xref: /openbmc/qemu/hw/dma/sparc32_dma.c (revision 69d7eab0b8bb14f8d52539618ae33918032eaaf7)
1 /*
2  * QEMU Sparc32 DMA controller emulation
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Modifications:
7  *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/sparc/sparc32_dma.h"
32 #include "hw/sparc/sun4m_iommu.h"
33 #include "hw/sysbus.h"
34 #include "migration/vmstate.h"
35 #include "sysemu/dma.h"
36 #include "qapi/error.h"
37 #include "qemu/module.h"
38 #include "trace.h"
39 
40 /*
41  * This is the DMA controller part of chip STP2000 (Master I/O), also
42  * produced as NCR89C100. See
43  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
44  * and
45  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
46  */
47 
48 #define DMA_SIZE (4 * sizeof(uint32_t))
49 /* We need the mask, because one instance of the device is not page
50    aligned (ledma, start address 0x0010) */
51 #define DMA_MASK (DMA_SIZE - 1)
52 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
53 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
54 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
55 
56 #define DMA_VER 0xa0000000
57 #define DMA_INTR 1
58 #define DMA_INTREN 0x10
59 #define DMA_WRITE_MEM 0x100
60 #define DMA_EN 0x200
61 #define DMA_LOADED 0x04000000
62 #define DMA_DRAIN_FIFO 0x40
63 #define DMA_RESET 0x80
64 
65 /* XXX SCSI and ethernet should have different read-only bit masks */
66 #define DMA_CSR_RO_MASK 0xfe000007
67 
68 enum {
69     GPIO_RESET = 0,
70     GPIO_DMA,
71 };
72 
73 /* Note: on sparc, the lance 16 bit bus is swapped */
74 void ledma_memory_read(void *opaque, hwaddr addr,
75                        uint8_t *buf, int len, int do_bswap)
76 {
77     DMADeviceState *s = opaque;
78     IOMMUState *is = (IOMMUState *)s->iommu;
79     int i;
80 
81     addr |= s->dmaregs[3];
82     trace_ledma_memory_read(addr, len);
83     if (do_bswap) {
84         dma_memory_read(&is->iommu_as, addr, buf, len);
85     } else {
86         addr &= ~1;
87         len &= ~1;
88         dma_memory_read(&is->iommu_as, addr, buf, len);
89         for(i = 0; i < len; i += 2) {
90             bswap16s((uint16_t *)(buf + i));
91         }
92     }
93 }
94 
95 void ledma_memory_write(void *opaque, hwaddr addr,
96                         uint8_t *buf, int len, int do_bswap)
97 {
98     DMADeviceState *s = opaque;
99     IOMMUState *is = (IOMMUState *)s->iommu;
100     int l, i;
101     uint16_t tmp_buf[32];
102 
103     addr |= s->dmaregs[3];
104     trace_ledma_memory_write(addr, len);
105     if (do_bswap) {
106         dma_memory_write(&is->iommu_as, addr, buf, len);
107     } else {
108         addr &= ~1;
109         len &= ~1;
110         while (len > 0) {
111             l = len;
112             if (l > sizeof(tmp_buf))
113                 l = sizeof(tmp_buf);
114             for(i = 0; i < l; i += 2) {
115                 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
116             }
117             dma_memory_write(&is->iommu_as, addr, tmp_buf, l);
118             len -= l;
119             buf += l;
120             addr += l;
121         }
122     }
123 }
124 
125 static void dma_set_irq(void *opaque, int irq, int level)
126 {
127     DMADeviceState *s = opaque;
128     if (level) {
129         s->dmaregs[0] |= DMA_INTR;
130         if (s->dmaregs[0] & DMA_INTREN) {
131             trace_sparc32_dma_set_irq_raise();
132             qemu_irq_raise(s->irq);
133         }
134     } else {
135         if (s->dmaregs[0] & DMA_INTR) {
136             s->dmaregs[0] &= ~DMA_INTR;
137             if (s->dmaregs[0] & DMA_INTREN) {
138                 trace_sparc32_dma_set_irq_lower();
139                 qemu_irq_lower(s->irq);
140             }
141         }
142     }
143 }
144 
145 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
146 {
147     DMADeviceState *s = opaque;
148     IOMMUState *is = (IOMMUState *)s->iommu;
149 
150     trace_espdma_memory_read(s->dmaregs[1], len);
151     dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len);
152     s->dmaregs[1] += len;
153 }
154 
155 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
156 {
157     DMADeviceState *s = opaque;
158     IOMMUState *is = (IOMMUState *)s->iommu;
159 
160     trace_espdma_memory_write(s->dmaregs[1], len);
161     dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len);
162     s->dmaregs[1] += len;
163 }
164 
165 static uint64_t dma_mem_read(void *opaque, hwaddr addr,
166                              unsigned size)
167 {
168     DMADeviceState *s = opaque;
169     uint32_t saddr;
170 
171     saddr = (addr & DMA_MASK) >> 2;
172     trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
173     return s->dmaregs[saddr];
174 }
175 
176 static void dma_mem_write(void *opaque, hwaddr addr,
177                           uint64_t val, unsigned size)
178 {
179     DMADeviceState *s = opaque;
180     uint32_t saddr;
181 
182     saddr = (addr & DMA_MASK) >> 2;
183     trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
184     switch (saddr) {
185     case 0:
186         if (val & DMA_INTREN) {
187             if (s->dmaregs[0] & DMA_INTR) {
188                 trace_sparc32_dma_set_irq_raise();
189                 qemu_irq_raise(s->irq);
190             }
191         } else {
192             if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
193                 trace_sparc32_dma_set_irq_lower();
194                 qemu_irq_lower(s->irq);
195             }
196         }
197         if (val & DMA_RESET) {
198             qemu_irq_raise(s->gpio[GPIO_RESET]);
199             qemu_irq_lower(s->gpio[GPIO_RESET]);
200         } else if (val & DMA_DRAIN_FIFO) {
201             val &= ~DMA_DRAIN_FIFO;
202         } else if (val == 0)
203             val = DMA_DRAIN_FIFO;
204 
205         if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
206             trace_sparc32_dma_enable_raise();
207             qemu_irq_raise(s->gpio[GPIO_DMA]);
208         } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
209             trace_sparc32_dma_enable_lower();
210             qemu_irq_lower(s->gpio[GPIO_DMA]);
211         }
212 
213         val &= ~DMA_CSR_RO_MASK;
214         val |= DMA_VER;
215         s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
216         break;
217     case 1:
218         s->dmaregs[0] |= DMA_LOADED;
219         /* fall through */
220     default:
221         s->dmaregs[saddr] = val;
222         break;
223     }
224 }
225 
226 static const MemoryRegionOps dma_mem_ops = {
227     .read = dma_mem_read,
228     .write = dma_mem_write,
229     .endianness = DEVICE_NATIVE_ENDIAN,
230     .valid = {
231         .min_access_size = 4,
232         .max_access_size = 4,
233     },
234 };
235 
236 static void sparc32_dma_device_reset(DeviceState *d)
237 {
238     DMADeviceState *s = SPARC32_DMA_DEVICE(d);
239 
240     memset(s->dmaregs, 0, DMA_SIZE);
241     s->dmaregs[0] = DMA_VER;
242 }
243 
244 static const VMStateDescription vmstate_sparc32_dma_device = {
245     .name ="sparc32_dma",
246     .version_id = 2,
247     .minimum_version_id = 2,
248     .fields = (VMStateField[]) {
249         VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
250         VMSTATE_END_OF_LIST()
251     }
252 };
253 
254 static void sparc32_dma_device_init(Object *obj)
255 {
256     DeviceState *dev = DEVICE(obj);
257     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
258     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
259 
260     sysbus_init_irq(sbd, &s->irq);
261 
262     sysbus_init_mmio(sbd, &s->iomem);
263 
264     object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
265                              (Object **) &s->iommu,
266                              qdev_prop_allow_set_link_before_realize,
267                              0);
268 
269     qdev_init_gpio_in(dev, dma_set_irq, 1);
270     qdev_init_gpio_out(dev, s->gpio, 2);
271 }
272 
273 static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
274 {
275     DeviceClass *dc = DEVICE_CLASS(klass);
276 
277     dc->reset = sparc32_dma_device_reset;
278     dc->vmsd = &vmstate_sparc32_dma_device;
279 }
280 
281 static const TypeInfo sparc32_dma_device_info = {
282     .name          = TYPE_SPARC32_DMA_DEVICE,
283     .parent        = TYPE_SYS_BUS_DEVICE,
284     .abstract      = true,
285     .instance_size = sizeof(DMADeviceState),
286     .instance_init = sparc32_dma_device_init,
287     .class_init    = sparc32_dma_device_class_init,
288 };
289 
290 static void sparc32_espdma_device_init(Object *obj)
291 {
292     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
293     ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
294 
295     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
296                           "espdma-mmio", DMA_SIZE);
297 
298     object_initialize_child(obj, "esp", &es->esp, TYPE_ESP);
299 }
300 
301 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
302 {
303     ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
304     SysBusESPState *sysbus = ESP(&es->esp);
305     ESPState *esp = &sysbus->esp;
306 
307     esp->dma_memory_read = espdma_memory_read;
308     esp->dma_memory_write = espdma_memory_write;
309     esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
310     sysbus->it_shift = 2;
311     esp->dma_enabled = 1;
312     sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
313 }
314 
315 static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
316 {
317     DeviceClass *dc = DEVICE_CLASS(klass);
318 
319     dc->realize = sparc32_espdma_device_realize;
320 }
321 
322 static const TypeInfo sparc32_espdma_device_info = {
323     .name          = TYPE_SPARC32_ESPDMA_DEVICE,
324     .parent        = TYPE_SPARC32_DMA_DEVICE,
325     .instance_size = sizeof(ESPDMADeviceState),
326     .instance_init = sparc32_espdma_device_init,
327     .class_init    = sparc32_espdma_device_class_init,
328 };
329 
330 static void sparc32_ledma_device_init(Object *obj)
331 {
332     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
333     LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
334 
335     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
336                           "ledma-mmio", DMA_SIZE);
337 
338     object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
339 }
340 
341 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
342 {
343     LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
344     SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
345 
346     object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
347     sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
348 }
349 
350 static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
351 {
352     DeviceClass *dc = DEVICE_CLASS(klass);
353 
354     dc->realize = sparc32_ledma_device_realize;
355 }
356 
357 static const TypeInfo sparc32_ledma_device_info = {
358     .name          = TYPE_SPARC32_LEDMA_DEVICE,
359     .parent        = TYPE_SPARC32_DMA_DEVICE,
360     .instance_size = sizeof(LEDMADeviceState),
361     .instance_init = sparc32_ledma_device_init,
362     .class_init    = sparc32_ledma_device_class_init,
363 };
364 
365 static void sparc32_dma_realize(DeviceState *dev, Error **errp)
366 {
367     SPARC32DMAState *s = SPARC32_DMA(dev);
368     DeviceState *espdma, *esp, *ledma, *lance;
369     SysBusDevice *sbd;
370     Object *iommu;
371 
372     iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
373     if (!iommu) {
374         error_setg(errp, "unable to locate sun4m IOMMU device");
375         return;
376     }
377 
378     espdma = DEVICE(&s->espdma);
379     object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
380     sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
381 
382     esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
383     sbd = SYS_BUS_DEVICE(esp);
384     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
385     qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
386     qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
387 
388     sbd = SYS_BUS_DEVICE(espdma);
389     memory_region_add_subregion(&s->dmamem, 0x0,
390                                 sysbus_mmio_get_region(sbd, 0));
391 
392     ledma = DEVICE(&s->ledma);
393     object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
394     sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
395 
396     lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
397     sbd = SYS_BUS_DEVICE(lance);
398     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
399     qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
400 
401     sbd = SYS_BUS_DEVICE(ledma);
402     memory_region_add_subregion(&s->dmamem, 0x10,
403                                 sysbus_mmio_get_region(sbd, 0));
404 
405     /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
406     memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
407                              sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
408     memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
409 }
410 
411 static void sparc32_dma_init(Object *obj)
412 {
413     SPARC32DMAState *s = SPARC32_DMA(obj);
414     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
415 
416     memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
417     sysbus_init_mmio(sbd, &s->dmamem);
418 
419     object_initialize_child(obj, "espdma", &s->espdma,
420                             TYPE_SPARC32_ESPDMA_DEVICE);
421     object_initialize_child(obj, "ledma", &s->ledma,
422                             TYPE_SPARC32_LEDMA_DEVICE);
423 }
424 
425 static void sparc32_dma_class_init(ObjectClass *klass, void *data)
426 {
427     DeviceClass *dc = DEVICE_CLASS(klass);
428 
429     dc->realize = sparc32_dma_realize;
430 }
431 
432 static const TypeInfo sparc32_dma_info = {
433     .name          = TYPE_SPARC32_DMA,
434     .parent        = TYPE_SYS_BUS_DEVICE,
435     .instance_size = sizeof(SPARC32DMAState),
436     .instance_init = sparc32_dma_init,
437     .class_init    = sparc32_dma_class_init,
438 };
439 
440 
441 static void sparc32_dma_register_types(void)
442 {
443     type_register_static(&sparc32_dma_device_info);
444     type_register_static(&sparc32_espdma_device_info);
445     type_register_static(&sparc32_ledma_device_info);
446     type_register_static(&sparc32_dma_info);
447 }
448 
449 type_init(sparc32_dma_register_types)
450