xref: /openbmc/qemu/hw/i386/fw_cfg.c (revision ab2691b6c7ff360875e0af86ff463278f17786f5)
1 /*
2  * QEMU fw_cfg helpers (X86 specific)
3  *
4  * Copyright (c) 2019 Red Hat, Inc.
5  *
6  * Author:
7  *   Philippe Mathieu-Daudé <philmd@redhat.com>
8  *
9  * SPDX-License-Identifier: GPL-2.0-or-later
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "sysemu/numa.h"
17 #include "hw/acpi/acpi.h"
18 #include "hw/acpi/aml-build.h"
19 #include "hw/firmware/smbios.h"
20 #include "hw/i386/fw_cfg.h"
21 #include "hw/timer/hpet.h"
22 #include "hw/nvram/fw_cfg.h"
23 #include "e820_memory_layout.h"
24 #include "kvm/kvm_i386.h"
25 #include "qapi/error.h"
26 #include CONFIG_DEVICES
27 #include "target/i386/cpu.h"
28 
29 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
30 
31 const char *fw_cfg_arch_key_name(uint16_t key)
32 {
33     static const struct {
34         uint16_t key;
35         const char *name;
36     } fw_cfg_arch_wellknown_keys[] = {
37         {FW_CFG_ACPI_TABLES, "acpi_tables"},
38         {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"},
39         {FW_CFG_IRQ0_OVERRIDE, "irq0_override"},
40         {FW_CFG_HPET, "hpet"},
41     };
42 
43     for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
44         if (fw_cfg_arch_wellknown_keys[i].key == key) {
45             return fw_cfg_arch_wellknown_keys[i].name;
46         }
47     }
48     return NULL;
49 }
50 
51 /* Add etc/e820 late, once all regions should be present */
52 void fw_cfg_add_e820(FWCfgState *fw_cfg)
53 {
54     struct e820_entry *table;
55     int nr_e820 = e820_get_table(&table);
56 
57     fw_cfg_add_file(fw_cfg, "etc/e820", table, nr_e820 * sizeof(*table));
58 }
59 
60 void fw_cfg_build_smbios(PCMachineState *pcms, FWCfgState *fw_cfg,
61                          SmbiosEntryPointType ep_type)
62 {
63 #ifdef CONFIG_SMBIOS
64     uint8_t *smbios_tables, *smbios_anchor;
65     size_t smbios_tables_len, smbios_anchor_len;
66     struct smbios_phys_mem_area *mem_array;
67     unsigned i, array_count;
68     MachineState *ms = MACHINE(pcms);
69     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
70     MachineClass *mc = MACHINE_GET_CLASS(pcms);
71     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
72     int nr_e820;
73 
74     if (pcmc->smbios_defaults) {
75         /* These values are guest ABI, do not change */
76         smbios_set_defaults("QEMU", mc->desc, mc->name);
77     }
78 
79     /* tell smbios about cpuid version and features */
80     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
81 
82     if (pcmc->smbios_legacy_mode) {
83         smbios_tables = smbios_get_table_legacy(&smbios_tables_len,
84                                                 &error_fatal);
85         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
86                          smbios_tables, smbios_tables_len);
87         return;
88     }
89 
90     /* build the array of physical mem area from e820 table */
91     nr_e820 = e820_get_table(NULL);
92     mem_array = g_malloc0(sizeof(*mem_array) * nr_e820);
93     for (i = 0, array_count = 0; i < nr_e820; i++) {
94         uint64_t addr, len;
95 
96         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
97             mem_array[array_count].address = addr;
98             mem_array[array_count].length = len;
99             array_count++;
100         }
101     }
102     smbios_get_tables(ms, ep_type, mem_array, array_count,
103                       &smbios_tables, &smbios_tables_len,
104                       &smbios_anchor, &smbios_anchor_len,
105                       &error_fatal);
106     g_free(mem_array);
107 
108     if (smbios_anchor) {
109         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
110                         smbios_tables, smbios_tables_len);
111         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
112                         smbios_anchor, smbios_anchor_len);
113     }
114 #endif
115 }
116 
117 FWCfgState *fw_cfg_arch_create(MachineState *ms,
118                                       uint16_t boot_cpus,
119                                       uint16_t apic_id_limit)
120 {
121     FWCfgState *fw_cfg;
122     uint64_t *numa_fw_cfg;
123     int i;
124     MachineClass *mc = MACHINE_GET_CLASS(ms);
125     const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms);
126     int nb_numa_nodes = ms->numa_state->num_nodes;
127 
128     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4,
129                                 &address_space_memory);
130     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus);
131 
132     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
133      *
134      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
135      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
136      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
137      * for CPU hotplug also uses APIC ID and not "CPU index".
138      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
139      * but the "limit to the APIC ID values SeaBIOS may see".
140      *
141      * So for compatibility reasons with old BIOSes we are stuck with
142      * "etc/max-cpus" actually being apic_id_limit
143      */
144     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit);
145     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size);
146 #ifdef CONFIG_ACPI
147     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
148                      acpi_tables, acpi_tables_len);
149 #endif
150     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1);
151 
152     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
153     /* allocate memory for the NUMA channel: one (64bit) word for the number
154      * of nodes, one word for each VCPU->node and one word for each node to
155      * hold the amount of memory.
156      */
157     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
158     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
159     for (i = 0; i < cpus->len; i++) {
160         unsigned int apic_id = cpus->cpus[i].arch_id;
161         assert(apic_id < apic_id_limit);
162         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
163     }
164     for (i = 0; i < nb_numa_nodes; i++) {
165         numa_fw_cfg[apic_id_limit + 1 + i] =
166             cpu_to_le64(ms->numa_state->nodes[i].node_mem);
167     }
168     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
169                      (1 + apic_id_limit + nb_numa_nodes) *
170                      sizeof(*numa_fw_cfg));
171 
172     return fw_cfg;
173 }
174 
175 void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg)
176 {
177     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
178     CPUX86State *env = &cpu->env;
179     uint32_t unused, ebx, ecx, edx;
180     uint64_t feature_control_bits = 0;
181     uint64_t *val;
182 
183     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
184     if (ecx & CPUID_EXT_VMX) {
185         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
186     }
187 
188     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
189         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
190         (env->mcg_cap & MCG_LMCE_P)) {
191         feature_control_bits |= FEATURE_CONTROL_LMCE;
192     }
193 
194     if (env->cpuid_level >= 7) {
195         cpu_x86_cpuid(env, 0x7, 0, &unused, &ebx, &ecx, &unused);
196         if (ebx & CPUID_7_0_EBX_SGX) {
197             feature_control_bits |= FEATURE_CONTROL_SGX;
198         }
199         if (ecx & CPUID_7_0_ECX_SGX_LC) {
200             feature_control_bits |= FEATURE_CONTROL_SGX_LC;
201         }
202     }
203 
204     if (!feature_control_bits) {
205         return;
206     }
207 
208     val = g_malloc(sizeof(*val));
209     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
210     fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
211 }
212 
213 #ifdef CONFIG_ACPI
214 void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg)
215 {
216     /*
217      * when using port i/o, the 8-bit data register *always* overlaps
218      * with half of the 16-bit control register. Hence, the total size
219      * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the
220      * DMA control register is located at FW_CFG_DMA_IO_BASE + 4
221      */
222     Object *obj = OBJECT(fw_cfg);
223     uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ?
224         ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) :
225         FW_CFG_CTL_SIZE;
226     Aml *dev = aml_device("FWCF");
227     Aml *crs = aml_resource_template();
228 
229     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
230 
231     /* device present, functioning, decoding, not shown in UI */
232     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
233 
234     aml_append(crs,
235         aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size));
236 
237     aml_append(dev, aml_name_decl("_CRS", crs));
238     aml_append(scope, dev);
239 }
240 #endif
241