xref: /openbmc/qemu/hw/core/loader.c (revision 8e6fe6b8bab4716b4adf99a9ab52eaa82464b37e)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
48 #include "hw/hw.h"
49 #include "disas/disas.h"
50 #include "monitor/monitor.h"
51 #include "sysemu/sysemu.h"
52 #include "uboot_image.h"
53 #include "hw/loader.h"
54 #include "hw/nvram/fw_cfg.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "hw/boards.h"
58 #include "qemu/cutils.h"
59 
60 #include <zlib.h>
61 
62 static int roms_loaded;
63 
64 /* return the size or -1 if error */
65 int64_t get_image_size(const char *filename)
66 {
67     int fd;
68     int64_t size;
69     fd = open(filename, O_RDONLY | O_BINARY);
70     if (fd < 0)
71         return -1;
72     size = lseek(fd, 0, SEEK_END);
73     close(fd);
74     return size;
75 }
76 
77 /* return the size or -1 if error */
78 ssize_t load_image_size(const char *filename, void *addr, size_t size)
79 {
80     int fd;
81     ssize_t actsize, l = 0;
82 
83     fd = open(filename, O_RDONLY | O_BINARY);
84     if (fd < 0) {
85         return -1;
86     }
87 
88     while ((actsize = read(fd, addr + l, size - l)) > 0) {
89         l += actsize;
90     }
91 
92     close(fd);
93 
94     return actsize < 0 ? -1 : l;
95 }
96 
97 /* read()-like version */
98 ssize_t read_targphys(const char *name,
99                       int fd, hwaddr dst_addr, size_t nbytes)
100 {
101     uint8_t *buf;
102     ssize_t did;
103 
104     buf = g_malloc(nbytes);
105     did = read(fd, buf, nbytes);
106     if (did > 0)
107         rom_add_blob_fixed("read", buf, did, dst_addr);
108     g_free(buf);
109     return did;
110 }
111 
112 int load_image_targphys(const char *filename,
113                         hwaddr addr, uint64_t max_sz)
114 {
115     return load_image_targphys_as(filename, addr, max_sz, NULL);
116 }
117 
118 /* return the size or -1 if error */
119 int load_image_targphys_as(const char *filename,
120                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
121 {
122     int size;
123 
124     size = get_image_size(filename);
125     if (size < 0 || size > max_sz) {
126         return -1;
127     }
128     if (size > 0) {
129         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
130             return -1;
131         }
132     }
133     return size;
134 }
135 
136 int load_image_mr(const char *filename, MemoryRegion *mr)
137 {
138     int size;
139 
140     if (!memory_access_is_direct(mr, false)) {
141         /* Can only load an image into RAM or ROM */
142         return -1;
143     }
144 
145     size = get_image_size(filename);
146 
147     if (size < 0 || size > memory_region_size(mr)) {
148         return -1;
149     }
150     if (size > 0) {
151         if (rom_add_file_mr(filename, mr, -1) < 0) {
152             return -1;
153         }
154     }
155     return size;
156 }
157 
158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
159                       const char *source)
160 {
161     const char *nulp;
162     char *ptr;
163 
164     if (buf_size <= 0) return;
165     nulp = memchr(source, 0, buf_size);
166     if (nulp) {
167         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
168     } else {
169         rom_add_blob_fixed(name, source, buf_size, dest);
170         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
171         *ptr = 0;
172     }
173 }
174 
175 /* A.OUT loader */
176 
177 struct exec
178 {
179   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
180   uint32_t a_text;   /* length of text, in bytes */
181   uint32_t a_data;   /* length of data, in bytes */
182   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
183   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
184   uint32_t a_entry;  /* start address */
185   uint32_t a_trsize; /* length of relocation info for text, in bytes */
186   uint32_t a_drsize; /* length of relocation info for data, in bytes */
187 };
188 
189 static void bswap_ahdr(struct exec *e)
190 {
191     bswap32s(&e->a_info);
192     bswap32s(&e->a_text);
193     bswap32s(&e->a_data);
194     bswap32s(&e->a_bss);
195     bswap32s(&e->a_syms);
196     bswap32s(&e->a_entry);
197     bswap32s(&e->a_trsize);
198     bswap32s(&e->a_drsize);
199 }
200 
201 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
202 #define OMAGIC 0407
203 #define NMAGIC 0410
204 #define ZMAGIC 0413
205 #define QMAGIC 0314
206 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
207 #define N_TXTOFF(x)							\
208     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
209      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
212 
213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
214 
215 #define N_DATADDR(x, target_page_size) \
216     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
217      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
218 
219 
220 int load_aout(const char *filename, hwaddr addr, int max_sz,
221               int bswap_needed, hwaddr target_page_size)
222 {
223     int fd;
224     ssize_t size, ret;
225     struct exec e;
226     uint32_t magic;
227 
228     fd = open(filename, O_RDONLY | O_BINARY);
229     if (fd < 0)
230         return -1;
231 
232     size = read(fd, &e, sizeof(e));
233     if (size < 0)
234         goto fail;
235 
236     if (bswap_needed) {
237         bswap_ahdr(&e);
238     }
239 
240     magic = N_MAGIC(e);
241     switch (magic) {
242     case ZMAGIC:
243     case QMAGIC:
244     case OMAGIC:
245         if (e.a_text + e.a_data > max_sz)
246             goto fail;
247         lseek(fd, N_TXTOFF(e), SEEK_SET);
248         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
249         if (size < 0)
250             goto fail;
251         break;
252     case NMAGIC:
253         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
254             goto fail;
255         lseek(fd, N_TXTOFF(e), SEEK_SET);
256         size = read_targphys(filename, fd, addr, e.a_text);
257         if (size < 0)
258             goto fail;
259         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
260                             e.a_data);
261         if (ret < 0)
262             goto fail;
263         size += ret;
264         break;
265     default:
266         goto fail;
267     }
268     close(fd);
269     return size;
270  fail:
271     close(fd);
272     return -1;
273 }
274 
275 /* ELF loader */
276 
277 static void *load_at(int fd, off_t offset, size_t size)
278 {
279     void *ptr;
280     if (lseek(fd, offset, SEEK_SET) < 0)
281         return NULL;
282     ptr = g_malloc(size);
283     if (read(fd, ptr, size) != size) {
284         g_free(ptr);
285         return NULL;
286     }
287     return ptr;
288 }
289 
290 #ifdef ELF_CLASS
291 #undef ELF_CLASS
292 #endif
293 
294 #define ELF_CLASS   ELFCLASS32
295 #include "elf.h"
296 
297 #define SZ		32
298 #define elf_word        uint32_t
299 #define elf_sword        int32_t
300 #define bswapSZs	bswap32s
301 #include "hw/elf_ops.h"
302 
303 #undef elfhdr
304 #undef elf_phdr
305 #undef elf_shdr
306 #undef elf_sym
307 #undef elf_rela
308 #undef elf_note
309 #undef elf_word
310 #undef elf_sword
311 #undef bswapSZs
312 #undef SZ
313 #define elfhdr		elf64_hdr
314 #define elf_phdr	elf64_phdr
315 #define elf_note	elf64_note
316 #define elf_shdr	elf64_shdr
317 #define elf_sym		elf64_sym
318 #define elf_rela        elf64_rela
319 #define elf_word        uint64_t
320 #define elf_sword        int64_t
321 #define bswapSZs	bswap64s
322 #define SZ		64
323 #include "hw/elf_ops.h"
324 
325 const char *load_elf_strerror(int error)
326 {
327     switch (error) {
328     case 0:
329         return "No error";
330     case ELF_LOAD_FAILED:
331         return "Failed to load ELF";
332     case ELF_LOAD_NOT_ELF:
333         return "The image is not ELF";
334     case ELF_LOAD_WRONG_ARCH:
335         return "The image is from incompatible architecture";
336     case ELF_LOAD_WRONG_ENDIAN:
337         return "The image has incorrect endianness";
338     default:
339         return "Unknown error";
340     }
341 }
342 
343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
344 {
345     int fd;
346     uint8_t e_ident_local[EI_NIDENT];
347     uint8_t *e_ident;
348     size_t hdr_size, off;
349     bool is64l;
350 
351     if (!hdr) {
352         hdr = e_ident_local;
353     }
354     e_ident = hdr;
355 
356     fd = open(filename, O_RDONLY | O_BINARY);
357     if (fd < 0) {
358         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
359         return;
360     }
361     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
362         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
363         goto fail;
364     }
365     if (e_ident[0] != ELFMAG0 ||
366         e_ident[1] != ELFMAG1 ||
367         e_ident[2] != ELFMAG2 ||
368         e_ident[3] != ELFMAG3) {
369         error_setg(errp, "Bad ELF magic");
370         goto fail;
371     }
372 
373     is64l = e_ident[EI_CLASS] == ELFCLASS64;
374     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
375     if (is64) {
376         *is64 = is64l;
377     }
378 
379     off = EI_NIDENT;
380     while (hdr != e_ident_local && off < hdr_size) {
381         size_t br = read(fd, hdr + off, hdr_size - off);
382         switch (br) {
383         case 0:
384             error_setg(errp, "File too short: %s", filename);
385             goto fail;
386         case -1:
387             error_setg_errno(errp, errno, "Failed to read file: %s",
388                              filename);
389             goto fail;
390         }
391         off += br;
392     }
393 
394 fail:
395     close(fd);
396 }
397 
398 /* return < 0 if error, otherwise the number of bytes loaded in memory */
399 int load_elf(const char *filename,
400              uint64_t (*elf_note_fn)(void *, void *, bool),
401              uint64_t (*translate_fn)(void *, uint64_t),
402              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
403              uint64_t *highaddr, int big_endian, int elf_machine,
404              int clear_lsb, int data_swab)
405 {
406     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
407                        pentry, lowaddr, highaddr, big_endian, elf_machine,
408                        clear_lsb, data_swab, NULL);
409 }
410 
411 /* return < 0 if error, otherwise the number of bytes loaded in memory */
412 int load_elf_as(const char *filename,
413                 uint64_t (*elf_note_fn)(void *, void *, bool),
414                 uint64_t (*translate_fn)(void *, uint64_t),
415                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
416                 uint64_t *highaddr, int big_endian, int elf_machine,
417                 int clear_lsb, int data_swab, AddressSpace *as)
418 {
419     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
420                         pentry, lowaddr, highaddr, big_endian, elf_machine,
421                         clear_lsb, data_swab, as, true);
422 }
423 
424 /* return < 0 if error, otherwise the number of bytes loaded in memory */
425 int load_elf_ram(const char *filename,
426                  uint64_t (*elf_note_fn)(void *, void *, bool),
427                  uint64_t (*translate_fn)(void *, uint64_t),
428                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
429                  uint64_t *highaddr, int big_endian, int elf_machine,
430                  int clear_lsb, int data_swab, AddressSpace *as,
431                  bool load_rom)
432 {
433     return load_elf_ram_sym(filename, elf_note_fn,
434                             translate_fn, translate_opaque,
435                             pentry, lowaddr, highaddr, big_endian,
436                             elf_machine, clear_lsb, data_swab, as,
437                             load_rom, NULL);
438 }
439 
440 /* return < 0 if error, otherwise the number of bytes loaded in memory */
441 int load_elf_ram_sym(const char *filename,
442                      uint64_t (*elf_note_fn)(void *, void *, bool),
443                      uint64_t (*translate_fn)(void *, uint64_t),
444                      void *translate_opaque, uint64_t *pentry,
445                      uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
446                      int elf_machine, int clear_lsb, int data_swab,
447                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
448 {
449     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
450     uint8_t e_ident[EI_NIDENT];
451 
452     fd = open(filename, O_RDONLY | O_BINARY);
453     if (fd < 0) {
454         perror(filename);
455         return -1;
456     }
457     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
458         goto fail;
459     if (e_ident[0] != ELFMAG0 ||
460         e_ident[1] != ELFMAG1 ||
461         e_ident[2] != ELFMAG2 ||
462         e_ident[3] != ELFMAG3) {
463         ret = ELF_LOAD_NOT_ELF;
464         goto fail;
465     }
466 #ifdef HOST_WORDS_BIGENDIAN
467     data_order = ELFDATA2MSB;
468 #else
469     data_order = ELFDATA2LSB;
470 #endif
471     must_swab = data_order != e_ident[EI_DATA];
472     if (big_endian) {
473         target_data_order = ELFDATA2MSB;
474     } else {
475         target_data_order = ELFDATA2LSB;
476     }
477 
478     if (target_data_order != e_ident[EI_DATA]) {
479         ret = ELF_LOAD_WRONG_ENDIAN;
480         goto fail;
481     }
482 
483     lseek(fd, 0, SEEK_SET);
484     if (e_ident[EI_CLASS] == ELFCLASS64) {
485         ret = load_elf64(filename, fd, elf_note_fn,
486                          translate_fn, translate_opaque, must_swab,
487                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
488                          data_swab, as, load_rom, sym_cb);
489     } else {
490         ret = load_elf32(filename, fd, elf_note_fn,
491                          translate_fn, translate_opaque, must_swab,
492                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
493                          data_swab, as, load_rom, sym_cb);
494     }
495 
496  fail:
497     close(fd);
498     return ret;
499 }
500 
501 static void bswap_uboot_header(uboot_image_header_t *hdr)
502 {
503 #ifndef HOST_WORDS_BIGENDIAN
504     bswap32s(&hdr->ih_magic);
505     bswap32s(&hdr->ih_hcrc);
506     bswap32s(&hdr->ih_time);
507     bswap32s(&hdr->ih_size);
508     bswap32s(&hdr->ih_load);
509     bswap32s(&hdr->ih_ep);
510     bswap32s(&hdr->ih_dcrc);
511 #endif
512 }
513 
514 
515 #define ZALLOC_ALIGNMENT	16
516 
517 static void *zalloc(void *x, unsigned items, unsigned size)
518 {
519     void *p;
520 
521     size *= items;
522     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
523 
524     p = g_malloc(size);
525 
526     return (p);
527 }
528 
529 static void zfree(void *x, void *addr)
530 {
531     g_free(addr);
532 }
533 
534 
535 #define HEAD_CRC	2
536 #define EXTRA_FIELD	4
537 #define ORIG_NAME	8
538 #define COMMENT		0x10
539 #define RESERVED	0xe0
540 
541 #define DEFLATED	8
542 
543 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
544 {
545     z_stream s;
546     ssize_t dstbytes;
547     int r, i, flags;
548 
549     /* skip header */
550     i = 10;
551     flags = src[3];
552     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
553         puts ("Error: Bad gzipped data\n");
554         return -1;
555     }
556     if ((flags & EXTRA_FIELD) != 0)
557         i = 12 + src[10] + (src[11] << 8);
558     if ((flags & ORIG_NAME) != 0)
559         while (src[i++] != 0)
560             ;
561     if ((flags & COMMENT) != 0)
562         while (src[i++] != 0)
563             ;
564     if ((flags & HEAD_CRC) != 0)
565         i += 2;
566     if (i >= srclen) {
567         puts ("Error: gunzip out of data in header\n");
568         return -1;
569     }
570 
571     s.zalloc = zalloc;
572     s.zfree = zfree;
573 
574     r = inflateInit2(&s, -MAX_WBITS);
575     if (r != Z_OK) {
576         printf ("Error: inflateInit2() returned %d\n", r);
577         return (-1);
578     }
579     s.next_in = src + i;
580     s.avail_in = srclen - i;
581     s.next_out = dst;
582     s.avail_out = dstlen;
583     r = inflate(&s, Z_FINISH);
584     if (r != Z_OK && r != Z_STREAM_END) {
585         printf ("Error: inflate() returned %d\n", r);
586         return -1;
587     }
588     dstbytes = s.next_out - (unsigned char *) dst;
589     inflateEnd(&s);
590 
591     return dstbytes;
592 }
593 
594 /* Load a U-Boot image.  */
595 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
596                             int *is_linux, uint8_t image_type,
597                             uint64_t (*translate_fn)(void *, uint64_t),
598                             void *translate_opaque, AddressSpace *as)
599 {
600     int fd;
601     int size;
602     hwaddr address;
603     uboot_image_header_t h;
604     uboot_image_header_t *hdr = &h;
605     uint8_t *data = NULL;
606     int ret = -1;
607     int do_uncompress = 0;
608 
609     fd = open(filename, O_RDONLY | O_BINARY);
610     if (fd < 0)
611         return -1;
612 
613     size = read(fd, hdr, sizeof(uboot_image_header_t));
614     if (size < sizeof(uboot_image_header_t)) {
615         goto out;
616     }
617 
618     bswap_uboot_header(hdr);
619 
620     if (hdr->ih_magic != IH_MAGIC)
621         goto out;
622 
623     if (hdr->ih_type != image_type) {
624         if (!(image_type == IH_TYPE_KERNEL &&
625             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
626             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
627                     image_type);
628             goto out;
629         }
630     }
631 
632     /* TODO: Implement other image types.  */
633     switch (hdr->ih_type) {
634     case IH_TYPE_KERNEL_NOLOAD:
635         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
636             fprintf(stderr, "this image format (kernel_noload) cannot be "
637                     "loaded on this machine type");
638             goto out;
639         }
640 
641         hdr->ih_load = *loadaddr + sizeof(*hdr);
642         hdr->ih_ep += hdr->ih_load;
643         /* fall through */
644     case IH_TYPE_KERNEL:
645         address = hdr->ih_load;
646         if (translate_fn) {
647             address = translate_fn(translate_opaque, address);
648         }
649         if (loadaddr) {
650             *loadaddr = hdr->ih_load;
651         }
652 
653         switch (hdr->ih_comp) {
654         case IH_COMP_NONE:
655             break;
656         case IH_COMP_GZIP:
657             do_uncompress = 1;
658             break;
659         default:
660             fprintf(stderr,
661                     "Unable to load u-boot images with compression type %d\n",
662                     hdr->ih_comp);
663             goto out;
664         }
665 
666         if (ep) {
667             *ep = hdr->ih_ep;
668         }
669 
670         /* TODO: Check CPU type.  */
671         if (is_linux) {
672             if (hdr->ih_os == IH_OS_LINUX) {
673                 *is_linux = 1;
674             } else {
675                 *is_linux = 0;
676             }
677         }
678 
679         break;
680     case IH_TYPE_RAMDISK:
681         address = *loadaddr;
682         break;
683     default:
684         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
685         goto out;
686     }
687 
688     data = g_malloc(hdr->ih_size);
689 
690     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
691         fprintf(stderr, "Error reading file\n");
692         goto out;
693     }
694 
695     if (do_uncompress) {
696         uint8_t *compressed_data;
697         size_t max_bytes;
698         ssize_t bytes;
699 
700         compressed_data = data;
701         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
702         data = g_malloc(max_bytes);
703 
704         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
705         g_free(compressed_data);
706         if (bytes < 0) {
707             fprintf(stderr, "Unable to decompress gzipped image!\n");
708             goto out;
709         }
710         hdr->ih_size = bytes;
711     }
712 
713     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
714 
715     ret = hdr->ih_size;
716 
717 out:
718     g_free(data);
719     close(fd);
720     return ret;
721 }
722 
723 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
724                 int *is_linux,
725                 uint64_t (*translate_fn)(void *, uint64_t),
726                 void *translate_opaque)
727 {
728     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
729                             translate_fn, translate_opaque, NULL);
730 }
731 
732 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
733                    int *is_linux,
734                    uint64_t (*translate_fn)(void *, uint64_t),
735                    void *translate_opaque, AddressSpace *as)
736 {
737     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
738                             translate_fn, translate_opaque, as);
739 }
740 
741 /* Load a ramdisk.  */
742 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
743 {
744     return load_ramdisk_as(filename, addr, max_sz, NULL);
745 }
746 
747 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
748                     AddressSpace *as)
749 {
750     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
751                             NULL, NULL, as);
752 }
753 
754 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
755 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
756                               uint8_t **buffer)
757 {
758     uint8_t *compressed_data = NULL;
759     uint8_t *data = NULL;
760     gsize len;
761     ssize_t bytes;
762     int ret = -1;
763 
764     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
765                              NULL)) {
766         goto out;
767     }
768 
769     /* Is it a gzip-compressed file? */
770     if (len < 2 ||
771         compressed_data[0] != 0x1f ||
772         compressed_data[1] != 0x8b) {
773         goto out;
774     }
775 
776     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
777         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
778     }
779 
780     data = g_malloc(max_sz);
781     bytes = gunzip(data, max_sz, compressed_data, len);
782     if (bytes < 0) {
783         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
784                 filename);
785         goto out;
786     }
787 
788     /* trim to actual size and return to caller */
789     *buffer = g_realloc(data, bytes);
790     ret = bytes;
791     /* ownership has been transferred to caller */
792     data = NULL;
793 
794  out:
795     g_free(compressed_data);
796     g_free(data);
797     return ret;
798 }
799 
800 /* Load a gzip-compressed kernel. */
801 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
802 {
803     int bytes;
804     uint8_t *data;
805 
806     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
807     if (bytes != -1) {
808         rom_add_blob_fixed(filename, data, bytes, addr);
809         g_free(data);
810     }
811     return bytes;
812 }
813 
814 /*
815  * Functions for reboot-persistent memory regions.
816  *  - used for vga bios and option roms.
817  *  - also linux kernel (-kernel / -initrd).
818  */
819 
820 typedef struct Rom Rom;
821 
822 struct Rom {
823     char *name;
824     char *path;
825 
826     /* datasize is the amount of memory allocated in "data". If datasize is less
827      * than romsize, it means that the area from datasize to romsize is filled
828      * with zeros.
829      */
830     size_t romsize;
831     size_t datasize;
832 
833     uint8_t *data;
834     MemoryRegion *mr;
835     AddressSpace *as;
836     int isrom;
837     char *fw_dir;
838     char *fw_file;
839 
840     bool committed;
841 
842     hwaddr addr;
843     QTAILQ_ENTRY(Rom) next;
844 };
845 
846 static FWCfgState *fw_cfg;
847 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
848 
849 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
850 static void rom_free(Rom *rom)
851 {
852     g_free(rom->data);
853     g_free(rom->path);
854     g_free(rom->name);
855     g_free(rom->fw_dir);
856     g_free(rom->fw_file);
857     g_free(rom);
858 }
859 
860 static inline bool rom_order_compare(Rom *rom, Rom *item)
861 {
862     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
863            (rom->as == item->as && rom->addr >= item->addr);
864 }
865 
866 static void rom_insert(Rom *rom)
867 {
868     Rom *item;
869 
870     if (roms_loaded) {
871         hw_error ("ROM images must be loaded at startup\n");
872     }
873 
874     /* The user didn't specify an address space, this is the default */
875     if (!rom->as) {
876         rom->as = &address_space_memory;
877     }
878 
879     rom->committed = false;
880 
881     /* List is ordered by load address in the same address space */
882     QTAILQ_FOREACH(item, &roms, next) {
883         if (rom_order_compare(rom, item)) {
884             continue;
885         }
886         QTAILQ_INSERT_BEFORE(item, rom, next);
887         return;
888     }
889     QTAILQ_INSERT_TAIL(&roms, rom, next);
890 }
891 
892 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
893 {
894     if (fw_cfg) {
895         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
896     }
897 }
898 
899 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
900 {
901     void *data;
902 
903     rom->mr = g_malloc(sizeof(*rom->mr));
904     memory_region_init_resizeable_ram(rom->mr, owner, name,
905                                       rom->datasize, rom->romsize,
906                                       fw_cfg_resized,
907                                       &error_fatal);
908     memory_region_set_readonly(rom->mr, ro);
909     vmstate_register_ram_global(rom->mr);
910 
911     data = memory_region_get_ram_ptr(rom->mr);
912     memcpy(data, rom->data, rom->datasize);
913 
914     return data;
915 }
916 
917 int rom_add_file(const char *file, const char *fw_dir,
918                  hwaddr addr, int32_t bootindex,
919                  bool option_rom, MemoryRegion *mr,
920                  AddressSpace *as)
921 {
922     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
923     Rom *rom;
924     int rc, fd = -1;
925     char devpath[100];
926 
927     if (as && mr) {
928         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
929                 "not valid when loading a rom\n");
930         /* We haven't allocated anything so we don't need any cleanup */
931         return -1;
932     }
933 
934     rom = g_malloc0(sizeof(*rom));
935     rom->name = g_strdup(file);
936     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
937     rom->as = as;
938     if (rom->path == NULL) {
939         rom->path = g_strdup(file);
940     }
941 
942     fd = open(rom->path, O_RDONLY | O_BINARY);
943     if (fd == -1) {
944         fprintf(stderr, "Could not open option rom '%s': %s\n",
945                 rom->path, strerror(errno));
946         goto err;
947     }
948 
949     if (fw_dir) {
950         rom->fw_dir  = g_strdup(fw_dir);
951         rom->fw_file = g_strdup(file);
952     }
953     rom->addr     = addr;
954     rom->romsize  = lseek(fd, 0, SEEK_END);
955     if (rom->romsize == -1) {
956         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
957                 rom->name, strerror(errno));
958         goto err;
959     }
960 
961     rom->datasize = rom->romsize;
962     rom->data     = g_malloc0(rom->datasize);
963     lseek(fd, 0, SEEK_SET);
964     rc = read(fd, rom->data, rom->datasize);
965     if (rc != rom->datasize) {
966         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
967                 rom->name, rc, rom->datasize);
968         goto err;
969     }
970     close(fd);
971     rom_insert(rom);
972     if (rom->fw_file && fw_cfg) {
973         const char *basename;
974         char fw_file_name[FW_CFG_MAX_FILE_PATH];
975         void *data;
976 
977         basename = strrchr(rom->fw_file, '/');
978         if (basename) {
979             basename++;
980         } else {
981             basename = rom->fw_file;
982         }
983         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
984                  basename);
985         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
986 
987         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
988             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
989         } else {
990             data = rom->data;
991         }
992 
993         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
994     } else {
995         if (mr) {
996             rom->mr = mr;
997             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
998         } else {
999             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1000         }
1001     }
1002 
1003     add_boot_device_path(bootindex, NULL, devpath);
1004     return 0;
1005 
1006 err:
1007     if (fd != -1)
1008         close(fd);
1009 
1010     rom_free(rom);
1011     return -1;
1012 }
1013 
1014 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1015                    size_t max_len, hwaddr addr, const char *fw_file_name,
1016                    FWCfgCallback fw_callback, void *callback_opaque,
1017                    AddressSpace *as, bool read_only)
1018 {
1019     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1020     Rom *rom;
1021     MemoryRegion *mr = NULL;
1022 
1023     rom           = g_malloc0(sizeof(*rom));
1024     rom->name     = g_strdup(name);
1025     rom->as       = as;
1026     rom->addr     = addr;
1027     rom->romsize  = max_len ? max_len : len;
1028     rom->datasize = len;
1029     g_assert(rom->romsize >= rom->datasize);
1030     rom->data     = g_malloc0(rom->datasize);
1031     memcpy(rom->data, blob, len);
1032     rom_insert(rom);
1033     if (fw_file_name && fw_cfg) {
1034         char devpath[100];
1035         void *data;
1036 
1037         if (read_only) {
1038             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1039         } else {
1040             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1041         }
1042 
1043         if (mc->rom_file_has_mr) {
1044             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1045             mr = rom->mr;
1046         } else {
1047             data = rom->data;
1048         }
1049 
1050         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1051                                  fw_callback, NULL, callback_opaque,
1052                                  data, rom->datasize, read_only);
1053     }
1054     return mr;
1055 }
1056 
1057 /* This function is specific for elf program because we don't need to allocate
1058  * all the rom. We just allocate the first part and the rest is just zeros. This
1059  * is why romsize and datasize are different. Also, this function seize the
1060  * memory ownership of "data", so we don't have to allocate and copy the buffer.
1061  */
1062 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1063                         size_t romsize, hwaddr addr, AddressSpace *as)
1064 {
1065     Rom *rom;
1066 
1067     rom           = g_malloc0(sizeof(*rom));
1068     rom->name     = g_strdup(name);
1069     rom->addr     = addr;
1070     rom->datasize = datasize;
1071     rom->romsize  = romsize;
1072     rom->data     = data;
1073     rom->as       = as;
1074     rom_insert(rom);
1075     return 0;
1076 }
1077 
1078 int rom_add_vga(const char *file)
1079 {
1080     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1081 }
1082 
1083 int rom_add_option(const char *file, int32_t bootindex)
1084 {
1085     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1086 }
1087 
1088 static void rom_reset(void *unused)
1089 {
1090     Rom *rom;
1091 
1092     QTAILQ_FOREACH(rom, &roms, next) {
1093         if (rom->fw_file) {
1094             continue;
1095         }
1096         if (rom->data == NULL) {
1097             continue;
1098         }
1099         if (rom->mr) {
1100             void *host = memory_region_get_ram_ptr(rom->mr);
1101             memcpy(host, rom->data, rom->datasize);
1102         } else {
1103             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1104                                     rom->data, rom->datasize);
1105         }
1106         if (rom->isrom) {
1107             /* rom needs to be written only once */
1108             g_free(rom->data);
1109             rom->data = NULL;
1110         }
1111         /*
1112          * The rom loader is really on the same level as firmware in the guest
1113          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1114          * that the instruction cache for that new region is clear, so that the
1115          * CPU definitely fetches its instructions from the just written data.
1116          */
1117         cpu_flush_icache_range(rom->addr, rom->datasize);
1118     }
1119 }
1120 
1121 int rom_check_and_register_reset(void)
1122 {
1123     hwaddr addr = 0;
1124     MemoryRegionSection section;
1125     Rom *rom;
1126     AddressSpace *as = NULL;
1127 
1128     QTAILQ_FOREACH(rom, &roms, next) {
1129         if (rom->fw_file) {
1130             continue;
1131         }
1132         if (!rom->mr) {
1133             if ((addr > rom->addr) && (as == rom->as)) {
1134                 fprintf(stderr, "rom: requested regions overlap "
1135                         "(rom %s. free=0x" TARGET_FMT_plx
1136                         ", addr=0x" TARGET_FMT_plx ")\n",
1137                         rom->name, addr, rom->addr);
1138                 return -1;
1139             }
1140             addr  = rom->addr;
1141             addr += rom->romsize;
1142             as = rom->as;
1143         }
1144         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1145                                      rom->addr, 1);
1146         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1147         memory_region_unref(section.mr);
1148     }
1149     qemu_register_reset(rom_reset, NULL);
1150     roms_loaded = 1;
1151     return 0;
1152 }
1153 
1154 void rom_set_fw(FWCfgState *f)
1155 {
1156     fw_cfg = f;
1157 }
1158 
1159 void rom_set_order_override(int order)
1160 {
1161     if (!fw_cfg)
1162         return;
1163     fw_cfg_set_order_override(fw_cfg, order);
1164 }
1165 
1166 void rom_reset_order_override(void)
1167 {
1168     if (!fw_cfg)
1169         return;
1170     fw_cfg_reset_order_override(fw_cfg);
1171 }
1172 
1173 void rom_transaction_begin(void)
1174 {
1175     Rom *rom;
1176 
1177     /* Ignore ROMs added without the transaction API */
1178     QTAILQ_FOREACH(rom, &roms, next) {
1179         rom->committed = true;
1180     }
1181 }
1182 
1183 void rom_transaction_end(bool commit)
1184 {
1185     Rom *rom;
1186     Rom *tmp;
1187 
1188     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1189         if (rom->committed) {
1190             continue;
1191         }
1192         if (commit) {
1193             rom->committed = true;
1194         } else {
1195             QTAILQ_REMOVE(&roms, rom, next);
1196             rom_free(rom);
1197         }
1198     }
1199 }
1200 
1201 static Rom *find_rom(hwaddr addr, size_t size)
1202 {
1203     Rom *rom;
1204 
1205     QTAILQ_FOREACH(rom, &roms, next) {
1206         if (rom->fw_file) {
1207             continue;
1208         }
1209         if (rom->mr) {
1210             continue;
1211         }
1212         if (rom->addr > addr) {
1213             continue;
1214         }
1215         if (rom->addr + rom->romsize < addr + size) {
1216             continue;
1217         }
1218         return rom;
1219     }
1220     return NULL;
1221 }
1222 
1223 /*
1224  * Copies memory from registered ROMs to dest. Any memory that is contained in
1225  * a ROM between addr and addr + size is copied. Note that this can involve
1226  * multiple ROMs, which need not start at addr and need not end at addr + size.
1227  */
1228 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1229 {
1230     hwaddr end = addr + size;
1231     uint8_t *s, *d = dest;
1232     size_t l = 0;
1233     Rom *rom;
1234 
1235     QTAILQ_FOREACH(rom, &roms, next) {
1236         if (rom->fw_file) {
1237             continue;
1238         }
1239         if (rom->mr) {
1240             continue;
1241         }
1242         if (rom->addr + rom->romsize < addr) {
1243             continue;
1244         }
1245         if (rom->addr > end) {
1246             break;
1247         }
1248 
1249         d = dest + (rom->addr - addr);
1250         s = rom->data;
1251         l = rom->datasize;
1252 
1253         if ((d + l) > (dest + size)) {
1254             l = dest - d;
1255         }
1256 
1257         if (l > 0) {
1258             memcpy(d, s, l);
1259         }
1260 
1261         if (rom->romsize > rom->datasize) {
1262             /* If datasize is less than romsize, it means that we didn't
1263              * allocate all the ROM because the trailing data are only zeros.
1264              */
1265 
1266             d += l;
1267             l = rom->romsize - rom->datasize;
1268 
1269             if ((d + l) > (dest + size)) {
1270                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1271                  * overflow.
1272                  */
1273                 l = dest - d;
1274             }
1275 
1276             if (l > 0) {
1277                 memset(d, 0x0, l);
1278             }
1279         }
1280     }
1281 
1282     return (d + l) - dest;
1283 }
1284 
1285 void *rom_ptr(hwaddr addr, size_t size)
1286 {
1287     Rom *rom;
1288 
1289     rom = find_rom(addr, size);
1290     if (!rom || !rom->data)
1291         return NULL;
1292     return rom->data + (addr - rom->addr);
1293 }
1294 
1295 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1296 {
1297     Rom *rom;
1298 
1299     QTAILQ_FOREACH(rom, &roms, next) {
1300         if (rom->mr) {
1301             monitor_printf(mon, "%s"
1302                            " size=0x%06zx name=\"%s\"\n",
1303                            memory_region_name(rom->mr),
1304                            rom->romsize,
1305                            rom->name);
1306         } else if (!rom->fw_file) {
1307             monitor_printf(mon, "addr=" TARGET_FMT_plx
1308                            " size=0x%06zx mem=%s name=\"%s\"\n",
1309                            rom->addr, rom->romsize,
1310                            rom->isrom ? "rom" : "ram",
1311                            rom->name);
1312         } else {
1313             monitor_printf(mon, "fw=%s/%s"
1314                            " size=0x%06zx name=\"%s\"\n",
1315                            rom->fw_dir,
1316                            rom->fw_file,
1317                            rom->romsize,
1318                            rom->name);
1319         }
1320     }
1321 }
1322 
1323 typedef enum HexRecord HexRecord;
1324 enum HexRecord {
1325     DATA_RECORD = 0,
1326     EOF_RECORD,
1327     EXT_SEG_ADDR_RECORD,
1328     START_SEG_ADDR_RECORD,
1329     EXT_LINEAR_ADDR_RECORD,
1330     START_LINEAR_ADDR_RECORD,
1331 };
1332 
1333 /* Each record contains a 16-bit address which is combined with the upper 16
1334  * bits of the implicit "next address" to form a 32-bit address.
1335  */
1336 #define NEXT_ADDR_MASK 0xffff0000
1337 
1338 #define DATA_FIELD_MAX_LEN 0xff
1339 #define LEN_EXCEPT_DATA 0x5
1340 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1341  *       sizeof(checksum) */
1342 typedef struct {
1343     uint8_t byte_count;
1344     uint16_t address;
1345     uint8_t record_type;
1346     uint8_t data[DATA_FIELD_MAX_LEN];
1347     uint8_t checksum;
1348 } HexLine;
1349 
1350 /* return 0 or -1 if error */
1351 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1352                          uint32_t *index, const bool in_process)
1353 {
1354     /* +-------+---------------+-------+---------------------+--------+
1355      * | byte  |               |record |                     |        |
1356      * | count |    address    | type  |        data         |checksum|
1357      * +-------+---------------+-------+---------------------+--------+
1358      * ^       ^               ^       ^                     ^        ^
1359      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1360      */
1361     uint8_t value = 0;
1362     uint32_t idx = *index;
1363     /* ignore space */
1364     if (g_ascii_isspace(c)) {
1365         return true;
1366     }
1367     if (!g_ascii_isxdigit(c) || !in_process) {
1368         return false;
1369     }
1370     value = g_ascii_xdigit_value(c);
1371     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1372     if (idx < 2) {
1373         line->byte_count |= value;
1374     } else if (2 <= idx && idx < 6) {
1375         line->address <<= 4;
1376         line->address += g_ascii_xdigit_value(c);
1377     } else if (6 <= idx && idx < 8) {
1378         line->record_type |= value;
1379     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1380         line->data[(idx - 8) >> 1] |= value;
1381     } else if (8 + 2 * line->byte_count <= idx &&
1382                idx < 10 + 2 * line->byte_count) {
1383         line->checksum |= value;
1384     } else {
1385         return false;
1386     }
1387     *our_checksum += value;
1388     ++(*index);
1389     return true;
1390 }
1391 
1392 typedef struct {
1393     const char *filename;
1394     HexLine line;
1395     uint8_t *bin_buf;
1396     hwaddr *start_addr;
1397     int total_size;
1398     uint32_t next_address_to_write;
1399     uint32_t current_address;
1400     uint32_t current_rom_index;
1401     uint32_t rom_start_address;
1402     AddressSpace *as;
1403 } HexParser;
1404 
1405 /* return size or -1 if error */
1406 static int handle_record_type(HexParser *parser)
1407 {
1408     HexLine *line = &(parser->line);
1409     switch (line->record_type) {
1410     case DATA_RECORD:
1411         parser->current_address =
1412             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1413         /* verify this is a contiguous block of memory */
1414         if (parser->current_address != parser->next_address_to_write) {
1415             if (parser->current_rom_index != 0) {
1416                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1417                                       parser->current_rom_index,
1418                                       parser->rom_start_address, parser->as);
1419             }
1420             parser->rom_start_address = parser->current_address;
1421             parser->current_rom_index = 0;
1422         }
1423 
1424         /* copy from line buffer to output bin_buf */
1425         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1426                line->byte_count);
1427         parser->current_rom_index += line->byte_count;
1428         parser->total_size += line->byte_count;
1429         /* save next address to write */
1430         parser->next_address_to_write =
1431             parser->current_address + line->byte_count;
1432         break;
1433 
1434     case EOF_RECORD:
1435         if (parser->current_rom_index != 0) {
1436             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1437                                   parser->current_rom_index,
1438                                   parser->rom_start_address, parser->as);
1439         }
1440         return parser->total_size;
1441     case EXT_SEG_ADDR_RECORD:
1442     case EXT_LINEAR_ADDR_RECORD:
1443         if (line->byte_count != 2 && line->address != 0) {
1444             return -1;
1445         }
1446 
1447         if (parser->current_rom_index != 0) {
1448             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1449                                   parser->current_rom_index,
1450                                   parser->rom_start_address, parser->as);
1451         }
1452 
1453         /* save next address to write,
1454          * in case of non-contiguous block of memory */
1455         parser->next_address_to_write = (line->data[0] << 12) |
1456                                         (line->data[1] << 4);
1457         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1458             parser->next_address_to_write <<= 12;
1459         }
1460 
1461         parser->rom_start_address = parser->next_address_to_write;
1462         parser->current_rom_index = 0;
1463         break;
1464 
1465     case START_SEG_ADDR_RECORD:
1466         if (line->byte_count != 4 && line->address != 0) {
1467             return -1;
1468         }
1469 
1470         /* x86 16-bit CS:IP segmented addressing */
1471         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1472                                 ((line->data[2] << 8) | line->data[3]);
1473         break;
1474 
1475     case START_LINEAR_ADDR_RECORD:
1476         if (line->byte_count != 4 && line->address != 0) {
1477             return -1;
1478         }
1479 
1480         *(parser->start_addr) = ldl_be_p(line->data);
1481         break;
1482 
1483     default:
1484         return -1;
1485     }
1486 
1487     return parser->total_size;
1488 }
1489 
1490 /* return size or -1 if error */
1491 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1492                           size_t hex_blob_size, AddressSpace *as)
1493 {
1494     bool in_process = false; /* avoid re-enter and
1495                               * check whether record begin with ':' */
1496     uint8_t *end = hex_blob + hex_blob_size;
1497     uint8_t our_checksum = 0;
1498     uint32_t record_index = 0;
1499     HexParser parser = {
1500         .filename = filename,
1501         .bin_buf = g_malloc(hex_blob_size),
1502         .start_addr = addr,
1503         .as = as,
1504     };
1505 
1506     rom_transaction_begin();
1507 
1508     for (; hex_blob < end; ++hex_blob) {
1509         switch (*hex_blob) {
1510         case '\r':
1511         case '\n':
1512             if (!in_process) {
1513                 break;
1514             }
1515 
1516             in_process = false;
1517             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1518                     record_index ||
1519                 our_checksum != 0) {
1520                 parser.total_size = -1;
1521                 goto out;
1522             }
1523 
1524             if (handle_record_type(&parser) == -1) {
1525                 parser.total_size = -1;
1526                 goto out;
1527             }
1528             break;
1529 
1530         /* start of a new record. */
1531         case ':':
1532             memset(&parser.line, 0, sizeof(HexLine));
1533             in_process = true;
1534             record_index = 0;
1535             break;
1536 
1537         /* decoding lines */
1538         default:
1539             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1540                               &record_index, in_process)) {
1541                 parser.total_size = -1;
1542                 goto out;
1543             }
1544             break;
1545         }
1546     }
1547 
1548 out:
1549     g_free(parser.bin_buf);
1550     rom_transaction_end(parser.total_size != -1);
1551     return parser.total_size;
1552 }
1553 
1554 /* return size or -1 if error */
1555 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1556 {
1557     gsize hex_blob_size;
1558     gchar *hex_blob;
1559     int total_size = 0;
1560 
1561     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1562         return -1;
1563     }
1564 
1565     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1566                                 hex_blob_size, as);
1567 
1568     g_free(hex_blob);
1569     return total_size;
1570 }
1571