xref: /openbmc/qemu/hw/block/m25p80.c (revision 9277d81f5c2c6f4d0b5e47c8476eb7ee7e5c0beb)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "hw/hw.h"
27 #include "sysemu/block-backend.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
36 #endif
37 
38 #define DB_PRINT_L(level, ...) do { \
39     if (M25P80_ERR_DEBUG > (level)) { \
40         fprintf(stderr,  ": %s: ", __func__); \
41         fprintf(stderr, ## __VA_ARGS__); \
42     } \
43 } while (0)
44 
45 /* Fields for FlashPartInfo->flags */
46 
47 /* erase capabilities */
48 #define ER_4K 1
49 #define ER_32K 2
50 /* set to allow the page program command to write 0s back to 1. Useful for
51  * modelling EEPROM with SPI flash command set
52  */
53 #define EEPROM 0x100
54 
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
57 
58 #define SPI_NOR_MAX_ID_LEN 6
59 
60 typedef struct FlashPartInfo {
61     const char *part_name;
62     /*
63      * This array stores the ID bytes.
64      * The first three bytes are the JEDIC ID.
65      * JEDEC ID zero means "no ID" (mostly older chips).
66      */
67     uint8_t id[SPI_NOR_MAX_ID_LEN];
68     uint8_t id_len;
69     /* there is confusion between manufacturers as to what a sector is. In this
70      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71      * command (opcode 0xd8).
72      */
73     uint32_t sector_size;
74     uint32_t n_sectors;
75     uint32_t page_size;
76     uint16_t flags;
77     /*
78      * Big sized spi nor are often stacked devices, thus sometime
79      * replace chip erase with die erase.
80      * This field inform how many die is in the chip.
81      */
82     uint8_t die_cnt;
83 } FlashPartInfo;
84 
85 /* adapted from linux */
86 /* Used when the "_ext_id" is two bytes at most */
87 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
88     .part_name = _part_name,\
89     .id = {\
90         ((_jedec_id) >> 16) & 0xff,\
91         ((_jedec_id) >> 8) & 0xff,\
92         (_jedec_id) & 0xff,\
93         ((_ext_id) >> 8) & 0xff,\
94         (_ext_id) & 0xff,\
95           },\
96     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
97     .sector_size = (_sector_size),\
98     .n_sectors = (_n_sectors),\
99     .page_size = 256,\
100     .flags = (_flags),\
101     .die_cnt = 0
102 
103 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
104     .part_name = _part_name,\
105     .id = {\
106         ((_jedec_id) >> 16) & 0xff,\
107         ((_jedec_id) >> 8) & 0xff,\
108         (_jedec_id) & 0xff,\
109         ((_ext_id) >> 16) & 0xff,\
110         ((_ext_id) >> 8) & 0xff,\
111         (_ext_id) & 0xff,\
112           },\
113     .id_len = 6,\
114     .sector_size = (_sector_size),\
115     .n_sectors = (_n_sectors),\
116     .page_size = 256,\
117     .flags = (_flags),\
118     .die_cnt = 0
119 
120 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
121                     _flags, _die_cnt)\
122     .part_name = _part_name,\
123     .id = {\
124         ((_jedec_id) >> 16) & 0xff,\
125         ((_jedec_id) >> 8) & 0xff,\
126         (_jedec_id) & 0xff,\
127         ((_ext_id) >> 8) & 0xff,\
128         (_ext_id) & 0xff,\
129           },\
130     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
131     .sector_size = (_sector_size),\
132     .n_sectors = (_n_sectors),\
133     .page_size = 256,\
134     .flags = (_flags),\
135     .die_cnt = _die_cnt
136 
137 #define JEDEC_NUMONYX 0x20
138 #define JEDEC_WINBOND 0xEF
139 #define JEDEC_SPANSION 0x01
140 
141 /* Numonyx (Micron) Configuration register macros */
142 #define VCFG_DUMMY 0x1
143 #define VCFG_WRAP_SEQUENTIAL 0x2
144 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
145 #define NVCFG_XIP_MODE_MASK (7 << 9)
146 #define VCFG_XIP_MODE_ENABLED (1 << 3)
147 #define CFG_DUMMY_CLK_LEN 4
148 #define NVCFG_DUMMY_CLK_POS 12
149 #define VCFG_DUMMY_CLK_POS 4
150 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
151 #define EVCFG_VPP_ACCELERATOR (1 << 3)
152 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
153 #define NVCFG_DUAL_IO_MASK (1 << 2)
154 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
155 #define NVCFG_QUAD_IO_MASK (1 << 3)
156 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
157 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
158 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
159 
160 /* Numonyx (Micron) Flag Status Register macros */
161 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
162 #define FSR_FLASH_READY (1 << 7)
163 
164 /* Spansion configuration registers macros. */
165 #define SPANSION_QUAD_CFG_POS 0
166 #define SPANSION_QUAD_CFG_LEN 1
167 #define SPANSION_DUMMY_CLK_POS 0
168 #define SPANSION_DUMMY_CLK_LEN 4
169 #define SPANSION_ADDR_LEN_POS 7
170 #define SPANSION_ADDR_LEN_LEN 1
171 
172 /*
173  * Spansion read mode command length in bytes,
174  * the mode is currently not supported.
175 */
176 
177 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
178 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
179 
180 static const FlashPartInfo known_devices[] = {
181     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
182     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
183     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
184 
185     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
186     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
187     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
188 
189     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
190     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
191     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
192     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
193 
194     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
195 
196     /* Atmel EEPROMS - it is assumed, that don't care bit in command
197      * is set to 0. Block protection is not supported.
198      */
199     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
200     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
201 
202     /* EON -- en25xxx */
203     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
204     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
205     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
206     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
207     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
208 
209     /* GigaDevice */
210     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
211     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
212 
213     /* Intel/Numonyx -- xxxs33b */
214     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
215     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
216     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
217     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
218 
219     /* Macronix */
220     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
221     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
222     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
223     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
224     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
225     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
226     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
227     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
228     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
229     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
230     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
231     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
232     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
233 
234     /* Micron */
235     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
236     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
237     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
238     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
239     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
240     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
241     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
242     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
243     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
244     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
245     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
246     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
247     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
248     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
249     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
250     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
251     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
252 
253     /* Spansion -- single (large) sector size only, at least
254      * for the chips listed here (without boot sectors).
255      */
256     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
257     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
258     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
259     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
260     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
261     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
262     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
263     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
264     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
265     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
266     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
267     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
268     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
269     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
270     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
271     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
272     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
273 
274     /* Spansion --  boot sectors support  */
275     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
276     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
277 
278     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
279     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
280     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
281     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
282     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
283     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
284     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
285     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
286     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
287     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
288 
289     /* ST Microelectronics -- newer production may have feature updates */
290     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
291     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
292     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
293     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
294     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
295     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
296     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
297     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
298     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
299     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
300 
301     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
302     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
303     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
304 
305     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
306     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
307     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
308 
309     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
310     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
311     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
312     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
313 
314     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
315     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
316     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
317     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
318     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
319     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
320     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
321     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
322     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
323     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
324     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
325     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
326     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
327     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
328 };
329 
330 typedef enum {
331     NOP = 0,
332     WRSR = 0x1,
333     WRDI = 0x4,
334     RDSR = 0x5,
335     WREN = 0x6,
336     BRRD = 0x16,
337     BRWR = 0x17,
338     JEDEC_READ = 0x9f,
339     BULK_ERASE_60 = 0x60,
340     BULK_ERASE = 0xc7,
341     READ_FSR = 0x70,
342     RDCR = 0x15,
343 
344     READ = 0x03,
345     READ4 = 0x13,
346     FAST_READ = 0x0b,
347     FAST_READ4 = 0x0c,
348     DOR = 0x3b,
349     DOR4 = 0x3c,
350     QOR = 0x6b,
351     QOR4 = 0x6c,
352     DIOR = 0xbb,
353     DIOR4 = 0xbc,
354     QIOR = 0xeb,
355     QIOR4 = 0xec,
356 
357     PP = 0x02,
358     PP4 = 0x12,
359     PP4_4 = 0x3e,
360     DPP = 0xa2,
361     QPP = 0x32,
362     QPP_4 = 0x34,
363     RDID_90 = 0x90,
364     RDID_AB = 0xab,
365 
366     ERASE_4K = 0x20,
367     ERASE4_4K = 0x21,
368     ERASE_32K = 0x52,
369     ERASE4_32K = 0x5c,
370     ERASE_SECTOR = 0xd8,
371     ERASE4_SECTOR = 0xdc,
372 
373     EN_4BYTE_ADDR = 0xB7,
374     EX_4BYTE_ADDR = 0xE9,
375 
376     EXTEND_ADDR_READ = 0xC8,
377     EXTEND_ADDR_WRITE = 0xC5,
378 
379     RESET_ENABLE = 0x66,
380     RESET_MEMORY = 0x99,
381 
382     /*
383      * Micron: 0x35 - enable QPI
384      * Spansion: 0x35 - read control register
385      */
386     RDCR_EQIO = 0x35,
387     RSTQIO = 0xf5,
388 
389     RNVCR = 0xB5,
390     WNVCR = 0xB1,
391 
392     RVCR = 0x85,
393     WVCR = 0x81,
394 
395     REVCR = 0x65,
396     WEVCR = 0x61,
397 
398     DIE_ERASE = 0xC4,
399 } FlashCMD;
400 
401 typedef enum {
402     STATE_IDLE,
403     STATE_PAGE_PROGRAM,
404     STATE_READ,
405     STATE_COLLECTING_DATA,
406     STATE_COLLECTING_VAR_LEN_DATA,
407     STATE_READING_DATA,
408 } CMDState;
409 
410 typedef enum {
411     MAN_SPANSION,
412     MAN_MACRONIX,
413     MAN_NUMONYX,
414     MAN_WINBOND,
415     MAN_SST,
416     MAN_GENERIC,
417 } Manufacturer;
418 
419 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
420 
421 typedef struct Flash {
422     SSISlave parent_obj;
423 
424     BlockBackend *blk;
425 
426     uint8_t *storage;
427     uint32_t size;
428     int page_size;
429 
430     uint8_t state;
431     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
432     uint32_t len;
433     uint32_t pos;
434     bool data_read_loop;
435     uint8_t needed_bytes;
436     uint8_t cmd_in_progress;
437     uint32_t cur_addr;
438     uint32_t nonvolatile_cfg;
439     /* Configuration register for Macronix */
440     uint32_t volatile_cfg;
441     uint32_t enh_volatile_cfg;
442     /* Spansion cfg registers. */
443     uint8_t spansion_cr1nv;
444     uint8_t spansion_cr2nv;
445     uint8_t spansion_cr3nv;
446     uint8_t spansion_cr4nv;
447     uint8_t spansion_cr1v;
448     uint8_t spansion_cr2v;
449     uint8_t spansion_cr3v;
450     uint8_t spansion_cr4v;
451     bool write_enable;
452     bool four_bytes_address_mode;
453     bool reset_enable;
454     bool quad_enable;
455     uint8_t ear;
456 
457     int64_t dirty_page;
458 
459     const FlashPartInfo *pi;
460 
461 } Flash;
462 
463 typedef struct M25P80Class {
464     SSISlaveClass parent_class;
465     FlashPartInfo *pi;
466 } M25P80Class;
467 
468 #define TYPE_M25P80 "m25p80-generic"
469 #define M25P80(obj) \
470      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
471 #define M25P80_CLASS(klass) \
472      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
473 #define M25P80_GET_CLASS(obj) \
474      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
475 
476 static inline Manufacturer get_man(Flash *s)
477 {
478     switch (s->pi->id[0]) {
479     case 0x20:
480         return MAN_NUMONYX;
481     case 0xEF:
482         return MAN_WINBOND;
483     case 0x01:
484         return MAN_SPANSION;
485     case 0xC2:
486         return MAN_MACRONIX;
487     case 0xBF:
488         return MAN_SST;
489     default:
490         return MAN_GENERIC;
491     }
492 }
493 
494 static void blk_sync_complete(void *opaque, int ret)
495 {
496     QEMUIOVector *iov = opaque;
497 
498     qemu_iovec_destroy(iov);
499     g_free(iov);
500 
501     /* do nothing. Masters do not directly interact with the backing store,
502      * only the working copy so no mutexing required.
503      */
504 }
505 
506 static void flash_sync_page(Flash *s, int page)
507 {
508     QEMUIOVector *iov;
509 
510     if (!s->blk || blk_is_read_only(s->blk)) {
511         return;
512     }
513 
514     iov = g_new(QEMUIOVector, 1);
515     qemu_iovec_init(iov, 1);
516     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
517                    s->pi->page_size);
518     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
519                     blk_sync_complete, iov);
520 }
521 
522 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
523 {
524     QEMUIOVector *iov;
525 
526     if (!s->blk || blk_is_read_only(s->blk)) {
527         return;
528     }
529 
530     assert(!(len % BDRV_SECTOR_SIZE));
531     iov = g_new(QEMUIOVector, 1);
532     qemu_iovec_init(iov, 1);
533     qemu_iovec_add(iov, s->storage + off, len);
534     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
535 }
536 
537 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
538 {
539     uint32_t len;
540     uint8_t capa_to_assert = 0;
541 
542     switch (cmd) {
543     case ERASE_4K:
544     case ERASE4_4K:
545         len = 4 * KiB;
546         capa_to_assert = ER_4K;
547         break;
548     case ERASE_32K:
549     case ERASE4_32K:
550         len = 32 * KiB;
551         capa_to_assert = ER_32K;
552         break;
553     case ERASE_SECTOR:
554     case ERASE4_SECTOR:
555         len = s->pi->sector_size;
556         break;
557     case BULK_ERASE:
558         len = s->size;
559         break;
560     case DIE_ERASE:
561         if (s->pi->die_cnt) {
562             len = s->size / s->pi->die_cnt;
563             offset = offset & (~(len - 1));
564         } else {
565             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
566                           " by device\n");
567             return;
568         }
569         break;
570     default:
571         abort();
572     }
573 
574     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
575     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
576         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
577                       " device\n", len);
578     }
579 
580     if (!s->write_enable) {
581         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
582         return;
583     }
584     memset(s->storage + offset, 0xff, len);
585     flash_sync_area(s, offset, len);
586 }
587 
588 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
589 {
590     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
591         flash_sync_page(s, s->dirty_page);
592         s->dirty_page = newpage;
593     }
594 }
595 
596 static inline
597 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
598 {
599     uint32_t page = addr / s->pi->page_size;
600     uint8_t prev = s->storage[s->cur_addr];
601 
602     if (!s->write_enable) {
603         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
604     }
605 
606     if ((prev ^ data) & data) {
607         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
608                    " -> %" PRIx8 "\n", addr, prev, data);
609     }
610 
611     if (s->pi->flags & EEPROM) {
612         s->storage[s->cur_addr] = data;
613     } else {
614         s->storage[s->cur_addr] &= data;
615     }
616 
617     flash_sync_dirty(s, page);
618     s->dirty_page = page;
619 }
620 
621 static inline int get_addr_length(Flash *s)
622 {
623    /* check if eeprom is in use */
624     if (s->pi->flags == EEPROM) {
625         return 2;
626     }
627 
628    switch (s->cmd_in_progress) {
629    case PP4:
630    case PP4_4:
631    case QPP_4:
632    case READ4:
633    case QIOR4:
634    case ERASE4_4K:
635    case ERASE4_32K:
636    case ERASE4_SECTOR:
637    case FAST_READ4:
638    case DOR4:
639    case QOR4:
640    case DIOR4:
641        return 4;
642    default:
643        return s->four_bytes_address_mode ? 4 : 3;
644    }
645 }
646 
647 static void complete_collecting_data(Flash *s)
648 {
649     int i, n;
650 
651     n = get_addr_length(s);
652     s->cur_addr = (n == 3 ? s->ear : 0);
653     for (i = 0; i < n; ++i) {
654         s->cur_addr <<= 8;
655         s->cur_addr |= s->data[i];
656     }
657 
658     s->cur_addr &= s->size - 1;
659 
660     s->state = STATE_IDLE;
661 
662     switch (s->cmd_in_progress) {
663     case DPP:
664     case QPP:
665     case QPP_4:
666     case PP:
667     case PP4:
668     case PP4_4:
669         s->state = STATE_PAGE_PROGRAM;
670         break;
671     case READ:
672     case READ4:
673     case FAST_READ:
674     case FAST_READ4:
675     case DOR:
676     case DOR4:
677     case QOR:
678     case QOR4:
679     case DIOR:
680     case DIOR4:
681     case QIOR:
682     case QIOR4:
683         s->state = STATE_READ;
684         break;
685     case ERASE_4K:
686     case ERASE4_4K:
687     case ERASE_32K:
688     case ERASE4_32K:
689     case ERASE_SECTOR:
690     case ERASE4_SECTOR:
691     case DIE_ERASE:
692         flash_erase(s, s->cur_addr, s->cmd_in_progress);
693         break;
694     case WRSR:
695         switch (get_man(s)) {
696         case MAN_SPANSION:
697             s->quad_enable = !!(s->data[1] & 0x02);
698             break;
699         case MAN_MACRONIX:
700             s->quad_enable = extract32(s->data[0], 6, 1);
701             if (s->len > 1) {
702                 s->volatile_cfg = s->data[1];
703                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
704             }
705             break;
706         default:
707             break;
708         }
709         if (s->write_enable) {
710             s->write_enable = false;
711         }
712         break;
713     case BRWR:
714     case EXTEND_ADDR_WRITE:
715         s->ear = s->data[0];
716         break;
717     case WNVCR:
718         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
719         break;
720     case WVCR:
721         s->volatile_cfg = s->data[0];
722         break;
723     case WEVCR:
724         s->enh_volatile_cfg = s->data[0];
725         break;
726     case RDID_90:
727     case RDID_AB:
728         if (get_man(s) == MAN_SST) {
729             if (s->cur_addr <= 1) {
730                 if (s->cur_addr) {
731                     s->data[0] = s->pi->id[2];
732                     s->data[1] = s->pi->id[0];
733                 } else {
734                     s->data[0] = s->pi->id[0];
735                     s->data[1] = s->pi->id[2];
736                 }
737                 s->pos = 0;
738                 s->len = 2;
739                 s->data_read_loop = true;
740                 s->state = STATE_READING_DATA;
741             } else {
742                 qemu_log_mask(LOG_GUEST_ERROR,
743                               "M25P80: Invalid read id address\n");
744             }
745         } else {
746             qemu_log_mask(LOG_GUEST_ERROR,
747                           "M25P80: Read id (command 0x90/0xAB) is not supported"
748                           " by device\n");
749         }
750         break;
751     default:
752         break;
753     }
754 }
755 
756 static void reset_memory(Flash *s)
757 {
758     s->cmd_in_progress = NOP;
759     s->cur_addr = 0;
760     s->ear = 0;
761     s->four_bytes_address_mode = false;
762     s->len = 0;
763     s->needed_bytes = 0;
764     s->pos = 0;
765     s->state = STATE_IDLE;
766     s->write_enable = false;
767     s->reset_enable = false;
768     s->quad_enable = false;
769 
770     switch (get_man(s)) {
771     case MAN_NUMONYX:
772         s->volatile_cfg = 0;
773         s->volatile_cfg |= VCFG_DUMMY;
774         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
775         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
776                                 != NVCFG_XIP_MODE_DISABLED) {
777             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
778         }
779         s->volatile_cfg |= deposit32(s->volatile_cfg,
780                             VCFG_DUMMY_CLK_POS,
781                             CFG_DUMMY_CLK_LEN,
782                             extract32(s->nonvolatile_cfg,
783                                         NVCFG_DUMMY_CLK_POS,
784                                         CFG_DUMMY_CLK_LEN)
785                             );
786 
787         s->enh_volatile_cfg = 0;
788         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
789         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
790         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
791         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
792             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
793         }
794         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
795             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
796         }
797         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
798             s->four_bytes_address_mode = true;
799         }
800         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
801             s->ear = s->size / MAX_3BYTES_SIZE - 1;
802         }
803         break;
804     case MAN_MACRONIX:
805         s->volatile_cfg = 0x7;
806         break;
807     case MAN_SPANSION:
808         s->spansion_cr1v = s->spansion_cr1nv;
809         s->spansion_cr2v = s->spansion_cr2nv;
810         s->spansion_cr3v = s->spansion_cr3nv;
811         s->spansion_cr4v = s->spansion_cr4nv;
812         s->quad_enable = extract32(s->spansion_cr1v,
813                                    SPANSION_QUAD_CFG_POS,
814                                    SPANSION_QUAD_CFG_LEN
815                                    );
816         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
817                 SPANSION_ADDR_LEN_POS,
818                 SPANSION_ADDR_LEN_LEN
819                 );
820         break;
821     default:
822         break;
823     }
824 
825     DB_PRINT_L(0, "Reset done.\n");
826 }
827 
828 static void decode_fast_read_cmd(Flash *s)
829 {
830     s->needed_bytes = get_addr_length(s);
831     switch (get_man(s)) {
832     /* Dummy cycles - modeled with bytes writes instead of bits */
833     case MAN_WINBOND:
834         s->needed_bytes += 8;
835         break;
836     case MAN_NUMONYX:
837         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
838         break;
839     case MAN_MACRONIX:
840         if (extract32(s->volatile_cfg, 6, 2) == 1) {
841             s->needed_bytes += 6;
842         } else {
843             s->needed_bytes += 8;
844         }
845         break;
846     case MAN_SPANSION:
847         s->needed_bytes += extract32(s->spansion_cr2v,
848                                     SPANSION_DUMMY_CLK_POS,
849                                     SPANSION_DUMMY_CLK_LEN
850                                     );
851         break;
852     default:
853         break;
854     }
855     s->pos = 0;
856     s->len = 0;
857     s->state = STATE_COLLECTING_DATA;
858 }
859 
860 static void decode_dio_read_cmd(Flash *s)
861 {
862     s->needed_bytes = get_addr_length(s);
863     /* Dummy cycles modeled with bytes writes instead of bits */
864     switch (get_man(s)) {
865     case MAN_WINBOND:
866         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
867         break;
868     case MAN_SPANSION:
869         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
870         s->needed_bytes += extract32(s->spansion_cr2v,
871                                     SPANSION_DUMMY_CLK_POS,
872                                     SPANSION_DUMMY_CLK_LEN
873                                     );
874         break;
875     case MAN_NUMONYX:
876         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
877         break;
878     case MAN_MACRONIX:
879         switch (extract32(s->volatile_cfg, 6, 2)) {
880         case 1:
881             s->needed_bytes += 6;
882             break;
883         case 2:
884             s->needed_bytes += 8;
885             break;
886         default:
887             s->needed_bytes += 4;
888             break;
889         }
890         break;
891     default:
892         break;
893     }
894     s->pos = 0;
895     s->len = 0;
896     s->state = STATE_COLLECTING_DATA;
897 }
898 
899 static void decode_qio_read_cmd(Flash *s)
900 {
901     s->needed_bytes = get_addr_length(s);
902     /* Dummy cycles modeled with bytes writes instead of bits */
903     switch (get_man(s)) {
904     case MAN_WINBOND:
905         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
906         s->needed_bytes += 4;
907         break;
908     case MAN_SPANSION:
909         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
910         s->needed_bytes += extract32(s->spansion_cr2v,
911                                     SPANSION_DUMMY_CLK_POS,
912                                     SPANSION_DUMMY_CLK_LEN
913                                     );
914         break;
915     case MAN_NUMONYX:
916         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
917         break;
918     case MAN_MACRONIX:
919         switch (extract32(s->volatile_cfg, 6, 2)) {
920         case 1:
921             s->needed_bytes += 4;
922             break;
923         case 2:
924             s->needed_bytes += 8;
925             break;
926         default:
927             s->needed_bytes += 6;
928             break;
929         }
930         break;
931     default:
932         break;
933     }
934     s->pos = 0;
935     s->len = 0;
936     s->state = STATE_COLLECTING_DATA;
937 }
938 
939 static void decode_new_cmd(Flash *s, uint32_t value)
940 {
941     s->cmd_in_progress = value;
942     int i;
943     DB_PRINT_L(0, "decoded new command:%x\n", value);
944 
945     if (value != RESET_MEMORY) {
946         s->reset_enable = false;
947     }
948 
949     switch (value) {
950 
951     case ERASE_4K:
952     case ERASE4_4K:
953     case ERASE_32K:
954     case ERASE4_32K:
955     case ERASE_SECTOR:
956     case ERASE4_SECTOR:
957     case READ:
958     case READ4:
959     case DPP:
960     case QPP:
961     case QPP_4:
962     case PP:
963     case PP4:
964     case PP4_4:
965     case DIE_ERASE:
966     case RDID_90:
967     case RDID_AB:
968         s->needed_bytes = get_addr_length(s);
969         s->pos = 0;
970         s->len = 0;
971         s->state = STATE_COLLECTING_DATA;
972         break;
973 
974     case FAST_READ:
975     case FAST_READ4:
976     case DOR:
977     case DOR4:
978     case QOR:
979     case QOR4:
980         decode_fast_read_cmd(s);
981         break;
982 
983     case DIOR:
984     case DIOR4:
985         decode_dio_read_cmd(s);
986         break;
987 
988     case QIOR:
989     case QIOR4:
990         decode_qio_read_cmd(s);
991         break;
992 
993     case WRSR:
994         if (s->write_enable) {
995             switch (get_man(s)) {
996             case MAN_SPANSION:
997                 s->needed_bytes = 2;
998                 s->state = STATE_COLLECTING_DATA;
999                 break;
1000             case MAN_MACRONIX:
1001                 s->needed_bytes = 2;
1002                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1003                 break;
1004             default:
1005                 s->needed_bytes = 1;
1006                 s->state = STATE_COLLECTING_DATA;
1007             }
1008             s->pos = 0;
1009         }
1010         break;
1011 
1012     case WRDI:
1013         s->write_enable = false;
1014         break;
1015     case WREN:
1016         s->write_enable = true;
1017         break;
1018 
1019     case RDSR:
1020         s->data[0] = (!!s->write_enable) << 1;
1021         if (get_man(s) == MAN_MACRONIX) {
1022             s->data[0] |= (!!s->quad_enable) << 6;
1023         }
1024         s->pos = 0;
1025         s->len = 1;
1026         s->data_read_loop = true;
1027         s->state = STATE_READING_DATA;
1028         break;
1029 
1030     case READ_FSR:
1031         s->data[0] = FSR_FLASH_READY;
1032         if (s->four_bytes_address_mode) {
1033             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1034         }
1035         s->pos = 0;
1036         s->len = 1;
1037         s->data_read_loop = true;
1038         s->state = STATE_READING_DATA;
1039         break;
1040 
1041     case JEDEC_READ:
1042         DB_PRINT_L(0, "populated jedec code\n");
1043         for (i = 0; i < s->pi->id_len; i++) {
1044             s->data[i] = s->pi->id[i];
1045         }
1046 
1047         s->len = s->pi->id_len;
1048         s->pos = 0;
1049         s->state = STATE_READING_DATA;
1050         break;
1051 
1052     case RDCR:
1053         s->data[0] = s->volatile_cfg & 0xFF;
1054         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1055         s->pos = 0;
1056         s->len = 1;
1057         s->state = STATE_READING_DATA;
1058         break;
1059 
1060     case BULK_ERASE_60:
1061     case BULK_ERASE:
1062         if (s->write_enable) {
1063             DB_PRINT_L(0, "chip erase\n");
1064             flash_erase(s, 0, BULK_ERASE);
1065         } else {
1066             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1067                           "protect!\n");
1068         }
1069         break;
1070     case NOP:
1071         break;
1072     case EN_4BYTE_ADDR:
1073         s->four_bytes_address_mode = true;
1074         break;
1075     case EX_4BYTE_ADDR:
1076         s->four_bytes_address_mode = false;
1077         break;
1078     case BRRD:
1079     case EXTEND_ADDR_READ:
1080         s->data[0] = s->ear;
1081         s->pos = 0;
1082         s->len = 1;
1083         s->state = STATE_READING_DATA;
1084         break;
1085     case BRWR:
1086     case EXTEND_ADDR_WRITE:
1087         if (s->write_enable) {
1088             s->needed_bytes = 1;
1089             s->pos = 0;
1090             s->len = 0;
1091             s->state = STATE_COLLECTING_DATA;
1092         }
1093         break;
1094     case RNVCR:
1095         s->data[0] = s->nonvolatile_cfg & 0xFF;
1096         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1097         s->pos = 0;
1098         s->len = 2;
1099         s->state = STATE_READING_DATA;
1100         break;
1101     case WNVCR:
1102         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1103             s->needed_bytes = 2;
1104             s->pos = 0;
1105             s->len = 0;
1106             s->state = STATE_COLLECTING_DATA;
1107         }
1108         break;
1109     case RVCR:
1110         s->data[0] = s->volatile_cfg & 0xFF;
1111         s->pos = 0;
1112         s->len = 1;
1113         s->state = STATE_READING_DATA;
1114         break;
1115     case WVCR:
1116         if (s->write_enable) {
1117             s->needed_bytes = 1;
1118             s->pos = 0;
1119             s->len = 0;
1120             s->state = STATE_COLLECTING_DATA;
1121         }
1122         break;
1123     case REVCR:
1124         s->data[0] = s->enh_volatile_cfg & 0xFF;
1125         s->pos = 0;
1126         s->len = 1;
1127         s->state = STATE_READING_DATA;
1128         break;
1129     case WEVCR:
1130         if (s->write_enable) {
1131             s->needed_bytes = 1;
1132             s->pos = 0;
1133             s->len = 0;
1134             s->state = STATE_COLLECTING_DATA;
1135         }
1136         break;
1137     case RESET_ENABLE:
1138         s->reset_enable = true;
1139         break;
1140     case RESET_MEMORY:
1141         if (s->reset_enable) {
1142             reset_memory(s);
1143         }
1144         break;
1145     case RDCR_EQIO:
1146         switch (get_man(s)) {
1147         case MAN_SPANSION:
1148             s->data[0] = (!!s->quad_enable) << 1;
1149             s->pos = 0;
1150             s->len = 1;
1151             s->state = STATE_READING_DATA;
1152             break;
1153         case MAN_MACRONIX:
1154             s->quad_enable = true;
1155             break;
1156         default:
1157             break;
1158         }
1159         break;
1160     case RSTQIO:
1161         s->quad_enable = false;
1162         break;
1163     default:
1164         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1165         break;
1166     }
1167 }
1168 
1169 static int m25p80_cs(SSISlave *ss, bool select)
1170 {
1171     Flash *s = M25P80(ss);
1172 
1173     if (select) {
1174         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1175             complete_collecting_data(s);
1176         }
1177         s->len = 0;
1178         s->pos = 0;
1179         s->state = STATE_IDLE;
1180         flash_sync_dirty(s, -1);
1181         s->data_read_loop = false;
1182     }
1183 
1184     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1185 
1186     return 0;
1187 }
1188 
1189 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1190 {
1191     Flash *s = M25P80(ss);
1192     uint32_t r = 0;
1193 
1194     switch (s->state) {
1195 
1196     case STATE_PAGE_PROGRAM:
1197         DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1198                    s->cur_addr, (uint8_t)tx);
1199         flash_write8(s, s->cur_addr, (uint8_t)tx);
1200         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1201         break;
1202 
1203     case STATE_READ:
1204         r = s->storage[s->cur_addr];
1205         DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1206                    (uint8_t)r);
1207         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1208         break;
1209 
1210     case STATE_COLLECTING_DATA:
1211     case STATE_COLLECTING_VAR_LEN_DATA:
1212 
1213         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1214             qemu_log_mask(LOG_GUEST_ERROR,
1215                           "M25P80: Write overrun internal data buffer. "
1216                           "SPI controller (QEMU emulator or guest driver) "
1217                           "is misbehaving\n");
1218             s->len = s->pos = 0;
1219             s->state = STATE_IDLE;
1220             break;
1221         }
1222 
1223         s->data[s->len] = (uint8_t)tx;
1224         s->len++;
1225 
1226         if (s->len == s->needed_bytes) {
1227             complete_collecting_data(s);
1228         }
1229         break;
1230 
1231     case STATE_READING_DATA:
1232 
1233         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1234             qemu_log_mask(LOG_GUEST_ERROR,
1235                           "M25P80: Read overrun internal data buffer. "
1236                           "SPI controller (QEMU emulator or guest driver) "
1237                           "is misbehaving\n");
1238             s->len = s->pos = 0;
1239             s->state = STATE_IDLE;
1240             break;
1241         }
1242 
1243         r = s->data[s->pos];
1244         s->pos++;
1245         if (s->pos == s->len) {
1246             s->pos = 0;
1247             if (!s->data_read_loop) {
1248                 s->state = STATE_IDLE;
1249             }
1250         }
1251         break;
1252 
1253     default:
1254     case STATE_IDLE:
1255         decode_new_cmd(s, (uint8_t)tx);
1256         break;
1257     }
1258 
1259     return r;
1260 }
1261 
1262 static void m25p80_realize(SSISlave *ss, Error **errp)
1263 {
1264     Flash *s = M25P80(ss);
1265     M25P80Class *mc = M25P80_GET_CLASS(s);
1266     int ret;
1267 
1268     s->pi = mc->pi;
1269 
1270     s->size = s->pi->sector_size * s->pi->n_sectors;
1271     s->dirty_page = -1;
1272 
1273     if (s->blk) {
1274         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1275                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1276         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1277         if (ret < 0) {
1278             return;
1279         }
1280 
1281         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1282         s->storage = blk_blockalign(s->blk, s->size);
1283 
1284         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1285             error_setg(errp, "failed to read the initial flash content");
1286             return;
1287         }
1288     } else {
1289         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1290         s->storage = blk_blockalign(NULL, s->size);
1291         memset(s->storage, 0xFF, s->size);
1292     }
1293 }
1294 
1295 static void m25p80_reset(DeviceState *d)
1296 {
1297     Flash *s = M25P80(d);
1298 
1299     reset_memory(s);
1300 }
1301 
1302 static int m25p80_pre_save(void *opaque)
1303 {
1304     flash_sync_dirty((Flash *)opaque, -1);
1305 
1306     return 0;
1307 }
1308 
1309 static Property m25p80_properties[] = {
1310     /* This is default value for Micron flash */
1311     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1312     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1313     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1314     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1315     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1316     DEFINE_PROP_DRIVE("drive", Flash, blk),
1317     DEFINE_PROP_END_OF_LIST(),
1318 };
1319 
1320 static int m25p80_pre_load(void *opaque)
1321 {
1322     Flash *s = (Flash *)opaque;
1323 
1324     s->data_read_loop = false;
1325     return 0;
1326 }
1327 
1328 static bool m25p80_data_read_loop_needed(void *opaque)
1329 {
1330     Flash *s = (Flash *)opaque;
1331 
1332     return s->data_read_loop;
1333 }
1334 
1335 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1336     .name = "m25p80/data_read_loop",
1337     .version_id = 1,
1338     .minimum_version_id = 1,
1339     .needed = m25p80_data_read_loop_needed,
1340     .fields = (VMStateField[]) {
1341         VMSTATE_BOOL(data_read_loop, Flash),
1342         VMSTATE_END_OF_LIST()
1343     }
1344 };
1345 
1346 static const VMStateDescription vmstate_m25p80 = {
1347     .name = "m25p80",
1348     .version_id = 0,
1349     .minimum_version_id = 0,
1350     .pre_save = m25p80_pre_save,
1351     .pre_load = m25p80_pre_load,
1352     .fields = (VMStateField[]) {
1353         VMSTATE_UINT8(state, Flash),
1354         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1355         VMSTATE_UINT32(len, Flash),
1356         VMSTATE_UINT32(pos, Flash),
1357         VMSTATE_UINT8(needed_bytes, Flash),
1358         VMSTATE_UINT8(cmd_in_progress, Flash),
1359         VMSTATE_UINT32(cur_addr, Flash),
1360         VMSTATE_BOOL(write_enable, Flash),
1361         VMSTATE_BOOL(reset_enable, Flash),
1362         VMSTATE_UINT8(ear, Flash),
1363         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1364         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1365         VMSTATE_UINT32(volatile_cfg, Flash),
1366         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1367         VMSTATE_BOOL(quad_enable, Flash),
1368         VMSTATE_UINT8(spansion_cr1nv, Flash),
1369         VMSTATE_UINT8(spansion_cr2nv, Flash),
1370         VMSTATE_UINT8(spansion_cr3nv, Flash),
1371         VMSTATE_UINT8(spansion_cr4nv, Flash),
1372         VMSTATE_END_OF_LIST()
1373     },
1374     .subsections = (const VMStateDescription * []) {
1375         &vmstate_m25p80_data_read_loop,
1376         NULL
1377     }
1378 };
1379 
1380 static void m25p80_class_init(ObjectClass *klass, void *data)
1381 {
1382     DeviceClass *dc = DEVICE_CLASS(klass);
1383     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1384     M25P80Class *mc = M25P80_CLASS(klass);
1385 
1386     k->realize = m25p80_realize;
1387     k->transfer = m25p80_transfer8;
1388     k->set_cs = m25p80_cs;
1389     k->cs_polarity = SSI_CS_LOW;
1390     dc->vmsd = &vmstate_m25p80;
1391     dc->props = m25p80_properties;
1392     dc->reset = m25p80_reset;
1393     mc->pi = data;
1394 }
1395 
1396 static const TypeInfo m25p80_info = {
1397     .name           = TYPE_M25P80,
1398     .parent         = TYPE_SSI_SLAVE,
1399     .instance_size  = sizeof(Flash),
1400     .class_size     = sizeof(M25P80Class),
1401     .abstract       = true,
1402 };
1403 
1404 static void m25p80_register_types(void)
1405 {
1406     int i;
1407 
1408     type_register_static(&m25p80_info);
1409     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1410         TypeInfo ti = {
1411             .name       = known_devices[i].part_name,
1412             .parent     = TYPE_M25P80,
1413             .class_init = m25p80_class_init,
1414             .class_data = (void *)&known_devices[i],
1415         };
1416         type_register(&ti);
1417     }
1418 }
1419 
1420 type_init(m25p80_register_types)
1421