xref: /openbmc/qemu/hw/i2c/smbus_eeprom.c (revision 53e116fed6dde572003aebf3bc32e25663eeb446)
1 /*
2  * QEMU SMBus EEPROM device
3  *
4  * Copyright (c) 2007 Arastra, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "hw/boards.h"
30 #include "hw/i2c/i2c.h"
31 #include "hw/i2c/smbus_slave.h"
32 #include "hw/i2c/smbus_eeprom.h"
33 
34 //#define DEBUG
35 
36 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
37 
38 #define SMBUS_EEPROM(obj) \
39     OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
40 
41 #define SMBUS_EEPROM_SIZE 256
42 
43 typedef struct SMBusEEPROMDevice {
44     SMBusDevice smbusdev;
45     uint8_t data[SMBUS_EEPROM_SIZE];
46     void *init_data;
47     uint8_t offset;
48     bool accessed;
49 } SMBusEEPROMDevice;
50 
51 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
52 {
53     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
54     uint8_t *data = eeprom->data;
55     uint8_t val = data[eeprom->offset++];
56 
57     eeprom->accessed = true;
58 #ifdef DEBUG
59     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
60            dev->i2c.address, val);
61 #endif
62     return val;
63 }
64 
65 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
66 {
67     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
68     uint8_t *data = eeprom->data;
69 
70     eeprom->accessed = true;
71 #ifdef DEBUG
72     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
73            dev->i2c.address, buf[0], buf[1]);
74 #endif
75     /* len is guaranteed to be > 0 */
76     eeprom->offset = buf[0];
77     buf++;
78     len--;
79 
80     for (; len > 0; len--) {
81         data[eeprom->offset] = *buf++;
82         eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
83     }
84 
85     return 0;
86 }
87 
88 static bool smbus_eeprom_vmstate_needed(void *opaque)
89 {
90     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
91     SMBusEEPROMDevice *eeprom = opaque;
92 
93     return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
94         !mc->smbus_no_migration_support;
95 }
96 
97 static const VMStateDescription vmstate_smbus_eeprom = {
98     .name = "smbus-eeprom",
99     .version_id = 1,
100     .minimum_version_id = 1,
101     .needed = smbus_eeprom_vmstate_needed,
102     .fields      = (VMStateField[]) {
103         VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
104         VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
105         VMSTATE_UINT8(offset, SMBusEEPROMDevice),
106         VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
107         VMSTATE_END_OF_LIST()
108     }
109 };
110 
111 /*
112  * Reset the EEPROM contents to the initial state on a reset.  This
113  * isn't really how an EEPROM works, of course, but the general
114  * principle of QEMU is to restore function on reset to what it would
115  * be if QEMU was stopped and started.
116  *
117  * The proper thing to do would be to have a backing blockdev to hold
118  * the contents and restore that on startup, and not do this on reset.
119  * But until that time, act as if we had been stopped and restarted.
120  */
121 static void smbus_eeprom_reset(DeviceState *dev)
122 {
123     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
124 
125     memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
126     eeprom->offset = 0;
127 }
128 
129 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
130 {
131     smbus_eeprom_reset(dev);
132 }
133 
134 static Property smbus_eeprom_properties[] = {
135     DEFINE_PROP_PTR("data", SMBusEEPROMDevice, init_data),
136     DEFINE_PROP_END_OF_LIST(),
137 };
138 
139 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
140 {
141     DeviceClass *dc = DEVICE_CLASS(klass);
142     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
143 
144     dc->realize = smbus_eeprom_realize;
145     dc->reset = smbus_eeprom_reset;
146     sc->receive_byte = eeprom_receive_byte;
147     sc->write_data = eeprom_write_data;
148     dc->props = smbus_eeprom_properties;
149     dc->vmsd = &vmstate_smbus_eeprom;
150     /* Reason: pointer property "data" */
151     dc->user_creatable = false;
152 }
153 
154 static const TypeInfo smbus_eeprom_info = {
155     .name          = TYPE_SMBUS_EEPROM,
156     .parent        = TYPE_SMBUS_DEVICE,
157     .instance_size = sizeof(SMBusEEPROMDevice),
158     .class_init    = smbus_eeprom_class_initfn,
159 };
160 
161 static void smbus_eeprom_register_types(void)
162 {
163     type_register_static(&smbus_eeprom_info);
164 }
165 
166 type_init(smbus_eeprom_register_types)
167 
168 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
169 {
170     DeviceState *dev;
171 
172     dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
173     qdev_prop_set_uint8(dev, "address", address);
174     qdev_prop_set_ptr(dev, "data", eeprom_buf);
175     qdev_init_nofail(dev);
176 }
177 
178 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
179                        const uint8_t *eeprom_spd, int eeprom_spd_size)
180 {
181     int i;
182      /* XXX: make this persistent */
183 
184     assert(nb_eeprom <= 8);
185     uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
186     if (eeprom_spd_size > 0) {
187         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
188     }
189 
190     for (i = 0; i < nb_eeprom; i++) {
191         smbus_eeprom_init_one(smbus, 0x50 + i,
192                               eeprom_buf + (i * SMBUS_EEPROM_SIZE));
193     }
194 }
195 
196 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
197 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
198                            Error **errp)
199 {
200     uint8_t *spd;
201     uint8_t nbanks;
202     uint16_t density;
203     uint32_t size;
204     int min_log2, max_log2, sz_log2;
205     int i;
206 
207     switch (type) {
208     case SDR:
209         min_log2 = 2;
210         max_log2 = 9;
211         break;
212     case DDR:
213         min_log2 = 5;
214         max_log2 = 12;
215         break;
216     case DDR2:
217         min_log2 = 7;
218         max_log2 = 14;
219         break;
220     default:
221         g_assert_not_reached();
222     }
223     size = ram_size >> 20; /* work in terms of megabytes */
224     if (size < 4) {
225         error_setg(errp, "SDRAM size is too small");
226         return NULL;
227     }
228     sz_log2 = 31 - clz32(size);
229     size = 1U << sz_log2;
230     if (ram_size > size * MiB) {
231         error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
232                    "truncating to %u MB", ram_size, size);
233     }
234     if (sz_log2 < min_log2) {
235         error_setg(errp,
236                    "Memory size is too small for SDRAM type, adjusting type");
237         if (size >= 32) {
238             type = DDR;
239             min_log2 = 5;
240             max_log2 = 12;
241         } else {
242             type = SDR;
243             min_log2 = 2;
244             max_log2 = 9;
245         }
246     }
247 
248     nbanks = 1;
249     while (sz_log2 > max_log2 && nbanks < 8) {
250         sz_log2--;
251         nbanks++;
252     }
253 
254     if (size > (1ULL << sz_log2) * nbanks) {
255         error_setg(errp, "Memory size is too big for SDRAM, truncating");
256     }
257 
258     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
259     if (nbanks == 1 && sz_log2 > min_log2) {
260         sz_log2--;
261         nbanks++;
262     }
263 
264     density = 1ULL << (sz_log2 - 2);
265     switch (type) {
266     case DDR2:
267         density = (density & 0xe0) | (density >> 8 & 0x1f);
268         break;
269     case DDR:
270         density = (density & 0xf8) | (density >> 8 & 0x07);
271         break;
272     case SDR:
273     default:
274         density &= 0xff;
275         break;
276     }
277 
278     spd = g_malloc0(256);
279     spd[0] = 128;   /* data bytes in EEPROM */
280     spd[1] = 8;     /* log2 size of EEPROM */
281     spd[2] = type;
282     spd[3] = 13;    /* row address bits */
283     spd[4] = 10;    /* column address bits */
284     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
285     spd[6] = 64;    /* module data width */
286                     /* reserved / data width high */
287     spd[8] = 4;     /* interface voltage level */
288     spd[9] = 0x25;  /* highest CAS latency */
289     spd[10] = 1;    /* access time */
290                     /* DIMM configuration 0 = non-ECC */
291     spd[12] = 0x82; /* refresh requirements */
292     spd[13] = 8;    /* primary SDRAM width */
293                     /* ECC SDRAM width */
294     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
295     spd[16] = 12;   /* burst lengths supported */
296     spd[17] = 4;    /* banks per SDRAM device */
297     spd[18] = 12;   /* ~CAS latencies supported */
298     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
299     spd[20] = 2;    /* DIMM type / ~WE latencies */
300                     /* module features */
301                     /* memory chip features */
302     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
303                     /* data access time */
304                     /* clock cycle time @ short CAS latency */
305                     /* data access time */
306     spd[27] = 20;   /* min. row precharge time */
307     spd[28] = 15;   /* min. row active row delay */
308     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
309     spd[30] = 45;   /* min. active to precharge time */
310     spd[31] = density;
311     spd[32] = 20;   /* addr/cmd setup time */
312     spd[33] = 8;    /* addr/cmd hold time */
313     spd[34] = 20;   /* data input setup time */
314     spd[35] = 8;    /* data input hold time */
315 
316     /* checksum */
317     for (i = 0; i < 63; i++) {
318         spd[63] += spd[i];
319     }
320     return spd;
321 }
322