_MASK; 4131da12ec4SLe Tan } 4141da12ec4SLe Tan 4151da12ec4SLe Tan /* Whether the pte indicates the address of the page frame */ 4161da12ec4SLe Tan static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 4171da12ec4SLe Tan { 4181da12ec4SLe Tan return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 4191da12ec4SLe Tan } 4201da12ec4SLe Tan 4211da12ec4SLe Tan /* Get the content of a spte located in @base_addr[@index] */ 4221da12ec4SLe Tan static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 4231da12ec4SLe Tan { 4241da12ec4SLe Tan uint64_t slpte; 4251da12ec4SLe Tan 4261da12ec4SLe Tan assert(index < VTD_SL_PT_ENTRY_NR); 4271da12ec4SLe Tan 4281da12ec4SLe Tan if (dma_memory_read(&address_space_memory, 4291da12ec4SLe Tan base_addr + index * sizeof(slpte), &slpte, 4301da12ec4SLe Tan sizeof(slpte))) { 4311da12ec4SLe Tan slpte = (uint64_t)-1; 4321da12ec4SLe Tan return slpte; 4331da12ec4SLe Tan } 4341da12ec4SLe Tan slpte = le64_to_cpu(slpte); 4351da12ec4SLe Tan return slpte; 4361da12ec4SLe Tan } 4371da12ec4SLe Tan 4381da12ec4SLe Tan /* Given a gpa and the level of paging structure, return the offset of current 4391da12ec4SLe Tan * level. 4401da12ec4SLe Tan */ 4411da12ec4SLe Tan static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level) 4421da12ec4SLe Tan { 4431da12ec4SLe Tan return (gpa >> vtd_slpt_level_shift(level)) & 4441da12ec4SLe Tan ((1ULL << VTD_SL_LEVEL_BITS) - 1); 4451da12ec4SLe Tan } 4461da12ec4SLe Tan 4471da12ec4SLe Tan /* Check Capability Register to see if the @level of page-table is supported */ 4481da12ec4SLe Tan static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 4491da12ec4SLe Tan { 4501da12ec4SLe Tan return VTD_CAP_SAGAW_MASK & s->cap & 4511da12ec4SLe Tan (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 4521da12ec4SLe Tan } 4531da12ec4SLe Tan 4541da12ec4SLe Tan /* Get the page-table level that hardware should use for the second-level 4551da12ec4SLe Tan * page-table walk from the Address Width field of context-entry. 4561da12ec4SLe Tan */ 4571da12ec4SLe Tan static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce) 4581da12ec4SLe Tan { 4591da12ec4SLe Tan return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 4601da12ec4SLe Tan } 4611da12ec4SLe Tan 4621da12ec4SLe Tan static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce) 4631da12ec4SLe Tan { 4641da12ec4SLe Tan return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 4651da12ec4SLe Tan } 4661da12ec4SLe Tan 4671da12ec4SLe Tan static const uint64_t vtd_paging_entry_rsvd_field[] = { 4681da12ec4SLe Tan [0] = ~0ULL, 4691da12ec4SLe Tan /* For not large page */ 4701da12ec4SLe Tan [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4711da12ec4SLe Tan [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4721da12ec4SLe Tan [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4731da12ec4SLe Tan [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4741da12ec4SLe Tan /* For large page */ 4751da12ec4SLe Tan [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4761da12ec4SLe Tan [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4771da12ec4SLe Tan [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4781da12ec4SLe Tan [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM), 4791da12ec4SLe Tan }; 4801da12ec4SLe Tan 4811da12ec4SLe Tan static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 4821da12ec4SLe Tan { 4831da12ec4SLe Tan if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) { 4841da12ec4SLe Tan /* Maybe large page */ 4851da12ec4SLe Tan return slpte & vtd_paging_entry_rsvd_field[level + 4]; 4861da12ec4SLe Tan } else { 4871da12ec4SLe Tan return slpte & vtd_paging_entry_rsvd_field[level]; 4881da12ec4SLe Tan } 4891da12ec4SLe Tan } 4901da12ec4SLe Tan 4911da12ec4SLe Tan /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level 4921da12ec4SLe Tan * of the translation, can be used for deciding the size of large page. 4931da12ec4SLe Tan */ 4941da12ec4SLe Tan static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write, 4951da12ec4SLe Tan uint64_t *slptep, uint32_t *slpte_level, 4961da12ec4SLe Tan bool *reads, bool *writes) 4971da12ec4SLe Tan { 4981da12ec4SLe Tan dma_addr_t addr = vtd_get_slpt_base_from_context(ce); 4991da12ec4SLe Tan uint32_t level = vtd_get_level_from_context_entry(ce); 5001da12ec4SLe Tan uint32_t offset; 5011da12ec4SLe Tan uint64_t slpte; 5021da12ec4SLe Tan uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce); 5031da12ec4SLe Tan uint64_t access_right_check; 5041da12ec4SLe Tan 5051da12ec4SLe Tan /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG 5061da12ec4SLe Tan * and AW in context-entry. 5071da12ec4SLe Tan */ 5081da12ec4SLe Tan if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) { 5091da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa); 5101da12ec4SLe Tan return -VTD_FR_ADDR_BEYOND_MGAW; 5111da12ec4SLe Tan } 5121da12ec4SLe Tan 5131da12ec4SLe Tan /* FIXME: what is the Atomics request here? */ 5141da12ec4SLe Tan access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 5151da12ec4SLe Tan 5161da12ec4SLe Tan while (true) { 5171da12ec4SLe Tan offset = vtd_gpa_level_offset(gpa, level); 5181da12ec4SLe Tan slpte = vtd_get_slpte(addr, offset); 5191da12ec4SLe Tan 5201da12ec4SLe Tan if (slpte == (uint64_t)-1) { 5211da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: fail to access second-level paging " 5221da12ec4SLe Tan "entry at level %"PRIu32 " for gpa 0x%"PRIx64, 5231da12ec4SLe Tan level, gpa); 5241da12ec4SLe Tan if (level == vtd_get_level_from_context_entry(ce)) { 5251da12ec4SLe Tan /* Invalid programming of context-entry */ 5261da12ec4SLe Tan return -VTD_FR_CONTEXT_ENTRY_INV; 5271da12ec4SLe Tan } else { 5281da12ec4SLe Tan return -VTD_FR_PAGING_ENTRY_INV; 5291da12ec4SLe Tan } 5301da12ec4SLe Tan } 5311da12ec4SLe Tan *reads = (*reads) && (slpte & VTD_SL_R); 5321da12ec4SLe Tan *writes = (*writes) && (slpte & VTD_SL_W); 5331da12ec4SLe Tan if (!(slpte & access_right_check)) { 5341da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: lack of %s permission for " 5351da12ec4SLe Tan "gpa 0x%"PRIx64 " slpte 0x%"PRIx64, 5361da12ec4SLe Tan (is_write ? "write" : "read"), gpa, slpte); 5371da12ec4SLe Tan return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 5381da12ec4SLe Tan } 5391da12ec4SLe Tan if (vtd_slpte_nonzero_rsvd(slpte, level)) { 5401da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second " 5411da12ec4SLe Tan "level paging entry level %"PRIu32 " slpte 0x%"PRIx64, 5421da12ec4SLe Tan level, slpte); 5431da12ec4SLe Tan return -VTD_FR_PAGING_ENTRY_RSVD; 5441da12ec4SLe Tan } 5451da12ec4SLe Tan 5461da12ec4SLe Tan if (vtd_is_last_slpte(slpte, level)) { 5471da12ec4SLe Tan *slptep = slpte; 5481da12ec4SLe Tan *slpte_level = level; 5491da12ec4SLe Tan return 0; 5501da12ec4SLe Tan } 5511da12ec4SLe Tan addr = vtd_get_slpte_addr(slpte); 5521da12ec4SLe Tan level--; 5531da12ec4SLe Tan } 5541da12ec4SLe Tan } 5551da12ec4SLe Tan 5561da12ec4SLe Tan /* Map a device to its corresponding domain (context-entry) */ 5571da12ec4SLe Tan static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 5581da12ec4SLe Tan uint8_t devfn, VTDContextEntry *ce) 5591da12ec4SLe Tan { 5601da12ec4SLe Tan VTDRootEntry re; 5611da12ec4SLe Tan int ret_fr; 5621da12ec4SLe Tan 5631da12ec4SLe Tan ret_fr = vtd_get_root_entry(s, bus_num, &re); 5641da12ec4SLe Tan if (ret_fr) { 5651da12ec4SLe Tan return ret_fr; 5661da12ec4SLe Tan } 5671da12ec4SLe Tan 5681da12ec4SLe Tan if (!vtd_root_entry_present(&re)) { 5691da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present", 5701da12ec4SLe Tan bus_num); 5711da12ec4SLe Tan return -VTD_FR_ROOT_ENTRY_P; 5721da12ec4SLe Tan } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) { 5731da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry " 5741da12ec4SLe Tan "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val); 5751da12ec4SLe Tan return -VTD_FR_ROOT_ENTRY_RSVD; 5761da12ec4SLe Tan } 5771da12ec4SLe Tan 5781da12ec4SLe Tan ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce); 5791da12ec4SLe Tan if (ret_fr) { 5801da12ec4SLe Tan return ret_fr; 5811da12ec4SLe Tan } 5821da12ec4SLe Tan 5831da12ec4SLe Tan if (!vtd_context_entry_present(ce)) { 5841da12ec4SLe Tan VTD_DPRINTF(GENERAL, 5851da12ec4SLe Tan "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") " 5861da12ec4SLe Tan "is not present", devfn, bus_num); 5871da12ec4SLe Tan return -VTD_FR_CONTEXT_ENTRY_P; 5881da12ec4SLe Tan } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) || 5891da12ec4SLe Tan (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) { 5901da12ec4SLe Tan VTD_DPRINTF(GENERAL, 5911da12ec4SLe Tan "error: non-zero reserved field in context-entry " 5921da12ec4SLe Tan "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo); 5931da12ec4SLe Tan return -VTD_FR_CONTEXT_ENTRY_RSVD; 5941da12ec4SLe Tan } 5951da12ec4SLe Tan /* Check if the programming of context-entry is valid */ 5961da12ec4SLe Tan if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) { 5971da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in " 5981da12ec4SLe Tan "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64, 5991da12ec4SLe Tan ce->hi, ce->lo); 6001da12ec4SLe Tan return -VTD_FR_CONTEXT_ENTRY_INV; 6011da12ec4SLe Tan } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) { 6021da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in " 6031da12ec4SLe Tan "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64, 6041da12ec4SLe Tan ce->hi, ce->lo); 6051da12ec4SLe Tan return -VTD_FR_CONTEXT_ENTRY_INV; 6061da12ec4SLe Tan } 6071da12ec4SLe Tan return 0; 6081da12ec4SLe Tan } 6091da12ec4SLe Tan 6101da12ec4SLe Tan static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn) 6111da12ec4SLe Tan { 6121da12ec4SLe Tan return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL); 6131da12ec4SLe Tan } 6141da12ec4SLe Tan 6151da12ec4SLe Tan static const bool vtd_qualified_faults[] = { 6161da12ec4SLe Tan [VTD_FR_RESERVED] = false, 6171da12ec4SLe Tan [VTD_FR_ROOT_ENTRY_P] = false, 6181da12ec4SLe Tan [VTD_FR_CONTEXT_ENTRY_P] = true, 6191da12ec4SLe Tan [VTD_FR_CONTEXT_ENTRY_INV] = true, 6201da12ec4SLe Tan [VTD_FR_ADDR_BEYOND_MGAW] = true, 6211da12ec4SLe Tan [VTD_FR_WRITE] = true, 6221da12ec4SLe Tan [VTD_FR_READ] = true, 6231da12ec4SLe Tan [VTD_FR_PAGING_ENTRY_INV] = true, 6241da12ec4SLe Tan [VTD_FR_ROOT_TABLE_INV] = false, 6251da12ec4SLe Tan [VTD_FR_CONTEXT_TABLE_INV] = false, 6261da12ec4SLe Tan [VTD_FR_ROOT_ENTRY_RSVD] = false, 6271da12ec4SLe Tan [VTD_FR_PAGING_ENTRY_RSVD] = true, 6281da12ec4SLe Tan [VTD_FR_CONTEXT_ENTRY_TT] = true, 6291da12ec4SLe Tan [VTD_FR_RESERVED_ERR] = false, 6301da12ec4SLe Tan [VTD_FR_MAX] = false, 6311da12ec4SLe Tan }; 6321da12ec4SLe Tan 6331da12ec4SLe Tan /* To see if a fault condition is "qualified", which is reported to software 6341da12ec4SLe Tan * only if the FPD field in the context-entry used to process the faulting 6351da12ec4SLe Tan * request is 0. 6361da12ec4SLe Tan */ 6371da12ec4SLe Tan static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 6381da12ec4SLe Tan { 6391da12ec4SLe Tan return vtd_qualified_faults[fault]; 6401da12ec4SLe Tan } 6411da12ec4SLe Tan 6421da12ec4SLe Tan static inline bool vtd_is_interrupt_addr(hwaddr addr) 6431da12ec4SLe Tan { 6441da12ec4SLe Tan return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 6451da12ec4SLe Tan } 6461da12ec4SLe Tan 6471da12ec4SLe Tan /* Map dev to context-entry then do a paging-structures walk to do a iommu 6481da12ec4SLe Tan * translation. 6491da12ec4SLe Tan * @bus_num: The bus number 6501da12ec4SLe Tan * @devfn: The devfn, which is the combined of device and function number 6511da12ec4SLe Tan * @is_write: The access is a write operation 6521da12ec4SLe Tan * @entry: IOMMUTLBEntry that contain the addr to be translated and result 6531da12ec4SLe Tan */ 6541da12ec4SLe Tan static void vtd_do_iommu_translate(IntelIOMMUState *s, uint8_t bus_num, 6551da12ec4SLe Tan uint8_t devfn, hwaddr addr, bool is_write, 6561da12ec4SLe Tan IOMMUTLBEntry *entry) 6571da12ec4SLe Tan { 6581da12ec4SLe Tan VTDContextEntry ce; 6591da12ec4SLe Tan uint64_t slpte; 6601da12ec4SLe Tan uint32_t level; 6611da12ec4SLe Tan uint16_t source_id = vtd_make_source_id(bus_num, devfn); 6621da12ec4SLe Tan int ret_fr; 6631da12ec4SLe Tan bool is_fpd_set = false; 6641da12ec4SLe Tan bool reads = true; 6651da12ec4SLe Tan bool writes = true; 6661da12ec4SLe Tan 6671da12ec4SLe Tan /* Check if the request is in interrupt address range */ 6681da12ec4SLe Tan if (vtd_is_interrupt_addr(addr)) { 6691da12ec4SLe Tan if (is_write) { 6701da12ec4SLe Tan /* FIXME: since we don't know the length of the access here, we 6711da12ec4SLe Tan * treat Non-DWORD length write requests without PASID as 6721da12ec4SLe Tan * interrupt requests, too. Withoud interrupt remapping support, 6731da12ec4SLe Tan * we just use 1:1 mapping. 6741da12ec4SLe Tan */ 6751da12ec4SLe Tan VTD_DPRINTF(MMU, "write request to interrupt address " 6761da12ec4SLe Tan "gpa 0x%"PRIx64, addr); 6771da12ec4SLe Tan entry->iova = addr & VTD_PAGE_MASK_4K; 6781da12ec4SLe Tan entry->translated_addr = addr & VTD_PAGE_MASK_4K; 6791da12ec4SLe Tan entry->addr_mask = ~VTD_PAGE_MASK_4K; 6801da12ec4SLe Tan entry->perm = IOMMU_WO; 6811da12ec4SLe Tan return; 6821da12ec4SLe Tan } else { 6831da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: read request from interrupt address " 6841da12ec4SLe Tan "gpa 0x%"PRIx64, addr); 6851da12ec4SLe Tan vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write); 6861da12ec4SLe Tan return; 6871da12ec4SLe Tan } 6881da12ec4SLe Tan } 6891da12ec4SLe Tan 6901da12ec4SLe Tan ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 6911da12ec4SLe Tan is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 6921da12ec4SLe Tan if (ret_fr) { 6931da12ec4SLe Tan ret_fr = -ret_fr; 6941da12ec4SLe Tan if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { 6951da12ec4SLe Tan VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests " 6961da12ec4SLe Tan "through this context-entry (with FPD Set)"); 6971da12ec4SLe Tan } else { 6981da12ec4SLe Tan vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); 6991da12ec4SLe Tan } 7001da12ec4SLe Tan return; 7011da12ec4SLe Tan } 7021da12ec4SLe Tan 7031da12ec4SLe Tan ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level, 7041da12ec4SLe Tan &reads, &writes); 7051da12ec4SLe Tan if (ret_fr) { 7061da12ec4SLe Tan ret_fr = -ret_fr; 7071da12ec4SLe Tan if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { 7081da12ec4SLe Tan VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests " 7091da12ec4SLe Tan "through this context-entry (with FPD Set)"); 7101da12ec4SLe Tan } else { 7111da12ec4SLe Tan vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); 7121da12ec4SLe Tan } 7131da12ec4SLe Tan return; 7141da12ec4SLe Tan } 7151da12ec4SLe Tan 7161da12ec4SLe Tan entry->iova = addr & VTD_PAGE_MASK_4K; 7171da12ec4SLe Tan entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K; 7181da12ec4SLe Tan entry->addr_mask = ~VTD_PAGE_MASK_4K; 7191da12ec4SLe Tan entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0); 7201da12ec4SLe Tan } 7211da12ec4SLe Tan 7221da12ec4SLe Tan static void vtd_root_table_setup(IntelIOMMUState *s) 7231da12ec4SLe Tan { 7241da12ec4SLe Tan s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 7251da12ec4SLe Tan s->root_extended = s->root & VTD_RTADDR_RTT; 7261da12ec4SLe Tan s->root &= VTD_RTADDR_ADDR_MASK; 7271da12ec4SLe Tan 7281da12ec4SLe Tan VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root, 7291da12ec4SLe Tan (s->root_extended ? "(extended)" : "")); 7301da12ec4SLe Tan } 7311da12ec4SLe Tan 7321da12ec4SLe Tan /* Context-cache invalidation 7331da12ec4SLe Tan * Returns the Context Actual Invalidation Granularity. 7341da12ec4SLe Tan * @val: the content of the CCMD_REG 7351da12ec4SLe Tan */ 7361da12ec4SLe Tan static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 7371da12ec4SLe Tan { 7381da12ec4SLe Tan uint64_t caig; 7391da12ec4SLe Tan uint64_t type = val & VTD_CCMD_CIRG_MASK; 7401da12ec4SLe Tan 7411da12ec4SLe Tan switch (type) { 7421da12ec4SLe Tan case VTD_CCMD_GLOBAL_INVL: 7431da12ec4SLe Tan VTD_DPRINTF(INV, "Global invalidation request"); 7441da12ec4SLe Tan caig = VTD_CCMD_GLOBAL_INVL_A; 7451da12ec4SLe Tan break; 7461da12ec4SLe Tan 7471da12ec4SLe Tan case VTD_CCMD_DOMAIN_INVL: 7481da12ec4SLe Tan VTD_DPRINTF(INV, "Domain-selective invalidation request"); 7491da12ec4SLe Tan caig = VTD_CCMD_DOMAIN_INVL_A; 7501da12ec4SLe Tan break; 7511da12ec4SLe Tan 7521da12ec4SLe Tan case VTD_CCMD_DEVICE_INVL: 7531da12ec4SLe Tan VTD_DPRINTF(INV, "Domain-selective invalidation request"); 7541da12ec4SLe Tan caig = VTD_CCMD_DEVICE_INVL_A; 7551da12ec4SLe Tan break; 7561da12ec4SLe Tan 7571da12ec4SLe Tan default: 7581da12ec4SLe Tan VTD_DPRINTF(GENERAL, 7591da12ec4SLe Tan "error: wrong context-cache invalidation granularity"); 7601da12ec4SLe Tan caig = 0; 7611da12ec4SLe Tan } 7621da12ec4SLe Tan return caig; 7631da12ec4SLe Tan } 7641da12ec4SLe Tan 7651da12ec4SLe Tan /* Flush IOTLB 7661da12ec4SLe Tan * Returns the IOTLB Actual Invalidation Granularity. 7671da12ec4SLe Tan * @val: the content of the IOTLB_REG 7681da12ec4SLe Tan */ 7691da12ec4SLe Tan static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 7701da12ec4SLe Tan { 7711da12ec4SLe Tan uint64_t iaig; 7721da12ec4SLe Tan uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 7731da12ec4SLe Tan 7741da12ec4SLe Tan switch (type) { 7751da12ec4SLe Tan case VTD_TLB_GLOBAL_FLUSH: 7761da12ec4SLe Tan VTD_DPRINTF(INV, "Global IOTLB flush"); 7771da12ec4SLe Tan iaig = VTD_TLB_GLOBAL_FLUSH_A; 7781da12ec4SLe Tan break; 7791da12ec4SLe Tan 7801da12ec4SLe Tan case VTD_TLB_DSI_FLUSH: 7811da12ec4SLe Tan VTD_DPRINTF(INV, "Domain-selective IOTLB flush"); 7821da12ec4SLe Tan iaig = VTD_TLB_DSI_FLUSH_A; 7831da12ec4SLe Tan break; 7841da12ec4SLe Tan 7851da12ec4SLe Tan case VTD_TLB_PSI_FLUSH: 7861da12ec4SLe Tan VTD_DPRINTF(INV, "Page-selective-within-domain IOTLB flush"); 7871da12ec4SLe Tan iaig = VTD_TLB_PSI_FLUSH_A; 7881da12ec4SLe Tan break; 7891da12ec4SLe Tan 7901da12ec4SLe Tan default: 7911da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: wrong iotlb flush granularity"); 7921da12ec4SLe Tan iaig = 0; 7931da12ec4SLe Tan } 7941da12ec4SLe Tan return iaig; 7951da12ec4SLe Tan } 7961da12ec4SLe Tan 797*ed7b8fbcSLe Tan static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s) 798*ed7b8fbcSLe Tan { 799*ed7b8fbcSLe Tan return s->iq_tail == 0; 800*ed7b8fbcSLe Tan } 801*ed7b8fbcSLe Tan 802*ed7b8fbcSLe Tan static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 803*ed7b8fbcSLe Tan { 804*ed7b8fbcSLe Tan return s->qi_enabled && (s->iq_tail == s->iq_head) && 805*ed7b8fbcSLe Tan (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 806*ed7b8fbcSLe Tan } 807*ed7b8fbcSLe Tan 808*ed7b8fbcSLe Tan static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 809*ed7b8fbcSLe Tan { 810*ed7b8fbcSLe Tan uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 811*ed7b8fbcSLe Tan 812*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off")); 813*ed7b8fbcSLe Tan if (en) { 814*ed7b8fbcSLe Tan if (vtd_queued_inv_enable_check(s)) { 815*ed7b8fbcSLe Tan s->iq = iqa_val & VTD_IQA_IQA_MASK; 816*ed7b8fbcSLe Tan /* 2^(x+8) entries */ 817*ed7b8fbcSLe Tan s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8); 818*ed7b8fbcSLe Tan s->qi_enabled = true; 819*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val); 820*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d", 821*ed7b8fbcSLe Tan s->iq, s->iq_size); 822*ed7b8fbcSLe Tan /* Ok - report back to driver */ 823*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 824*ed7b8fbcSLe Tan } else { 825*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: " 826*ed7b8fbcSLe Tan "tail %"PRIu16, s->iq_tail); 827*ed7b8fbcSLe Tan } 828*ed7b8fbcSLe Tan } else { 829*ed7b8fbcSLe Tan if (vtd_queued_inv_disable_check(s)) { 830*ed7b8fbcSLe Tan /* disable Queued Invalidation */ 831*ed7b8fbcSLe Tan vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 832*ed7b8fbcSLe Tan s->iq_head = 0; 833*ed7b8fbcSLe Tan s->qi_enabled = false; 834*ed7b8fbcSLe Tan /* Ok - report back to driver */ 835*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 836*ed7b8fbcSLe Tan } else { 837*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: " 838*ed7b8fbcSLe Tan "head %"PRIu16 ", tail %"PRIu16 839*ed7b8fbcSLe Tan ", last_descriptor %"PRIu8, 840*ed7b8fbcSLe Tan s->iq_head, s->iq_tail, s->iq_last_desc_type); 841*ed7b8fbcSLe Tan } 842*ed7b8fbcSLe Tan } 843*ed7b8fbcSLe Tan } 844*ed7b8fbcSLe Tan 8451da12ec4SLe Tan /* Set Root Table Pointer */ 8461da12ec4SLe Tan static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 8471da12ec4SLe Tan { 8481da12ec4SLe Tan VTD_DPRINTF(CSR, "set Root Table Pointer"); 8491da12ec4SLe Tan 8501da12ec4SLe Tan vtd_root_table_setup(s); 8511da12ec4SLe Tan /* Ok - report back to driver */ 8521da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 8531da12ec4SLe Tan } 8541da12ec4SLe Tan 8551da12ec4SLe Tan /* Handle Translation Enable/Disable */ 8561da12ec4SLe Tan static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 8571da12ec4SLe Tan { 8581da12ec4SLe Tan VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off")); 8591da12ec4SLe Tan 8601da12ec4SLe Tan if (en) { 8611da12ec4SLe Tan s->dmar_enabled = true; 8621da12ec4SLe Tan /* Ok - report back to driver */ 8631da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 8641da12ec4SLe Tan } else { 8651da12ec4SLe Tan s->dmar_enabled = false; 8661da12ec4SLe Tan 8671da12ec4SLe Tan /* Clear the index of Fault Recording Register */ 8681da12ec4SLe Tan s->next_frcd_reg = 0; 8691da12ec4SLe Tan /* Ok - report back to driver */ 8701da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 8711da12ec4SLe Tan } 8721da12ec4SLe Tan } 8731da12ec4SLe Tan 8741da12ec4SLe Tan /* Handle write to Global Command Register */ 8751da12ec4SLe Tan static void vtd_handle_gcmd_write(IntelIOMMUState *s) 8761da12ec4SLe Tan { 8771da12ec4SLe Tan uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 8781da12ec4SLe Tan uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 8791da12ec4SLe Tan uint32_t changed = status ^ val; 8801da12ec4SLe Tan 8811da12ec4SLe Tan VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status); 8821da12ec4SLe Tan if (changed & VTD_GCMD_TE) { 8831da12ec4SLe Tan /* Translation enable/disable */ 8841da12ec4SLe Tan vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 8851da12ec4SLe Tan } 8861da12ec4SLe Tan if (val & VTD_GCMD_SRTP) { 8871da12ec4SLe Tan /* Set/update the root-table pointer */ 8881da12ec4SLe Tan vtd_handle_gcmd_srtp(s); 8891da12ec4SLe Tan } 890*ed7b8fbcSLe Tan if (changed & VTD_GCMD_QIE) { 891*ed7b8fbcSLe Tan /* Queued Invalidation Enable */ 892*ed7b8fbcSLe Tan vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 893*ed7b8fbcSLe Tan } 8941da12ec4SLe Tan } 8951da12ec4SLe Tan 8961da12ec4SLe Tan /* Handle write to Context Command Register */ 8971da12ec4SLe Tan static void vtd_handle_ccmd_write(IntelIOMMUState *s) 8981da12ec4SLe Tan { 8991da12ec4SLe Tan uint64_t ret; 9001da12ec4SLe Tan uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 9011da12ec4SLe Tan 9021da12ec4SLe Tan /* Context-cache invalidation request */ 9031da12ec4SLe Tan if (val & VTD_CCMD_ICC) { 904*ed7b8fbcSLe Tan if (s->qi_enabled) { 905*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, " 906*ed7b8fbcSLe Tan "should not use register-based invalidation"); 907*ed7b8fbcSLe Tan return; 908*ed7b8fbcSLe Tan } 9091da12ec4SLe Tan ret = vtd_context_cache_invalidate(s, val); 9101da12ec4SLe Tan /* Invalidation completed. Change something to show */ 9111da12ec4SLe Tan vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 9121da12ec4SLe Tan ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 9131da12ec4SLe Tan ret); 9141da12ec4SLe Tan VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret); 9151da12ec4SLe Tan } 9161da12ec4SLe Tan } 9171da12ec4SLe Tan 9181da12ec4SLe Tan /* Handle write to IOTLB Invalidation Register */ 9191da12ec4SLe Tan static void vtd_handle_iotlb_write(IntelIOMMUState *s) 9201da12ec4SLe Tan { 9211da12ec4SLe Tan uint64_t ret; 9221da12ec4SLe Tan uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 9231da12ec4SLe Tan 9241da12ec4SLe Tan /* IOTLB invalidation request */ 9251da12ec4SLe Tan if (val & VTD_TLB_IVT) { 926*ed7b8fbcSLe Tan if (s->qi_enabled) { 927*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, " 928*ed7b8fbcSLe Tan "should not use register-based invalidation"); 929*ed7b8fbcSLe Tan return; 930*ed7b8fbcSLe Tan } 9311da12ec4SLe Tan ret = vtd_iotlb_flush(s, val); 9321da12ec4SLe Tan /* Invalidation completed. Change something to show */ 9331da12ec4SLe Tan vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 9341da12ec4SLe Tan ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 9351da12ec4SLe Tan VTD_TLB_FLUSH_GRANU_MASK_A, ret); 9361da12ec4SLe Tan VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret); 9371da12ec4SLe Tan } 9381da12ec4SLe Tan } 9391da12ec4SLe Tan 940*ed7b8fbcSLe Tan /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 941*ed7b8fbcSLe Tan static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset, 942*ed7b8fbcSLe Tan VTDInvDesc *inv_desc) 943*ed7b8fbcSLe Tan { 944*ed7b8fbcSLe Tan dma_addr_t addr = base_addr + offset * sizeof(*inv_desc); 945*ed7b8fbcSLe Tan if (dma_memory_read(&address_space_memory, addr, inv_desc, 946*ed7b8fbcSLe Tan sizeof(*inv_desc))) { 947*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor " 948*ed7b8fbcSLe Tan "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset); 949*ed7b8fbcSLe Tan inv_desc->lo = 0; 950*ed7b8fbcSLe Tan inv_desc->hi = 0; 951*ed7b8fbcSLe Tan 952*ed7b8fbcSLe Tan return false; 953*ed7b8fbcSLe Tan } 954*ed7b8fbcSLe Tan inv_desc->lo = le64_to_cpu(inv_desc->lo); 955*ed7b8fbcSLe Tan inv_desc->hi = le64_to_cpu(inv_desc->hi); 956*ed7b8fbcSLe Tan return true; 957*ed7b8fbcSLe Tan } 958*ed7b8fbcSLe Tan 959*ed7b8fbcSLe Tan static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 960*ed7b8fbcSLe Tan { 961*ed7b8fbcSLe Tan if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 962*ed7b8fbcSLe Tan (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 963*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation " 964*ed7b8fbcSLe Tan "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64, 965*ed7b8fbcSLe Tan inv_desc->hi, inv_desc->lo); 966*ed7b8fbcSLe Tan return false; 967*ed7b8fbcSLe Tan } 968*ed7b8fbcSLe Tan if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 969*ed7b8fbcSLe Tan /* Status Write */ 970*ed7b8fbcSLe Tan uint32_t status_data = (uint32_t)(inv_desc->lo >> 971*ed7b8fbcSLe Tan VTD_INV_DESC_WAIT_DATA_SHIFT); 972*ed7b8fbcSLe Tan 973*ed7b8fbcSLe Tan assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 974*ed7b8fbcSLe Tan 975*ed7b8fbcSLe Tan /* FIXME: need to be masked with HAW? */ 976*ed7b8fbcSLe Tan dma_addr_t status_addr = inv_desc->hi; 977*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64, 978*ed7b8fbcSLe Tan status_data, status_addr); 979*ed7b8fbcSLe Tan status_data = cpu_to_le32(status_data); 980*ed7b8fbcSLe Tan if (dma_memory_write(&address_space_memory, status_addr, &status_data, 981*ed7b8fbcSLe Tan sizeof(status_data))) { 982*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write"); 983*ed7b8fbcSLe Tan return false; 984*ed7b8fbcSLe Tan } 985*ed7b8fbcSLe Tan } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 986*ed7b8fbcSLe Tan /* Interrupt flag */ 987*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion"); 988*ed7b8fbcSLe Tan vtd_generate_completion_event(s); 989*ed7b8fbcSLe Tan } else { 990*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: " 991*ed7b8fbcSLe Tan "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo); 992*ed7b8fbcSLe Tan return false; 993*ed7b8fbcSLe Tan } 994*ed7b8fbcSLe Tan return true; 995*ed7b8fbcSLe Tan } 996*ed7b8fbcSLe Tan 997*ed7b8fbcSLe Tan static bool vtd_process_inv_desc(IntelIOMMUState *s) 998*ed7b8fbcSLe Tan { 999*ed7b8fbcSLe Tan VTDInvDesc inv_desc; 1000*ed7b8fbcSLe Tan uint8_t desc_type; 1001*ed7b8fbcSLe Tan 1002*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head); 1003*ed7b8fbcSLe Tan if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) { 1004*ed7b8fbcSLe Tan s->iq_last_desc_type = VTD_INV_DESC_NONE; 1005*ed7b8fbcSLe Tan return false; 1006*ed7b8fbcSLe Tan } 1007*ed7b8fbcSLe Tan desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 1008*ed7b8fbcSLe Tan /* FIXME: should update at first or at last? */ 1009*ed7b8fbcSLe Tan s->iq_last_desc_type = desc_type; 1010*ed7b8fbcSLe Tan 1011*ed7b8fbcSLe Tan switch (desc_type) { 1012*ed7b8fbcSLe Tan case VTD_INV_DESC_CC: 1013*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64 1014*ed7b8fbcSLe Tan " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo); 1015*ed7b8fbcSLe Tan break; 1016*ed7b8fbcSLe Tan 1017*ed7b8fbcSLe Tan case VTD_INV_DESC_IOTLB: 1018*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64 1019*ed7b8fbcSLe Tan " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo); 1020*ed7b8fbcSLe Tan break; 1021*ed7b8fbcSLe Tan 1022*ed7b8fbcSLe Tan case VTD_INV_DESC_WAIT: 1023*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64 1024*ed7b8fbcSLe Tan " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo); 1025*ed7b8fbcSLe Tan if (!vtd_process_wait_desc(s, &inv_desc)) { 1026*ed7b8fbcSLe Tan return false; 1027*ed7b8fbcSLe Tan } 1028*ed7b8fbcSLe Tan break; 1029*ed7b8fbcSLe Tan 1030*ed7b8fbcSLe Tan default: 1031*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type " 1032*ed7b8fbcSLe Tan "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8, 1033*ed7b8fbcSLe Tan inv_desc.hi, inv_desc.lo, desc_type); 1034*ed7b8fbcSLe Tan return false; 1035*ed7b8fbcSLe Tan } 1036*ed7b8fbcSLe Tan s->iq_head++; 1037*ed7b8fbcSLe Tan if (s->iq_head == s->iq_size) { 1038*ed7b8fbcSLe Tan s->iq_head = 0; 1039*ed7b8fbcSLe Tan } 1040*ed7b8fbcSLe Tan return true; 1041*ed7b8fbcSLe Tan } 1042*ed7b8fbcSLe Tan 1043*ed7b8fbcSLe Tan /* Try to fetch and process more Invalidation Descriptors */ 1044*ed7b8fbcSLe Tan static void vtd_fetch_inv_desc(IntelIOMMUState *s) 1045*ed7b8fbcSLe Tan { 1046*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "fetch Invalidation Descriptors"); 1047*ed7b8fbcSLe Tan if (s->iq_tail >= s->iq_size) { 1048*ed7b8fbcSLe Tan /* Detects an invalid Tail pointer */ 1049*ed7b8fbcSLe Tan VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16 1050*ed7b8fbcSLe Tan " while iq_size is %"PRIu16, s->iq_tail, s->iq_size); 1051*ed7b8fbcSLe Tan vtd_handle_inv_queue_error(s); 1052*ed7b8fbcSLe Tan return; 1053*ed7b8fbcSLe Tan } 1054*ed7b8fbcSLe Tan while (s->iq_head != s->iq_tail) { 1055*ed7b8fbcSLe Tan if (!vtd_process_inv_desc(s)) { 1056*ed7b8fbcSLe Tan /* Invalidation Queue Errors */ 1057*ed7b8fbcSLe Tan vtd_handle_inv_queue_error(s); 1058*ed7b8fbcSLe Tan break; 1059*ed7b8fbcSLe Tan } 1060*ed7b8fbcSLe Tan /* Must update the IQH_REG in time */ 1061*ed7b8fbcSLe Tan vtd_set_quad_raw(s, DMAR_IQH_REG, 1062*ed7b8fbcSLe Tan (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) & 1063*ed7b8fbcSLe Tan VTD_IQH_QH_MASK); 1064*ed7b8fbcSLe Tan } 1065*ed7b8fbcSLe Tan } 1066*ed7b8fbcSLe Tan 1067*ed7b8fbcSLe Tan /* Handle write to Invalidation Queue Tail Register */ 1068*ed7b8fbcSLe Tan static void vtd_handle_iqt_write(IntelIOMMUState *s) 1069*ed7b8fbcSLe Tan { 1070*ed7b8fbcSLe Tan uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 1071*ed7b8fbcSLe Tan 1072*ed7b8fbcSLe Tan s->iq_tail = VTD_IQT_QT(val); 1073*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail); 1074*ed7b8fbcSLe Tan if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 1075*ed7b8fbcSLe Tan /* Process Invalidation Queue here */ 1076*ed7b8fbcSLe Tan vtd_fetch_inv_desc(s); 1077*ed7b8fbcSLe Tan } 1078*ed7b8fbcSLe Tan } 1079*ed7b8fbcSLe Tan 10801da12ec4SLe Tan static void vtd_handle_fsts_write(IntelIOMMUState *s) 10811da12ec4SLe Tan { 10821da12ec4SLe Tan uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 10831da12ec4SLe Tan uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 10841da12ec4SLe Tan uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 10851da12ec4SLe Tan 10861da12ec4SLe Tan if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 10871da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 10881da12ec4SLe Tan VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear " 10891da12ec4SLe Tan "IP field of FECTL_REG"); 10901da12ec4SLe Tan } 1091*ed7b8fbcSLe Tan /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 1092*ed7b8fbcSLe Tan * Descriptors if there are any when Queued Invalidation is enabled? 1093*ed7b8fbcSLe Tan */ 10941da12ec4SLe Tan } 10951da12ec4SLe Tan 10961da12ec4SLe Tan static void vtd_handle_fectl_write(IntelIOMMUState *s) 10971da12ec4SLe Tan { 10981da12ec4SLe Tan uint32_t fectl_reg; 10991da12ec4SLe Tan /* FIXME: when software clears the IM field, check the IP field. But do we 11001da12ec4SLe Tan * need to compare the old value and the new value to conclude that 11011da12ec4SLe Tan * software clears the IM field? Or just check if the IM field is zero? 11021da12ec4SLe Tan */ 11031da12ec4SLe Tan fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 11041da12ec4SLe Tan if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 11051da12ec4SLe Tan vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 11061da12ec4SLe Tan vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 11071da12ec4SLe Tan VTD_DPRINTF(FLOG, "IM field is cleared, generate " 11081da12ec4SLe Tan "fault event interrupt"); 11091da12ec4SLe Tan } 11101da12ec4SLe Tan } 11111da12ec4SLe Tan 1112*ed7b8fbcSLe Tan static void vtd_handle_ics_write(IntelIOMMUState *s) 1113*ed7b8fbcSLe Tan { 1114*ed7b8fbcSLe Tan uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 1115*ed7b8fbcSLe Tan uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 1116*ed7b8fbcSLe Tan 1117*ed7b8fbcSLe Tan if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 1118*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 1119*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "pending completion interrupt condition serviced, " 1120*ed7b8fbcSLe Tan "clear IP field of IECTL_REG"); 1121*ed7b8fbcSLe Tan } 1122*ed7b8fbcSLe Tan } 1123*ed7b8fbcSLe Tan 1124*ed7b8fbcSLe Tan static void vtd_handle_iectl_write(IntelIOMMUState *s) 1125*ed7b8fbcSLe Tan { 1126*ed7b8fbcSLe Tan uint32_t iectl_reg; 1127*ed7b8fbcSLe Tan /* FIXME: when software clears the IM field, check the IP field. But do we 1128*ed7b8fbcSLe Tan * need to compare the old value and the new value to conclude that 1129*ed7b8fbcSLe Tan * software clears the IM field? Or just check if the IM field is zero? 1130*ed7b8fbcSLe Tan */ 1131*ed7b8fbcSLe Tan iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 1132*ed7b8fbcSLe Tan if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 1133*ed7b8fbcSLe Tan vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 1134*ed7b8fbcSLe Tan vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 1135*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "IM field is cleared, generate " 1136*ed7b8fbcSLe Tan "invalidation event interrupt"); 1137*ed7b8fbcSLe Tan } 1138*ed7b8fbcSLe Tan } 1139*ed7b8fbcSLe Tan 11401da12ec4SLe Tan static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 11411da12ec4SLe Tan { 11421da12ec4SLe Tan IntelIOMMUState *s = opaque; 11431da12ec4SLe Tan uint64_t val; 11441da12ec4SLe Tan 11451da12ec4SLe Tan if (addr + size > DMAR_REG_SIZE) { 11461da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64 11471da12ec4SLe Tan ", got 0x%"PRIx64 " %d", 11481da12ec4SLe Tan (uint64_t)DMAR_REG_SIZE, addr, size); 11491da12ec4SLe Tan return (uint64_t)-1; 11501da12ec4SLe Tan } 11511da12ec4SLe Tan 11521da12ec4SLe Tan switch (addr) { 11531da12ec4SLe Tan /* Root Table Address Register, 64-bit */ 11541da12ec4SLe Tan case DMAR_RTADDR_REG: 11551da12ec4SLe Tan if (size == 4) { 11561da12ec4SLe Tan val = s->root & ((1ULL << 32) - 1); 11571da12ec4SLe Tan } else { 11581da12ec4SLe Tan val = s->root; 11591da12ec4SLe Tan } 11601da12ec4SLe Tan break; 11611da12ec4SLe Tan 11621da12ec4SLe Tan case DMAR_RTADDR_REG_HI: 11631da12ec4SLe Tan assert(size == 4); 11641da12ec4SLe Tan val = s->root >> 32; 11651da12ec4SLe Tan break; 11661da12ec4SLe Tan 1167*ed7b8fbcSLe Tan /* Invalidation Queue Address Register, 64-bit */ 1168*ed7b8fbcSLe Tan case DMAR_IQA_REG: 1169*ed7b8fbcSLe Tan val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 1170*ed7b8fbcSLe Tan if (size == 4) { 1171*ed7b8fbcSLe Tan val = val & ((1ULL << 32) - 1); 1172*ed7b8fbcSLe Tan } 1173*ed7b8fbcSLe Tan break; 1174*ed7b8fbcSLe Tan 1175*ed7b8fbcSLe Tan case DMAR_IQA_REG_HI: 1176*ed7b8fbcSLe Tan assert(size == 4); 1177*ed7b8fbcSLe Tan val = s->iq >> 32; 1178*ed7b8fbcSLe Tan break; 1179*ed7b8fbcSLe Tan 11801da12ec4SLe Tan default: 11811da12ec4SLe Tan if (size == 4) { 11821da12ec4SLe Tan val = vtd_get_long(s, addr); 11831da12ec4SLe Tan } else { 11841da12ec4SLe Tan val = vtd_get_quad(s, addr); 11851da12ec4SLe Tan } 11861da12ec4SLe Tan } 11871da12ec4SLe Tan VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64, 11881da12ec4SLe Tan addr, size, val); 11891da12ec4SLe Tan return val; 11901da12ec4SLe Tan } 11911da12ec4SLe Tan 11921da12ec4SLe Tan static void vtd_mem_write(void *opaque, hwaddr addr, 11931da12ec4SLe Tan uint64_t val, unsigned size) 11941da12ec4SLe Tan { 11951da12ec4SLe Tan IntelIOMMUState *s = opaque; 11961da12ec4SLe Tan 11971da12ec4SLe Tan if (addr + size > DMAR_REG_SIZE) { 11981da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64 11991da12ec4SLe Tan ", got 0x%"PRIx64 " %d", 12001da12ec4SLe Tan (uint64_t)DMAR_REG_SIZE, addr, size); 12011da12ec4SLe Tan return; 12021da12ec4SLe Tan } 12031da12ec4SLe Tan 12041da12ec4SLe Tan switch (addr) { 12051da12ec4SLe Tan /* Global Command Register, 32-bit */ 12061da12ec4SLe Tan case DMAR_GCMD_REG: 12071da12ec4SLe Tan VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64 12081da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12091da12ec4SLe Tan vtd_set_long(s, addr, val); 12101da12ec4SLe Tan vtd_handle_gcmd_write(s); 12111da12ec4SLe Tan break; 12121da12ec4SLe Tan 12131da12ec4SLe Tan /* Context Command Register, 64-bit */ 12141da12ec4SLe Tan case DMAR_CCMD_REG: 12151da12ec4SLe Tan VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64 12161da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12171da12ec4SLe Tan if (size == 4) { 12181da12ec4SLe Tan vtd_set_long(s, addr, val); 12191da12ec4SLe Tan } else { 12201da12ec4SLe Tan vtd_set_quad(s, addr, val); 12211da12ec4SLe Tan vtd_handle_ccmd_write(s); 12221da12ec4SLe Tan } 12231da12ec4SLe Tan break; 12241da12ec4SLe Tan 12251da12ec4SLe Tan case DMAR_CCMD_REG_HI: 12261da12ec4SLe Tan VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64 12271da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12281da12ec4SLe Tan assert(size == 4); 12291da12ec4SLe Tan vtd_set_long(s, addr, val); 12301da12ec4SLe Tan vtd_handle_ccmd_write(s); 12311da12ec4SLe Tan break; 12321da12ec4SLe Tan 12331da12ec4SLe Tan /* IOTLB Invalidation Register, 64-bit */ 12341da12ec4SLe Tan case DMAR_IOTLB_REG: 12351da12ec4SLe Tan VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64 12361da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12371da12ec4SLe Tan if (size == 4) { 12381da12ec4SLe Tan vtd_set_long(s, addr, val); 12391da12ec4SLe Tan } else { 12401da12ec4SLe Tan vtd_set_quad(s, addr, val); 12411da12ec4SLe Tan vtd_handle_iotlb_write(s); 12421da12ec4SLe Tan } 12431da12ec4SLe Tan break; 12441da12ec4SLe Tan 12451da12ec4SLe Tan case DMAR_IOTLB_REG_HI: 12461da12ec4SLe Tan VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64 12471da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12481da12ec4SLe Tan assert(size == 4); 12491da12ec4SLe Tan vtd_set_long(s, addr, val); 12501da12ec4SLe Tan vtd_handle_iotlb_write(s); 12511da12ec4SLe Tan break; 12521da12ec4SLe Tan 12531da12ec4SLe Tan /* Fault Status Register, 32-bit */ 12541da12ec4SLe Tan case DMAR_FSTS_REG: 12551da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64 12561da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12571da12ec4SLe Tan assert(size == 4); 12581da12ec4SLe Tan vtd_set_long(s, addr, val); 12591da12ec4SLe Tan vtd_handle_fsts_write(s); 12601da12ec4SLe Tan break; 12611da12ec4SLe Tan 12621da12ec4SLe Tan /* Fault Event Control Register, 32-bit */ 12631da12ec4SLe Tan case DMAR_FECTL_REG: 12641da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64 12651da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12661da12ec4SLe Tan assert(size == 4); 12671da12ec4SLe Tan vtd_set_long(s, addr, val); 12681da12ec4SLe Tan vtd_handle_fectl_write(s); 12691da12ec4SLe Tan break; 12701da12ec4SLe Tan 12711da12ec4SLe Tan /* Fault Event Data Register, 32-bit */ 12721da12ec4SLe Tan case DMAR_FEDATA_REG: 12731da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64 12741da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12751da12ec4SLe Tan assert(size == 4); 12761da12ec4SLe Tan vtd_set_long(s, addr, val); 12771da12ec4SLe Tan break; 12781da12ec4SLe Tan 12791da12ec4SLe Tan /* Fault Event Address Register, 32-bit */ 12801da12ec4SLe Tan case DMAR_FEADDR_REG: 12811da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64 12821da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12831da12ec4SLe Tan assert(size == 4); 12841da12ec4SLe Tan vtd_set_long(s, addr, val); 12851da12ec4SLe Tan break; 12861da12ec4SLe Tan 12871da12ec4SLe Tan /* Fault Event Upper Address Register, 32-bit */ 12881da12ec4SLe Tan case DMAR_FEUADDR_REG: 12891da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64 12901da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12911da12ec4SLe Tan assert(size == 4); 12921da12ec4SLe Tan vtd_set_long(s, addr, val); 12931da12ec4SLe Tan break; 12941da12ec4SLe Tan 12951da12ec4SLe Tan /* Protected Memory Enable Register, 32-bit */ 12961da12ec4SLe Tan case DMAR_PMEN_REG: 12971da12ec4SLe Tan VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64 12981da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 12991da12ec4SLe Tan assert(size == 4); 13001da12ec4SLe Tan vtd_set_long(s, addr, val); 13011da12ec4SLe Tan break; 13021da12ec4SLe Tan 13031da12ec4SLe Tan /* Root Table Address Register, 64-bit */ 13041da12ec4SLe Tan case DMAR_RTADDR_REG: 13051da12ec4SLe Tan VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64 13061da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 13071da12ec4SLe Tan if (size == 4) { 13081da12ec4SLe Tan vtd_set_long(s, addr, val); 13091da12ec4SLe Tan } else { 13101da12ec4SLe Tan vtd_set_quad(s, addr, val); 13111da12ec4SLe Tan } 13121da12ec4SLe Tan break; 13131da12ec4SLe Tan 13141da12ec4SLe Tan case DMAR_RTADDR_REG_HI: 13151da12ec4SLe Tan VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64 13161da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 13171da12ec4SLe Tan assert(size == 4); 13181da12ec4SLe Tan vtd_set_long(s, addr, val); 13191da12ec4SLe Tan break; 13201da12ec4SLe Tan 1321*ed7b8fbcSLe Tan /* Invalidation Queue Tail Register, 64-bit */ 1322*ed7b8fbcSLe Tan case DMAR_IQT_REG: 1323*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64 1324*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1325*ed7b8fbcSLe Tan if (size == 4) { 1326*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1327*ed7b8fbcSLe Tan } else { 1328*ed7b8fbcSLe Tan vtd_set_quad(s, addr, val); 1329*ed7b8fbcSLe Tan } 1330*ed7b8fbcSLe Tan vtd_handle_iqt_write(s); 1331*ed7b8fbcSLe Tan break; 1332*ed7b8fbcSLe Tan 1333*ed7b8fbcSLe Tan case DMAR_IQT_REG_HI: 1334*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64 1335*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1336*ed7b8fbcSLe Tan assert(size == 4); 1337*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1338*ed7b8fbcSLe Tan /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 1339*ed7b8fbcSLe Tan break; 1340*ed7b8fbcSLe Tan 1341*ed7b8fbcSLe Tan /* Invalidation Queue Address Register, 64-bit */ 1342*ed7b8fbcSLe Tan case DMAR_IQA_REG: 1343*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64 1344*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1345*ed7b8fbcSLe Tan if (size == 4) { 1346*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1347*ed7b8fbcSLe Tan } else { 1348*ed7b8fbcSLe Tan vtd_set_quad(s, addr, val); 1349*ed7b8fbcSLe Tan } 1350*ed7b8fbcSLe Tan break; 1351*ed7b8fbcSLe Tan 1352*ed7b8fbcSLe Tan case DMAR_IQA_REG_HI: 1353*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64 1354*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1355*ed7b8fbcSLe Tan assert(size == 4); 1356*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1357*ed7b8fbcSLe Tan break; 1358*ed7b8fbcSLe Tan 1359*ed7b8fbcSLe Tan /* Invalidation Completion Status Register, 32-bit */ 1360*ed7b8fbcSLe Tan case DMAR_ICS_REG: 1361*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64 1362*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1363*ed7b8fbcSLe Tan assert(size == 4); 1364*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1365*ed7b8fbcSLe Tan vtd_handle_ics_write(s); 1366*ed7b8fbcSLe Tan break; 1367*ed7b8fbcSLe Tan 1368*ed7b8fbcSLe Tan /* Invalidation Event Control Register, 32-bit */ 1369*ed7b8fbcSLe Tan case DMAR_IECTL_REG: 1370*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64 1371*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1372*ed7b8fbcSLe Tan assert(size == 4); 1373*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1374*ed7b8fbcSLe Tan vtd_handle_iectl_write(s); 1375*ed7b8fbcSLe Tan break; 1376*ed7b8fbcSLe Tan 1377*ed7b8fbcSLe Tan /* Invalidation Event Data Register, 32-bit */ 1378*ed7b8fbcSLe Tan case DMAR_IEDATA_REG: 1379*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64 1380*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1381*ed7b8fbcSLe Tan assert(size == 4); 1382*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1383*ed7b8fbcSLe Tan break; 1384*ed7b8fbcSLe Tan 1385*ed7b8fbcSLe Tan /* Invalidation Event Address Register, 32-bit */ 1386*ed7b8fbcSLe Tan case DMAR_IEADDR_REG: 1387*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64 1388*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1389*ed7b8fbcSLe Tan assert(size == 4); 1390*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1391*ed7b8fbcSLe Tan break; 1392*ed7b8fbcSLe Tan 1393*ed7b8fbcSLe Tan /* Invalidation Event Upper Address Register, 32-bit */ 1394*ed7b8fbcSLe Tan case DMAR_IEUADDR_REG: 1395*ed7b8fbcSLe Tan VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64 1396*ed7b8fbcSLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 1397*ed7b8fbcSLe Tan assert(size == 4); 1398*ed7b8fbcSLe Tan vtd_set_long(s, addr, val); 1399*ed7b8fbcSLe Tan break; 1400*ed7b8fbcSLe Tan 14011da12ec4SLe Tan /* Fault Recording Registers, 128-bit */ 14021da12ec4SLe Tan case DMAR_FRCD_REG_0_0: 14031da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64 14041da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 14051da12ec4SLe Tan if (size == 4) { 14061da12ec4SLe Tan vtd_set_long(s, addr, val); 14071da12ec4SLe Tan } else { 14081da12ec4SLe Tan vtd_set_quad(s, addr, val); 14091da12ec4SLe Tan } 14101da12ec4SLe Tan break; 14111da12ec4SLe Tan 14121da12ec4SLe Tan case DMAR_FRCD_REG_0_1: 14131da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64 14141da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 14151da12ec4SLe Tan assert(size == 4); 14161da12ec4SLe Tan vtd_set_long(s, addr, val); 14171da12ec4SLe Tan break; 14181da12ec4SLe Tan 14191da12ec4SLe Tan case DMAR_FRCD_REG_0_2: 14201da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64 14211da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 14221da12ec4SLe Tan if (size == 4) { 14231da12ec4SLe Tan vtd_set_long(s, addr, val); 14241da12ec4SLe Tan } else { 14251da12ec4SLe Tan vtd_set_quad(s, addr, val); 14261da12ec4SLe Tan /* May clear bit 127 (Fault), update PPF */ 14271da12ec4SLe Tan vtd_update_fsts_ppf(s); 14281da12ec4SLe Tan } 14291da12ec4SLe Tan break; 14301da12ec4SLe Tan 14311da12ec4SLe Tan case DMAR_FRCD_REG_0_3: 14321da12ec4SLe Tan VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64 14331da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 14341da12ec4SLe Tan assert(size == 4); 14351da12ec4SLe Tan vtd_set_long(s, addr, val); 14361da12ec4SLe Tan /* May clear bit 127 (Fault), update PPF */ 14371da12ec4SLe Tan vtd_update_fsts_ppf(s); 14381da12ec4SLe Tan break; 14391da12ec4SLe Tan 14401da12ec4SLe Tan default: 14411da12ec4SLe Tan VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64 14421da12ec4SLe Tan ", size %d, val 0x%"PRIx64, addr, size, val); 14431da12ec4SLe Tan if (size == 4) { 14441da12ec4SLe Tan vtd_set_long(s, addr, val); 14451da12ec4SLe Tan } else { 14461da12ec4SLe Tan vtd_set_quad(s, addr, val); 14471da12ec4SLe Tan } 14481da12ec4SLe Tan } 14491da12ec4SLe Tan } 14501da12ec4SLe Tan 14511da12ec4SLe Tan static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr, 14521da12ec4SLe Tan bool is_write) 14531da12ec4SLe Tan { 14541da12ec4SLe Tan VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 14551da12ec4SLe Tan IntelIOMMUState *s = vtd_as->iommu_state; 14561da12ec4SLe Tan uint8_t bus_num = vtd_as->bus_num; 14571da12ec4SLe Tan uint8_t devfn = vtd_as->devfn; 14581da12ec4SLe Tan IOMMUTLBEntry ret = { 14591da12ec4SLe Tan .target_as = &address_space_memory, 14601da12ec4SLe Tan .iova = addr, 14611da12ec4SLe Tan .translated_addr = 0, 14621da12ec4SLe Tan .addr_mask = ~(hwaddr)0, 14631da12ec4SLe Tan .perm = IOMMU_NONE, 14641da12ec4SLe Tan }; 14651da12ec4SLe Tan 14661da12ec4SLe Tan if (!s->dmar_enabled) { 14671da12ec4SLe Tan /* DMAR disabled, passthrough, use 4k-page*/ 14681da12ec4SLe Tan ret.iova = addr & VTD_PAGE_MASK_4K; 14691da12ec4SLe Tan ret.translated_addr = addr & VTD_PAGE_MASK_4K; 14701da12ec4SLe Tan ret.addr_mask = ~VTD_PAGE_MASK_4K; 14711da12ec4SLe Tan ret.perm = IOMMU_RW; 14721da12ec4SLe Tan return ret; 14731da12ec4SLe Tan } 14741da12ec4SLe Tan 14751da12ec4SLe Tan vtd_do_iommu_translate(s, bus_num, devfn, addr, is_write, &ret); 14761da12ec4SLe Tan 14771da12ec4SLe Tan VTD_DPRINTF(MMU, 14781da12ec4SLe Tan "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8 14791da12ec4SLe Tan " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, bus_num, 14801da12ec4SLe Tan VTD_PCI_SLOT(devfn), VTD_PCI_FUNC(devfn), devfn, addr, 14811da12ec4SLe Tan ret.translated_addr); 14821da12ec4SLe Tan return ret; 14831da12ec4SLe Tan } 14841da12ec4SLe Tan 14851da12ec4SLe Tan static const VMStateDescription vtd_vmstate = { 14861da12ec4SLe Tan .name = "iommu-intel", 14871da12ec4SLe Tan .unmigratable = 1, 14881da12ec4SLe Tan }; 14891da12ec4SLe Tan 14901da12ec4SLe Tan static const MemoryRegionOps vtd_mem_ops = { 14911da12ec4SLe Tan .read = vtd_mem_read, 14921da12ec4SLe Tan .write = vtd_mem_write, 14931da12ec4SLe Tan .endianness = DEVICE_LITTLE_ENDIAN, 14941da12ec4SLe Tan .impl = { 14951da12ec4SLe Tan .min_access_size = 4, 14961da12ec4SLe Tan .max_access_size = 8, 14971da12ec4SLe Tan }, 14981da12ec4SLe Tan .valid = { 14991da12ec4SLe Tan .min_access_size = 4, 15001da12ec4SLe Tan .max_access_size = 8, 15011da12ec4SLe Tan }, 15021da12ec4SLe Tan }; 15031da12ec4SLe Tan 15041da12ec4SLe Tan static Property vtd_properties[] = { 15051da12ec4SLe Tan DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 15061da12ec4SLe Tan DEFINE_PROP_END_OF_LIST(), 15071da12ec4SLe Tan }; 15081da12ec4SLe Tan 15091da12ec4SLe Tan /* Do the initialization. It will also be called when reset, so pay 15101da12ec4SLe Tan * attention when adding new initialization stuff. 15111da12ec4SLe Tan */ 15121da12ec4SLe Tan static void vtd_init(IntelIOMMUState *s) 15131da12ec4SLe Tan { 15141da12ec4SLe Tan memset(s->csr, 0, DMAR_REG_SIZE); 15151da12ec4SLe Tan memset(s->wmask, 0, DMAR_REG_SIZE); 15161da12ec4SLe Tan memset(s->w1cmask, 0, DMAR_REG_SIZE); 15171da12ec4SLe Tan memset(s->womask, 0, DMAR_REG_SIZE); 15181da12ec4SLe Tan 15191da12ec4SLe Tan s->iommu_ops.translate = vtd_iommu_translate; 15201da12ec4SLe Tan s->root = 0; 15211da12ec4SLe Tan s->root_extended = false; 15221da12ec4SLe Tan s->dmar_enabled = false; 15231da12ec4SLe Tan s->iq_head = 0; 15241da12ec4SLe Tan s->iq_tail = 0; 15251da12ec4SLe Tan s->iq = 0; 15261da12ec4SLe Tan s->iq_size = 0; 15271da12ec4SLe Tan s->qi_enabled = false; 15281da12ec4SLe Tan s->iq_last_desc_type = VTD_INV_DESC_NONE; 15291da12ec4SLe Tan s->next_frcd_reg = 0; 15301da12ec4SLe Tan s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW | 15311da12ec4SLe Tan VTD_CAP_SAGAW; 1532*ed7b8fbcSLe Tan s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 15331da12ec4SLe Tan 15341da12ec4SLe Tan /* Define registers with default values and bit semantics */ 15351da12ec4SLe Tan vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 15361da12ec4SLe Tan vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 15371da12ec4SLe Tan vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 15381da12ec4SLe Tan vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 15391da12ec4SLe Tan vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 15401da12ec4SLe Tan vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 15411da12ec4SLe Tan vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0); 15421da12ec4SLe Tan vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 15431da12ec4SLe Tan vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 15441da12ec4SLe Tan 15451da12ec4SLe Tan /* Advanced Fault Logging not supported */ 15461da12ec4SLe Tan vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 15471da12ec4SLe Tan vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 15481da12ec4SLe Tan vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 15491da12ec4SLe Tan vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 15501da12ec4SLe Tan 15511da12ec4SLe Tan /* Treated as RsvdZ when EIM in ECAP_REG is not supported 15521da12ec4SLe Tan * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 15531da12ec4SLe Tan */ 15541da12ec4SLe Tan vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 15551da12ec4SLe Tan 15561da12ec4SLe Tan /* Treated as RO for implementations that PLMR and PHMR fields reported 15571da12ec4SLe Tan * as Clear in the CAP_REG. 15581da12ec4SLe Tan * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 15591da12ec4SLe Tan */ 15601da12ec4SLe Tan vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 15611da12ec4SLe Tan 1562*ed7b8fbcSLe Tan vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 1563*ed7b8fbcSLe Tan vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 1564*ed7b8fbcSLe Tan vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0); 1565*ed7b8fbcSLe Tan vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 1566*ed7b8fbcSLe Tan vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 1567*ed7b8fbcSLe Tan vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 1568*ed7b8fbcSLe Tan vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 1569*ed7b8fbcSLe Tan /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 1570*ed7b8fbcSLe Tan vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 1571*ed7b8fbcSLe Tan 15721da12ec4SLe Tan /* IOTLB registers */ 15731da12ec4SLe Tan vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 15741da12ec4SLe Tan vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 15751da12ec4SLe Tan vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 15761da12ec4SLe Tan 15771da12ec4SLe Tan /* Fault Recording Registers, 128-bit */ 15781da12ec4SLe Tan vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 15791da12ec4SLe Tan vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 15801da12ec4SLe Tan } 15811da12ec4SLe Tan 15821da12ec4SLe Tan /* Should not reset address_spaces when reset because devices will still use 15831da12ec4SLe Tan * the address space they got at first (won't ask the bus again). 15841da12ec4SLe Tan */ 15851da12ec4SLe Tan static void vtd_reset(DeviceState *dev) 15861da12ec4SLe Tan { 15871da12ec4SLe Tan IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 15881da12ec4SLe Tan 15891da12ec4SLe Tan VTD_DPRINTF(GENERAL, ""); 15901da12ec4SLe Tan vtd_init(s); 15911da12ec4SLe Tan } 15921da12ec4SLe Tan 15931da12ec4SLe Tan static void vtd_realize(DeviceState *dev, Error **errp) 15941da12ec4SLe Tan { 15951da12ec4SLe Tan IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 15961da12ec4SLe Tan 15971da12ec4SLe Tan VTD_DPRINTF(GENERAL, ""); 15981da12ec4SLe Tan memset(s->address_spaces, 0, sizeof(s->address_spaces)); 15991da12ec4SLe Tan memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 16001da12ec4SLe Tan "intel_iommu", DMAR_REG_SIZE); 16011da12ec4SLe Tan sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); 16021da12ec4SLe Tan vtd_init(s); 16031da12ec4SLe Tan } 16041da12ec4SLe Tan 16051da12ec4SLe Tan static void vtd_class_init(ObjectClass *klass, void *data) 16061da12ec4SLe Tan { 16071da12ec4SLe Tan DeviceClass *dc = DEVICE_CLASS(klass); 16081da12ec4SLe Tan 16091da12ec4SLe Tan dc->reset = vtd_reset; 16101da12ec4SLe Tan dc->realize = vtd_realize; 16111da12ec4SLe Tan dc->vmsd = &vtd_vmstate; 16121da12ec4SLe Tan dc->props = vtd_properties; 16131da12ec4SLe Tan } 16141da12ec4SLe Tan 16151da12ec4SLe Tan static const TypeInfo vtd_info = { 16161da12ec4SLe Tan .name = TYPE_INTEL_IOMMU_DEVICE, 16171da12ec4SLe Tan .parent = TYPE_SYS_BUS_DEVICE, 16181da12ec4SLe Tan .instance_size = sizeof(IntelIOMMUState), 16191da12ec4SLe Tan .class_init = vtd_class_init, 16201da12ec4SLe Tan }; 16211da12ec4SLe Tan 16221da12ec4SLe Tan static void vtd_register_types(void) 16231da12ec4SLe Tan { 16241da12ec4SLe Tan VTD_DPRINTF(GENERAL, ""); 16251da12ec4SLe Tan type_register_static(&vtd_info); 16261da12ec4SLe Tan } 16271da12ec4SLe Tan 16281da12ec4SLe Tan type_init(vtd_register_types) 1629