xref: /openbmc/qemu/hw/char/serial.c (revision 623d7e3551a6fc5693c06ea938c60fe281b52e27)
1 /*
2  * QEMU 16550A UART emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2008 Citrix Systems, Inc.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/bitops.h"
28 #include "hw/char/serial.h"
29 #include "hw/irq.h"
30 #include "migration/vmstate.h"
31 #include "chardev/char-serial.h"
32 #include "qapi/error.h"
33 #include "qemu/timer.h"
34 #include "sysemu/reset.h"
35 #include "sysemu/runstate.h"
36 #include "qemu/error-report.h"
37 #include "trace.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 
41 #define UART_LCR_DLAB   0x80    /* Divisor latch access bit */
42 
43 #define UART_IER_MSI    0x08    /* Enable Modem status interrupt */
44 #define UART_IER_RLSI   0x04    /* Enable receiver line status interrupt */
45 #define UART_IER_THRI   0x02    /* Enable Transmitter holding register int. */
46 #define UART_IER_RDI    0x01    /* Enable receiver data interrupt */
47 
48 #define UART_IIR_NO_INT 0x01    /* No interrupts pending */
49 #define UART_IIR_ID     0x06    /* Mask for the interrupt ID */
50 
51 #define UART_IIR_MSI    0x00    /* Modem status interrupt */
52 #define UART_IIR_THRI   0x02    /* Transmitter holding register empty */
53 #define UART_IIR_RDI    0x04    /* Receiver data interrupt */
54 #define UART_IIR_RLSI   0x06    /* Receiver line status interrupt */
55 #define UART_IIR_CTI    0x0C    /* Character Timeout Indication */
56 
57 #define UART_IIR_FENF   0x80    /* Fifo enabled, but not functionning */
58 #define UART_IIR_FE     0xC0    /* Fifo enabled */
59 
60 /*
61  * These are the definitions for the Modem Control Register
62  */
63 #define UART_MCR_LOOP   0x10    /* Enable loopback test mode */
64 #define UART_MCR_OUT2   0x08    /* Out2 complement */
65 #define UART_MCR_OUT1   0x04    /* Out1 complement */
66 #define UART_MCR_RTS    0x02    /* RTS complement */
67 #define UART_MCR_DTR    0x01    /* DTR complement */
68 
69 /*
70  * These are the definitions for the Modem Status Register
71  */
72 #define UART_MSR_DCD        0x80    /* Data Carrier Detect */
73 #define UART_MSR_RI         0x40    /* Ring Indicator */
74 #define UART_MSR_DSR        0x20    /* Data Set Ready */
75 #define UART_MSR_CTS        0x10    /* Clear to Send */
76 #define UART_MSR_DDCD       0x08    /* Delta DCD */
77 #define UART_MSR_TERI       0x04    /* Trailing edge ring indicator */
78 #define UART_MSR_DDSR       0x02    /* Delta DSR */
79 #define UART_MSR_DCTS       0x01    /* Delta CTS */
80 #define UART_MSR_ANY_DELTA  0x0F    /* Any of the delta bits! */
81 
82 #define UART_LSR_TEMT       0x40    /* Transmitter empty */
83 #define UART_LSR_THRE       0x20    /* Transmit-hold-register empty */
84 #define UART_LSR_BI         0x10    /* Break interrupt indicator */
85 #define UART_LSR_FE         0x08    /* Frame error indicator */
86 #define UART_LSR_PE         0x04    /* Parity error indicator */
87 #define UART_LSR_OE         0x02    /* Overrun error indicator */
88 #define UART_LSR_DR         0x01    /* Receiver data ready */
89 #define UART_LSR_INT_ANY    0x1E    /* Any of the lsr-interrupt-triggering status bits */
90 
91 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
92 
93 #define UART_FCR_ITL_1      0x00 /* 1 byte ITL */
94 #define UART_FCR_ITL_2      0x40 /* 4 bytes ITL */
95 #define UART_FCR_ITL_3      0x80 /* 8 bytes ITL */
96 #define UART_FCR_ITL_4      0xC0 /* 14 bytes ITL */
97 
98 #define UART_FCR_DMS        0x08    /* DMA Mode Select */
99 #define UART_FCR_XFR        0x04    /* XMIT Fifo Reset */
100 #define UART_FCR_RFR        0x02    /* RCVR Fifo Reset */
101 #define UART_FCR_FE         0x01    /* FIFO Enable */
102 
103 #define MAX_XMIT_RETRY      4
104 
105 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
106 static void serial_xmit(SerialState *s);
107 
108 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
109 {
110     /* Receive overruns do not overwrite FIFO contents. */
111     if (!fifo8_is_full(&s->recv_fifo)) {
112         fifo8_push(&s->recv_fifo, chr);
113     } else {
114         s->lsr |= UART_LSR_OE;
115     }
116 }
117 
118 static void serial_update_irq(SerialState *s)
119 {
120     uint8_t tmp_iir = UART_IIR_NO_INT;
121 
122     if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
123         tmp_iir = UART_IIR_RLSI;
124     } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
125         /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
126          * this is not in the specification but is observed on existing
127          * hardware.  */
128         tmp_iir = UART_IIR_CTI;
129     } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
130                (!(s->fcr & UART_FCR_FE) ||
131                 s->recv_fifo.num >= s->recv_fifo_itl)) {
132         tmp_iir = UART_IIR_RDI;
133     } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
134         tmp_iir = UART_IIR_THRI;
135     } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
136         tmp_iir = UART_IIR_MSI;
137     }
138 
139     s->iir = tmp_iir | (s->iir & 0xF0);
140 
141     if (tmp_iir != UART_IIR_NO_INT) {
142         qemu_irq_raise(s->irq);
143     } else {
144         qemu_irq_lower(s->irq);
145     }
146 }
147 
148 static void serial_update_parameters(SerialState *s)
149 {
150     float speed;
151     int parity, data_bits, stop_bits, frame_size;
152     QEMUSerialSetParams ssp;
153 
154     /* Start bit. */
155     frame_size = 1;
156     if (s->lcr & 0x08) {
157         /* Parity bit. */
158         frame_size++;
159         if (s->lcr & 0x10)
160             parity = 'E';
161         else
162             parity = 'O';
163     } else {
164             parity = 'N';
165     }
166     if (s->lcr & 0x04) {
167         stop_bits = 2;
168     } else {
169         stop_bits = 1;
170     }
171 
172     data_bits = (s->lcr & 0x03) + 5;
173     frame_size += data_bits + stop_bits;
174     /* Zero divisor should give about 3500 baud */
175     speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
176     ssp.speed = speed;
177     ssp.parity = parity;
178     ssp.data_bits = data_bits;
179     ssp.stop_bits = stop_bits;
180     s->char_transmit_time =  (NANOSECONDS_PER_SECOND / speed) * frame_size;
181     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
182     trace_serial_update_parameters(speed, parity, data_bits, stop_bits);
183 }
184 
185 static void serial_update_msl(SerialState *s)
186 {
187     uint8_t omsr;
188     int flags;
189 
190     timer_del(s->modem_status_poll);
191 
192     if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
193                           &flags) == -ENOTSUP) {
194         s->poll_msl = -1;
195         return;
196     }
197 
198     omsr = s->msr;
199 
200     s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
201     s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
202     s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
203     s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
204 
205     if (s->msr != omsr) {
206          /* Set delta bits */
207          s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
208          /* UART_MSR_TERI only if change was from 1 -> 0 */
209          if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
210              s->msr &= ~UART_MSR_TERI;
211          serial_update_irq(s);
212     }
213 
214     /* The real 16550A apparently has a 250ns response latency to line status changes.
215        We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
216 
217     if (s->poll_msl) {
218         timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
219                   NANOSECONDS_PER_SECOND / 100);
220     }
221 }
222 
223 static gboolean serial_watch_cb(void *do_not_use, GIOCondition cond,
224                                 void *opaque)
225 {
226     SerialState *s = opaque;
227     s->watch_tag = 0;
228     serial_xmit(s);
229     return FALSE;
230 }
231 
232 static void serial_xmit(SerialState *s)
233 {
234     do {
235         assert(!(s->lsr & UART_LSR_TEMT));
236         if (s->tsr_retry == 0) {
237             assert(!(s->lsr & UART_LSR_THRE));
238 
239             if (s->fcr & UART_FCR_FE) {
240                 assert(!fifo8_is_empty(&s->xmit_fifo));
241                 s->tsr = fifo8_pop(&s->xmit_fifo);
242                 if (!s->xmit_fifo.num) {
243                     s->lsr |= UART_LSR_THRE;
244                 }
245             } else {
246                 s->tsr = s->thr;
247                 s->lsr |= UART_LSR_THRE;
248             }
249             if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
250                 s->thr_ipending = 1;
251                 serial_update_irq(s);
252             }
253         }
254 
255         if (s->mcr & UART_MCR_LOOP) {
256             /* in loopback mode, say that we just received a char */
257             serial_receive1(s, &s->tsr, 1);
258         } else {
259             int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
260 
261             if ((rc == 0 ||
262                  (rc == -1 && errno == EAGAIN)) &&
263                 s->tsr_retry < MAX_XMIT_RETRY) {
264                 assert(s->watch_tag == 0);
265                 s->watch_tag =
266                     qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
267                                           serial_watch_cb, s);
268                 if (s->watch_tag > 0) {
269                     s->tsr_retry++;
270                     return;
271                 }
272             }
273         }
274         s->tsr_retry = 0;
275 
276         /* Transmit another byte if it is already available. It is only
277            possible when FIFO is enabled and not empty. */
278     } while (!(s->lsr & UART_LSR_THRE));
279 
280     s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
281     s->lsr |= UART_LSR_TEMT;
282 }
283 
284 /* Setter for FCR.
285    is_load flag means, that value is set while loading VM state
286    and interrupt should not be invoked */
287 static void serial_write_fcr(SerialState *s, uint8_t val)
288 {
289     /* Set fcr - val only has the bits that are supposed to "stick" */
290     s->fcr = val;
291 
292     if (val & UART_FCR_FE) {
293         s->iir |= UART_IIR_FE;
294         /* Set recv_fifo trigger Level */
295         switch (val & 0xC0) {
296         case UART_FCR_ITL_1:
297             s->recv_fifo_itl = 1;
298             break;
299         case UART_FCR_ITL_2:
300             s->recv_fifo_itl = 4;
301             break;
302         case UART_FCR_ITL_3:
303             s->recv_fifo_itl = 8;
304             break;
305         case UART_FCR_ITL_4:
306             s->recv_fifo_itl = 14;
307             break;
308         }
309     } else {
310         s->iir &= ~UART_IIR_FE;
311     }
312 }
313 
314 static void serial_update_tiocm(SerialState *s)
315 {
316     int flags;
317 
318     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
319 
320     flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
321 
322     if (s->mcr & UART_MCR_RTS) {
323         flags |= CHR_TIOCM_RTS;
324     }
325     if (s->mcr & UART_MCR_DTR) {
326         flags |= CHR_TIOCM_DTR;
327     }
328 
329     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
330 }
331 
332 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
333                                 unsigned size)
334 {
335     SerialState *s = opaque;
336 
337     assert(size == 1 && addr < 8);
338     trace_serial_write(addr, val);
339     switch(addr) {
340     default:
341     case 0:
342         if (s->lcr & UART_LCR_DLAB) {
343             s->divider = deposit32(s->divider, 8 * addr, 8, val);
344             serial_update_parameters(s);
345         } else {
346             s->thr = (uint8_t) val;
347             if(s->fcr & UART_FCR_FE) {
348                 /* xmit overruns overwrite data, so make space if needed */
349                 if (fifo8_is_full(&s->xmit_fifo)) {
350                     fifo8_pop(&s->xmit_fifo);
351                 }
352                 fifo8_push(&s->xmit_fifo, s->thr);
353             }
354             s->thr_ipending = 0;
355             s->lsr &= ~UART_LSR_THRE;
356             s->lsr &= ~UART_LSR_TEMT;
357             serial_update_irq(s);
358             if (s->tsr_retry == 0) {
359                 serial_xmit(s);
360             }
361         }
362         break;
363     case 1:
364         if (s->lcr & UART_LCR_DLAB) {
365             s->divider = deposit32(s->divider, 8 * addr, 8, val);
366             serial_update_parameters(s);
367         } else {
368             uint8_t changed = (s->ier ^ val) & 0x0f;
369             s->ier = val & 0x0f;
370             /* If the backend device is a real serial port, turn polling of the modem
371              * status lines on physical port on or off depending on UART_IER_MSI state.
372              */
373             if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
374                 if (s->ier & UART_IER_MSI) {
375                      s->poll_msl = 1;
376                      serial_update_msl(s);
377                 } else {
378                      timer_del(s->modem_status_poll);
379                      s->poll_msl = 0;
380                 }
381             }
382 
383             /* Turning on the THRE interrupt on IER can trigger the interrupt
384              * if LSR.THRE=1, even if it had been masked before by reading IIR.
385              * This is not in the datasheet, but Windows relies on it.  It is
386              * unclear if THRE has to be resampled every time THRI becomes
387              * 1, or only on the rising edge.  Bochs does the latter, and Windows
388              * always toggles IER to all zeroes and back to all ones, so do the
389              * same.
390              *
391              * If IER.THRI is zero, thr_ipending is not used.  Set it to zero
392              * so that the thr_ipending subsection is not migrated.
393              */
394             if (changed & UART_IER_THRI) {
395                 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
396                     s->thr_ipending = 1;
397                 } else {
398                     s->thr_ipending = 0;
399                 }
400             }
401 
402             if (changed) {
403                 serial_update_irq(s);
404             }
405         }
406         break;
407     case 2:
408         /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
409         if ((val ^ s->fcr) & UART_FCR_FE) {
410             val |= UART_FCR_XFR | UART_FCR_RFR;
411         }
412 
413         /* FIFO clear */
414 
415         if (val & UART_FCR_RFR) {
416             s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
417             timer_del(s->fifo_timeout_timer);
418             s->timeout_ipending = 0;
419             fifo8_reset(&s->recv_fifo);
420         }
421 
422         if (val & UART_FCR_XFR) {
423             s->lsr |= UART_LSR_THRE;
424             s->thr_ipending = 1;
425             fifo8_reset(&s->xmit_fifo);
426         }
427 
428         serial_write_fcr(s, val & 0xC9);
429         serial_update_irq(s);
430         break;
431     case 3:
432         {
433             int break_enable;
434             s->lcr = val;
435             serial_update_parameters(s);
436             break_enable = (val >> 6) & 1;
437             if (break_enable != s->last_break_enable) {
438                 s->last_break_enable = break_enable;
439                 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
440                                   &break_enable);
441             }
442         }
443         break;
444     case 4:
445         {
446             int old_mcr = s->mcr;
447             s->mcr = val & 0x1f;
448             if (val & UART_MCR_LOOP)
449                 break;
450 
451             if (s->poll_msl >= 0 && old_mcr != s->mcr) {
452                 serial_update_tiocm(s);
453                 /* Update the modem status after a one-character-send wait-time, since there may be a response
454                    from the device/computer at the other end of the serial line */
455                 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
456             }
457         }
458         break;
459     case 5:
460         break;
461     case 6:
462         break;
463     case 7:
464         s->scr = val;
465         break;
466     }
467 }
468 
469 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
470 {
471     SerialState *s = opaque;
472     uint32_t ret;
473 
474     assert(size == 1 && addr < 8);
475     switch(addr) {
476     default:
477     case 0:
478         if (s->lcr & UART_LCR_DLAB) {
479             ret = extract16(s->divider, 8 * addr, 8);
480         } else {
481             if(s->fcr & UART_FCR_FE) {
482                 ret = fifo8_is_empty(&s->recv_fifo) ?
483                             0 : fifo8_pop(&s->recv_fifo);
484                 if (s->recv_fifo.num == 0) {
485                     s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
486                 } else {
487                     timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
488                 }
489                 s->timeout_ipending = 0;
490             } else {
491                 ret = s->rbr;
492                 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
493             }
494             serial_update_irq(s);
495             if (!(s->mcr & UART_MCR_LOOP)) {
496                 /* in loopback mode, don't receive any data */
497                 qemu_chr_fe_accept_input(&s->chr);
498             }
499         }
500         break;
501     case 1:
502         if (s->lcr & UART_LCR_DLAB) {
503             ret = extract16(s->divider, 8 * addr, 8);
504         } else {
505             ret = s->ier;
506         }
507         break;
508     case 2:
509         ret = s->iir;
510         if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
511             s->thr_ipending = 0;
512             serial_update_irq(s);
513         }
514         break;
515     case 3:
516         ret = s->lcr;
517         break;
518     case 4:
519         ret = s->mcr;
520         break;
521     case 5:
522         ret = s->lsr;
523         /* Clear break and overrun interrupts */
524         if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
525             s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
526             serial_update_irq(s);
527         }
528         break;
529     case 6:
530         if (s->mcr & UART_MCR_LOOP) {
531             /* in loopback, the modem output pins are connected to the
532                inputs */
533             ret = (s->mcr & 0x0c) << 4;
534             ret |= (s->mcr & 0x02) << 3;
535             ret |= (s->mcr & 0x01) << 5;
536         } else {
537             if (s->poll_msl >= 0)
538                 serial_update_msl(s);
539             ret = s->msr;
540             /* Clear delta bits & msr int after read, if they were set */
541             if (s->msr & UART_MSR_ANY_DELTA) {
542                 s->msr &= 0xF0;
543                 serial_update_irq(s);
544             }
545         }
546         break;
547     case 7:
548         ret = s->scr;
549         break;
550     }
551     trace_serial_read(addr, ret);
552     return ret;
553 }
554 
555 static int serial_can_receive(SerialState *s)
556 {
557     if(s->fcr & UART_FCR_FE) {
558         if (s->recv_fifo.num < UART_FIFO_LENGTH) {
559             /*
560              * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
561              * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
562              * effect will be to almost always fill the fifo completely before
563              * the guest has a chance to respond, effectively overriding the ITL
564              * that the guest has set.
565              */
566             return (s->recv_fifo.num <= s->recv_fifo_itl) ?
567                         s->recv_fifo_itl - s->recv_fifo.num : 1;
568         } else {
569             return 0;
570         }
571     } else {
572         return !(s->lsr & UART_LSR_DR);
573     }
574 }
575 
576 static void serial_receive_break(SerialState *s)
577 {
578     s->rbr = 0;
579     /* When the LSR_DR is set a null byte is pushed into the fifo */
580     recv_fifo_put(s, '\0');
581     s->lsr |= UART_LSR_BI | UART_LSR_DR;
582     serial_update_irq(s);
583 }
584 
585 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
586 static void fifo_timeout_int (void *opaque) {
587     SerialState *s = opaque;
588     if (s->recv_fifo.num) {
589         s->timeout_ipending = 1;
590         serial_update_irq(s);
591     }
592 }
593 
594 static int serial_can_receive1(void *opaque)
595 {
596     SerialState *s = opaque;
597     return serial_can_receive(s);
598 }
599 
600 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
601 {
602     SerialState *s = opaque;
603 
604     if (s->wakeup) {
605         qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
606     }
607     if(s->fcr & UART_FCR_FE) {
608         int i;
609         for (i = 0; i < size; i++) {
610             recv_fifo_put(s, buf[i]);
611         }
612         s->lsr |= UART_LSR_DR;
613         /* call the timeout receive callback in 4 char transmit time */
614         timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
615     } else {
616         if (s->lsr & UART_LSR_DR)
617             s->lsr |= UART_LSR_OE;
618         s->rbr = buf[0];
619         s->lsr |= UART_LSR_DR;
620     }
621     serial_update_irq(s);
622 }
623 
624 static void serial_event(void *opaque, QEMUChrEvent event)
625 {
626     SerialState *s = opaque;
627     if (event == CHR_EVENT_BREAK)
628         serial_receive_break(s);
629 }
630 
631 static int serial_pre_save(void *opaque)
632 {
633     SerialState *s = opaque;
634     s->fcr_vmstate = s->fcr;
635 
636     return 0;
637 }
638 
639 static int serial_pre_load(void *opaque)
640 {
641     SerialState *s = opaque;
642     s->thr_ipending = -1;
643     s->poll_msl = -1;
644     return 0;
645 }
646 
647 static int serial_post_load(void *opaque, int version_id)
648 {
649     SerialState *s = opaque;
650 
651     if (version_id < 3) {
652         s->fcr_vmstate = 0;
653     }
654     if (s->thr_ipending == -1) {
655         s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
656     }
657 
658     if (s->tsr_retry > 0) {
659         /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty).  */
660         if (s->lsr & UART_LSR_TEMT) {
661             error_report("inconsistent state in serial device "
662                          "(tsr empty, tsr_retry=%d", s->tsr_retry);
663             return -1;
664         }
665 
666         if (s->tsr_retry > MAX_XMIT_RETRY) {
667             s->tsr_retry = MAX_XMIT_RETRY;
668         }
669 
670         assert(s->watch_tag == 0);
671         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
672                                              serial_watch_cb, s);
673     } else {
674         /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty).  */
675         if (!(s->lsr & UART_LSR_TEMT)) {
676             error_report("inconsistent state in serial device "
677                          "(tsr not empty, tsr_retry=0");
678             return -1;
679         }
680     }
681 
682     s->last_break_enable = (s->lcr >> 6) & 1;
683     /* Initialize fcr via setter to perform essential side-effects */
684     serial_write_fcr(s, s->fcr_vmstate);
685     serial_update_parameters(s);
686     return 0;
687 }
688 
689 static bool serial_thr_ipending_needed(void *opaque)
690 {
691     SerialState *s = opaque;
692 
693     if (s->ier & UART_IER_THRI) {
694         bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
695         return s->thr_ipending != expected_value;
696     } else {
697         /* LSR.THRE will be sampled again when the interrupt is
698          * enabled.  thr_ipending is not used in this case, do
699          * not migrate it.
700          */
701         return false;
702     }
703 }
704 
705 static const VMStateDescription vmstate_serial_thr_ipending = {
706     .name = "serial/thr_ipending",
707     .version_id = 1,
708     .minimum_version_id = 1,
709     .needed = serial_thr_ipending_needed,
710     .fields = (VMStateField[]) {
711         VMSTATE_INT32(thr_ipending, SerialState),
712         VMSTATE_END_OF_LIST()
713     }
714 };
715 
716 static bool serial_tsr_needed(void *opaque)
717 {
718     SerialState *s = (SerialState *)opaque;
719     return s->tsr_retry != 0;
720 }
721 
722 static const VMStateDescription vmstate_serial_tsr = {
723     .name = "serial/tsr",
724     .version_id = 1,
725     .minimum_version_id = 1,
726     .needed = serial_tsr_needed,
727     .fields = (VMStateField[]) {
728         VMSTATE_UINT32(tsr_retry, SerialState),
729         VMSTATE_UINT8(thr, SerialState),
730         VMSTATE_UINT8(tsr, SerialState),
731         VMSTATE_END_OF_LIST()
732     }
733 };
734 
735 static bool serial_recv_fifo_needed(void *opaque)
736 {
737     SerialState *s = (SerialState *)opaque;
738     return !fifo8_is_empty(&s->recv_fifo);
739 
740 }
741 
742 static const VMStateDescription vmstate_serial_recv_fifo = {
743     .name = "serial/recv_fifo",
744     .version_id = 1,
745     .minimum_version_id = 1,
746     .needed = serial_recv_fifo_needed,
747     .fields = (VMStateField[]) {
748         VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
749         VMSTATE_END_OF_LIST()
750     }
751 };
752 
753 static bool serial_xmit_fifo_needed(void *opaque)
754 {
755     SerialState *s = (SerialState *)opaque;
756     return !fifo8_is_empty(&s->xmit_fifo);
757 }
758 
759 static const VMStateDescription vmstate_serial_xmit_fifo = {
760     .name = "serial/xmit_fifo",
761     .version_id = 1,
762     .minimum_version_id = 1,
763     .needed = serial_xmit_fifo_needed,
764     .fields = (VMStateField[]) {
765         VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
766         VMSTATE_END_OF_LIST()
767     }
768 };
769 
770 static bool serial_fifo_timeout_timer_needed(void *opaque)
771 {
772     SerialState *s = (SerialState *)opaque;
773     return timer_pending(s->fifo_timeout_timer);
774 }
775 
776 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
777     .name = "serial/fifo_timeout_timer",
778     .version_id = 1,
779     .minimum_version_id = 1,
780     .needed = serial_fifo_timeout_timer_needed,
781     .fields = (VMStateField[]) {
782         VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
783         VMSTATE_END_OF_LIST()
784     }
785 };
786 
787 static bool serial_timeout_ipending_needed(void *opaque)
788 {
789     SerialState *s = (SerialState *)opaque;
790     return s->timeout_ipending != 0;
791 }
792 
793 static const VMStateDescription vmstate_serial_timeout_ipending = {
794     .name = "serial/timeout_ipending",
795     .version_id = 1,
796     .minimum_version_id = 1,
797     .needed = serial_timeout_ipending_needed,
798     .fields = (VMStateField[]) {
799         VMSTATE_INT32(timeout_ipending, SerialState),
800         VMSTATE_END_OF_LIST()
801     }
802 };
803 
804 static bool serial_poll_needed(void *opaque)
805 {
806     SerialState *s = (SerialState *)opaque;
807     return s->poll_msl >= 0;
808 }
809 
810 static const VMStateDescription vmstate_serial_poll = {
811     .name = "serial/poll",
812     .version_id = 1,
813     .needed = serial_poll_needed,
814     .minimum_version_id = 1,
815     .fields = (VMStateField[]) {
816         VMSTATE_INT32(poll_msl, SerialState),
817         VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
818         VMSTATE_END_OF_LIST()
819     }
820 };
821 
822 const VMStateDescription vmstate_serial = {
823     .name = "serial",
824     .version_id = 3,
825     .minimum_version_id = 2,
826     .pre_save = serial_pre_save,
827     .pre_load = serial_pre_load,
828     .post_load = serial_post_load,
829     .fields = (VMStateField[]) {
830         VMSTATE_UINT16_V(divider, SerialState, 2),
831         VMSTATE_UINT8(rbr, SerialState),
832         VMSTATE_UINT8(ier, SerialState),
833         VMSTATE_UINT8(iir, SerialState),
834         VMSTATE_UINT8(lcr, SerialState),
835         VMSTATE_UINT8(mcr, SerialState),
836         VMSTATE_UINT8(lsr, SerialState),
837         VMSTATE_UINT8(msr, SerialState),
838         VMSTATE_UINT8(scr, SerialState),
839         VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
840         VMSTATE_END_OF_LIST()
841     },
842     .subsections = (const VMStateDescription*[]) {
843         &vmstate_serial_thr_ipending,
844         &vmstate_serial_tsr,
845         &vmstate_serial_recv_fifo,
846         &vmstate_serial_xmit_fifo,
847         &vmstate_serial_fifo_timeout_timer,
848         &vmstate_serial_timeout_ipending,
849         &vmstate_serial_poll,
850         NULL
851     }
852 };
853 
854 static void serial_reset(void *opaque)
855 {
856     SerialState *s = opaque;
857 
858     if (s->watch_tag > 0) {
859         g_source_remove(s->watch_tag);
860         s->watch_tag = 0;
861     }
862 
863     s->rbr = 0;
864     s->ier = 0;
865     s->iir = UART_IIR_NO_INT;
866     s->lcr = 0;
867     s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
868     s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
869     /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
870     s->divider = 0x0C;
871     s->mcr = UART_MCR_OUT2;
872     s->scr = 0;
873     s->tsr_retry = 0;
874     s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
875     s->poll_msl = 0;
876 
877     s->timeout_ipending = 0;
878     timer_del(s->fifo_timeout_timer);
879     timer_del(s->modem_status_poll);
880 
881     fifo8_reset(&s->recv_fifo);
882     fifo8_reset(&s->xmit_fifo);
883 
884     s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
885 
886     s->thr_ipending = 0;
887     s->last_break_enable = 0;
888     qemu_irq_lower(s->irq);
889 
890     serial_update_msl(s);
891     s->msr &= ~UART_MSR_ANY_DELTA;
892 }
893 
894 static int serial_be_change(void *opaque)
895 {
896     SerialState *s = opaque;
897 
898     qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
899                              serial_event, serial_be_change, s, NULL, true);
900 
901     serial_update_parameters(s);
902 
903     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
904                       &s->last_break_enable);
905 
906     s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
907     serial_update_msl(s);
908 
909     if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
910         serial_update_tiocm(s);
911     }
912 
913     if (s->watch_tag > 0) {
914         g_source_remove(s->watch_tag);
915         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
916                                              serial_watch_cb, s);
917     }
918 
919     return 0;
920 }
921 
922 static void serial_realize(DeviceState *dev, Error **errp)
923 {
924     SerialState *s = SERIAL(dev);
925 
926     s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
927 
928     s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
929     qemu_register_reset(serial_reset, s);
930 
931     qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
932                              serial_event, serial_be_change, s, NULL, true);
933     fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
934     fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
935     serial_reset(s);
936 }
937 
938 static void serial_unrealize(DeviceState *dev)
939 {
940     SerialState *s = SERIAL(dev);
941 
942     qemu_chr_fe_deinit(&s->chr, false);
943 
944     timer_free(s->modem_status_poll);
945 
946     timer_free(s->fifo_timeout_timer);
947 
948     fifo8_destroy(&s->recv_fifo);
949     fifo8_destroy(&s->xmit_fifo);
950 
951     qemu_unregister_reset(serial_reset, s);
952 }
953 
954 /* Change the main reference oscillator frequency. */
955 void serial_set_frequency(SerialState *s, uint32_t frequency)
956 {
957     s->baudbase = frequency;
958     serial_update_parameters(s);
959 }
960 
961 const MemoryRegionOps serial_io_ops = {
962     .read = serial_ioport_read,
963     .write = serial_ioport_write,
964     .valid = {
965         .unaligned = 1,
966     },
967     .impl = {
968         .min_access_size = 1,
969         .max_access_size = 1,
970     },
971     .endianness = DEVICE_LITTLE_ENDIAN,
972 };
973 
974 static Property serial_properties[] = {
975     DEFINE_PROP_CHR("chardev", SerialState, chr),
976     DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200),
977     DEFINE_PROP_BOOL("wakeup", SerialState, wakeup, false),
978     DEFINE_PROP_END_OF_LIST(),
979 };
980 
981 static void serial_class_init(ObjectClass *klass, void* data)
982 {
983     DeviceClass *dc = DEVICE_CLASS(klass);
984 
985     /* internal device for serialio/serialmm, not user-creatable */
986     dc->user_creatable = false;
987     dc->realize = serial_realize;
988     dc->unrealize = serial_unrealize;
989     device_class_set_props(dc, serial_properties);
990 }
991 
992 static const TypeInfo serial_info = {
993     .name = TYPE_SERIAL,
994     .parent = TYPE_DEVICE,
995     .instance_size = sizeof(SerialState),
996     .class_init = serial_class_init,
997 };
998 
999 /* Memory mapped interface */
1000 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
1001                                unsigned size)
1002 {
1003     SerialMM *s = SERIAL_MM(opaque);
1004     return serial_ioport_read(&s->serial, addr >> s->regshift, 1);
1005 }
1006 
1007 static void serial_mm_write(void *opaque, hwaddr addr,
1008                             uint64_t value, unsigned size)
1009 {
1010     SerialMM *s = SERIAL_MM(opaque);
1011     value &= 255;
1012     serial_ioport_write(&s->serial, addr >> s->regshift, value, 1);
1013 }
1014 
1015 static const MemoryRegionOps serial_mm_ops[3] = {
1016     [DEVICE_NATIVE_ENDIAN] = {
1017         .read = serial_mm_read,
1018         .write = serial_mm_write,
1019         .endianness = DEVICE_NATIVE_ENDIAN,
1020         .valid.max_access_size = 8,
1021         .impl.max_access_size = 8,
1022     },
1023     [DEVICE_LITTLE_ENDIAN] = {
1024         .read = serial_mm_read,
1025         .write = serial_mm_write,
1026         .endianness = DEVICE_LITTLE_ENDIAN,
1027         .valid.max_access_size = 8,
1028         .impl.max_access_size = 8,
1029     },
1030     [DEVICE_BIG_ENDIAN] = {
1031         .read = serial_mm_read,
1032         .write = serial_mm_write,
1033         .endianness = DEVICE_BIG_ENDIAN,
1034         .valid.max_access_size = 8,
1035         .impl.max_access_size = 8,
1036     },
1037 };
1038 
1039 static void serial_mm_realize(DeviceState *dev, Error **errp)
1040 {
1041     SerialMM *smm = SERIAL_MM(dev);
1042     SerialState *s = &smm->serial;
1043 
1044     if (!qdev_realize(DEVICE(s), NULL, errp)) {
1045         return;
1046     }
1047 
1048     memory_region_init_io(&s->io, OBJECT(dev),
1049                           &serial_mm_ops[smm->endianness], smm, "serial",
1050                           8 << smm->regshift);
1051     sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io);
1052     sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq);
1053 }
1054 
1055 static const VMStateDescription vmstate_serial_mm = {
1056     .name = "serial",
1057     .version_id = 3,
1058     .minimum_version_id = 2,
1059     .fields = (VMStateField[]) {
1060         VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState),
1061         VMSTATE_END_OF_LIST()
1062     }
1063 };
1064 
1065 SerialMM *serial_mm_init(MemoryRegion *address_space,
1066                          hwaddr base, int regshift,
1067                          qemu_irq irq, int baudbase,
1068                          Chardev *chr, enum device_endian end)
1069 {
1070     SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM));
1071     MemoryRegion *mr;
1072 
1073     qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift);
1074     qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase);
1075     qdev_prop_set_chr(DEVICE(smm), "chardev", chr);
1076     qdev_set_legacy_instance_id(DEVICE(smm), base, 2);
1077     qdev_prop_set_uint8(DEVICE(smm), "endianness", end);
1078     sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal);
1079 
1080     sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq);
1081     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0);
1082     memory_region_add_subregion(address_space, base, mr);
1083 
1084     return smm;
1085 }
1086 
1087 static void serial_mm_instance_init(Object *o)
1088 {
1089     SerialMM *smm = SERIAL_MM(o);
1090 
1091     object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL);
1092 
1093     qdev_alias_all_properties(DEVICE(&smm->serial), o);
1094 }
1095 
1096 static Property serial_mm_properties[] = {
1097     /*
1098      * Set the spacing between adjacent memory-mapped UART registers.
1099      * Each register will be at (1 << regshift) bytes after the
1100      * previous one.
1101      */
1102     DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0),
1103     DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN),
1104     DEFINE_PROP_END_OF_LIST(),
1105 };
1106 
1107 static void serial_mm_class_init(ObjectClass *oc, void *data)
1108 {
1109     DeviceClass *dc = DEVICE_CLASS(oc);
1110 
1111     device_class_set_props(dc, serial_mm_properties);
1112     dc->realize = serial_mm_realize;
1113     dc->vmsd = &vmstate_serial_mm;
1114 }
1115 
1116 static const TypeInfo serial_mm_info = {
1117     .name = TYPE_SERIAL_MM,
1118     .parent = TYPE_SYS_BUS_DEVICE,
1119     .class_init = serial_mm_class_init,
1120     .instance_init = serial_mm_instance_init,
1121     .instance_size = sizeof(SerialMM),
1122 };
1123 
1124 static void serial_register_types(void)
1125 {
1126     type_register_static(&serial_info);
1127     type_register_static(&serial_mm_info);
1128 }
1129 
1130 type_init(serial_register_types)
1131