xref: /openbmc/qemu/hw/block/nand.c (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3  * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4  * Samsung Electronic.
5  *
6  * Copyright (c) 2006 Openedhand Ltd.
7  * Written by Andrzej Zaborowski <balrog@zabor.org>
8  *
9  * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10  * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11  * from ST Microelectronics.
12  *
13  * This code is licensed under the GNU GPL v2.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18 
19 #ifndef NAND_IO
20 
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/block/flash.h"
24 #include "sysemu/block-backend.h"
25 #include "hw/qdev.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 
29 # define NAND_CMD_READ0		0x00
30 # define NAND_CMD_READ1		0x01
31 # define NAND_CMD_READ2		0x50
32 # define NAND_CMD_LPREAD2	0x30
33 # define NAND_CMD_NOSERIALREAD2	0x35
34 # define NAND_CMD_RANDOMREAD1	0x05
35 # define NAND_CMD_RANDOMREAD2	0xe0
36 # define NAND_CMD_READID	0x90
37 # define NAND_CMD_RESET		0xff
38 # define NAND_CMD_PAGEPROGRAM1	0x80
39 # define NAND_CMD_PAGEPROGRAM2	0x10
40 # define NAND_CMD_CACHEPROGRAM2	0x15
41 # define NAND_CMD_BLOCKERASE1	0x60
42 # define NAND_CMD_BLOCKERASE2	0xd0
43 # define NAND_CMD_READSTATUS	0x70
44 # define NAND_CMD_COPYBACKPRG1	0x85
45 
46 # define NAND_IOSTATUS_ERROR	(1 << 0)
47 # define NAND_IOSTATUS_PLANE0	(1 << 1)
48 # define NAND_IOSTATUS_PLANE1	(1 << 2)
49 # define NAND_IOSTATUS_PLANE2	(1 << 3)
50 # define NAND_IOSTATUS_PLANE3	(1 << 4)
51 # define NAND_IOSTATUS_READY    (1 << 6)
52 # define NAND_IOSTATUS_UNPROTCT	(1 << 7)
53 
54 # define MAX_PAGE		0x800
55 # define MAX_OOB		0x40
56 
57 typedef struct NANDFlashState NANDFlashState;
58 struct NANDFlashState {
59     DeviceState parent_obj;
60 
61     uint8_t manf_id, chip_id;
62     uint8_t buswidth; /* in BYTES */
63     int size, pages;
64     int page_shift, oob_shift, erase_shift, addr_shift;
65     uint8_t *storage;
66     BlockBackend *blk;
67     int mem_oob;
68 
69     uint8_t cle, ale, ce, wp, gnd;
70 
71     uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
72     uint8_t *ioaddr;
73     int iolen;
74 
75     uint32_t cmd;
76     uint64_t addr;
77     int addrlen;
78     int status;
79     int offset;
80 
81     void (*blk_write)(NANDFlashState *s);
82     void (*blk_erase)(NANDFlashState *s);
83     void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
84 
85     uint32_t ioaddr_vmstate;
86 };
87 
88 #define TYPE_NAND "nand"
89 
90 #define NAND(obj) \
91     OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
92 
93 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
94 {
95     /* Like memcpy() but we logical-AND the data into the destination */
96     int i;
97     for (i = 0; i < n; i++) {
98         dest[i] &= src[i];
99     }
100 }
101 
102 # define NAND_NO_AUTOINCR	0x00000001
103 # define NAND_BUSWIDTH_16	0x00000002
104 # define NAND_NO_PADDING	0x00000004
105 # define NAND_CACHEPRG		0x00000008
106 # define NAND_COPYBACK		0x00000010
107 # define NAND_IS_AND		0x00000020
108 # define NAND_4PAGE_ARRAY	0x00000040
109 # define NAND_NO_READRDY	0x00000100
110 # define NAND_SAMSUNG_LP	(NAND_NO_PADDING | NAND_COPYBACK)
111 
112 # define NAND_IO
113 
114 # define PAGE(addr)		((addr) >> ADDR_SHIFT)
115 # define PAGE_START(page)	(PAGE(page) * (PAGE_SIZE + OOB_SIZE))
116 # define PAGE_MASK		((1 << ADDR_SHIFT) - 1)
117 # define OOB_SHIFT		(PAGE_SHIFT - 5)
118 # define OOB_SIZE		(1 << OOB_SHIFT)
119 # define SECTOR(addr)		((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
120 # define SECTOR_OFFSET(addr)	((addr) & ((511 >> PAGE_SHIFT) << 8))
121 
122 # define PAGE_SIZE		256
123 # define PAGE_SHIFT		8
124 # define PAGE_SECTORS		1
125 # define ADDR_SHIFT		8
126 # include "nand.c"
127 # define PAGE_SIZE		512
128 # define PAGE_SHIFT		9
129 # define PAGE_SECTORS		1
130 # define ADDR_SHIFT		8
131 # include "nand.c"
132 # define PAGE_SIZE		2048
133 # define PAGE_SHIFT		11
134 # define PAGE_SECTORS		4
135 # define ADDR_SHIFT		16
136 # include "nand.c"
137 
138 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
139 static const struct {
140     int size;
141     int width;
142     int page_shift;
143     int erase_shift;
144     uint32_t options;
145 } nand_flash_ids[0x100] = {
146     [0 ... 0xff] = { 0 },
147 
148     [0x6e] = { 1,	8,	8, 4, 0 },
149     [0x64] = { 2,	8,	8, 4, 0 },
150     [0x6b] = { 4,	8,	9, 4, 0 },
151     [0xe8] = { 1,	8,	8, 4, 0 },
152     [0xec] = { 1,	8,	8, 4, 0 },
153     [0xea] = { 2,	8,	8, 4, 0 },
154     [0xd5] = { 4,	8,	9, 4, 0 },
155     [0xe3] = { 4,	8,	9, 4, 0 },
156     [0xe5] = { 4,	8,	9, 4, 0 },
157     [0xd6] = { 8,	8,	9, 4, 0 },
158 
159     [0x39] = { 8,	8,	9, 4, 0 },
160     [0xe6] = { 8,	8,	9, 4, 0 },
161     [0x49] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
162     [0x59] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
163 
164     [0x33] = { 16,	8,	9, 5, 0 },
165     [0x73] = { 16,	8,	9, 5, 0 },
166     [0x43] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
167     [0x53] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
168 
169     [0x35] = { 32,	8,	9, 5, 0 },
170     [0x75] = { 32,	8,	9, 5, 0 },
171     [0x45] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
172     [0x55] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
173 
174     [0x36] = { 64,	8,	9, 5, 0 },
175     [0x76] = { 64,	8,	9, 5, 0 },
176     [0x46] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
177     [0x56] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
178 
179     [0x78] = { 128,	8,	9, 5, 0 },
180     [0x39] = { 128,	8,	9, 5, 0 },
181     [0x79] = { 128,	8,	9, 5, 0 },
182     [0x72] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
183     [0x49] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
184     [0x74] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
185     [0x59] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
186 
187     [0x71] = { 256,	8,	9, 5, 0 },
188 
189     /*
190      * These are the new chips with large page size. The pagesize and the
191      * erasesize is determined from the extended id bytes
192      */
193 # define LP_OPTIONS	(NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
194 # define LP_OPTIONS16	(LP_OPTIONS | NAND_BUSWIDTH_16)
195 
196     /* 512 Megabit */
197     [0xa2] = { 64,	8,	0, 0, LP_OPTIONS },
198     [0xf2] = { 64,	8,	0, 0, LP_OPTIONS },
199     [0xb2] = { 64,	16,	0, 0, LP_OPTIONS16 },
200     [0xc2] = { 64,	16,	0, 0, LP_OPTIONS16 },
201 
202     /* 1 Gigabit */
203     [0xa1] = { 128,	8,	0, 0, LP_OPTIONS },
204     [0xf1] = { 128,	8,	0, 0, LP_OPTIONS },
205     [0xb1] = { 128,	16,	0, 0, LP_OPTIONS16 },
206     [0xc1] = { 128,	16,	0, 0, LP_OPTIONS16 },
207 
208     /* 2 Gigabit */
209     [0xaa] = { 256,	8,	0, 0, LP_OPTIONS },
210     [0xda] = { 256,	8,	0, 0, LP_OPTIONS },
211     [0xba] = { 256,	16,	0, 0, LP_OPTIONS16 },
212     [0xca] = { 256,	16,	0, 0, LP_OPTIONS16 },
213 
214     /* 4 Gigabit */
215     [0xac] = { 512,	8,	0, 0, LP_OPTIONS },
216     [0xdc] = { 512,	8,	0, 0, LP_OPTIONS },
217     [0xbc] = { 512,	16,	0, 0, LP_OPTIONS16 },
218     [0xcc] = { 512,	16,	0, 0, LP_OPTIONS16 },
219 
220     /* 8 Gigabit */
221     [0xa3] = { 1024,	8,	0, 0, LP_OPTIONS },
222     [0xd3] = { 1024,	8,	0, 0, LP_OPTIONS },
223     [0xb3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
224     [0xc3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
225 
226     /* 16 Gigabit */
227     [0xa5] = { 2048,	8,	0, 0, LP_OPTIONS },
228     [0xd5] = { 2048,	8,	0, 0, LP_OPTIONS },
229     [0xb5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
230     [0xc5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
231 };
232 
233 static void nand_reset(DeviceState *dev)
234 {
235     NANDFlashState *s = NAND(dev);
236     s->cmd = NAND_CMD_READ0;
237     s->addr = 0;
238     s->addrlen = 0;
239     s->iolen = 0;
240     s->offset = 0;
241     s->status &= NAND_IOSTATUS_UNPROTCT;
242     s->status |= NAND_IOSTATUS_READY;
243 }
244 
245 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
246 {
247     s->ioaddr[s->iolen++] = value;
248     for (value = s->buswidth; --value;) {
249         s->ioaddr[s->iolen++] = 0;
250     }
251 }
252 
253 static void nand_command(NANDFlashState *s)
254 {
255     unsigned int offset;
256     switch (s->cmd) {
257     case NAND_CMD_READ0:
258         s->iolen = 0;
259         break;
260 
261     case NAND_CMD_READID:
262         s->ioaddr = s->io;
263         s->iolen = 0;
264         nand_pushio_byte(s, s->manf_id);
265         nand_pushio_byte(s, s->chip_id);
266         nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
267         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
268             /* Page Size, Block Size, Spare Size; bit 6 indicates
269              * 8 vs 16 bit width NAND.
270              */
271             nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
272         } else {
273             nand_pushio_byte(s, 0xc0); /* Multi-plane */
274         }
275         break;
276 
277     case NAND_CMD_RANDOMREAD2:
278     case NAND_CMD_NOSERIALREAD2:
279         if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
280             break;
281         offset = s->addr & ((1 << s->addr_shift) - 1);
282         s->blk_load(s, s->addr, offset);
283         if (s->gnd)
284             s->iolen = (1 << s->page_shift) - offset;
285         else
286             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
287         break;
288 
289     case NAND_CMD_RESET:
290         nand_reset(DEVICE(s));
291         break;
292 
293     case NAND_CMD_PAGEPROGRAM1:
294         s->ioaddr = s->io;
295         s->iolen = 0;
296         break;
297 
298     case NAND_CMD_PAGEPROGRAM2:
299         if (s->wp) {
300             s->blk_write(s);
301         }
302         break;
303 
304     case NAND_CMD_BLOCKERASE1:
305         break;
306 
307     case NAND_CMD_BLOCKERASE2:
308         s->addr &= (1ull << s->addrlen * 8) - 1;
309         s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
310                                                                     16 : 8;
311 
312         if (s->wp) {
313             s->blk_erase(s);
314         }
315         break;
316 
317     case NAND_CMD_READSTATUS:
318         s->ioaddr = s->io;
319         s->iolen = 0;
320         nand_pushio_byte(s, s->status);
321         break;
322 
323     default:
324         printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
325     }
326 }
327 
328 static void nand_pre_save(void *opaque)
329 {
330     NANDFlashState *s = NAND(opaque);
331 
332     s->ioaddr_vmstate = s->ioaddr - s->io;
333 }
334 
335 static int nand_post_load(void *opaque, int version_id)
336 {
337     NANDFlashState *s = NAND(opaque);
338 
339     if (s->ioaddr_vmstate > sizeof(s->io)) {
340         return -EINVAL;
341     }
342     s->ioaddr = s->io + s->ioaddr_vmstate;
343 
344     return 0;
345 }
346 
347 static const VMStateDescription vmstate_nand = {
348     .name = "nand",
349     .version_id = 1,
350     .minimum_version_id = 1,
351     .pre_save = nand_pre_save,
352     .post_load = nand_post_load,
353     .fields = (VMStateField[]) {
354         VMSTATE_UINT8(cle, NANDFlashState),
355         VMSTATE_UINT8(ale, NANDFlashState),
356         VMSTATE_UINT8(ce, NANDFlashState),
357         VMSTATE_UINT8(wp, NANDFlashState),
358         VMSTATE_UINT8(gnd, NANDFlashState),
359         VMSTATE_BUFFER(io, NANDFlashState),
360         VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
361         VMSTATE_INT32(iolen, NANDFlashState),
362         VMSTATE_UINT32(cmd, NANDFlashState),
363         VMSTATE_UINT64(addr, NANDFlashState),
364         VMSTATE_INT32(addrlen, NANDFlashState),
365         VMSTATE_INT32(status, NANDFlashState),
366         VMSTATE_INT32(offset, NANDFlashState),
367         /* XXX: do we want to save s->storage too? */
368         VMSTATE_END_OF_LIST()
369     }
370 };
371 
372 static void nand_realize(DeviceState *dev, Error **errp)
373 {
374     int pagesize;
375     NANDFlashState *s = NAND(dev);
376     int ret;
377 
378 
379     s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
380     s->size = nand_flash_ids[s->chip_id].size << 20;
381     if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
382         s->page_shift = 11;
383         s->erase_shift = 6;
384     } else {
385         s->page_shift = nand_flash_ids[s->chip_id].page_shift;
386         s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
387     }
388 
389     switch (1 << s->page_shift) {
390     case 256:
391         nand_init_256(s);
392         break;
393     case 512:
394         nand_init_512(s);
395         break;
396     case 2048:
397         nand_init_2048(s);
398         break;
399     default:
400         error_setg(errp, "Unsupported NAND block size %#x",
401                    1 << s->page_shift);
402         return;
403     }
404 
405     pagesize = 1 << s->oob_shift;
406     s->mem_oob = 1;
407     if (s->blk) {
408         if (blk_is_read_only(s->blk)) {
409             error_setg(errp, "Can't use a read-only drive");
410             return;
411         }
412         ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
413                            BLK_PERM_ALL, errp);
414         if (ret < 0) {
415             return;
416         }
417         if (blk_getlength(s->blk) >=
418                 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
419             pagesize = 0;
420             s->mem_oob = 0;
421         }
422     } else {
423         pagesize += 1 << s->page_shift;
424     }
425     if (pagesize) {
426         s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
427                         0xff, s->pages * pagesize);
428     }
429     /* Give s->ioaddr a sane value in case we save state before it is used. */
430     s->ioaddr = s->io;
431 }
432 
433 static Property nand_properties[] = {
434     DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
435     DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
436     DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
437     DEFINE_PROP_END_OF_LIST(),
438 };
439 
440 static void nand_class_init(ObjectClass *klass, void *data)
441 {
442     DeviceClass *dc = DEVICE_CLASS(klass);
443 
444     dc->realize = nand_realize;
445     dc->reset = nand_reset;
446     dc->vmsd = &vmstate_nand;
447     dc->props = nand_properties;
448 }
449 
450 static const TypeInfo nand_info = {
451     .name          = TYPE_NAND,
452     .parent        = TYPE_DEVICE,
453     .instance_size = sizeof(NANDFlashState),
454     .class_init    = nand_class_init,
455 };
456 
457 static void nand_register_types(void)
458 {
459     type_register_static(&nand_info);
460 }
461 
462 /*
463  * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
464  * outputs are R/B and eight I/O pins.
465  *
466  * CE, WP and R/B are active low.
467  */
468 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
469                   uint8_t ce, uint8_t wp, uint8_t gnd)
470 {
471     NANDFlashState *s = NAND(dev);
472 
473     s->cle = cle;
474     s->ale = ale;
475     s->ce = ce;
476     s->wp = wp;
477     s->gnd = gnd;
478     if (wp) {
479         s->status |= NAND_IOSTATUS_UNPROTCT;
480     } else {
481         s->status &= ~NAND_IOSTATUS_UNPROTCT;
482     }
483 }
484 
485 void nand_getpins(DeviceState *dev, int *rb)
486 {
487     *rb = 1;
488 }
489 
490 void nand_setio(DeviceState *dev, uint32_t value)
491 {
492     int i;
493     NANDFlashState *s = NAND(dev);
494 
495     if (!s->ce && s->cle) {
496         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
497             if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
498                 return;
499             if (value == NAND_CMD_RANDOMREAD1) {
500                 s->addr &= ~((1 << s->addr_shift) - 1);
501                 s->addrlen = 0;
502                 return;
503             }
504         }
505         if (value == NAND_CMD_READ0) {
506             s->offset = 0;
507         } else if (value == NAND_CMD_READ1) {
508             s->offset = 0x100;
509             value = NAND_CMD_READ0;
510         } else if (value == NAND_CMD_READ2) {
511             s->offset = 1 << s->page_shift;
512             value = NAND_CMD_READ0;
513         }
514 
515         s->cmd = value;
516 
517         if (s->cmd == NAND_CMD_READSTATUS ||
518                 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
519                 s->cmd == NAND_CMD_BLOCKERASE1 ||
520                 s->cmd == NAND_CMD_BLOCKERASE2 ||
521                 s->cmd == NAND_CMD_NOSERIALREAD2 ||
522                 s->cmd == NAND_CMD_RANDOMREAD2 ||
523                 s->cmd == NAND_CMD_RESET) {
524             nand_command(s);
525         }
526 
527         if (s->cmd != NAND_CMD_RANDOMREAD2) {
528             s->addrlen = 0;
529         }
530     }
531 
532     if (s->ale) {
533         unsigned int shift = s->addrlen * 8;
534         uint64_t mask = ~(0xffull << shift);
535         uint64_t v = (uint64_t)value << shift;
536 
537         s->addr = (s->addr & mask) | v;
538         s->addrlen ++;
539 
540         switch (s->addrlen) {
541         case 1:
542             if (s->cmd == NAND_CMD_READID) {
543                 nand_command(s);
544             }
545             break;
546         case 2: /* fix cache address as a byte address */
547             s->addr <<= (s->buswidth - 1);
548             break;
549         case 3:
550             if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
551                     (s->cmd == NAND_CMD_READ0 ||
552                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
553                 nand_command(s);
554             }
555             break;
556         case 4:
557             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
558                     nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
559                     (s->cmd == NAND_CMD_READ0 ||
560                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
561                 nand_command(s);
562             }
563             break;
564         case 5:
565             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
566                     nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
567                     (s->cmd == NAND_CMD_READ0 ||
568                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
569                 nand_command(s);
570             }
571             break;
572         default:
573             break;
574         }
575     }
576 
577     if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
578         if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
579             for (i = s->buswidth; i--; value >>= 8) {
580                 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
581             }
582         }
583     } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
584         if ((s->addr & ((1 << s->addr_shift) - 1)) <
585                 (1 << s->page_shift) + (1 << s->oob_shift)) {
586             for (i = s->buswidth; i--; s->addr++, value >>= 8) {
587                 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
588                     (uint8_t) (value & 0xff);
589             }
590         }
591     }
592 }
593 
594 uint32_t nand_getio(DeviceState *dev)
595 {
596     int offset;
597     uint32_t x = 0;
598     NANDFlashState *s = NAND(dev);
599 
600     /* Allow sequential reading */
601     if (!s->iolen && s->cmd == NAND_CMD_READ0) {
602         offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
603         s->offset = 0;
604 
605         s->blk_load(s, s->addr, offset);
606         if (s->gnd)
607             s->iolen = (1 << s->page_shift) - offset;
608         else
609             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
610     }
611 
612     if (s->ce || s->iolen <= 0) {
613         return 0;
614     }
615 
616     for (offset = s->buswidth; offset--;) {
617         x |= s->ioaddr[offset] << (offset << 3);
618     }
619     /* after receiving READ STATUS command all subsequent reads will
620      * return the status register value until another command is issued
621      */
622     if (s->cmd != NAND_CMD_READSTATUS) {
623         s->addr   += s->buswidth;
624         s->ioaddr += s->buswidth;
625         s->iolen  -= s->buswidth;
626     }
627     return x;
628 }
629 
630 uint32_t nand_getbuswidth(DeviceState *dev)
631 {
632     NANDFlashState *s = (NANDFlashState *) dev;
633     return s->buswidth << 3;
634 }
635 
636 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
637 {
638     DeviceState *dev;
639 
640     if (nand_flash_ids[chip_id].size == 0) {
641         hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
642     }
643     dev = DEVICE(object_new(TYPE_NAND));
644     qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
645     qdev_prop_set_uint8(dev, "chip_id", chip_id);
646     if (blk) {
647         qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
648     }
649 
650     qdev_init_nofail(dev);
651     return dev;
652 }
653 
654 type_init(nand_register_types)
655 
656 #else
657 
658 /* Program a single page */
659 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
660 {
661     uint64_t off, page, sector, soff;
662     uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
663     if (PAGE(s->addr) >= s->pages)
664         return;
665 
666     if (!s->blk) {
667         mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
668                         s->offset, s->io, s->iolen);
669     } else if (s->mem_oob) {
670         sector = SECTOR(s->addr);
671         off = (s->addr & PAGE_MASK) + s->offset;
672         soff = SECTOR_OFFSET(s->addr);
673         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
674                       PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
675             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
676             return;
677         }
678 
679         mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
680         if (off + s->iolen > PAGE_SIZE) {
681             page = PAGE(s->addr);
682             mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
683                             MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
684         }
685 
686         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
687                        PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
688             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
689         }
690     } else {
691         off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
692         sector = off >> 9;
693         soff = off & 0x1ff;
694         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
695                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
696             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
697             return;
698         }
699 
700         mem_and(iobuf + soff, s->io, s->iolen);
701 
702         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
703                        (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
704             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
705         }
706     }
707     s->offset = 0;
708 }
709 
710 /* Erase a single block */
711 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
712 {
713     uint64_t i, page, addr;
714     uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
715     addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
716 
717     if (PAGE(addr) >= s->pages) {
718         return;
719     }
720 
721     if (!s->blk) {
722         memset(s->storage + PAGE_START(addr),
723                         0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
724     } else if (s->mem_oob) {
725         memset(s->storage + (PAGE(addr) << OOB_SHIFT),
726                         0xff, OOB_SIZE << s->erase_shift);
727         i = SECTOR(addr);
728         page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
729         for (; i < page; i ++)
730             if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
731                            BDRV_SECTOR_SIZE, 0) < 0) {
732                 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
733             }
734     } else {
735         addr = PAGE_START(addr);
736         page = addr >> 9;
737         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
738                       BDRV_SECTOR_SIZE) < 0) {
739             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
740         }
741         memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
742         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
743                        BDRV_SECTOR_SIZE, 0) < 0) {
744             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
745         }
746 
747         memset(iobuf, 0xff, 0x200);
748         i = (addr & ~0x1ff) + 0x200;
749         for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
750                         i < addr; i += 0x200) {
751             if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
752                 printf("%s: write error in sector %" PRIu64 "\n",
753                        __func__, i >> 9);
754             }
755         }
756 
757         page = i >> 9;
758         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
759                       BDRV_SECTOR_SIZE) < 0) {
760             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
761         }
762         memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
763         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
764                        BDRV_SECTOR_SIZE, 0) < 0) {
765             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
766         }
767     }
768 }
769 
770 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
771                 uint64_t addr, int offset)
772 {
773     if (PAGE(addr) >= s->pages) {
774         return;
775     }
776 
777     if (s->blk) {
778         if (s->mem_oob) {
779             if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
780                           PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
781                 printf("%s: read error in sector %" PRIu64 "\n",
782                                 __func__, SECTOR(addr));
783             }
784             memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
785                             s->storage + (PAGE(s->addr) << OOB_SHIFT),
786                             OOB_SIZE);
787             s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
788         } else {
789             if (blk_pread(s->blk, PAGE_START(addr), s->io,
790                           (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
791                 printf("%s: read error in sector %" PRIu64 "\n",
792                                 __func__, PAGE_START(addr) >> 9);
793             }
794             s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
795         }
796     } else {
797         memcpy(s->io, s->storage + PAGE_START(s->addr) +
798                         offset, PAGE_SIZE + OOB_SIZE - offset);
799         s->ioaddr = s->io;
800     }
801 }
802 
803 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
804 {
805     s->oob_shift = PAGE_SHIFT - 5;
806     s->pages = s->size >> PAGE_SHIFT;
807     s->addr_shift = ADDR_SHIFT;
808 
809     s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
810     s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
811     s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
812 }
813 
814 # undef PAGE_SIZE
815 # undef PAGE_SHIFT
816 # undef PAGE_SECTORS
817 # undef ADDR_SHIFT
818 #endif	/* NAND_IO */
819