xref: /openbmc/qemu/hw/core/eif.c (revision c3d7c18b0d616cf7fb3c1f325503e1462307209d)
1 /*
2  * EIF (Enclave Image Format) related helpers
3  *
4  * Copyright (c) 2024 Dorjoy Chowdhury <dorjoychy111@gmail.com>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or
7  * (at your option) any later version.  See the COPYING file in the
8  * top-level directory.
9  */
10 
11 #include "qemu/osdep.h"
12 #include "qemu/bswap.h"
13 #include "qapi/error.h"
14 #include "crypto/hash.h"
15 #include "crypto/x509-utils.h"
16 #include <zlib.h> /* for crc32 */
17 #include <cbor.h>
18 
19 #include "hw/core/eif.h"
20 
21 #define MAX_SECTIONS 32
22 
23 /* members are ordered according to field order in .eif file */
24 typedef struct EifHeader {
25     uint8_t  magic[4]; /* must be .eif in ascii i.e., [46, 101, 105, 102] */
26     uint16_t version;
27     uint16_t flags;
28     uint64_t default_memory;
29     uint64_t default_cpus;
30     uint16_t reserved;
31     uint16_t section_cnt;
32     uint64_t section_offsets[MAX_SECTIONS];
33     uint64_t section_sizes[MAX_SECTIONS];
34     uint32_t unused;
35     uint32_t eif_crc32;
36 } QEMU_PACKED EifHeader;
37 
38 /* members are ordered according to field order in .eif file */
39 typedef struct EifSectionHeader {
40     /*
41      * 0 = invalid, 1 = kernel, 2 = cmdline, 3 = ramdisk, 4 = signature,
42      * 5 = metadata
43      */
44     uint16_t section_type;
45     uint16_t flags;
46     uint64_t section_size;
47 } QEMU_PACKED EifSectionHeader;
48 
49 enum EifSectionTypes {
50     EIF_SECTION_INVALID = 0,
51     EIF_SECTION_KERNEL = 1,
52     EIF_SECTION_CMDLINE = 2,
53     EIF_SECTION_RAMDISK = 3,
54     EIF_SECTION_SIGNATURE = 4,
55     EIF_SECTION_METADATA = 5,
56     EIF_SECTION_MAX = 6,
57 };
58 
59 static const char *section_type_to_string(uint16_t type)
60 {
61     const char *str;
62     switch (type) {
63     case EIF_SECTION_INVALID:
64         str = "invalid";
65         break;
66     case EIF_SECTION_KERNEL:
67         str = "kernel";
68         break;
69     case EIF_SECTION_CMDLINE:
70         str = "cmdline";
71         break;
72     case EIF_SECTION_RAMDISK:
73         str = "ramdisk";
74         break;
75     case EIF_SECTION_SIGNATURE:
76         str = "signature";
77         break;
78     case EIF_SECTION_METADATA:
79         str = "metadata";
80         break;
81     default:
82         str = "unknown";
83         break;
84     }
85 
86     return str;
87 }
88 
89 static bool read_eif_header(FILE *f, EifHeader *header, uint32_t *crc,
90                             Error **errp)
91 {
92     size_t got;
93     size_t header_size = sizeof(*header);
94 
95     got = fread(header, 1, header_size, f);
96     if (got != header_size) {
97         error_setg(errp, "Failed to read EIF header");
98         return false;
99     }
100 
101     if (memcmp(header->magic, ".eif", 4) != 0) {
102         error_setg(errp, "Invalid EIF image. Magic mismatch.");
103         return false;
104     }
105 
106     /* Exclude header->eif_crc32 field from CRC calculation */
107     *crc = crc32(*crc, (uint8_t *)header, header_size - 4);
108 
109     header->version = be16_to_cpu(header->version);
110     header->flags = be16_to_cpu(header->flags);
111     header->default_memory = be64_to_cpu(header->default_memory);
112     header->default_cpus = be64_to_cpu(header->default_cpus);
113     header->reserved = be16_to_cpu(header->reserved);
114     header->section_cnt = be16_to_cpu(header->section_cnt);
115 
116     for (int i = 0; i < MAX_SECTIONS; ++i) {
117         header->section_offsets[i] = be64_to_cpu(header->section_offsets[i]);
118     }
119 
120     for (int i = 0; i < MAX_SECTIONS; ++i) {
121         header->section_sizes[i] = be64_to_cpu(header->section_sizes[i]);
122         if (header->section_sizes[i] > SSIZE_MAX) {
123             error_setg(errp, "Invalid EIF image. Section size out of bounds");
124             return false;
125         }
126     }
127 
128     header->unused = be32_to_cpu(header->unused);
129     header->eif_crc32 = be32_to_cpu(header->eif_crc32);
130     return true;
131 }
132 
133 static bool read_eif_section_header(FILE *f, EifSectionHeader *section_header,
134                                     uint32_t *crc, Error **errp)
135 {
136     size_t got;
137     size_t section_header_size = sizeof(*section_header);
138 
139     got = fread(section_header, 1, section_header_size, f);
140     if (got != section_header_size) {
141         error_setg(errp, "Failed to read EIF section header");
142         return false;
143     }
144 
145     *crc = crc32(*crc, (uint8_t *)section_header, section_header_size);
146 
147     section_header->section_type = be16_to_cpu(section_header->section_type);
148     section_header->flags = be16_to_cpu(section_header->flags);
149     section_header->section_size = be64_to_cpu(section_header->section_size);
150     return true;
151 }
152 
153 /*
154  * Upon success, the caller is responsible for unlinking and freeing *tmp_path.
155  */
156 static bool get_tmp_file(const char *template, char **tmp_path, Error **errp)
157 {
158     int tmp_fd;
159 
160     *tmp_path = NULL;
161     tmp_fd = g_file_open_tmp(template, tmp_path, NULL);
162     if (tmp_fd < 0 || *tmp_path == NULL) {
163         error_setg(errp, "Failed to create temporary file for template %s",
164                    template);
165         return false;
166     }
167 
168     close(tmp_fd);
169     return true;
170 }
171 
172 static void safe_fclose(FILE *f)
173 {
174     if (f) {
175         fclose(f);
176     }
177 }
178 
179 static void safe_unlink(char *f)
180 {
181     if (f) {
182         unlink(f);
183     }
184 }
185 
186 /*
187  * Upon success, the caller is reponsible for unlinking and freeing *kernel_path
188  */
189 static bool read_eif_kernel(FILE *f, uint64_t size, char **kernel_path,
190                             uint8_t *kernel, uint32_t *crc, Error **errp)
191 {
192     size_t got;
193     FILE *tmp_file = NULL;
194 
195     *kernel_path = NULL;
196     if (!get_tmp_file("eif-kernel-XXXXXX", kernel_path, errp)) {
197         goto cleanup;
198     }
199 
200     tmp_file = fopen(*kernel_path, "wb");
201     if (tmp_file == NULL) {
202         error_setg_errno(errp, errno, "Failed to open temporary file %s",
203                          *kernel_path);
204         goto cleanup;
205     }
206 
207     got = fread(kernel, 1, size, f);
208     if ((uint64_t) got != size) {
209         error_setg(errp, "Failed to read EIF kernel section data");
210         goto cleanup;
211     }
212 
213     got = fwrite(kernel, 1, size, tmp_file);
214     if ((uint64_t) got != size) {
215         error_setg(errp, "Failed to write EIF kernel section data to temporary"
216                    " file");
217         goto cleanup;
218     }
219 
220     *crc = crc32(*crc, kernel, size);
221     fclose(tmp_file);
222 
223     return true;
224 
225  cleanup:
226     safe_fclose(tmp_file);
227 
228     safe_unlink(*kernel_path);
229     g_free(*kernel_path);
230     *kernel_path = NULL;
231 
232     return false;
233 }
234 
235 static bool read_eif_cmdline(FILE *f, uint64_t size, char *cmdline,
236                              uint32_t *crc, Error **errp)
237 {
238     size_t got = fread(cmdline, 1, size, f);
239     if ((uint64_t) got != size) {
240         error_setg(errp, "Failed to read EIF cmdline section data");
241         return false;
242     }
243 
244     *crc = crc32(*crc, (uint8_t *)cmdline, size);
245     return true;
246 }
247 
248 static bool read_eif_ramdisk(FILE *eif, FILE *initrd, uint64_t size,
249                              uint8_t *ramdisk, uint32_t *crc, Error **errp)
250 {
251     size_t got;
252 
253     got = fread(ramdisk, 1, size, eif);
254     if ((uint64_t) got != size) {
255         error_setg(errp, "Failed to read EIF ramdisk section data");
256         return false;
257     }
258 
259     got = fwrite(ramdisk, 1, size, initrd);
260     if ((uint64_t) got != size) {
261         error_setg(errp, "Failed to write EIF ramdisk data to temporary file");
262         return false;
263     }
264 
265     *crc = crc32(*crc, ramdisk, size);
266     return true;
267 }
268 
269 static bool get_signature_fingerprint_sha384(FILE *eif, uint64_t size,
270                                              uint8_t *sha384,
271                                              uint32_t *crc,
272                                              Error **errp)
273 {
274     size_t got;
275     g_autofree uint8_t *sig = NULL;
276     g_autofree uint8_t *cert = NULL;
277     cbor_item_t *item = NULL;
278     cbor_item_t *pcr0 = NULL;
279     size_t len;
280     size_t hash_len = QCRYPTO_HASH_DIGEST_LEN_SHA384;
281     struct cbor_pair *pair;
282     struct cbor_load_result result;
283     bool ret = false;
284 
285     sig = g_try_malloc(size);
286     if (!sig) {
287         error_setg(errp, "Out of memory reading signature section");
288         goto cleanup;
289     }
290 
291     got = fread(sig, 1, size, eif);
292     if ((uint64_t) got != size) {
293         error_setg(errp, "Failed to read EIF signature section data");
294         goto cleanup;
295     }
296 
297     *crc = crc32(*crc, sig, size);
298 
299     item = cbor_load(sig, size, &result);
300     if (!item || result.error.code != CBOR_ERR_NONE) {
301         error_setg(errp, "Failed to load signature section data as CBOR");
302         goto cleanup;
303     }
304     if (!cbor_isa_array(item) || cbor_array_size(item) < 1) {
305         error_setg(errp, "Invalid signature CBOR");
306         goto cleanup;
307     }
308     pcr0 = cbor_array_get(item, 0);
309     if (!pcr0) {
310         error_setg(errp, "Failed to get PCR0 signature");
311         goto cleanup;
312     }
313     if (!cbor_isa_map(pcr0) || cbor_map_size(pcr0) != 2) {
314         error_setg(errp, "Invalid signature CBOR");
315         goto cleanup;
316     }
317     pair = cbor_map_handle(pcr0);
318     if (!cbor_isa_string(pair->key) || cbor_string_length(pair->key) != 19 ||
319         memcmp(cbor_string_handle(pair->key), "signing_certificate", 19) != 0) {
320         error_setg(errp, "Invalid signautre CBOR");
321         goto cleanup;
322     }
323     if (!cbor_isa_array(pair->value)) {
324         error_setg(errp, "Invalid signature CBOR");
325         goto cleanup;
326     }
327     len = cbor_array_size(pair->value);
328     if (len == 0) {
329         error_setg(errp, "Invalid signature CBOR");
330         goto cleanup;
331     }
332     cert = g_try_malloc(len);
333     if (!cert) {
334         error_setg(errp, "Out of memory reading signature section");
335         goto cleanup;
336     }
337 
338     for (int i = 0; i < len; ++i) {
339         cbor_item_t *tmp = cbor_array_get(pair->value, i);
340         if (!tmp) {
341             error_setg(errp, "Invalid signature CBOR");
342             goto cleanup;
343         }
344         if (!cbor_isa_uint(tmp) || cbor_int_get_width(tmp) != CBOR_INT_8) {
345             cbor_decref(&tmp);
346             error_setg(errp, "Invalid signature CBOR");
347             goto cleanup;
348         }
349         cert[i] = cbor_get_uint8(tmp);
350         cbor_decref(&tmp);
351     }
352 
353     if (qcrypto_get_x509_cert_fingerprint(cert, len, QCRYPTO_HASH_ALGO_SHA384,
354                                           sha384, &hash_len, errp)) {
355         goto cleanup;
356     }
357 
358     ret = true;
359 
360  cleanup:
361     if (pcr0) {
362         cbor_decref(&pcr0);
363     }
364     if (item) {
365         cbor_decref(&item);
366     }
367     return ret;
368 }
369 
370 /* Expects file to have offset 0 before this function is called */
371 static long get_file_size(FILE *f, Error **errp)
372 {
373     long size;
374 
375     if (fseek(f, 0, SEEK_END) != 0) {
376         error_setg_errno(errp, errno, "Failed to seek to the end of file");
377         return -1;
378     }
379 
380     size = ftell(f);
381     if (size == -1) {
382         error_setg_errno(errp, errno, "Failed to get offset");
383         return -1;
384     }
385 
386     if (fseek(f, 0, SEEK_SET) != 0) {
387         error_setg_errno(errp, errno, "Failed to seek back to the start");
388         return -1;
389     }
390 
391     return size;
392 }
393 
394 static bool get_SHA384_digest(GList *list, uint8_t *digest, Error **errp)
395 {
396     size_t digest_len = QCRYPTO_HASH_DIGEST_LEN_SHA384;
397     size_t list_len = g_list_length(list);
398     struct iovec *iovec_list = g_new0(struct iovec, list_len);
399     bool ret = true;
400     GList *l;
401     int i;
402 
403     for (i = 0, l = list; l != NULL; l = l->next, i++) {
404         iovec_list[i] = *(struct iovec *) l->data;
405     }
406 
407     if (qcrypto_hash_bytesv(QCRYPTO_HASH_ALGO_SHA384, iovec_list, list_len,
408                             &digest, &digest_len, errp) < 0) {
409         ret = false;
410     }
411 
412     g_free(iovec_list);
413     return ret;
414 }
415 
416 static void free_iovec(struct iovec *iov)
417 {
418     if (iov) {
419         g_free(iov->iov_base);
420         g_free(iov);
421     }
422 }
423 
424 /*
425  * Upon success, the caller is reponsible for unlinking and freeing
426  * *kernel_path, *initrd_path and freeing *cmdline.
427  */
428 bool read_eif_file(const char *eif_path, const char *machine_initrd,
429                    char **kernel_path, char **initrd_path, char **cmdline,
430                    uint8_t *image_sha384, uint8_t *bootstrap_sha384,
431                    uint8_t *app_sha384, uint8_t *fingerprint_sha384,
432                    bool *signature_found, Error **errp)
433 {
434     FILE *f = NULL;
435     FILE *machine_initrd_f = NULL;
436     FILE *initrd_path_f = NULL;
437     long machine_initrd_size;
438     uint32_t crc = 0;
439     EifHeader eif_header;
440     bool seen_sections[EIF_SECTION_MAX] = {false};
441     /* kernel + ramdisks + cmdline sha384 hash */
442     GList *iov_PCR0 = NULL;
443     /* kernel + boot ramdisk + cmdline sha384 hash */
444     GList *iov_PCR1 = NULL;
445     /* application ramdisk(s) hash */
446     GList *iov_PCR2 = NULL;
447     uint8_t *ptr = NULL;
448     struct iovec *iov_ptr = NULL;
449 
450     *signature_found = false;
451     *kernel_path = *initrd_path = *cmdline = NULL;
452 
453     f = fopen(eif_path, "rb");
454     if (f == NULL) {
455         error_setg_errno(errp, errno, "Failed to open %s", eif_path);
456         goto cleanup;
457     }
458 
459     if (!read_eif_header(f, &eif_header, &crc, errp)) {
460         goto cleanup;
461     }
462 
463     if (eif_header.version < 4) {
464         error_setg(errp, "Expected EIF version 4 or greater");
465         goto cleanup;
466     }
467 
468     if (eif_header.flags != 0) {
469         error_setg(errp, "Expected EIF flags to be 0");
470         goto cleanup;
471     }
472 
473     if (eif_header.section_cnt > MAX_SECTIONS) {
474         error_setg(errp, "EIF header section count must not be greater than "
475                    "%d but found %d", MAX_SECTIONS, eif_header.section_cnt);
476         goto cleanup;
477     }
478 
479     for (int i = 0; i < eif_header.section_cnt; ++i) {
480         EifSectionHeader hdr;
481         uint16_t section_type;
482 
483         if (eif_header.section_offsets[i] > OFF_MAX) {
484             error_setg(errp, "Invalid EIF image. Section offset out of bounds");
485             goto cleanup;
486         }
487         if (fseek(f, eif_header.section_offsets[i], SEEK_SET) != 0) {
488             error_setg_errno(errp, errno, "Failed to offset to %" PRIu64 " in EIF file",
489                              eif_header.section_offsets[i]);
490             goto cleanup;
491         }
492 
493         if (!read_eif_section_header(f, &hdr, &crc, errp)) {
494             goto cleanup;
495         }
496 
497         if (hdr.flags != 0) {
498             error_setg(errp, "Expected EIF section header flags to be 0");
499             goto cleanup;
500         }
501 
502         if (eif_header.section_sizes[i] != hdr.section_size) {
503             error_setg(errp, "EIF section size mismatch between header and "
504                        "section header: header %" PRIu64 ", section header %" PRIu64,
505                        eif_header.section_sizes[i],
506                        hdr.section_size);
507             goto cleanup;
508         }
509 
510         section_type = hdr.section_type;
511 
512         switch (section_type) {
513         case EIF_SECTION_KERNEL:
514             if (seen_sections[EIF_SECTION_KERNEL]) {
515                 error_setg(errp, "Invalid EIF image. More than 1 kernel "
516                            "section");
517                 goto cleanup;
518             }
519 
520             ptr = g_try_malloc(hdr.section_size);
521             if (!ptr) {
522                 error_setg(errp, "Out of memory reading kernel section");
523                 goto cleanup;
524             }
525 
526             iov_ptr = g_malloc(sizeof(struct iovec));
527             iov_ptr->iov_base = ptr;
528             iov_ptr->iov_len = hdr.section_size;
529 
530             iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
531             iov_PCR1 = g_list_append(iov_PCR1, iov_ptr);
532 
533             if (!read_eif_kernel(f, hdr.section_size, kernel_path, ptr, &crc,
534                                  errp)) {
535                 goto cleanup;
536             }
537 
538             break;
539         case EIF_SECTION_CMDLINE:
540         {
541             uint64_t size;
542             uint8_t *cmdline_copy;
543             if (seen_sections[EIF_SECTION_CMDLINE]) {
544                 error_setg(errp, "Invalid EIF image. More than 1 cmdline "
545                            "section");
546                 goto cleanup;
547             }
548             size = hdr.section_size;
549             *cmdline = g_try_malloc(size + 1);
550             if (!*cmdline) {
551                 error_setg(errp, "Out of memory reading command line section");
552                 goto cleanup;
553             }
554             if (!read_eif_cmdline(f, size, *cmdline, &crc, errp)) {
555                 goto cleanup;
556             }
557             (*cmdline)[size] = '\0';
558 
559             /*
560              * We make a copy of '*cmdline' for putting it in iovecs so that
561              * we can easily free all the iovec entries later as we cannot
562              * free '*cmdline' which is used by the caller.
563              */
564             cmdline_copy = g_memdup2(*cmdline, size);
565 
566             iov_ptr = g_malloc(sizeof(struct iovec));
567             iov_ptr->iov_base = cmdline_copy;
568             iov_ptr->iov_len = size;
569 
570             iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
571             iov_PCR1 = g_list_append(iov_PCR1, iov_ptr);
572             break;
573         }
574         case EIF_SECTION_RAMDISK:
575         {
576             if (!seen_sections[EIF_SECTION_RAMDISK]) {
577                 /*
578                  * If this is the first time we are seeing a ramdisk section,
579                  * we need to create the initrd temporary file.
580                  */
581                 if (!get_tmp_file("eif-initrd-XXXXXX", initrd_path, errp)) {
582                     goto cleanup;
583                 }
584                 initrd_path_f = fopen(*initrd_path, "wb");
585                 if (initrd_path_f == NULL) {
586                     error_setg_errno(errp, errno, "Failed to open file %s",
587                                      *initrd_path);
588                     goto cleanup;
589                 }
590             }
591 
592             ptr = g_try_malloc(hdr.section_size);
593             if (!ptr) {
594                 error_setg(errp, "Out of memory reading initrd section");
595                 goto cleanup;
596             }
597 
598             iov_ptr = g_malloc(sizeof(struct iovec));
599             iov_ptr->iov_base = ptr;
600             iov_ptr->iov_len = hdr.section_size;
601 
602             iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
603             /*
604              * If it's the first ramdisk, we need to hash it into bootstrap
605              * i.e., iov_PCR1, otherwise we need to hash it into app i.e.,
606              * iov_PCR2.
607              */
608             if (!seen_sections[EIF_SECTION_RAMDISK]) {
609                 iov_PCR1 = g_list_append(iov_PCR1, iov_ptr);
610             } else {
611                 iov_PCR2 = g_list_append(iov_PCR2, iov_ptr);
612             }
613 
614             if (!read_eif_ramdisk(f, initrd_path_f, hdr.section_size, ptr,
615                                   &crc, errp)) {
616                 goto cleanup;
617             }
618 
619             break;
620         }
621         case EIF_SECTION_SIGNATURE:
622             *signature_found = true;
623             if (!get_signature_fingerprint_sha384(f, hdr.section_size,
624                                                   fingerprint_sha384, &crc,
625                                                   errp)) {
626                 goto cleanup;
627             }
628             break;
629         default:
630             /* other sections including invalid or unknown sections */
631         {
632             uint8_t *buf;
633             size_t got;
634             uint64_t size = hdr.section_size;
635             buf = g_try_malloc(size);
636             if (!buf) {
637                 error_setg(errp, "Out of memory reading unknown section");
638                 goto cleanup;
639             }
640             got = fread(buf, 1, size, f);
641             if ((uint64_t) got != size) {
642                 g_free(buf);
643                 error_setg(errp, "Failed to read EIF %s section data",
644                            section_type_to_string(section_type));
645                 goto cleanup;
646             }
647             crc = crc32(crc, buf, size);
648             g_free(buf);
649             break;
650         }
651         }
652 
653         if (section_type < EIF_SECTION_MAX) {
654             seen_sections[section_type] = true;
655         }
656     }
657 
658     if (!seen_sections[EIF_SECTION_KERNEL]) {
659         error_setg(errp, "Invalid EIF image. No kernel section.");
660         goto cleanup;
661     }
662     if (!seen_sections[EIF_SECTION_CMDLINE]) {
663         error_setg(errp, "Invalid EIF image. No cmdline section.");
664         goto cleanup;
665     }
666     if (!seen_sections[EIF_SECTION_RAMDISK]) {
667         error_setg(errp, "Invalid EIF image. No ramdisk section.");
668         goto cleanup;
669     }
670 
671     if (eif_header.eif_crc32 != crc) {
672         error_setg(errp, "CRC mismatch. Expected %u but header has %u.",
673                    crc, eif_header.eif_crc32);
674         goto cleanup;
675     }
676 
677     /*
678      * Let's append the initrd file from "-initrd" option if any. Although
679      * we pass the crc pointer to read_eif_ramdisk, it is not useful anymore.
680      * We have already done the crc mismatch check above this code.
681      */
682     if (machine_initrd) {
683         machine_initrd_f = fopen(machine_initrd, "rb");
684         if (machine_initrd_f == NULL) {
685             error_setg_errno(errp, errno, "Failed to open initrd file %s",
686                              machine_initrd);
687             goto cleanup;
688         }
689 
690         machine_initrd_size = get_file_size(machine_initrd_f, errp);
691         if (machine_initrd_size == -1) {
692             goto cleanup;
693         }
694 
695         ptr = g_try_malloc(machine_initrd_size);
696         if (!ptr) {
697             error_setg(errp, "Out of memory reading initrd file");
698             goto cleanup;
699         }
700 
701         iov_ptr = g_malloc(sizeof(struct iovec));
702         iov_ptr->iov_base = ptr;
703         iov_ptr->iov_len = machine_initrd_size;
704 
705         iov_PCR0 = g_list_append(iov_PCR0, iov_ptr);
706         iov_PCR2 = g_list_append(iov_PCR2, iov_ptr);
707 
708         if (!read_eif_ramdisk(machine_initrd_f, initrd_path_f,
709                               machine_initrd_size, ptr, &crc, errp)) {
710             goto cleanup;
711         }
712     }
713 
714     if (!get_SHA384_digest(iov_PCR0, image_sha384, errp)) {
715         goto cleanup;
716     }
717     if (!get_SHA384_digest(iov_PCR1, bootstrap_sha384, errp)) {
718         goto cleanup;
719     }
720     if (!get_SHA384_digest(iov_PCR2, app_sha384, errp)) {
721         goto cleanup;
722     }
723 
724     /*
725      * We only need to free iov_PCR0 entries because iov_PCR1 and
726      * iov_PCR2 iovec entries are subsets of iov_PCR0 iovec entries.
727      */
728     g_list_free_full(iov_PCR0, (GDestroyNotify) free_iovec);
729     g_list_free(iov_PCR1);
730     g_list_free(iov_PCR2);
731     fclose(f);
732     fclose(initrd_path_f);
733     safe_fclose(machine_initrd_f);
734     return true;
735 
736  cleanup:
737     g_list_free_full(iov_PCR0, (GDestroyNotify) free_iovec);
738     g_list_free(iov_PCR1);
739     g_list_free(iov_PCR2);
740 
741     safe_fclose(f);
742     safe_fclose(initrd_path_f);
743     safe_fclose(machine_initrd_f);
744 
745     safe_unlink(*kernel_path);
746     g_free(*kernel_path);
747     *kernel_path = NULL;
748 
749     safe_unlink(*initrd_path);
750     g_free(*initrd_path);
751     *initrd_path = NULL;
752 
753     g_free(*cmdline);
754     *cmdline = NULL;
755 
756     return false;
757 }
758