xref: /openbmc/qemu/hw/char/cadence_uart.c (revision cae41fda0f22b31f873fdc3e916f4d2580dedb09)
1 /*
2  * Device model for Cadence UART
3  *
4  * Reference: Xilinx Zynq 7000 reference manual
5  *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6  *   - Chapter 19 UART Controller
7  *   - Appendix B for Register details
8  *
9  * Copyright (c) 2010 Xilinx Inc.
10  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11  * Copyright (c) 2012 PetaLogix Pty Ltd.
12  * Written by Haibing Ma
13  *            M.Habib
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "sysemu/char.h"
27 #include "qemu/timer.h"
28 #include "qemu/log.h"
29 #include "hw/char/cadence_uart.h"
30 
31 #ifdef CADENCE_UART_ERR_DEBUG
32 #define DB_PRINT(...) do { \
33     fprintf(stderr,  ": %s: ", __func__); \
34     fprintf(stderr, ## __VA_ARGS__); \
35     } while (0);
36 #else
37     #define DB_PRINT(...)
38 #endif
39 
40 #define UART_SR_INTR_RTRIG     0x00000001
41 #define UART_SR_INTR_REMPTY    0x00000002
42 #define UART_SR_INTR_RFUL      0x00000004
43 #define UART_SR_INTR_TEMPTY    0x00000008
44 #define UART_SR_INTR_TFUL      0x00000010
45 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
46 #define UART_SR_TTRIG          0x00002000
47 #define UART_INTR_TTRIG        0x00000400
48 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
49  * SR, then the same bit in CISR is set high too */
50 #define UART_SR_TO_CISR_MASK   0x0000001F
51 
52 #define UART_INTR_ROVR         0x00000020
53 #define UART_INTR_FRAME        0x00000040
54 #define UART_INTR_PARE         0x00000080
55 #define UART_INTR_TIMEOUT      0x00000100
56 #define UART_INTR_DMSI         0x00000200
57 #define UART_INTR_TOVR         0x00001000
58 
59 #define UART_SR_RACTIVE    0x00000400
60 #define UART_SR_TACTIVE    0x00000800
61 #define UART_SR_FDELT      0x00001000
62 
63 #define UART_CR_RXRST       0x00000001
64 #define UART_CR_TXRST       0x00000002
65 #define UART_CR_RX_EN       0x00000004
66 #define UART_CR_RX_DIS      0x00000008
67 #define UART_CR_TX_EN       0x00000010
68 #define UART_CR_TX_DIS      0x00000020
69 #define UART_CR_RST_TO      0x00000040
70 #define UART_CR_STARTBRK    0x00000080
71 #define UART_CR_STOPBRK     0x00000100
72 
73 #define UART_MR_CLKS            0x00000001
74 #define UART_MR_CHRL            0x00000006
75 #define UART_MR_CHRL_SH         1
76 #define UART_MR_PAR             0x00000038
77 #define UART_MR_PAR_SH          3
78 #define UART_MR_NBSTOP          0x000000C0
79 #define UART_MR_NBSTOP_SH       6
80 #define UART_MR_CHMODE          0x00000300
81 #define UART_MR_CHMODE_SH       8
82 #define UART_MR_UCLKEN          0x00000400
83 #define UART_MR_IRMODE          0x00000800
84 
85 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
86 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
87 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
88 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
89 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
90 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
91 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
92 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
93 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
94 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
95 
96 #define UART_INPUT_CLK         50000000
97 
98 #define R_CR       (0x00/4)
99 #define R_MR       (0x04/4)
100 #define R_IER      (0x08/4)
101 #define R_IDR      (0x0C/4)
102 #define R_IMR      (0x10/4)
103 #define R_CISR     (0x14/4)
104 #define R_BRGR     (0x18/4)
105 #define R_RTOR     (0x1C/4)
106 #define R_RTRIG    (0x20/4)
107 #define R_MCR      (0x24/4)
108 #define R_MSR      (0x28/4)
109 #define R_SR       (0x2C/4)
110 #define R_TX_RX    (0x30/4)
111 #define R_BDIV     (0x34/4)
112 #define R_FDEL     (0x38/4)
113 #define R_PMIN     (0x3C/4)
114 #define R_PWID     (0x40/4)
115 #define R_TTRIG    (0x44/4)
116 
117 
118 static void uart_update_status(CadenceUARTState *s)
119 {
120     s->r[R_SR] = 0;
121 
122     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
123                                                            : 0;
124     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
125     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
126 
127     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
128                                                            : 0;
129     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
130     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
131 
132     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
133     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
134     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
135 }
136 
137 static void fifo_trigger_update(void *opaque)
138 {
139     CadenceUARTState *s = opaque;
140 
141     s->r[R_CISR] |= UART_INTR_TIMEOUT;
142 
143     uart_update_status(s);
144 }
145 
146 static void uart_rx_reset(CadenceUARTState *s)
147 {
148     s->rx_wpos = 0;
149     s->rx_count = 0;
150     qemu_chr_fe_accept_input(&s->chr);
151 }
152 
153 static void uart_tx_reset(CadenceUARTState *s)
154 {
155     s->tx_count = 0;
156 }
157 
158 static void uart_send_breaks(CadenceUARTState *s)
159 {
160     int break_enabled = 1;
161 
162     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
163                       &break_enabled);
164 }
165 
166 static void uart_parameters_setup(CadenceUARTState *s)
167 {
168     QEMUSerialSetParams ssp;
169     unsigned int baud_rate, packet_size;
170 
171     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
172             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
173 
174     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
175     packet_size = 1;
176 
177     switch (s->r[R_MR] & UART_MR_PAR) {
178     case UART_PARITY_EVEN:
179         ssp.parity = 'E';
180         packet_size++;
181         break;
182     case UART_PARITY_ODD:
183         ssp.parity = 'O';
184         packet_size++;
185         break;
186     default:
187         ssp.parity = 'N';
188         break;
189     }
190 
191     switch (s->r[R_MR] & UART_MR_CHRL) {
192     case UART_DATA_BITS_6:
193         ssp.data_bits = 6;
194         break;
195     case UART_DATA_BITS_7:
196         ssp.data_bits = 7;
197         break;
198     default:
199         ssp.data_bits = 8;
200         break;
201     }
202 
203     switch (s->r[R_MR] & UART_MR_NBSTOP) {
204     case UART_STOP_BITS_1:
205         ssp.stop_bits = 1;
206         break;
207     default:
208         ssp.stop_bits = 2;
209         break;
210     }
211 
212     packet_size += ssp.data_bits + ssp.stop_bits;
213     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
214     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
215 }
216 
217 static int uart_can_receive(void *opaque)
218 {
219     CadenceUARTState *s = opaque;
220     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
221     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
222 
223     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
224         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
225     }
226     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
227         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
228     }
229     return ret;
230 }
231 
232 static void uart_ctrl_update(CadenceUARTState *s)
233 {
234     if (s->r[R_CR] & UART_CR_TXRST) {
235         uart_tx_reset(s);
236     }
237 
238     if (s->r[R_CR] & UART_CR_RXRST) {
239         uart_rx_reset(s);
240     }
241 
242     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
243 
244     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
245         uart_send_breaks(s);
246     }
247 }
248 
249 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
250 {
251     CadenceUARTState *s = opaque;
252     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
253     int i;
254 
255     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
256         return;
257     }
258 
259     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
260         s->r[R_CISR] |= UART_INTR_ROVR;
261     } else {
262         for (i = 0; i < size; i++) {
263             s->rx_fifo[s->rx_wpos] = buf[i];
264             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
265             s->rx_count++;
266         }
267         timer_mod(s->fifo_trigger_handle, new_rx_time +
268                                                 (s->char_tx_time * 4));
269     }
270     uart_update_status(s);
271 }
272 
273 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
274                                   void *opaque)
275 {
276     CadenceUARTState *s = opaque;
277     int ret;
278 
279     /* instant drain the fifo when there's no back-end */
280     if (!qemu_chr_fe_get_driver(&s->chr)) {
281         s->tx_count = 0;
282         return FALSE;
283     }
284 
285     if (!s->tx_count) {
286         return FALSE;
287     }
288 
289     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
290 
291     if (ret >= 0) {
292         s->tx_count -= ret;
293         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
294     }
295 
296     if (s->tx_count) {
297         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
298                                         cadence_uart_xmit, s);
299         if (!r) {
300             s->tx_count = 0;
301             return FALSE;
302         }
303     }
304 
305     uart_update_status(s);
306     return FALSE;
307 }
308 
309 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
310                                int size)
311 {
312     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
313         return;
314     }
315 
316     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
317         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
318         /*
319          * This can only be a guest error via a bad tx fifo register push,
320          * as can_receive() should stop remote loop and echo modes ever getting
321          * us to here.
322          */
323         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
324         s->r[R_CISR] |= UART_INTR_ROVR;
325     }
326 
327     memcpy(s->tx_fifo + s->tx_count, buf, size);
328     s->tx_count += size;
329 
330     cadence_uart_xmit(NULL, G_IO_OUT, s);
331 }
332 
333 static void uart_receive(void *opaque, const uint8_t *buf, int size)
334 {
335     CadenceUARTState *s = opaque;
336     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
337 
338     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
339         uart_write_rx_fifo(opaque, buf, size);
340     }
341     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
342         uart_write_tx_fifo(s, buf, size);
343     }
344 }
345 
346 static void uart_event(void *opaque, int event)
347 {
348     CadenceUARTState *s = opaque;
349     uint8_t buf = '\0';
350 
351     if (event == CHR_EVENT_BREAK) {
352         uart_write_rx_fifo(opaque, &buf, 1);
353     }
354 
355     uart_update_status(s);
356 }
357 
358 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
359 {
360     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
361         return;
362     }
363 
364     if (s->rx_count) {
365         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
366                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
367         *c = s->rx_fifo[rx_rpos];
368         s->rx_count--;
369 
370         qemu_chr_fe_accept_input(&s->chr);
371     } else {
372         *c = 0;
373     }
374 
375     uart_update_status(s);
376 }
377 
378 static void uart_write(void *opaque, hwaddr offset,
379                           uint64_t value, unsigned size)
380 {
381     CadenceUARTState *s = opaque;
382 
383     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
384     offset >>= 2;
385     if (offset >= CADENCE_UART_R_MAX) {
386         return;
387     }
388     switch (offset) {
389     case R_IER: /* ier (wts imr) */
390         s->r[R_IMR] |= value;
391         break;
392     case R_IDR: /* idr (wtc imr) */
393         s->r[R_IMR] &= ~value;
394         break;
395     case R_IMR: /* imr (read only) */
396         break;
397     case R_CISR: /* cisr (wtc) */
398         s->r[R_CISR] &= ~value;
399         break;
400     case R_TX_RX: /* UARTDR */
401         switch (s->r[R_MR] & UART_MR_CHMODE) {
402         case NORMAL_MODE:
403             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
404             break;
405         case LOCAL_LOOPBACK:
406             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
407             break;
408         }
409         break;
410     case R_BRGR: /* Baud rate generator */
411         if (value >= 0x01) {
412             s->r[offset] = value & 0xFFFF;
413         }
414         break;
415     case R_BDIV:    /* Baud rate divider */
416         if (value >= 0x04) {
417             s->r[offset] = value & 0xFF;
418         }
419         break;
420     default:
421         s->r[offset] = value;
422     }
423 
424     switch (offset) {
425     case R_CR:
426         uart_ctrl_update(s);
427         break;
428     case R_MR:
429         uart_parameters_setup(s);
430         break;
431     }
432     uart_update_status(s);
433 }
434 
435 static uint64_t uart_read(void *opaque, hwaddr offset,
436         unsigned size)
437 {
438     CadenceUARTState *s = opaque;
439     uint32_t c = 0;
440 
441     offset >>= 2;
442     if (offset >= CADENCE_UART_R_MAX) {
443         c = 0;
444     } else if (offset == R_TX_RX) {
445         uart_read_rx_fifo(s, &c);
446     } else {
447        c = s->r[offset];
448     }
449 
450     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
451     return c;
452 }
453 
454 static const MemoryRegionOps uart_ops = {
455     .read = uart_read,
456     .write = uart_write,
457     .endianness = DEVICE_NATIVE_ENDIAN,
458 };
459 
460 static void cadence_uart_reset(DeviceState *dev)
461 {
462     CadenceUARTState *s = CADENCE_UART(dev);
463 
464     s->r[R_CR] = 0x00000128;
465     s->r[R_IMR] = 0;
466     s->r[R_CISR] = 0;
467     s->r[R_RTRIG] = 0x00000020;
468     s->r[R_BRGR] = 0x0000028B;
469     s->r[R_BDIV] = 0x0000000F;
470     s->r[R_TTRIG] = 0x00000020;
471 
472     uart_rx_reset(s);
473     uart_tx_reset(s);
474 
475     uart_update_status(s);
476 }
477 
478 static void cadence_uart_realize(DeviceState *dev, Error **errp)
479 {
480     CadenceUARTState *s = CADENCE_UART(dev);
481 
482     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
483                                           fifo_trigger_update, s);
484 
485     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
486                              uart_event, s, NULL, true);
487 }
488 
489 static void cadence_uart_init(Object *obj)
490 {
491     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
492     CadenceUARTState *s = CADENCE_UART(obj);
493 
494     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
495     sysbus_init_mmio(sbd, &s->iomem);
496     sysbus_init_irq(sbd, &s->irq);
497 
498     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
499 }
500 
501 static int cadence_uart_post_load(void *opaque, int version_id)
502 {
503     CadenceUARTState *s = opaque;
504 
505     uart_parameters_setup(s);
506     uart_update_status(s);
507     return 0;
508 }
509 
510 static const VMStateDescription vmstate_cadence_uart = {
511     .name = "cadence_uart",
512     .version_id = 2,
513     .minimum_version_id = 2,
514     .post_load = cadence_uart_post_load,
515     .fields = (VMStateField[]) {
516         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
517         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
518                             CADENCE_UART_RX_FIFO_SIZE),
519         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
520                             CADENCE_UART_TX_FIFO_SIZE),
521         VMSTATE_UINT32(rx_count, CadenceUARTState),
522         VMSTATE_UINT32(tx_count, CadenceUARTState),
523         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
524         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
525         VMSTATE_END_OF_LIST()
526     }
527 };
528 
529 static Property cadence_uart_properties[] = {
530     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
531     DEFINE_PROP_END_OF_LIST(),
532 };
533 
534 static void cadence_uart_class_init(ObjectClass *klass, void *data)
535 {
536     DeviceClass *dc = DEVICE_CLASS(klass);
537 
538     dc->realize = cadence_uart_realize;
539     dc->vmsd = &vmstate_cadence_uart;
540     dc->reset = cadence_uart_reset;
541     dc->props = cadence_uart_properties;
542   }
543 
544 static const TypeInfo cadence_uart_info = {
545     .name          = TYPE_CADENCE_UART,
546     .parent        = TYPE_SYS_BUS_DEVICE,
547     .instance_size = sizeof(CadenceUARTState),
548     .instance_init = cadence_uart_init,
549     .class_init    = cadence_uart_class_init,
550 };
551 
552 static void cadence_uart_register_types(void)
553 {
554     type_register_static(&cadence_uart_info);
555 }
556 
557 type_init(cadence_uart_register_types)
558