xref: /openbmc/qemu/hw/char/escc.c (revision 53e116fed6dde572003aebf3bc32e25663eeb446)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/escc.h"
29 #include "ui/console.h"
30 #include "trace.h"
31 
32 /*
33  * Chipset docs:
34  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
35  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
36  *
37  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
38  * (Slave I/O), also produced as NCR89C105. See
39  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
40  *
41  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
42  * mouse and keyboard ports don't implement all functions and they are
43  * only asynchronous. There is no DMA.
44  *
45  * Z85C30 is also used on PowerMacs. There are some small differences
46  * between Sparc version (sunzilog) and PowerMac (pmac):
47  *  Offset between control and data registers
48  *  There is some kind of lockup bug, but we can ignore it
49  *  CTS is inverted
50  *  DMA on pmac using DBDMA chip
51  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
52  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
53  */
54 
55 /*
56  * Modifications:
57  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
58  *                                  serial mouse queue.
59  *                                  Implemented serial mouse protocol.
60  *
61  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
62  */
63 
64 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
65 
66 #define SERIAL_CTRL 0
67 #define SERIAL_DATA 1
68 
69 #define W_CMD     0
70 #define CMD_PTR_MASK   0x07
71 #define CMD_CMD_MASK   0x38
72 #define CMD_HI         0x08
73 #define CMD_CLR_TXINT  0x28
74 #define CMD_CLR_IUS    0x38
75 #define W_INTR    1
76 #define INTR_INTALL    0x01
77 #define INTR_TXINT     0x02
78 #define INTR_RXMODEMSK 0x18
79 #define INTR_RXINT1ST  0x08
80 #define INTR_RXINTALL  0x10
81 #define W_IVEC    2
82 #define W_RXCTRL  3
83 #define RXCTRL_RXEN    0x01
84 #define W_TXCTRL1 4
85 #define TXCTRL1_PAREN  0x01
86 #define TXCTRL1_PAREV  0x02
87 #define TXCTRL1_1STOP  0x04
88 #define TXCTRL1_1HSTOP 0x08
89 #define TXCTRL1_2STOP  0x0c
90 #define TXCTRL1_STPMSK 0x0c
91 #define TXCTRL1_CLK1X  0x00
92 #define TXCTRL1_CLK16X 0x40
93 #define TXCTRL1_CLK32X 0x80
94 #define TXCTRL1_CLK64X 0xc0
95 #define TXCTRL1_CLKMSK 0xc0
96 #define W_TXCTRL2 5
97 #define TXCTRL2_TXEN   0x08
98 #define TXCTRL2_BITMSK 0x60
99 #define TXCTRL2_5BITS  0x00
100 #define TXCTRL2_7BITS  0x20
101 #define TXCTRL2_6BITS  0x40
102 #define TXCTRL2_8BITS  0x60
103 #define W_SYNC1   6
104 #define W_SYNC2   7
105 #define W_TXBUF   8
106 #define W_MINTR   9
107 #define MINTR_STATUSHI 0x10
108 #define MINTR_RST_MASK 0xc0
109 #define MINTR_RST_B    0x40
110 #define MINTR_RST_A    0x80
111 #define MINTR_RST_ALL  0xc0
112 #define W_MISC1  10
113 #define W_CLOCK  11
114 #define CLOCK_TRXC     0x08
115 #define W_BRGLO  12
116 #define W_BRGHI  13
117 #define W_MISC2  14
118 #define MISC2_PLLDIS   0x30
119 #define W_EXTINT 15
120 #define EXTINT_DCD     0x08
121 #define EXTINT_SYNCINT 0x10
122 #define EXTINT_CTSINT  0x20
123 #define EXTINT_TXUNDRN 0x40
124 #define EXTINT_BRKINT  0x80
125 
126 #define R_STATUS  0
127 #define STATUS_RXAV    0x01
128 #define STATUS_ZERO    0x02
129 #define STATUS_TXEMPTY 0x04
130 #define STATUS_DCD     0x08
131 #define STATUS_SYNC    0x10
132 #define STATUS_CTS     0x20
133 #define STATUS_TXUNDRN 0x40
134 #define STATUS_BRK     0x80
135 #define R_SPEC    1
136 #define SPEC_ALLSENT   0x01
137 #define SPEC_BITS8     0x06
138 #define R_IVEC    2
139 #define IVEC_TXINTB    0x00
140 #define IVEC_LONOINT   0x06
141 #define IVEC_LORXINTA  0x0c
142 #define IVEC_LORXINTB  0x04
143 #define IVEC_LOTXINTA  0x08
144 #define IVEC_HINOINT   0x60
145 #define IVEC_HIRXINTA  0x30
146 #define IVEC_HIRXINTB  0x20
147 #define IVEC_HITXINTA  0x10
148 #define R_INTR    3
149 #define INTR_EXTINTB   0x01
150 #define INTR_TXINTB    0x02
151 #define INTR_RXINTB    0x04
152 #define INTR_EXTINTA   0x08
153 #define INTR_TXINTA    0x10
154 #define INTR_RXINTA    0x20
155 #define R_IPEN    4
156 #define R_TXCTRL1 5
157 #define R_TXCTRL2 6
158 #define R_BC      7
159 #define R_RXBUF   8
160 #define R_RXCTRL  9
161 #define R_MISC   10
162 #define R_MISC1  11
163 #define R_BRGLO  12
164 #define R_BRGHI  13
165 #define R_MISC1I 14
166 #define R_EXTINT 15
167 
168 static void handle_kbd_command(ESCCChannelState *s, int val);
169 static int serial_can_receive(void *opaque);
170 static void serial_receive_byte(ESCCChannelState *s, int ch);
171 
172 static void clear_queue(void *opaque)
173 {
174     ESCCChannelState *s = opaque;
175     ESCCSERIOQueue *q = &s->queue;
176     q->rptr = q->wptr = q->count = 0;
177 }
178 
179 static void put_queue(void *opaque, int b)
180 {
181     ESCCChannelState *s = opaque;
182     ESCCSERIOQueue *q = &s->queue;
183 
184     trace_escc_put_queue(CHN_C(s), b);
185     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
186         return;
187     }
188     q->data[q->wptr] = b;
189     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
190         q->wptr = 0;
191     }
192     q->count++;
193     serial_receive_byte(s, 0);
194 }
195 
196 static uint32_t get_queue(void *opaque)
197 {
198     ESCCChannelState *s = opaque;
199     ESCCSERIOQueue *q = &s->queue;
200     int val;
201 
202     if (q->count == 0) {
203         return 0;
204     } else {
205         val = q->data[q->rptr];
206         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
207             q->rptr = 0;
208         }
209         q->count--;
210     }
211     trace_escc_get_queue(CHN_C(s), val);
212     if (q->count > 0)
213         serial_receive_byte(s, 0);
214     return val;
215 }
216 
217 static int escc_update_irq_chn(ESCCChannelState *s)
218 {
219     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
220          // tx ints enabled, pending
221          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
222            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
223           s->rxint == 1) || // rx ints enabled, pending
224          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
225           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
226         return 1;
227     }
228     return 0;
229 }
230 
231 static void escc_update_irq(ESCCChannelState *s)
232 {
233     int irq;
234 
235     irq = escc_update_irq_chn(s);
236     irq |= escc_update_irq_chn(s->otherchn);
237 
238     trace_escc_update_irq(irq);
239     qemu_set_irq(s->irq, irq);
240 }
241 
242 static void escc_reset_chn(ESCCChannelState *s)
243 {
244     int i;
245 
246     s->reg = 0;
247     for (i = 0; i < ESCC_SERIAL_REGS; i++) {
248         s->rregs[i] = 0;
249         s->wregs[i] = 0;
250     }
251     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
252     s->wregs[W_MINTR] = MINTR_RST_ALL;
253     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
254     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
255     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
256         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
257     if (s->disabled)
258         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
259             STATUS_CTS | STATUS_TXUNDRN;
260     else
261         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
262     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
263 
264     s->rx = s->tx = 0;
265     s->rxint = s->txint = 0;
266     s->rxint_under_svc = s->txint_under_svc = 0;
267     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
268     clear_queue(s);
269 }
270 
271 static void escc_reset(DeviceState *d)
272 {
273     ESCCState *s = ESCC(d);
274 
275     escc_reset_chn(&s->chn[0]);
276     escc_reset_chn(&s->chn[1]);
277 }
278 
279 static inline void set_rxint(ESCCChannelState *s)
280 {
281     s->rxint = 1;
282     /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
283        than chn_a rx/tx/special_condition service*/
284     s->rxint_under_svc = 1;
285     if (s->chn == escc_chn_a) {
286         s->rregs[R_INTR] |= INTR_RXINTA;
287         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
288             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
289         else
290             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
291     } else {
292         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
293         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
294             s->rregs[R_IVEC] = IVEC_HIRXINTB;
295         else
296             s->rregs[R_IVEC] = IVEC_LORXINTB;
297     }
298     escc_update_irq(s);
299 }
300 
301 static inline void set_txint(ESCCChannelState *s)
302 {
303     s->txint = 1;
304     if (!s->rxint_under_svc) {
305         s->txint_under_svc = 1;
306         if (s->chn == escc_chn_a) {
307             if (s->wregs[W_INTR] & INTR_TXINT) {
308                 s->rregs[R_INTR] |= INTR_TXINTA;
309             }
310             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
311                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
312             else
313                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
314         } else {
315             s->rregs[R_IVEC] = IVEC_TXINTB;
316             if (s->wregs[W_INTR] & INTR_TXINT) {
317                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
318             }
319         }
320     escc_update_irq(s);
321     }
322 }
323 
324 static inline void clr_rxint(ESCCChannelState *s)
325 {
326     s->rxint = 0;
327     s->rxint_under_svc = 0;
328     if (s->chn == escc_chn_a) {
329         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
330             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
331         else
332             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
333         s->rregs[R_INTR] &= ~INTR_RXINTA;
334     } else {
335         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
336             s->rregs[R_IVEC] = IVEC_HINOINT;
337         else
338             s->rregs[R_IVEC] = IVEC_LONOINT;
339         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
340     }
341     if (s->txint)
342         set_txint(s);
343     escc_update_irq(s);
344 }
345 
346 static inline void clr_txint(ESCCChannelState *s)
347 {
348     s->txint = 0;
349     s->txint_under_svc = 0;
350     if (s->chn == escc_chn_a) {
351         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
352             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
353         else
354             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
355         s->rregs[R_INTR] &= ~INTR_TXINTA;
356     } else {
357         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
358         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
359             s->rregs[R_IVEC] = IVEC_HINOINT;
360         else
361             s->rregs[R_IVEC] = IVEC_LONOINT;
362         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
363     }
364     if (s->rxint)
365         set_rxint(s);
366     escc_update_irq(s);
367 }
368 
369 static void escc_update_parameters(ESCCChannelState *s)
370 {
371     int speed, parity, data_bits, stop_bits;
372     QEMUSerialSetParams ssp;
373 
374     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
375         return;
376 
377     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
378         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
379             parity = 'E';
380         else
381             parity = 'O';
382     } else {
383         parity = 'N';
384     }
385     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
386         stop_bits = 2;
387     else
388         stop_bits = 1;
389     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
390     case TXCTRL2_5BITS:
391         data_bits = 5;
392         break;
393     case TXCTRL2_7BITS:
394         data_bits = 7;
395         break;
396     case TXCTRL2_6BITS:
397         data_bits = 6;
398         break;
399     default:
400     case TXCTRL2_8BITS:
401         data_bits = 8;
402         break;
403     }
404     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
405     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
406     case TXCTRL1_CLK1X:
407         break;
408     case TXCTRL1_CLK16X:
409         speed /= 16;
410         break;
411     case TXCTRL1_CLK32X:
412         speed /= 32;
413         break;
414     default:
415     case TXCTRL1_CLK64X:
416         speed /= 64;
417         break;
418     }
419     ssp.speed = speed;
420     ssp.parity = parity;
421     ssp.data_bits = data_bits;
422     ssp.stop_bits = stop_bits;
423     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
424     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
425 }
426 
427 static void escc_mem_write(void *opaque, hwaddr addr,
428                            uint64_t val, unsigned size)
429 {
430     ESCCState *serial = opaque;
431     ESCCChannelState *s;
432     uint32_t saddr;
433     int newreg, channel;
434 
435     val &= 0xff;
436     saddr = (addr >> serial->it_shift) & 1;
437     channel = (addr >> (serial->it_shift + 1)) & 1;
438     s = &serial->chn[channel];
439     switch (saddr) {
440     case SERIAL_CTRL:
441         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
442         newreg = 0;
443         switch (s->reg) {
444         case W_CMD:
445             newreg = val & CMD_PTR_MASK;
446             val &= CMD_CMD_MASK;
447             switch (val) {
448             case CMD_HI:
449                 newreg |= CMD_HI;
450                 break;
451             case CMD_CLR_TXINT:
452                 clr_txint(s);
453                 break;
454             case CMD_CLR_IUS:
455                 if (s->rxint_under_svc) {
456                     s->rxint_under_svc = 0;
457                     if (s->txint) {
458                         set_txint(s);
459                     }
460                 } else if (s->txint_under_svc) {
461                     s->txint_under_svc = 0;
462                 }
463                 escc_update_irq(s);
464                 break;
465             default:
466                 break;
467             }
468             break;
469         case W_INTR ... W_RXCTRL:
470         case W_SYNC1 ... W_TXBUF:
471         case W_MISC1 ... W_CLOCK:
472         case W_MISC2 ... W_EXTINT:
473             s->wregs[s->reg] = val;
474             break;
475         case W_TXCTRL1:
476         case W_TXCTRL2:
477             s->wregs[s->reg] = val;
478             escc_update_parameters(s);
479             break;
480         case W_BRGLO:
481         case W_BRGHI:
482             s->wregs[s->reg] = val;
483             s->rregs[s->reg] = val;
484             escc_update_parameters(s);
485             break;
486         case W_MINTR:
487             switch (val & MINTR_RST_MASK) {
488             case 0:
489             default:
490                 break;
491             case MINTR_RST_B:
492                 escc_reset_chn(&serial->chn[0]);
493                 return;
494             case MINTR_RST_A:
495                 escc_reset_chn(&serial->chn[1]);
496                 return;
497             case MINTR_RST_ALL:
498                 escc_reset(DEVICE(serial));
499                 return;
500             }
501             break;
502         default:
503             break;
504         }
505         if (s->reg == 0)
506             s->reg = newreg;
507         else
508             s->reg = 0;
509         break;
510     case SERIAL_DATA:
511         trace_escc_mem_writeb_data(CHN_C(s), val);
512         s->tx = val;
513         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
514             if (qemu_chr_fe_backend_connected(&s->chr)) {
515                 /* XXX this blocks entire thread. Rewrite to use
516                  * qemu_chr_fe_write and background I/O callbacks */
517                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
518             } else if (s->type == escc_kbd && !s->disabled) {
519                 handle_kbd_command(s, val);
520             }
521         }
522         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
523         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
524         set_txint(s);
525         break;
526     default:
527         break;
528     }
529 }
530 
531 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
532                               unsigned size)
533 {
534     ESCCState *serial = opaque;
535     ESCCChannelState *s;
536     uint32_t saddr;
537     uint32_t ret;
538     int channel;
539 
540     saddr = (addr >> serial->it_shift) & 1;
541     channel = (addr >> (serial->it_shift + 1)) & 1;
542     s = &serial->chn[channel];
543     switch (saddr) {
544     case SERIAL_CTRL:
545         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
546         ret = s->rregs[s->reg];
547         s->reg = 0;
548         return ret;
549     case SERIAL_DATA:
550         s->rregs[R_STATUS] &= ~STATUS_RXAV;
551         clr_rxint(s);
552         if (s->type == escc_kbd || s->type == escc_mouse) {
553             ret = get_queue(s);
554         } else {
555             ret = s->rx;
556         }
557         trace_escc_mem_readb_data(CHN_C(s), ret);
558         qemu_chr_fe_accept_input(&s->chr);
559         return ret;
560     default:
561         break;
562     }
563     return 0;
564 }
565 
566 static const MemoryRegionOps escc_mem_ops = {
567     .read = escc_mem_read,
568     .write = escc_mem_write,
569     .endianness = DEVICE_NATIVE_ENDIAN,
570     .valid = {
571         .min_access_size = 1,
572         .max_access_size = 1,
573     },
574 };
575 
576 static int serial_can_receive(void *opaque)
577 {
578     ESCCChannelState *s = opaque;
579     int ret;
580 
581     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
582         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
583         // char already available
584         ret = 0;
585     else
586         ret = 1;
587     return ret;
588 }
589 
590 static void serial_receive_byte(ESCCChannelState *s, int ch)
591 {
592     trace_escc_serial_receive_byte(CHN_C(s), ch);
593     s->rregs[R_STATUS] |= STATUS_RXAV;
594     s->rx = ch;
595     set_rxint(s);
596 }
597 
598 static void serial_receive_break(ESCCChannelState *s)
599 {
600     s->rregs[R_STATUS] |= STATUS_BRK;
601     escc_update_irq(s);
602 }
603 
604 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
605 {
606     ESCCChannelState *s = opaque;
607     serial_receive_byte(s, buf[0]);
608 }
609 
610 static void serial_event(void *opaque, int event)
611 {
612     ESCCChannelState *s = opaque;
613     if (event == CHR_EVENT_BREAK)
614         serial_receive_break(s);
615 }
616 
617 static const VMStateDescription vmstate_escc_chn = {
618     .name ="escc_chn",
619     .version_id = 2,
620     .minimum_version_id = 1,
621     .fields = (VMStateField[]) {
622         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
623         VMSTATE_UINT32(reg, ESCCChannelState),
624         VMSTATE_UINT32(rxint, ESCCChannelState),
625         VMSTATE_UINT32(txint, ESCCChannelState),
626         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
627         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
628         VMSTATE_UINT8(rx, ESCCChannelState),
629         VMSTATE_UINT8(tx, ESCCChannelState),
630         VMSTATE_BUFFER(wregs, ESCCChannelState),
631         VMSTATE_BUFFER(rregs, ESCCChannelState),
632         VMSTATE_END_OF_LIST()
633     }
634 };
635 
636 static const VMStateDescription vmstate_escc = {
637     .name ="escc",
638     .version_id = 2,
639     .minimum_version_id = 1,
640     .fields = (VMStateField[]) {
641         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
642                              ESCCChannelState),
643         VMSTATE_END_OF_LIST()
644     }
645 };
646 
647 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
648                                 InputEvent *evt)
649 {
650     ESCCChannelState *s = (ESCCChannelState *)dev;
651     int qcode, keycode;
652     InputKeyEvent *key;
653 
654     assert(evt->type == INPUT_EVENT_KIND_KEY);
655     key = evt->u.key.data;
656     qcode = qemu_input_key_value_to_qcode(key->key);
657     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
658                                key->down);
659 
660     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
661         if (key->down) {
662             s->caps_lock_mode ^= 1;
663             if (s->caps_lock_mode == 2) {
664                 return; /* Drop second press */
665             }
666         } else {
667             s->caps_lock_mode ^= 2;
668             if (s->caps_lock_mode == 3) {
669                 return; /* Drop first release */
670             }
671         }
672     }
673 
674     if (qcode == Q_KEY_CODE_NUM_LOCK) {
675         if (key->down) {
676             s->num_lock_mode ^= 1;
677             if (s->num_lock_mode == 2) {
678                 return; /* Drop second press */
679             }
680         } else {
681             s->num_lock_mode ^= 2;
682             if (s->num_lock_mode == 3) {
683                 return; /* Drop first release */
684             }
685         }
686     }
687 
688     if (qcode > qemu_input_map_qcode_to_sun_len) {
689         return;
690     }
691 
692     keycode = qemu_input_map_qcode_to_sun[qcode];
693     if (!key->down) {
694         keycode |= 0x80;
695     }
696     trace_escc_sunkbd_event_out(keycode);
697     put_queue(s, keycode);
698 }
699 
700 static QemuInputHandler sunkbd_handler = {
701     .name  = "sun keyboard",
702     .mask  = INPUT_EVENT_MASK_KEY,
703     .event = sunkbd_handle_event,
704 };
705 
706 static void handle_kbd_command(ESCCChannelState *s, int val)
707 {
708     trace_escc_kbd_command(val);
709     if (s->led_mode) { // Ignore led byte
710         s->led_mode = 0;
711         return;
712     }
713     switch (val) {
714     case 1: // Reset, return type code
715         clear_queue(s);
716         put_queue(s, 0xff);
717         put_queue(s, 4); // Type 4
718         put_queue(s, 0x7f);
719         break;
720     case 0xe: // Set leds
721         s->led_mode = 1;
722         break;
723     case 7: // Query layout
724     case 0xf:
725         clear_queue(s);
726         put_queue(s, 0xfe);
727         put_queue(s, 0x21); /*  en-us layout */
728         break;
729     default:
730         break;
731     }
732 }
733 
734 static void sunmouse_event(void *opaque,
735                                int dx, int dy, int dz, int buttons_state)
736 {
737     ESCCChannelState *s = opaque;
738     int ch;
739 
740     trace_escc_sunmouse_event(dx, dy, buttons_state);
741     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
742 
743     if (buttons_state & MOUSE_EVENT_LBUTTON)
744         ch ^= 0x4;
745     if (buttons_state & MOUSE_EVENT_MBUTTON)
746         ch ^= 0x2;
747     if (buttons_state & MOUSE_EVENT_RBUTTON)
748         ch ^= 0x1;
749 
750     put_queue(s, ch);
751 
752     ch = dx;
753 
754     if (ch > 127)
755         ch = 127;
756     else if (ch < -127)
757         ch = -127;
758 
759     put_queue(s, ch & 0xff);
760 
761     ch = -dy;
762 
763     if (ch > 127)
764         ch = 127;
765     else if (ch < -127)
766         ch = -127;
767 
768     put_queue(s, ch & 0xff);
769 
770     // MSC protocol specify two extra motion bytes
771 
772     put_queue(s, 0);
773     put_queue(s, 0);
774 }
775 
776 static void escc_init1(Object *obj)
777 {
778     ESCCState *s = ESCC(obj);
779     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
780     unsigned int i;
781 
782     for (i = 0; i < 2; i++) {
783         sysbus_init_irq(dev, &s->chn[i].irq);
784         s->chn[i].chn = 1 - i;
785     }
786     s->chn[0].otherchn = &s->chn[1];
787     s->chn[1].otherchn = &s->chn[0];
788 
789     sysbus_init_mmio(dev, &s->mmio);
790 }
791 
792 static void escc_realize(DeviceState *dev, Error **errp)
793 {
794     ESCCState *s = ESCC(dev);
795     unsigned int i;
796 
797     s->chn[0].disabled = s->disabled;
798     s->chn[1].disabled = s->disabled;
799 
800     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
801                           ESCC_SIZE << s->it_shift);
802 
803     for (i = 0; i < 2; i++) {
804         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
805             s->chn[i].clock = s->frequency / 2;
806             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
807                                      serial_receive1, serial_event, NULL,
808                                      &s->chn[i], NULL, true);
809         }
810     }
811 
812     if (s->chn[0].type == escc_mouse) {
813         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
814                                      "QEMU Sun Mouse");
815     }
816     if (s->chn[1].type == escc_kbd) {
817         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
818                                                    &sunkbd_handler);
819     }
820 }
821 
822 static Property escc_properties[] = {
823     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
824     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
825     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
826     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
827     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
828     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
829     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
830     DEFINE_PROP_END_OF_LIST(),
831 };
832 
833 static void escc_class_init(ObjectClass *klass, void *data)
834 {
835     DeviceClass *dc = DEVICE_CLASS(klass);
836 
837     dc->reset = escc_reset;
838     dc->realize = escc_realize;
839     dc->vmsd = &vmstate_escc;
840     dc->props = escc_properties;
841     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
842 }
843 
844 static const TypeInfo escc_info = {
845     .name          = TYPE_ESCC,
846     .parent        = TYPE_SYS_BUS_DEVICE,
847     .instance_size = sizeof(ESCCState),
848     .instance_init = escc_init1,
849     .class_init    = escc_class_init,
850 };
851 
852 static void escc_register_types(void)
853 {
854     type_register_static(&escc_info);
855 }
856 
857 type_init(escc_register_types)
858