xref: /openbmc/qemu/hw/char/ibex_uart.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * QEMU lowRISC Ibex UART device
3  *
4  * Copyright (c) 2020 Western Digital
5  *
6  * For details check the documentation here:
7  *    https://docs.opentitan.org/hw/ip/uart/doc/
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
33 #include "qemu/log.h"
34 #include "qemu/module.h"
35 
36 static void ibex_uart_update_irqs(IbexUartState *s)
37 {
38     if (s->uart_intr_state & s->uart_intr_enable & INTR_STATE_TX_WATERMARK) {
39         qemu_set_irq(s->tx_watermark, 1);
40     } else {
41         qemu_set_irq(s->tx_watermark, 0);
42     }
43 
44     if (s->uart_intr_state & s->uart_intr_enable & INTR_STATE_RX_WATERMARK) {
45         qemu_set_irq(s->rx_watermark, 1);
46     } else {
47         qemu_set_irq(s->rx_watermark, 0);
48     }
49 
50     if (s->uart_intr_state & s->uart_intr_enable & INTR_STATE_TX_EMPTY) {
51         qemu_set_irq(s->tx_empty, 1);
52     } else {
53         qemu_set_irq(s->tx_empty, 0);
54     }
55 
56     if (s->uart_intr_state & s->uart_intr_enable & INTR_STATE_RX_OVERFLOW) {
57         qemu_set_irq(s->rx_overflow, 1);
58     } else {
59         qemu_set_irq(s->rx_overflow, 0);
60     }
61 }
62 
63 static int ibex_uart_can_receive(void *opaque)
64 {
65     IbexUartState *s = opaque;
66 
67     if (s->uart_ctrl & UART_CTRL_RX_ENABLE) {
68         return 1;
69     }
70 
71     return 0;
72 }
73 
74 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
75 {
76     IbexUartState *s = opaque;
77     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & FIFO_CTRL_RXILVL)
78                             >> FIFO_CTRL_RXILVL_SHIFT;
79 
80     s->uart_rdata = *buf;
81 
82     s->uart_status &= ~UART_STATUS_RXIDLE;
83     s->uart_status &= ~UART_STATUS_RXEMPTY;
84 
85     if (size > rx_fifo_level) {
86         s->uart_intr_state |= INTR_STATE_RX_WATERMARK;
87     }
88 
89     ibex_uart_update_irqs(s);
90 }
91 
92 static gboolean ibex_uart_xmit(GIOChannel *chan, GIOCondition cond,
93                                void *opaque)
94 {
95     IbexUartState *s = opaque;
96     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & FIFO_CTRL_TXILVL)
97                             >> FIFO_CTRL_TXILVL_SHIFT;
98     int ret;
99 
100     /* instant drain the fifo when there's no back-end */
101     if (!qemu_chr_fe_backend_connected(&s->chr)) {
102         s->tx_level = 0;
103         return FALSE;
104     }
105 
106     if (!s->tx_level) {
107         s->uart_status &= ~UART_STATUS_TXFULL;
108         s->uart_status |= UART_STATUS_TXEMPTY;
109         s->uart_intr_state |= INTR_STATE_TX_EMPTY;
110         s->uart_intr_state &= ~INTR_STATE_TX_WATERMARK;
111         ibex_uart_update_irqs(s);
112         return FALSE;
113     }
114 
115     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
116 
117     if (ret >= 0) {
118         s->tx_level -= ret;
119         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
120     }
121 
122     if (s->tx_level) {
123         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
124                                         ibex_uart_xmit, s);
125         if (!r) {
126             s->tx_level = 0;
127             return FALSE;
128         }
129     }
130 
131     /* Clear the TX Full bit */
132     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
133         s->uart_status &= ~UART_STATUS_TXFULL;
134     }
135 
136     /* Disable the TX_WATERMARK IRQ */
137     if (s->tx_level < tx_fifo_level) {
138         s->uart_intr_state &= ~INTR_STATE_TX_WATERMARK;
139     }
140 
141     /* Set TX empty */
142     if (s->tx_level == 0) {
143         s->uart_status |= UART_STATUS_TXEMPTY;
144         s->uart_intr_state |= INTR_STATE_TX_EMPTY;
145     }
146 
147     ibex_uart_update_irqs(s);
148     return FALSE;
149 }
150 
151 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
152                                int size)
153 {
154     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
155     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & FIFO_CTRL_TXILVL)
156                             >> FIFO_CTRL_TXILVL_SHIFT;
157 
158     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
159         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
160         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
161     }
162 
163     memcpy(s->tx_fifo + s->tx_level, buf, size);
164     s->tx_level += size;
165 
166     if (s->tx_level > 0) {
167         s->uart_status &= ~UART_STATUS_TXEMPTY;
168     }
169 
170     if (s->tx_level >= tx_fifo_level) {
171         s->uart_intr_state |= INTR_STATE_TX_WATERMARK;
172         ibex_uart_update_irqs(s);
173     }
174 
175     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
176         s->uart_status |= UART_STATUS_TXFULL;
177     }
178 
179     timer_mod(s->fifo_trigger_handle, current_time +
180               (s->char_tx_time * 4));
181 }
182 
183 static void ibex_uart_reset(DeviceState *dev)
184 {
185     IbexUartState *s = IBEX_UART(dev);
186 
187     s->uart_intr_state = 0x00000000;
188     s->uart_intr_state = 0x00000000;
189     s->uart_intr_enable = 0x00000000;
190     s->uart_ctrl = 0x00000000;
191     s->uart_status = 0x0000003c;
192     s->uart_rdata = 0x00000000;
193     s->uart_fifo_ctrl = 0x00000000;
194     s->uart_fifo_status = 0x00000000;
195     s->uart_ovrd = 0x00000000;
196     s->uart_val = 0x00000000;
197     s->uart_timeout_ctrl = 0x00000000;
198 
199     s->tx_level = 0;
200 
201     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
202 
203     ibex_uart_update_irqs(s);
204 }
205 
206 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
207                                        unsigned int size)
208 {
209     IbexUartState *s = opaque;
210     uint64_t retvalue = 0;
211 
212     switch (addr) {
213     case IBEX_UART_INTR_STATE:
214         retvalue = s->uart_intr_state;
215         break;
216     case IBEX_UART_INTR_ENABLE:
217         retvalue = s->uart_intr_enable;
218         break;
219     case IBEX_UART_INTR_TEST:
220         qemu_log_mask(LOG_GUEST_ERROR,
221                       "%s: wdata is write only\n", __func__);
222         break;
223 
224     case IBEX_UART_CTRL:
225         retvalue = s->uart_ctrl;
226         break;
227     case IBEX_UART_STATUS:
228         retvalue = s->uart_status;
229         break;
230 
231     case IBEX_UART_RDATA:
232         retvalue = s->uart_rdata;
233         if (s->uart_ctrl & UART_CTRL_RX_ENABLE) {
234             qemu_chr_fe_accept_input(&s->chr);
235 
236             s->uart_status |= UART_STATUS_RXIDLE;
237             s->uart_status |= UART_STATUS_RXEMPTY;
238         }
239         break;
240     case IBEX_UART_WDATA:
241         qemu_log_mask(LOG_GUEST_ERROR,
242                       "%s: wdata is write only\n", __func__);
243         break;
244 
245     case IBEX_UART_FIFO_CTRL:
246         retvalue = s->uart_fifo_ctrl;
247         break;
248     case IBEX_UART_FIFO_STATUS:
249         retvalue = s->uart_fifo_status;
250 
251         retvalue |= s->tx_level & 0x1F;
252 
253         qemu_log_mask(LOG_UNIMP,
254                       "%s: RX fifos are not supported\n", __func__);
255         break;
256 
257     case IBEX_UART_OVRD:
258         retvalue = s->uart_ovrd;
259         qemu_log_mask(LOG_UNIMP,
260                       "%s: ovrd is not supported\n", __func__);
261         break;
262     case IBEX_UART_VAL:
263         retvalue = s->uart_val;
264         qemu_log_mask(LOG_UNIMP,
265                       "%s: val is not supported\n", __func__);
266         break;
267     case IBEX_UART_TIMEOUT_CTRL:
268         retvalue = s->uart_timeout_ctrl;
269         qemu_log_mask(LOG_UNIMP,
270                       "%s: timeout_ctrl is not supported\n", __func__);
271         break;
272     default:
273         qemu_log_mask(LOG_GUEST_ERROR,
274                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
275         return 0;
276     }
277 
278     return retvalue;
279 }
280 
281 static void ibex_uart_write(void *opaque, hwaddr addr,
282                                   uint64_t val64, unsigned int size)
283 {
284     IbexUartState *s = opaque;
285     uint32_t value = val64;
286 
287     switch (addr) {
288     case IBEX_UART_INTR_STATE:
289         /* Write 1 clear */
290         s->uart_intr_state &= ~value;
291         ibex_uart_update_irqs(s);
292         break;
293     case IBEX_UART_INTR_ENABLE:
294         s->uart_intr_enable = value;
295         ibex_uart_update_irqs(s);
296         break;
297     case IBEX_UART_INTR_TEST:
298         s->uart_intr_state |= value;
299         ibex_uart_update_irqs(s);
300         break;
301 
302     case IBEX_UART_CTRL:
303         s->uart_ctrl = value;
304 
305         if (value & UART_CTRL_NF) {
306             qemu_log_mask(LOG_UNIMP,
307                           "%s: UART_CTRL_NF is not supported\n", __func__);
308         }
309         if (value & UART_CTRL_SLPBK) {
310             qemu_log_mask(LOG_UNIMP,
311                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
312         }
313         if (value & UART_CTRL_LLPBK) {
314             qemu_log_mask(LOG_UNIMP,
315                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
316         }
317         if (value & UART_CTRL_PARITY_EN) {
318             qemu_log_mask(LOG_UNIMP,
319                           "%s: UART_CTRL_PARITY_EN is not supported\n",
320                           __func__);
321         }
322         if (value & UART_CTRL_PARITY_ODD) {
323             qemu_log_mask(LOG_UNIMP,
324                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
325                           __func__);
326         }
327         if (value & UART_CTRL_RXBLVL) {
328             qemu_log_mask(LOG_UNIMP,
329                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
330         }
331         if (value & UART_CTRL_NCO) {
332             uint64_t baud = ((value & UART_CTRL_NCO) >> 16);
333             baud *= 1000;
334             baud >>= 20;
335 
336             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
337         }
338         break;
339     case IBEX_UART_STATUS:
340         qemu_log_mask(LOG_GUEST_ERROR,
341                       "%s: status is read only\n", __func__);
342         break;
343 
344     case IBEX_UART_RDATA:
345         qemu_log_mask(LOG_GUEST_ERROR,
346                       "%s: rdata is read only\n", __func__);
347         break;
348     case IBEX_UART_WDATA:
349         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
350         break;
351 
352     case IBEX_UART_FIFO_CTRL:
353         s->uart_fifo_ctrl = value;
354 
355         if (value & FIFO_CTRL_RXRST) {
356             qemu_log_mask(LOG_UNIMP,
357                           "%s: RX fifos are not supported\n", __func__);
358         }
359         if (value & FIFO_CTRL_TXRST) {
360             s->tx_level = 0;
361         }
362         break;
363     case IBEX_UART_FIFO_STATUS:
364         qemu_log_mask(LOG_GUEST_ERROR,
365                       "%s: fifo_status is read only\n", __func__);
366         break;
367 
368     case IBEX_UART_OVRD:
369         s->uart_ovrd = value;
370         qemu_log_mask(LOG_UNIMP,
371                       "%s: ovrd is not supported\n", __func__);
372         break;
373     case IBEX_UART_VAL:
374         qemu_log_mask(LOG_GUEST_ERROR,
375                       "%s: val is read only\n", __func__);
376         break;
377     case IBEX_UART_TIMEOUT_CTRL:
378         s->uart_timeout_ctrl = value;
379         qemu_log_mask(LOG_UNIMP,
380                       "%s: timeout_ctrl is not supported\n", __func__);
381         break;
382     default:
383         qemu_log_mask(LOG_GUEST_ERROR,
384                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
385     }
386 }
387 
388 static void fifo_trigger_update(void *opaque)
389 {
390     IbexUartState *s = opaque;
391 
392     if (s->uart_ctrl & UART_CTRL_TX_ENABLE) {
393         ibex_uart_xmit(NULL, G_IO_OUT, s);
394     }
395 }
396 
397 static const MemoryRegionOps ibex_uart_ops = {
398     .read = ibex_uart_read,
399     .write = ibex_uart_write,
400     .endianness = DEVICE_NATIVE_ENDIAN,
401     .impl.min_access_size = 4,
402     .impl.max_access_size = 4,
403 };
404 
405 static int ibex_uart_post_load(void *opaque, int version_id)
406 {
407     IbexUartState *s = opaque;
408 
409     ibex_uart_update_irqs(s);
410     return 0;
411 }
412 
413 static const VMStateDescription vmstate_ibex_uart = {
414     .name = TYPE_IBEX_UART,
415     .version_id = 1,
416     .minimum_version_id = 1,
417     .post_load = ibex_uart_post_load,
418     .fields = (VMStateField[]) {
419         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
420                             IBEX_UART_TX_FIFO_SIZE),
421         VMSTATE_UINT32(tx_level, IbexUartState),
422         VMSTATE_UINT64(char_tx_time, IbexUartState),
423         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
424         VMSTATE_UINT32(uart_intr_state, IbexUartState),
425         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
426         VMSTATE_UINT32(uart_ctrl, IbexUartState),
427         VMSTATE_UINT32(uart_status, IbexUartState),
428         VMSTATE_UINT32(uart_rdata, IbexUartState),
429         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
430         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
431         VMSTATE_UINT32(uart_ovrd, IbexUartState),
432         VMSTATE_UINT32(uart_val, IbexUartState),
433         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
434         VMSTATE_END_OF_LIST()
435     }
436 };
437 
438 static Property ibex_uart_properties[] = {
439     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
440     DEFINE_PROP_END_OF_LIST(),
441 };
442 
443 static void ibex_uart_init(Object *obj)
444 {
445     IbexUartState *s = IBEX_UART(obj);
446 
447     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
448     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
449     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
450     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
451 
452     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
453                           TYPE_IBEX_UART, 0x400);
454     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
455 }
456 
457 static void ibex_uart_realize(DeviceState *dev, Error **errp)
458 {
459     IbexUartState *s = IBEX_UART(dev);
460 
461     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
462                                           fifo_trigger_update, s);
463 
464     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
465                              ibex_uart_receive, NULL, NULL,
466                              s, NULL, true);
467 }
468 
469 static void ibex_uart_class_init(ObjectClass *klass, void *data)
470 {
471     DeviceClass *dc = DEVICE_CLASS(klass);
472 
473     dc->reset = ibex_uart_reset;
474     dc->realize = ibex_uart_realize;
475     dc->vmsd = &vmstate_ibex_uart;
476     device_class_set_props(dc, ibex_uart_properties);
477 }
478 
479 static const TypeInfo ibex_uart_info = {
480     .name          = TYPE_IBEX_UART,
481     .parent        = TYPE_SYS_BUS_DEVICE,
482     .instance_size = sizeof(IbexUartState),
483     .instance_init = ibex_uart_init,
484     .class_init    = ibex_uart_class_init,
485 };
486 
487 static void ibex_uart_register_types(void)
488 {
489     type_register_static(&ibex_uart_info);
490 }
491 
492 type_init(ibex_uart_register_types)
493