xref: /openbmc/qemu/hw/core/loader.c (revision f3fa412de28ae3cb31d38811d30a77e4e20456cc)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qemu/datadir.h"
48 #include "qapi/error.h"
49 #include "trace.h"
50 #include "hw/hw.h"
51 #include "disas/disas.h"
52 #include "migration/vmstate.h"
53 #include "monitor/monitor.h"
54 #include "sysemu/reset.h"
55 #include "sysemu/sysemu.h"
56 #include "uboot_image.h"
57 #include "hw/loader.h"
58 #include "hw/nvram/fw_cfg.h"
59 #include "exec/memory.h"
60 #include "hw/boards.h"
61 #include "qemu/cutils.h"
62 #include "sysemu/runstate.h"
63 
64 #include <zlib.h>
65 
66 static int roms_loaded;
67 
68 /* return the size or -1 if error */
69 int64_t get_image_size(const char *filename)
70 {
71     int fd;
72     int64_t size;
73     fd = open(filename, O_RDONLY | O_BINARY);
74     if (fd < 0)
75         return -1;
76     size = lseek(fd, 0, SEEK_END);
77     close(fd);
78     return size;
79 }
80 
81 /* return the size or -1 if error */
82 ssize_t load_image_size(const char *filename, void *addr, size_t size)
83 {
84     int fd;
85     ssize_t actsize, l = 0;
86 
87     fd = open(filename, O_RDONLY | O_BINARY);
88     if (fd < 0) {
89         return -1;
90     }
91 
92     while ((actsize = read(fd, addr + l, size - l)) > 0) {
93         l += actsize;
94     }
95 
96     close(fd);
97 
98     return actsize < 0 ? -1 : l;
99 }
100 
101 /* read()-like version */
102 ssize_t read_targphys(const char *name,
103                       int fd, hwaddr dst_addr, size_t nbytes)
104 {
105     uint8_t *buf;
106     ssize_t did;
107 
108     buf = g_malloc(nbytes);
109     did = read(fd, buf, nbytes);
110     if (did > 0)
111         rom_add_blob_fixed("read", buf, did, dst_addr);
112     g_free(buf);
113     return did;
114 }
115 
116 int load_image_targphys(const char *filename,
117                         hwaddr addr, uint64_t max_sz)
118 {
119     return load_image_targphys_as(filename, addr, max_sz, NULL);
120 }
121 
122 /* return the size or -1 if error */
123 int load_image_targphys_as(const char *filename,
124                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
125 {
126     int size;
127 
128     size = get_image_size(filename);
129     if (size < 0 || size > max_sz) {
130         return -1;
131     }
132     if (size > 0) {
133         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
134             return -1;
135         }
136     }
137     return size;
138 }
139 
140 int load_image_mr(const char *filename, MemoryRegion *mr)
141 {
142     int size;
143 
144     if (!memory_access_is_direct(mr, false)) {
145         /* Can only load an image into RAM or ROM */
146         return -1;
147     }
148 
149     size = get_image_size(filename);
150 
151     if (size < 0 || size > memory_region_size(mr)) {
152         return -1;
153     }
154     if (size > 0) {
155         if (rom_add_file_mr(filename, mr, -1) < 0) {
156             return -1;
157         }
158     }
159     return size;
160 }
161 
162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
163                       const char *source)
164 {
165     const char *nulp;
166     char *ptr;
167 
168     if (buf_size <= 0) return;
169     nulp = memchr(source, 0, buf_size);
170     if (nulp) {
171         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
172     } else {
173         rom_add_blob_fixed(name, source, buf_size, dest);
174         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
175         *ptr = 0;
176     }
177 }
178 
179 /* A.OUT loader */
180 
181 struct exec
182 {
183   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
184   uint32_t a_text;   /* length of text, in bytes */
185   uint32_t a_data;   /* length of data, in bytes */
186   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
187   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
188   uint32_t a_entry;  /* start address */
189   uint32_t a_trsize; /* length of relocation info for text, in bytes */
190   uint32_t a_drsize; /* length of relocation info for data, in bytes */
191 };
192 
193 static void bswap_ahdr(struct exec *e)
194 {
195     bswap32s(&e->a_info);
196     bswap32s(&e->a_text);
197     bswap32s(&e->a_data);
198     bswap32s(&e->a_bss);
199     bswap32s(&e->a_syms);
200     bswap32s(&e->a_entry);
201     bswap32s(&e->a_trsize);
202     bswap32s(&e->a_drsize);
203 }
204 
205 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
206 #define OMAGIC 0407
207 #define NMAGIC 0410
208 #define ZMAGIC 0413
209 #define QMAGIC 0314
210 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
211 #define N_TXTOFF(x)							\
212     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
213      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
216 
217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
218 
219 #define N_DATADDR(x, target_page_size) \
220     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
221      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
222 
223 
224 int load_aout(const char *filename, hwaddr addr, int max_sz,
225               int bswap_needed, hwaddr target_page_size)
226 {
227     int fd;
228     ssize_t size, ret;
229     struct exec e;
230     uint32_t magic;
231 
232     fd = open(filename, O_RDONLY | O_BINARY);
233     if (fd < 0)
234         return -1;
235 
236     size = read(fd, &e, sizeof(e));
237     if (size < 0)
238         goto fail;
239 
240     if (bswap_needed) {
241         bswap_ahdr(&e);
242     }
243 
244     magic = N_MAGIC(e);
245     switch (magic) {
246     case ZMAGIC:
247     case QMAGIC:
248     case OMAGIC:
249         if (e.a_text + e.a_data > max_sz)
250             goto fail;
251         lseek(fd, N_TXTOFF(e), SEEK_SET);
252         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
253         if (size < 0)
254             goto fail;
255         break;
256     case NMAGIC:
257         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
258             goto fail;
259         lseek(fd, N_TXTOFF(e), SEEK_SET);
260         size = read_targphys(filename, fd, addr, e.a_text);
261         if (size < 0)
262             goto fail;
263         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
264                             e.a_data);
265         if (ret < 0)
266             goto fail;
267         size += ret;
268         break;
269     default:
270         goto fail;
271     }
272     close(fd);
273     return size;
274  fail:
275     close(fd);
276     return -1;
277 }
278 
279 /* ELF loader */
280 
281 static void *load_at(int fd, off_t offset, size_t size)
282 {
283     void *ptr;
284     if (lseek(fd, offset, SEEK_SET) < 0)
285         return NULL;
286     ptr = g_malloc(size);
287     if (read(fd, ptr, size) != size) {
288         g_free(ptr);
289         return NULL;
290     }
291     return ptr;
292 }
293 
294 #ifdef ELF_CLASS
295 #undef ELF_CLASS
296 #endif
297 
298 #define ELF_CLASS   ELFCLASS32
299 #include "elf.h"
300 
301 #define SZ		32
302 #define elf_word        uint32_t
303 #define elf_sword        int32_t
304 #define bswapSZs	bswap32s
305 #include "hw/elf_ops.h"
306 
307 #undef elfhdr
308 #undef elf_phdr
309 #undef elf_shdr
310 #undef elf_sym
311 #undef elf_rela
312 #undef elf_note
313 #undef elf_word
314 #undef elf_sword
315 #undef bswapSZs
316 #undef SZ
317 #define elfhdr		elf64_hdr
318 #define elf_phdr	elf64_phdr
319 #define elf_note	elf64_note
320 #define elf_shdr	elf64_shdr
321 #define elf_sym		elf64_sym
322 #define elf_rela        elf64_rela
323 #define elf_word        uint64_t
324 #define elf_sword        int64_t
325 #define bswapSZs	bswap64s
326 #define SZ		64
327 #include "hw/elf_ops.h"
328 
329 const char *load_elf_strerror(int error)
330 {
331     switch (error) {
332     case 0:
333         return "No error";
334     case ELF_LOAD_FAILED:
335         return "Failed to load ELF";
336     case ELF_LOAD_NOT_ELF:
337         return "The image is not ELF";
338     case ELF_LOAD_WRONG_ARCH:
339         return "The image is from incompatible architecture";
340     case ELF_LOAD_WRONG_ENDIAN:
341         return "The image has incorrect endianness";
342     case ELF_LOAD_TOO_BIG:
343         return "The image segments are too big to load";
344     default:
345         return "Unknown error";
346     }
347 }
348 
349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
350 {
351     int fd;
352     uint8_t e_ident_local[EI_NIDENT];
353     uint8_t *e_ident;
354     size_t hdr_size, off;
355     bool is64l;
356 
357     if (!hdr) {
358         hdr = e_ident_local;
359     }
360     e_ident = hdr;
361 
362     fd = open(filename, O_RDONLY | O_BINARY);
363     if (fd < 0) {
364         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
365         return;
366     }
367     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
368         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
369         goto fail;
370     }
371     if (e_ident[0] != ELFMAG0 ||
372         e_ident[1] != ELFMAG1 ||
373         e_ident[2] != ELFMAG2 ||
374         e_ident[3] != ELFMAG3) {
375         error_setg(errp, "Bad ELF magic");
376         goto fail;
377     }
378 
379     is64l = e_ident[EI_CLASS] == ELFCLASS64;
380     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
381     if (is64) {
382         *is64 = is64l;
383     }
384 
385     off = EI_NIDENT;
386     while (hdr != e_ident_local && off < hdr_size) {
387         size_t br = read(fd, hdr + off, hdr_size - off);
388         switch (br) {
389         case 0:
390             error_setg(errp, "File too short: %s", filename);
391             goto fail;
392         case -1:
393             error_setg_errno(errp, errno, "Failed to read file: %s",
394                              filename);
395             goto fail;
396         }
397         off += br;
398     }
399 
400 fail:
401     close(fd);
402 }
403 
404 /* return < 0 if error, otherwise the number of bytes loaded in memory */
405 int load_elf(const char *filename,
406              uint64_t (*elf_note_fn)(void *, void *, bool),
407              uint64_t (*translate_fn)(void *, uint64_t),
408              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
409              uint64_t *highaddr, uint32_t *pflags, int big_endian,
410              int elf_machine, int clear_lsb, int data_swab)
411 {
412     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
413                        pentry, lowaddr, highaddr, pflags, big_endian,
414                        elf_machine, clear_lsb, data_swab, NULL);
415 }
416 
417 /* return < 0 if error, otherwise the number of bytes loaded in memory */
418 int load_elf_as(const char *filename,
419                 uint64_t (*elf_note_fn)(void *, void *, bool),
420                 uint64_t (*translate_fn)(void *, uint64_t),
421                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
422                 uint64_t *highaddr, uint32_t *pflags, int big_endian,
423                 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as)
424 {
425     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
426                         pentry, lowaddr, highaddr, pflags, big_endian,
427                         elf_machine, clear_lsb, data_swab, as, true);
428 }
429 
430 /* return < 0 if error, otherwise the number of bytes loaded in memory */
431 int load_elf_ram(const char *filename,
432                  uint64_t (*elf_note_fn)(void *, void *, bool),
433                  uint64_t (*translate_fn)(void *, uint64_t),
434                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
435                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
436                  int elf_machine, int clear_lsb, int data_swab,
437                  AddressSpace *as, bool load_rom)
438 {
439     return load_elf_ram_sym(filename, elf_note_fn,
440                             translate_fn, translate_opaque,
441                             pentry, lowaddr, highaddr, pflags, big_endian,
442                             elf_machine, clear_lsb, data_swab, as,
443                             load_rom, NULL);
444 }
445 
446 /* return < 0 if error, otherwise the number of bytes loaded in memory */
447 int load_elf_ram_sym(const char *filename,
448                      uint64_t (*elf_note_fn)(void *, void *, bool),
449                      uint64_t (*translate_fn)(void *, uint64_t),
450                      void *translate_opaque, uint64_t *pentry,
451                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
452                      int big_endian, int elf_machine,
453                      int clear_lsb, int data_swab,
454                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
455 {
456     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
457     uint8_t e_ident[EI_NIDENT];
458 
459     fd = open(filename, O_RDONLY | O_BINARY);
460     if (fd < 0) {
461         perror(filename);
462         return -1;
463     }
464     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
465         goto fail;
466     if (e_ident[0] != ELFMAG0 ||
467         e_ident[1] != ELFMAG1 ||
468         e_ident[2] != ELFMAG2 ||
469         e_ident[3] != ELFMAG3) {
470         ret = ELF_LOAD_NOT_ELF;
471         goto fail;
472     }
473 #ifdef HOST_WORDS_BIGENDIAN
474     data_order = ELFDATA2MSB;
475 #else
476     data_order = ELFDATA2LSB;
477 #endif
478     must_swab = data_order != e_ident[EI_DATA];
479     if (big_endian) {
480         target_data_order = ELFDATA2MSB;
481     } else {
482         target_data_order = ELFDATA2LSB;
483     }
484 
485     if (target_data_order != e_ident[EI_DATA]) {
486         ret = ELF_LOAD_WRONG_ENDIAN;
487         goto fail;
488     }
489 
490     lseek(fd, 0, SEEK_SET);
491     if (e_ident[EI_CLASS] == ELFCLASS64) {
492         ret = load_elf64(filename, fd, elf_note_fn,
493                          translate_fn, translate_opaque, must_swab,
494                          pentry, lowaddr, highaddr, pflags, elf_machine,
495                          clear_lsb, data_swab, as, load_rom, sym_cb);
496     } else {
497         ret = load_elf32(filename, fd, elf_note_fn,
498                          translate_fn, translate_opaque, must_swab,
499                          pentry, lowaddr, highaddr, pflags, elf_machine,
500                          clear_lsb, data_swab, as, load_rom, sym_cb);
501     }
502 
503  fail:
504     close(fd);
505     return ret;
506 }
507 
508 static void bswap_uboot_header(uboot_image_header_t *hdr)
509 {
510 #ifndef HOST_WORDS_BIGENDIAN
511     bswap32s(&hdr->ih_magic);
512     bswap32s(&hdr->ih_hcrc);
513     bswap32s(&hdr->ih_time);
514     bswap32s(&hdr->ih_size);
515     bswap32s(&hdr->ih_load);
516     bswap32s(&hdr->ih_ep);
517     bswap32s(&hdr->ih_dcrc);
518 #endif
519 }
520 
521 
522 #define ZALLOC_ALIGNMENT	16
523 
524 static void *zalloc(void *x, unsigned items, unsigned size)
525 {
526     void *p;
527 
528     size *= items;
529     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
530 
531     p = g_malloc(size);
532 
533     return (p);
534 }
535 
536 static void zfree(void *x, void *addr)
537 {
538     g_free(addr);
539 }
540 
541 
542 #define HEAD_CRC	2
543 #define EXTRA_FIELD	4
544 #define ORIG_NAME	8
545 #define COMMENT		0x10
546 #define RESERVED	0xe0
547 
548 #define DEFLATED	8
549 
550 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
551 {
552     z_stream s;
553     ssize_t dstbytes;
554     int r, i, flags;
555 
556     /* skip header */
557     i = 10;
558     flags = src[3];
559     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
560         puts ("Error: Bad gzipped data\n");
561         return -1;
562     }
563     if ((flags & EXTRA_FIELD) != 0)
564         i = 12 + src[10] + (src[11] << 8);
565     if ((flags & ORIG_NAME) != 0)
566         while (src[i++] != 0)
567             ;
568     if ((flags & COMMENT) != 0)
569         while (src[i++] != 0)
570             ;
571     if ((flags & HEAD_CRC) != 0)
572         i += 2;
573     if (i >= srclen) {
574         puts ("Error: gunzip out of data in header\n");
575         return -1;
576     }
577 
578     s.zalloc = zalloc;
579     s.zfree = zfree;
580 
581     r = inflateInit2(&s, -MAX_WBITS);
582     if (r != Z_OK) {
583         printf ("Error: inflateInit2() returned %d\n", r);
584         return (-1);
585     }
586     s.next_in = src + i;
587     s.avail_in = srclen - i;
588     s.next_out = dst;
589     s.avail_out = dstlen;
590     r = inflate(&s, Z_FINISH);
591     if (r != Z_OK && r != Z_STREAM_END) {
592         printf ("Error: inflate() returned %d\n", r);
593         return -1;
594     }
595     dstbytes = s.next_out - (unsigned char *) dst;
596     inflateEnd(&s);
597 
598     return dstbytes;
599 }
600 
601 /* Load a U-Boot image.  */
602 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
603                             int *is_linux, uint8_t image_type,
604                             uint64_t (*translate_fn)(void *, uint64_t),
605                             void *translate_opaque, AddressSpace *as)
606 {
607     int fd;
608     int size;
609     hwaddr address;
610     uboot_image_header_t h;
611     uboot_image_header_t *hdr = &h;
612     uint8_t *data = NULL;
613     int ret = -1;
614     int do_uncompress = 0;
615 
616     fd = open(filename, O_RDONLY | O_BINARY);
617     if (fd < 0)
618         return -1;
619 
620     size = read(fd, hdr, sizeof(uboot_image_header_t));
621     if (size < sizeof(uboot_image_header_t)) {
622         goto out;
623     }
624 
625     bswap_uboot_header(hdr);
626 
627     if (hdr->ih_magic != IH_MAGIC)
628         goto out;
629 
630     if (hdr->ih_type != image_type) {
631         if (!(image_type == IH_TYPE_KERNEL &&
632             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
633             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
634                     image_type);
635             goto out;
636         }
637     }
638 
639     /* TODO: Implement other image types.  */
640     switch (hdr->ih_type) {
641     case IH_TYPE_KERNEL_NOLOAD:
642         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
643             fprintf(stderr, "this image format (kernel_noload) cannot be "
644                     "loaded on this machine type");
645             goto out;
646         }
647 
648         hdr->ih_load = *loadaddr + sizeof(*hdr);
649         hdr->ih_ep += hdr->ih_load;
650         /* fall through */
651     case IH_TYPE_KERNEL:
652         address = hdr->ih_load;
653         if (translate_fn) {
654             address = translate_fn(translate_opaque, address);
655         }
656         if (loadaddr) {
657             *loadaddr = hdr->ih_load;
658         }
659 
660         switch (hdr->ih_comp) {
661         case IH_COMP_NONE:
662             break;
663         case IH_COMP_GZIP:
664             do_uncompress = 1;
665             break;
666         default:
667             fprintf(stderr,
668                     "Unable to load u-boot images with compression type %d\n",
669                     hdr->ih_comp);
670             goto out;
671         }
672 
673         if (ep) {
674             *ep = hdr->ih_ep;
675         }
676 
677         /* TODO: Check CPU type.  */
678         if (is_linux) {
679             if (hdr->ih_os == IH_OS_LINUX) {
680                 *is_linux = 1;
681             } else {
682                 *is_linux = 0;
683             }
684         }
685 
686         break;
687     case IH_TYPE_RAMDISK:
688         address = *loadaddr;
689         break;
690     default:
691         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
692         goto out;
693     }
694 
695     data = g_malloc(hdr->ih_size);
696 
697     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
698         fprintf(stderr, "Error reading file\n");
699         goto out;
700     }
701 
702     if (do_uncompress) {
703         uint8_t *compressed_data;
704         size_t max_bytes;
705         ssize_t bytes;
706 
707         compressed_data = data;
708         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
709         data = g_malloc(max_bytes);
710 
711         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
712         g_free(compressed_data);
713         if (bytes < 0) {
714             fprintf(stderr, "Unable to decompress gzipped image!\n");
715             goto out;
716         }
717         hdr->ih_size = bytes;
718     }
719 
720     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
721 
722     ret = hdr->ih_size;
723 
724 out:
725     g_free(data);
726     close(fd);
727     return ret;
728 }
729 
730 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
731                 int *is_linux,
732                 uint64_t (*translate_fn)(void *, uint64_t),
733                 void *translate_opaque)
734 {
735     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
736                             translate_fn, translate_opaque, NULL);
737 }
738 
739 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
740                    int *is_linux,
741                    uint64_t (*translate_fn)(void *, uint64_t),
742                    void *translate_opaque, AddressSpace *as)
743 {
744     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
745                             translate_fn, translate_opaque, as);
746 }
747 
748 /* Load a ramdisk.  */
749 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
750 {
751     return load_ramdisk_as(filename, addr, max_sz, NULL);
752 }
753 
754 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
755                     AddressSpace *as)
756 {
757     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
758                             NULL, NULL, as);
759 }
760 
761 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
762 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
763                               uint8_t **buffer)
764 {
765     uint8_t *compressed_data = NULL;
766     uint8_t *data = NULL;
767     gsize len;
768     ssize_t bytes;
769     int ret = -1;
770 
771     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
772                              NULL)) {
773         goto out;
774     }
775 
776     /* Is it a gzip-compressed file? */
777     if (len < 2 ||
778         compressed_data[0] != 0x1f ||
779         compressed_data[1] != 0x8b) {
780         goto out;
781     }
782 
783     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
784         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
785     }
786 
787     data = g_malloc(max_sz);
788     bytes = gunzip(data, max_sz, compressed_data, len);
789     if (bytes < 0) {
790         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
791                 filename);
792         goto out;
793     }
794 
795     /* trim to actual size and return to caller */
796     *buffer = g_realloc(data, bytes);
797     ret = bytes;
798     /* ownership has been transferred to caller */
799     data = NULL;
800 
801  out:
802     g_free(compressed_data);
803     g_free(data);
804     return ret;
805 }
806 
807 /* Load a gzip-compressed kernel. */
808 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
809 {
810     int bytes;
811     uint8_t *data;
812 
813     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
814     if (bytes != -1) {
815         rom_add_blob_fixed(filename, data, bytes, addr);
816         g_free(data);
817     }
818     return bytes;
819 }
820 
821 /*
822  * Functions for reboot-persistent memory regions.
823  *  - used for vga bios and option roms.
824  *  - also linux kernel (-kernel / -initrd).
825  */
826 
827 typedef struct Rom Rom;
828 
829 struct Rom {
830     char *name;
831     char *path;
832 
833     /* datasize is the amount of memory allocated in "data". If datasize is less
834      * than romsize, it means that the area from datasize to romsize is filled
835      * with zeros.
836      */
837     size_t romsize;
838     size_t datasize;
839 
840     uint8_t *data;
841     MemoryRegion *mr;
842     AddressSpace *as;
843     int isrom;
844     char *fw_dir;
845     char *fw_file;
846     GMappedFile *mapped_file;
847 
848     bool committed;
849 
850     hwaddr addr;
851     QTAILQ_ENTRY(Rom) next;
852 };
853 
854 static FWCfgState *fw_cfg;
855 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
856 
857 /*
858  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
859  * rom_add_elf_program())
860  */
861 static void rom_free_data(Rom *rom)
862 {
863     if (rom->mapped_file) {
864         g_mapped_file_unref(rom->mapped_file);
865         rom->mapped_file = NULL;
866     } else {
867         g_free(rom->data);
868     }
869 
870     rom->data = NULL;
871 }
872 
873 static void rom_free(Rom *rom)
874 {
875     rom_free_data(rom);
876     g_free(rom->path);
877     g_free(rom->name);
878     g_free(rom->fw_dir);
879     g_free(rom->fw_file);
880     g_free(rom);
881 }
882 
883 static inline bool rom_order_compare(Rom *rom, Rom *item)
884 {
885     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
886            (rom->as == item->as && rom->addr >= item->addr);
887 }
888 
889 static void rom_insert(Rom *rom)
890 {
891     Rom *item;
892 
893     if (roms_loaded) {
894         hw_error ("ROM images must be loaded at startup\n");
895     }
896 
897     /* The user didn't specify an address space, this is the default */
898     if (!rom->as) {
899         rom->as = &address_space_memory;
900     }
901 
902     rom->committed = false;
903 
904     /* List is ordered by load address in the same address space */
905     QTAILQ_FOREACH(item, &roms, next) {
906         if (rom_order_compare(rom, item)) {
907             continue;
908         }
909         QTAILQ_INSERT_BEFORE(item, rom, next);
910         return;
911     }
912     QTAILQ_INSERT_TAIL(&roms, rom, next);
913 }
914 
915 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
916 {
917     if (fw_cfg) {
918         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
919     }
920 }
921 
922 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
923 {
924     void *data;
925 
926     rom->mr = g_malloc(sizeof(*rom->mr));
927     memory_region_init_resizeable_ram(rom->mr, owner, name,
928                                       rom->datasize, rom->romsize,
929                                       fw_cfg_resized,
930                                       &error_fatal);
931     memory_region_set_readonly(rom->mr, ro);
932     vmstate_register_ram_global(rom->mr);
933 
934     data = memory_region_get_ram_ptr(rom->mr);
935     memcpy(data, rom->data, rom->datasize);
936 
937     return data;
938 }
939 
940 int rom_add_file(const char *file, const char *fw_dir,
941                  hwaddr addr, int32_t bootindex,
942                  bool option_rom, MemoryRegion *mr,
943                  AddressSpace *as)
944 {
945     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
946     Rom *rom;
947     int rc, fd = -1;
948     char devpath[100];
949 
950     if (as && mr) {
951         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
952                 "not valid when loading a rom\n");
953         /* We haven't allocated anything so we don't need any cleanup */
954         return -1;
955     }
956 
957     rom = g_malloc0(sizeof(*rom));
958     rom->name = g_strdup(file);
959     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
960     rom->as = as;
961     if (rom->path == NULL) {
962         rom->path = g_strdup(file);
963     }
964 
965     fd = open(rom->path, O_RDONLY | O_BINARY);
966     if (fd == -1) {
967         fprintf(stderr, "Could not open option rom '%s': %s\n",
968                 rom->path, strerror(errno));
969         goto err;
970     }
971 
972     if (fw_dir) {
973         rom->fw_dir  = g_strdup(fw_dir);
974         rom->fw_file = g_strdup(file);
975     }
976     rom->addr     = addr;
977     rom->romsize  = lseek(fd, 0, SEEK_END);
978     if (rom->romsize == -1) {
979         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
980                 rom->name, strerror(errno));
981         goto err;
982     }
983 
984     rom->datasize = rom->romsize;
985     rom->data     = g_malloc0(rom->datasize);
986     lseek(fd, 0, SEEK_SET);
987     rc = read(fd, rom->data, rom->datasize);
988     if (rc != rom->datasize) {
989         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
990                 rom->name, rc, rom->datasize);
991         goto err;
992     }
993     close(fd);
994     rom_insert(rom);
995     if (rom->fw_file && fw_cfg) {
996         const char *basename;
997         char fw_file_name[FW_CFG_MAX_FILE_PATH];
998         void *data;
999 
1000         basename = strrchr(rom->fw_file, '/');
1001         if (basename) {
1002             basename++;
1003         } else {
1004             basename = rom->fw_file;
1005         }
1006         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1007                  basename);
1008         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1009 
1010         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1011             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1012         } else {
1013             data = rom->data;
1014         }
1015 
1016         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1017     } else {
1018         if (mr) {
1019             rom->mr = mr;
1020             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1021         } else {
1022             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1023         }
1024     }
1025 
1026     add_boot_device_path(bootindex, NULL, devpath);
1027     return 0;
1028 
1029 err:
1030     if (fd != -1)
1031         close(fd);
1032 
1033     rom_free(rom);
1034     return -1;
1035 }
1036 
1037 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1038                    size_t max_len, hwaddr addr, const char *fw_file_name,
1039                    FWCfgCallback fw_callback, void *callback_opaque,
1040                    AddressSpace *as, bool read_only)
1041 {
1042     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1043     Rom *rom;
1044     MemoryRegion *mr = NULL;
1045 
1046     rom           = g_malloc0(sizeof(*rom));
1047     rom->name     = g_strdup(name);
1048     rom->as       = as;
1049     rom->addr     = addr;
1050     rom->romsize  = max_len ? max_len : len;
1051     rom->datasize = len;
1052     g_assert(rom->romsize >= rom->datasize);
1053     rom->data     = g_malloc0(rom->datasize);
1054     memcpy(rom->data, blob, len);
1055     rom_insert(rom);
1056     if (fw_file_name && fw_cfg) {
1057         char devpath[100];
1058         void *data;
1059 
1060         if (read_only) {
1061             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1062         } else {
1063             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1064         }
1065 
1066         if (mc->rom_file_has_mr) {
1067             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1068             mr = rom->mr;
1069         } else {
1070             data = rom->data;
1071         }
1072 
1073         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1074                                  fw_callback, NULL, callback_opaque,
1075                                  data, rom->datasize, read_only);
1076     }
1077     return mr;
1078 }
1079 
1080 /* This function is specific for elf program because we don't need to allocate
1081  * all the rom. We just allocate the first part and the rest is just zeros. This
1082  * is why romsize and datasize are different. Also, this function takes its own
1083  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1084  */
1085 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1086                         size_t datasize, size_t romsize, hwaddr addr,
1087                         AddressSpace *as)
1088 {
1089     Rom *rom;
1090 
1091     rom           = g_malloc0(sizeof(*rom));
1092     rom->name     = g_strdup(name);
1093     rom->addr     = addr;
1094     rom->datasize = datasize;
1095     rom->romsize  = romsize;
1096     rom->data     = data;
1097     rom->as       = as;
1098 
1099     if (mapped_file && data) {
1100         g_mapped_file_ref(mapped_file);
1101         rom->mapped_file = mapped_file;
1102     }
1103 
1104     rom_insert(rom);
1105     return 0;
1106 }
1107 
1108 int rom_add_vga(const char *file)
1109 {
1110     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1111 }
1112 
1113 int rom_add_option(const char *file, int32_t bootindex)
1114 {
1115     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1116 }
1117 
1118 static void rom_reset(void *unused)
1119 {
1120     Rom *rom;
1121 
1122     QTAILQ_FOREACH(rom, &roms, next) {
1123         if (rom->fw_file) {
1124             continue;
1125         }
1126         /*
1127          * We don't need to fill in the RAM with ROM data because we'll fill
1128          * the data in during the next incoming migration in all cases.  Note
1129          * that some of those RAMs can actually be modified by the guest.
1130          */
1131         if (runstate_check(RUN_STATE_INMIGRATE)) {
1132             if (rom->data && rom->isrom) {
1133                 /*
1134                  * Free it so that a rom_reset after migration doesn't
1135                  * overwrite a potentially modified 'rom'.
1136                  */
1137                 rom_free_data(rom);
1138             }
1139             continue;
1140         }
1141 
1142         if (rom->data == NULL) {
1143             continue;
1144         }
1145         if (rom->mr) {
1146             void *host = memory_region_get_ram_ptr(rom->mr);
1147             memcpy(host, rom->data, rom->datasize);
1148         } else {
1149             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1150                                     rom->data, rom->datasize);
1151         }
1152         if (rom->isrom) {
1153             /* rom needs to be written only once */
1154             rom_free_data(rom);
1155         }
1156         /*
1157          * The rom loader is really on the same level as firmware in the guest
1158          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1159          * that the instruction cache for that new region is clear, so that the
1160          * CPU definitely fetches its instructions from the just written data.
1161          */
1162         cpu_flush_icache_range(rom->addr, rom->datasize);
1163 
1164         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1165     }
1166 }
1167 
1168 /* Return true if two consecutive ROMs in the ROM list overlap */
1169 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1170 {
1171     if (!last_rom) {
1172         return false;
1173     }
1174     return last_rom->as == this_rom->as &&
1175         last_rom->addr + last_rom->romsize > this_rom->addr;
1176 }
1177 
1178 static const char *rom_as_name(Rom *rom)
1179 {
1180     const char *name = rom->as ? rom->as->name : NULL;
1181     return name ?: "anonymous";
1182 }
1183 
1184 static void rom_print_overlap_error_header(void)
1185 {
1186     error_report("Some ROM regions are overlapping");
1187     error_printf(
1188         "These ROM regions might have been loaded by "
1189         "direct user request or by default.\n"
1190         "They could be BIOS/firmware images, a guest kernel, "
1191         "initrd or some other file loaded into guest memory.\n"
1192         "Check whether you intended to load all this guest code, and "
1193         "whether it has been built to load to the correct addresses.\n");
1194 }
1195 
1196 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1197 {
1198     error_printf(
1199         "\nThe following two regions overlap (in the %s address space):\n",
1200         rom_as_name(rom));
1201     error_printf(
1202         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1203         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1204     error_printf(
1205         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1206         rom->name, rom->addr, rom->addr + rom->romsize);
1207 }
1208 
1209 int rom_check_and_register_reset(void)
1210 {
1211     MemoryRegionSection section;
1212     Rom *rom, *last_rom = NULL;
1213     bool found_overlap = false;
1214 
1215     QTAILQ_FOREACH(rom, &roms, next) {
1216         if (rom->fw_file) {
1217             continue;
1218         }
1219         if (!rom->mr) {
1220             if (roms_overlap(last_rom, rom)) {
1221                 if (!found_overlap) {
1222                     found_overlap = true;
1223                     rom_print_overlap_error_header();
1224                 }
1225                 rom_print_one_overlap_error(last_rom, rom);
1226                 /* Keep going through the list so we report all overlaps */
1227             }
1228             last_rom = rom;
1229         }
1230         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1231                                      rom->addr, 1);
1232         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1233         memory_region_unref(section.mr);
1234     }
1235     if (found_overlap) {
1236         return -1;
1237     }
1238 
1239     qemu_register_reset(rom_reset, NULL);
1240     roms_loaded = 1;
1241     return 0;
1242 }
1243 
1244 void rom_set_fw(FWCfgState *f)
1245 {
1246     fw_cfg = f;
1247 }
1248 
1249 void rom_set_order_override(int order)
1250 {
1251     if (!fw_cfg)
1252         return;
1253     fw_cfg_set_order_override(fw_cfg, order);
1254 }
1255 
1256 void rom_reset_order_override(void)
1257 {
1258     if (!fw_cfg)
1259         return;
1260     fw_cfg_reset_order_override(fw_cfg);
1261 }
1262 
1263 void rom_transaction_begin(void)
1264 {
1265     Rom *rom;
1266 
1267     /* Ignore ROMs added without the transaction API */
1268     QTAILQ_FOREACH(rom, &roms, next) {
1269         rom->committed = true;
1270     }
1271 }
1272 
1273 void rom_transaction_end(bool commit)
1274 {
1275     Rom *rom;
1276     Rom *tmp;
1277 
1278     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1279         if (rom->committed) {
1280             continue;
1281         }
1282         if (commit) {
1283             rom->committed = true;
1284         } else {
1285             QTAILQ_REMOVE(&roms, rom, next);
1286             rom_free(rom);
1287         }
1288     }
1289 }
1290 
1291 static Rom *find_rom(hwaddr addr, size_t size)
1292 {
1293     Rom *rom;
1294 
1295     QTAILQ_FOREACH(rom, &roms, next) {
1296         if (rom->fw_file) {
1297             continue;
1298         }
1299         if (rom->mr) {
1300             continue;
1301         }
1302         if (rom->addr > addr) {
1303             continue;
1304         }
1305         if (rom->addr + rom->romsize < addr + size) {
1306             continue;
1307         }
1308         return rom;
1309     }
1310     return NULL;
1311 }
1312 
1313 /*
1314  * Copies memory from registered ROMs to dest. Any memory that is contained in
1315  * a ROM between addr and addr + size is copied. Note that this can involve
1316  * multiple ROMs, which need not start at addr and need not end at addr + size.
1317  */
1318 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1319 {
1320     hwaddr end = addr + size;
1321     uint8_t *s, *d = dest;
1322     size_t l = 0;
1323     Rom *rom;
1324 
1325     QTAILQ_FOREACH(rom, &roms, next) {
1326         if (rom->fw_file) {
1327             continue;
1328         }
1329         if (rom->mr) {
1330             continue;
1331         }
1332         if (rom->addr + rom->romsize < addr) {
1333             continue;
1334         }
1335         if (rom->addr > end || rom->addr < addr) {
1336             break;
1337         }
1338 
1339         d = dest + (rom->addr - addr);
1340         s = rom->data;
1341         l = rom->datasize;
1342 
1343         if ((d + l) > (dest + size)) {
1344             l = dest - d;
1345         }
1346 
1347         if (l > 0) {
1348             memcpy(d, s, l);
1349         }
1350 
1351         if (rom->romsize > rom->datasize) {
1352             /* If datasize is less than romsize, it means that we didn't
1353              * allocate all the ROM because the trailing data are only zeros.
1354              */
1355 
1356             d += l;
1357             l = rom->romsize - rom->datasize;
1358 
1359             if ((d + l) > (dest + size)) {
1360                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1361                  * overflow.
1362                  */
1363                 l = dest - d;
1364             }
1365 
1366             if (l > 0) {
1367                 memset(d, 0x0, l);
1368             }
1369         }
1370     }
1371 
1372     return (d + l) - dest;
1373 }
1374 
1375 void *rom_ptr(hwaddr addr, size_t size)
1376 {
1377     Rom *rom;
1378 
1379     rom = find_rom(addr, size);
1380     if (!rom || !rom->data)
1381         return NULL;
1382     return rom->data + (addr - rom->addr);
1383 }
1384 
1385 typedef struct FindRomCBData {
1386     size_t size; /* Amount of data we want from ROM, in bytes */
1387     MemoryRegion *mr; /* MR at the unaliased guest addr */
1388     hwaddr xlat; /* Offset of addr within mr */
1389     void *rom; /* Output: rom data pointer, if found */
1390 } FindRomCBData;
1391 
1392 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1393                         hwaddr offset_in_region, void *opaque)
1394 {
1395     FindRomCBData *cbdata = opaque;
1396     hwaddr alias_addr;
1397 
1398     if (mr != cbdata->mr) {
1399         return false;
1400     }
1401 
1402     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1403     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1404     if (!cbdata->rom) {
1405         return false;
1406     }
1407     /* Found a match, stop iterating */
1408     return true;
1409 }
1410 
1411 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1412 {
1413     /*
1414      * Find any ROM data for the given guest address range.  If there
1415      * is a ROM blob then return a pointer to the host memory
1416      * corresponding to 'addr'; otherwise return NULL.
1417      *
1418      * We look not only for ROM blobs that were loaded directly to
1419      * addr, but also for ROM blobs that were loaded to aliases of
1420      * that memory at other addresses within the AddressSpace.
1421      *
1422      * Note that we do not check @as against the 'as' member in the
1423      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1424      * AddressSpace which the rom blob should be written to, whereas
1425      * our @as argument is the AddressSpace which we are (effectively)
1426      * reading from, and the same underlying RAM will often be visible
1427      * in multiple AddressSpaces. (A common example is a ROM blob
1428      * written to the 'system' address space but then read back via a
1429      * CPU's cpu->as pointer.) This does mean we might potentially
1430      * return a false-positive match if a ROM blob was loaded into an
1431      * AS which is entirely separate and distinct from the one we're
1432      * querying, but this issue exists also for rom_ptr() and hasn't
1433      * caused any problems in practice.
1434      */
1435     FlatView *fv;
1436     void *rom;
1437     hwaddr len_unused;
1438     FindRomCBData cbdata = {};
1439 
1440     /* Easy case: there's data at the actual address */
1441     rom = rom_ptr(addr, size);
1442     if (rom) {
1443         return rom;
1444     }
1445 
1446     RCU_READ_LOCK_GUARD();
1447 
1448     fv = address_space_to_flatview(as);
1449     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1450                                    false, MEMTXATTRS_UNSPECIFIED);
1451     if (!cbdata.mr) {
1452         /* Nothing at this address, so there can't be any aliasing */
1453         return NULL;
1454     }
1455     cbdata.size = size;
1456     flatview_for_each_range(fv, find_rom_cb, &cbdata);
1457     return cbdata.rom;
1458 }
1459 
1460 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1461 {
1462     Rom *rom;
1463 
1464     QTAILQ_FOREACH(rom, &roms, next) {
1465         if (rom->mr) {
1466             monitor_printf(mon, "%s"
1467                            " size=0x%06zx name=\"%s\"\n",
1468                            memory_region_name(rom->mr),
1469                            rom->romsize,
1470                            rom->name);
1471         } else if (!rom->fw_file) {
1472             monitor_printf(mon, "addr=" TARGET_FMT_plx
1473                            " size=0x%06zx mem=%s name=\"%s\"\n",
1474                            rom->addr, rom->romsize,
1475                            rom->isrom ? "rom" : "ram",
1476                            rom->name);
1477         } else {
1478             monitor_printf(mon, "fw=%s/%s"
1479                            " size=0x%06zx name=\"%s\"\n",
1480                            rom->fw_dir,
1481                            rom->fw_file,
1482                            rom->romsize,
1483                            rom->name);
1484         }
1485     }
1486 }
1487 
1488 typedef enum HexRecord HexRecord;
1489 enum HexRecord {
1490     DATA_RECORD = 0,
1491     EOF_RECORD,
1492     EXT_SEG_ADDR_RECORD,
1493     START_SEG_ADDR_RECORD,
1494     EXT_LINEAR_ADDR_RECORD,
1495     START_LINEAR_ADDR_RECORD,
1496 };
1497 
1498 /* Each record contains a 16-bit address which is combined with the upper 16
1499  * bits of the implicit "next address" to form a 32-bit address.
1500  */
1501 #define NEXT_ADDR_MASK 0xffff0000
1502 
1503 #define DATA_FIELD_MAX_LEN 0xff
1504 #define LEN_EXCEPT_DATA 0x5
1505 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1506  *       sizeof(checksum) */
1507 typedef struct {
1508     uint8_t byte_count;
1509     uint16_t address;
1510     uint8_t record_type;
1511     uint8_t data[DATA_FIELD_MAX_LEN];
1512     uint8_t checksum;
1513 } HexLine;
1514 
1515 /* return 0 or -1 if error */
1516 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1517                          uint32_t *index, const bool in_process)
1518 {
1519     /* +-------+---------------+-------+---------------------+--------+
1520      * | byte  |               |record |                     |        |
1521      * | count |    address    | type  |        data         |checksum|
1522      * +-------+---------------+-------+---------------------+--------+
1523      * ^       ^               ^       ^                     ^        ^
1524      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1525      */
1526     uint8_t value = 0;
1527     uint32_t idx = *index;
1528     /* ignore space */
1529     if (g_ascii_isspace(c)) {
1530         return true;
1531     }
1532     if (!g_ascii_isxdigit(c) || !in_process) {
1533         return false;
1534     }
1535     value = g_ascii_xdigit_value(c);
1536     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1537     if (idx < 2) {
1538         line->byte_count |= value;
1539     } else if (2 <= idx && idx < 6) {
1540         line->address <<= 4;
1541         line->address += g_ascii_xdigit_value(c);
1542     } else if (6 <= idx && idx < 8) {
1543         line->record_type |= value;
1544     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1545         line->data[(idx - 8) >> 1] |= value;
1546     } else if (8 + 2 * line->byte_count <= idx &&
1547                idx < 10 + 2 * line->byte_count) {
1548         line->checksum |= value;
1549     } else {
1550         return false;
1551     }
1552     *our_checksum += value;
1553     ++(*index);
1554     return true;
1555 }
1556 
1557 typedef struct {
1558     const char *filename;
1559     HexLine line;
1560     uint8_t *bin_buf;
1561     hwaddr *start_addr;
1562     int total_size;
1563     uint32_t next_address_to_write;
1564     uint32_t current_address;
1565     uint32_t current_rom_index;
1566     uint32_t rom_start_address;
1567     AddressSpace *as;
1568     bool complete;
1569 } HexParser;
1570 
1571 /* return size or -1 if error */
1572 static int handle_record_type(HexParser *parser)
1573 {
1574     HexLine *line = &(parser->line);
1575     switch (line->record_type) {
1576     case DATA_RECORD:
1577         parser->current_address =
1578             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1579         /* verify this is a contiguous block of memory */
1580         if (parser->current_address != parser->next_address_to_write) {
1581             if (parser->current_rom_index != 0) {
1582                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1583                                       parser->current_rom_index,
1584                                       parser->rom_start_address, parser->as);
1585             }
1586             parser->rom_start_address = parser->current_address;
1587             parser->current_rom_index = 0;
1588         }
1589 
1590         /* copy from line buffer to output bin_buf */
1591         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1592                line->byte_count);
1593         parser->current_rom_index += line->byte_count;
1594         parser->total_size += line->byte_count;
1595         /* save next address to write */
1596         parser->next_address_to_write =
1597             parser->current_address + line->byte_count;
1598         break;
1599 
1600     case EOF_RECORD:
1601         if (parser->current_rom_index != 0) {
1602             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1603                                   parser->current_rom_index,
1604                                   parser->rom_start_address, parser->as);
1605         }
1606         parser->complete = true;
1607         return parser->total_size;
1608     case EXT_SEG_ADDR_RECORD:
1609     case EXT_LINEAR_ADDR_RECORD:
1610         if (line->byte_count != 2 && line->address != 0) {
1611             return -1;
1612         }
1613 
1614         if (parser->current_rom_index != 0) {
1615             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1616                                   parser->current_rom_index,
1617                                   parser->rom_start_address, parser->as);
1618         }
1619 
1620         /* save next address to write,
1621          * in case of non-contiguous block of memory */
1622         parser->next_address_to_write = (line->data[0] << 12) |
1623                                         (line->data[1] << 4);
1624         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1625             parser->next_address_to_write <<= 12;
1626         }
1627 
1628         parser->rom_start_address = parser->next_address_to_write;
1629         parser->current_rom_index = 0;
1630         break;
1631 
1632     case START_SEG_ADDR_RECORD:
1633         if (line->byte_count != 4 && line->address != 0) {
1634             return -1;
1635         }
1636 
1637         /* x86 16-bit CS:IP segmented addressing */
1638         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1639                                 ((line->data[2] << 8) | line->data[3]);
1640         break;
1641 
1642     case START_LINEAR_ADDR_RECORD:
1643         if (line->byte_count != 4 && line->address != 0) {
1644             return -1;
1645         }
1646 
1647         *(parser->start_addr) = ldl_be_p(line->data);
1648         break;
1649 
1650     default:
1651         return -1;
1652     }
1653 
1654     return parser->total_size;
1655 }
1656 
1657 /* return size or -1 if error */
1658 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1659                           size_t hex_blob_size, AddressSpace *as)
1660 {
1661     bool in_process = false; /* avoid re-enter and
1662                               * check whether record begin with ':' */
1663     uint8_t *end = hex_blob + hex_blob_size;
1664     uint8_t our_checksum = 0;
1665     uint32_t record_index = 0;
1666     HexParser parser = {
1667         .filename = filename,
1668         .bin_buf = g_malloc(hex_blob_size),
1669         .start_addr = addr,
1670         .as = as,
1671         .complete = false
1672     };
1673 
1674     rom_transaction_begin();
1675 
1676     for (; hex_blob < end && !parser.complete; ++hex_blob) {
1677         switch (*hex_blob) {
1678         case '\r':
1679         case '\n':
1680             if (!in_process) {
1681                 break;
1682             }
1683 
1684             in_process = false;
1685             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1686                     record_index ||
1687                 our_checksum != 0) {
1688                 parser.total_size = -1;
1689                 goto out;
1690             }
1691 
1692             if (handle_record_type(&parser) == -1) {
1693                 parser.total_size = -1;
1694                 goto out;
1695             }
1696             break;
1697 
1698         /* start of a new record. */
1699         case ':':
1700             memset(&parser.line, 0, sizeof(HexLine));
1701             in_process = true;
1702             record_index = 0;
1703             break;
1704 
1705         /* decoding lines */
1706         default:
1707             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1708                               &record_index, in_process)) {
1709                 parser.total_size = -1;
1710                 goto out;
1711             }
1712             break;
1713         }
1714     }
1715 
1716 out:
1717     g_free(parser.bin_buf);
1718     rom_transaction_end(parser.total_size != -1);
1719     return parser.total_size;
1720 }
1721 
1722 /* return size or -1 if error */
1723 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1724 {
1725     gsize hex_blob_size;
1726     gchar *hex_blob;
1727     int total_size = 0;
1728 
1729     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1730         return -1;
1731     }
1732 
1733     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1734                                 hex_blob_size, as);
1735 
1736     g_free(hex_blob);
1737     return total_size;
1738 }
1739