xref: /openbmc/qemu/hw/block/m25p80.c (revision 8e6fe6b8bab4716b4adf99a9ab52eaa82464b37e)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "hw/hw.h"
27 #include "sysemu/block-backend.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "qemu/error-report.h"
33 #include "qapi/error.h"
34 
35 #ifndef M25P80_ERR_DEBUG
36 #define M25P80_ERR_DEBUG 0
37 #endif
38 
39 #define DB_PRINT_L(level, ...) do { \
40     if (M25P80_ERR_DEBUG > (level)) { \
41         fprintf(stderr,  ": %s: ", __func__); \
42         fprintf(stderr, ## __VA_ARGS__); \
43     } \
44 } while (0)
45 
46 /* Fields for FlashPartInfo->flags */
47 
48 /* erase capabilities */
49 #define ER_4K 1
50 #define ER_32K 2
51 /* set to allow the page program command to write 0s back to 1. Useful for
52  * modelling EEPROM with SPI flash command set
53  */
54 #define EEPROM 0x100
55 
56 /* 16 MiB max in 3 byte address mode */
57 #define MAX_3BYTES_SIZE 0x1000000
58 
59 #define SPI_NOR_MAX_ID_LEN 6
60 
61 typedef struct FlashPartInfo {
62     const char *part_name;
63     /*
64      * This array stores the ID bytes.
65      * The first three bytes are the JEDIC ID.
66      * JEDEC ID zero means "no ID" (mostly older chips).
67      */
68     uint8_t id[SPI_NOR_MAX_ID_LEN];
69     uint8_t id_len;
70     /* there is confusion between manufacturers as to what a sector is. In this
71      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
72      * command (opcode 0xd8).
73      */
74     uint32_t sector_size;
75     uint32_t n_sectors;
76     uint32_t page_size;
77     uint16_t flags;
78     /*
79      * Big sized spi nor are often stacked devices, thus sometime
80      * replace chip erase with die erase.
81      * This field inform how many die is in the chip.
82      */
83     uint8_t die_cnt;
84 } FlashPartInfo;
85 
86 /* adapted from linux */
87 /* Used when the "_ext_id" is two bytes at most */
88 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
89     .part_name = _part_name,\
90     .id = {\
91         ((_jedec_id) >> 16) & 0xff,\
92         ((_jedec_id) >> 8) & 0xff,\
93         (_jedec_id) & 0xff,\
94         ((_ext_id) >> 8) & 0xff,\
95         (_ext_id) & 0xff,\
96           },\
97     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
98     .sector_size = (_sector_size),\
99     .n_sectors = (_n_sectors),\
100     .page_size = 256,\
101     .flags = (_flags),\
102     .die_cnt = 0
103 
104 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
105     .part_name = _part_name,\
106     .id = {\
107         ((_jedec_id) >> 16) & 0xff,\
108         ((_jedec_id) >> 8) & 0xff,\
109         (_jedec_id) & 0xff,\
110         ((_ext_id) >> 16) & 0xff,\
111         ((_ext_id) >> 8) & 0xff,\
112         (_ext_id) & 0xff,\
113           },\
114     .id_len = 6,\
115     .sector_size = (_sector_size),\
116     .n_sectors = (_n_sectors),\
117     .page_size = 256,\
118     .flags = (_flags),\
119     .die_cnt = 0
120 
121 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
122                     _flags, _die_cnt)\
123     .part_name = _part_name,\
124     .id = {\
125         ((_jedec_id) >> 16) & 0xff,\
126         ((_jedec_id) >> 8) & 0xff,\
127         (_jedec_id) & 0xff,\
128         ((_ext_id) >> 8) & 0xff,\
129         (_ext_id) & 0xff,\
130           },\
131     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
132     .sector_size = (_sector_size),\
133     .n_sectors = (_n_sectors),\
134     .page_size = 256,\
135     .flags = (_flags),\
136     .die_cnt = _die_cnt
137 
138 #define JEDEC_NUMONYX 0x20
139 #define JEDEC_WINBOND 0xEF
140 #define JEDEC_SPANSION 0x01
141 
142 /* Numonyx (Micron) Configuration register macros */
143 #define VCFG_DUMMY 0x1
144 #define VCFG_WRAP_SEQUENTIAL 0x2
145 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
146 #define NVCFG_XIP_MODE_MASK (7 << 9)
147 #define VCFG_XIP_MODE_ENABLED (1 << 3)
148 #define CFG_DUMMY_CLK_LEN 4
149 #define NVCFG_DUMMY_CLK_POS 12
150 #define VCFG_DUMMY_CLK_POS 4
151 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
152 #define EVCFG_VPP_ACCELERATOR (1 << 3)
153 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
154 #define NVCFG_DUAL_IO_MASK (1 << 2)
155 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
156 #define NVCFG_QUAD_IO_MASK (1 << 3)
157 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
158 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
159 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
160 
161 /* Numonyx (Micron) Flag Status Register macros */
162 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
163 #define FSR_FLASH_READY (1 << 7)
164 
165 /* Spansion configuration registers macros. */
166 #define SPANSION_QUAD_CFG_POS 0
167 #define SPANSION_QUAD_CFG_LEN 1
168 #define SPANSION_DUMMY_CLK_POS 0
169 #define SPANSION_DUMMY_CLK_LEN 4
170 #define SPANSION_ADDR_LEN_POS 7
171 #define SPANSION_ADDR_LEN_LEN 1
172 
173 /*
174  * Spansion read mode command length in bytes,
175  * the mode is currently not supported.
176 */
177 
178 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
179 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
180 
181 static const FlashPartInfo known_devices[] = {
182     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
183     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
184     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
185 
186     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
187     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
188     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
189 
190     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
191     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
192     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
193     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
194 
195     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
196 
197     /* Atmel EEPROMS - it is assumed, that don't care bit in command
198      * is set to 0. Block protection is not supported.
199      */
200     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
201     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
202 
203     /* EON -- en25xxx */
204     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
205     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
206     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
207     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
208     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
209 
210     /* GigaDevice */
211     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
212     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
213 
214     /* Intel/Numonyx -- xxxs33b */
215     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
216     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
217     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
218     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
219 
220     /* Macronix */
221     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
222     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
223     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
224     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
225     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
226     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
227     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
228     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
229     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
230     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
231     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
232     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
233     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
234 
235     /* Micron */
236     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
237     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
238     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
239     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
240     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
241     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
242     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
243     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
244     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
245     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
246     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
247     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
248     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
249     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
250     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
251     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
252     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
253 
254     /* Spansion -- single (large) sector size only, at least
255      * for the chips listed here (without boot sectors).
256      */
257     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
258     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
259     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
260     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
261     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
262     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
263     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
264     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
265     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
266     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
267     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
268     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
269     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
270     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
271     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
272     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
273     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
274 
275     /* Spansion --  boot sectors support  */
276     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
277     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
278 
279     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
280     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
281     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
282     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
283     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
284     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
285     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
286     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
287     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
288     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
289 
290     /* ST Microelectronics -- newer production may have feature updates */
291     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
292     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
293     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
294     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
295     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
296     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
297     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
298     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
299     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
300     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
301 
302     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
303     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
304     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
305 
306     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
307     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
308     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
309 
310     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
311     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
312     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
313     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
314 
315     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
316     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
317     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
318     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
319     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
320     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
321     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
322     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
323     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
324     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
325     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
326     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
327     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
328     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
329 };
330 
331 typedef enum {
332     NOP = 0,
333     WRSR = 0x1,
334     WRDI = 0x4,
335     RDSR = 0x5,
336     WREN = 0x6,
337     BRRD = 0x16,
338     BRWR = 0x17,
339     JEDEC_READ = 0x9f,
340     BULK_ERASE_60 = 0x60,
341     BULK_ERASE = 0xc7,
342     READ_FSR = 0x70,
343     RDCR = 0x15,
344 
345     READ = 0x03,
346     READ4 = 0x13,
347     FAST_READ = 0x0b,
348     FAST_READ4 = 0x0c,
349     DOR = 0x3b,
350     DOR4 = 0x3c,
351     QOR = 0x6b,
352     QOR4 = 0x6c,
353     DIOR = 0xbb,
354     DIOR4 = 0xbc,
355     QIOR = 0xeb,
356     QIOR4 = 0xec,
357 
358     PP = 0x02,
359     PP4 = 0x12,
360     PP4_4 = 0x3e,
361     DPP = 0xa2,
362     QPP = 0x32,
363     QPP_4 = 0x34,
364     RDID_90 = 0x90,
365     RDID_AB = 0xab,
366 
367     ERASE_4K = 0x20,
368     ERASE4_4K = 0x21,
369     ERASE_32K = 0x52,
370     ERASE4_32K = 0x5c,
371     ERASE_SECTOR = 0xd8,
372     ERASE4_SECTOR = 0xdc,
373 
374     EN_4BYTE_ADDR = 0xB7,
375     EX_4BYTE_ADDR = 0xE9,
376 
377     EXTEND_ADDR_READ = 0xC8,
378     EXTEND_ADDR_WRITE = 0xC5,
379 
380     RESET_ENABLE = 0x66,
381     RESET_MEMORY = 0x99,
382 
383     /*
384      * Micron: 0x35 - enable QPI
385      * Spansion: 0x35 - read control register
386      */
387     RDCR_EQIO = 0x35,
388     RSTQIO = 0xf5,
389 
390     RNVCR = 0xB5,
391     WNVCR = 0xB1,
392 
393     RVCR = 0x85,
394     WVCR = 0x81,
395 
396     REVCR = 0x65,
397     WEVCR = 0x61,
398 
399     DIE_ERASE = 0xC4,
400 } FlashCMD;
401 
402 typedef enum {
403     STATE_IDLE,
404     STATE_PAGE_PROGRAM,
405     STATE_READ,
406     STATE_COLLECTING_DATA,
407     STATE_COLLECTING_VAR_LEN_DATA,
408     STATE_READING_DATA,
409 } CMDState;
410 
411 typedef enum {
412     MAN_SPANSION,
413     MAN_MACRONIX,
414     MAN_NUMONYX,
415     MAN_WINBOND,
416     MAN_SST,
417     MAN_GENERIC,
418 } Manufacturer;
419 
420 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
421 
422 typedef struct Flash {
423     SSISlave parent_obj;
424 
425     BlockBackend *blk;
426 
427     uint8_t *storage;
428     uint32_t size;
429     int page_size;
430 
431     uint8_t state;
432     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
433     uint32_t len;
434     uint32_t pos;
435     bool data_read_loop;
436     uint8_t needed_bytes;
437     uint8_t cmd_in_progress;
438     uint32_t cur_addr;
439     uint32_t nonvolatile_cfg;
440     /* Configuration register for Macronix */
441     uint32_t volatile_cfg;
442     uint32_t enh_volatile_cfg;
443     /* Spansion cfg registers. */
444     uint8_t spansion_cr1nv;
445     uint8_t spansion_cr2nv;
446     uint8_t spansion_cr3nv;
447     uint8_t spansion_cr4nv;
448     uint8_t spansion_cr1v;
449     uint8_t spansion_cr2v;
450     uint8_t spansion_cr3v;
451     uint8_t spansion_cr4v;
452     bool write_enable;
453     bool four_bytes_address_mode;
454     bool reset_enable;
455     bool quad_enable;
456     uint8_t ear;
457 
458     int64_t dirty_page;
459 
460     const FlashPartInfo *pi;
461 
462 } Flash;
463 
464 typedef struct M25P80Class {
465     SSISlaveClass parent_class;
466     FlashPartInfo *pi;
467 } M25P80Class;
468 
469 #define TYPE_M25P80 "m25p80-generic"
470 #define M25P80(obj) \
471      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
472 #define M25P80_CLASS(klass) \
473      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
474 #define M25P80_GET_CLASS(obj) \
475      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
476 
477 static inline Manufacturer get_man(Flash *s)
478 {
479     switch (s->pi->id[0]) {
480     case 0x20:
481         return MAN_NUMONYX;
482     case 0xEF:
483         return MAN_WINBOND;
484     case 0x01:
485         return MAN_SPANSION;
486     case 0xC2:
487         return MAN_MACRONIX;
488     case 0xBF:
489         return MAN_SST;
490     default:
491         return MAN_GENERIC;
492     }
493 }
494 
495 static void blk_sync_complete(void *opaque, int ret)
496 {
497     QEMUIOVector *iov = opaque;
498 
499     qemu_iovec_destroy(iov);
500     g_free(iov);
501 
502     /* do nothing. Masters do not directly interact with the backing store,
503      * only the working copy so no mutexing required.
504      */
505 }
506 
507 static void flash_sync_page(Flash *s, int page)
508 {
509     QEMUIOVector *iov;
510 
511     if (!s->blk || blk_is_read_only(s->blk)) {
512         return;
513     }
514 
515     iov = g_new(QEMUIOVector, 1);
516     qemu_iovec_init(iov, 1);
517     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
518                    s->pi->page_size);
519     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
520                     blk_sync_complete, iov);
521 }
522 
523 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
524 {
525     QEMUIOVector *iov;
526 
527     if (!s->blk || blk_is_read_only(s->blk)) {
528         return;
529     }
530 
531     assert(!(len % BDRV_SECTOR_SIZE));
532     iov = g_new(QEMUIOVector, 1);
533     qemu_iovec_init(iov, 1);
534     qemu_iovec_add(iov, s->storage + off, len);
535     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
536 }
537 
538 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
539 {
540     uint32_t len;
541     uint8_t capa_to_assert = 0;
542 
543     switch (cmd) {
544     case ERASE_4K:
545     case ERASE4_4K:
546         len = 4 * KiB;
547         capa_to_assert = ER_4K;
548         break;
549     case ERASE_32K:
550     case ERASE4_32K:
551         len = 32 * KiB;
552         capa_to_assert = ER_32K;
553         break;
554     case ERASE_SECTOR:
555     case ERASE4_SECTOR:
556         len = s->pi->sector_size;
557         break;
558     case BULK_ERASE:
559         len = s->size;
560         break;
561     case DIE_ERASE:
562         if (s->pi->die_cnt) {
563             len = s->size / s->pi->die_cnt;
564             offset = offset & (~(len - 1));
565         } else {
566             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
567                           " by device\n");
568             return;
569         }
570         break;
571     default:
572         abort();
573     }
574 
575     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
576     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
577         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
578                       " device\n", len);
579     }
580 
581     if (!s->write_enable) {
582         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
583         return;
584     }
585     memset(s->storage + offset, 0xff, len);
586     flash_sync_area(s, offset, len);
587 }
588 
589 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
590 {
591     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
592         flash_sync_page(s, s->dirty_page);
593         s->dirty_page = newpage;
594     }
595 }
596 
597 static inline
598 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
599 {
600     uint32_t page = addr / s->pi->page_size;
601     uint8_t prev = s->storage[s->cur_addr];
602 
603     if (!s->write_enable) {
604         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
605     }
606 
607     if ((prev ^ data) & data) {
608         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
609                    " -> %" PRIx8 "\n", addr, prev, data);
610     }
611 
612     if (s->pi->flags & EEPROM) {
613         s->storage[s->cur_addr] = data;
614     } else {
615         s->storage[s->cur_addr] &= data;
616     }
617 
618     flash_sync_dirty(s, page);
619     s->dirty_page = page;
620 }
621 
622 static inline int get_addr_length(Flash *s)
623 {
624    /* check if eeprom is in use */
625     if (s->pi->flags == EEPROM) {
626         return 2;
627     }
628 
629    switch (s->cmd_in_progress) {
630    case PP4:
631    case PP4_4:
632    case QPP_4:
633    case READ4:
634    case QIOR4:
635    case ERASE4_4K:
636    case ERASE4_32K:
637    case ERASE4_SECTOR:
638    case FAST_READ4:
639    case DOR4:
640    case QOR4:
641    case DIOR4:
642        return 4;
643    default:
644        return s->four_bytes_address_mode ? 4 : 3;
645    }
646 }
647 
648 static void complete_collecting_data(Flash *s)
649 {
650     int i, n;
651 
652     n = get_addr_length(s);
653     s->cur_addr = (n == 3 ? s->ear : 0);
654     for (i = 0; i < n; ++i) {
655         s->cur_addr <<= 8;
656         s->cur_addr |= s->data[i];
657     }
658 
659     s->cur_addr &= s->size - 1;
660 
661     s->state = STATE_IDLE;
662 
663     switch (s->cmd_in_progress) {
664     case DPP:
665     case QPP:
666     case QPP_4:
667     case PP:
668     case PP4:
669     case PP4_4:
670         s->state = STATE_PAGE_PROGRAM;
671         break;
672     case READ:
673     case READ4:
674     case FAST_READ:
675     case FAST_READ4:
676     case DOR:
677     case DOR4:
678     case QOR:
679     case QOR4:
680     case DIOR:
681     case DIOR4:
682     case QIOR:
683     case QIOR4:
684         s->state = STATE_READ;
685         break;
686     case ERASE_4K:
687     case ERASE4_4K:
688     case ERASE_32K:
689     case ERASE4_32K:
690     case ERASE_SECTOR:
691     case ERASE4_SECTOR:
692     case DIE_ERASE:
693         flash_erase(s, s->cur_addr, s->cmd_in_progress);
694         break;
695     case WRSR:
696         switch (get_man(s)) {
697         case MAN_SPANSION:
698             s->quad_enable = !!(s->data[1] & 0x02);
699             break;
700         case MAN_MACRONIX:
701             s->quad_enable = extract32(s->data[0], 6, 1);
702             if (s->len > 1) {
703                 s->volatile_cfg = s->data[1];
704                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
705             }
706             break;
707         default:
708             break;
709         }
710         if (s->write_enable) {
711             s->write_enable = false;
712         }
713         break;
714     case BRWR:
715     case EXTEND_ADDR_WRITE:
716         s->ear = s->data[0];
717         break;
718     case WNVCR:
719         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
720         break;
721     case WVCR:
722         s->volatile_cfg = s->data[0];
723         break;
724     case WEVCR:
725         s->enh_volatile_cfg = s->data[0];
726         break;
727     case RDID_90:
728     case RDID_AB:
729         if (get_man(s) == MAN_SST) {
730             if (s->cur_addr <= 1) {
731                 if (s->cur_addr) {
732                     s->data[0] = s->pi->id[2];
733                     s->data[1] = s->pi->id[0];
734                 } else {
735                     s->data[0] = s->pi->id[0];
736                     s->data[1] = s->pi->id[2];
737                 }
738                 s->pos = 0;
739                 s->len = 2;
740                 s->data_read_loop = true;
741                 s->state = STATE_READING_DATA;
742             } else {
743                 qemu_log_mask(LOG_GUEST_ERROR,
744                               "M25P80: Invalid read id address\n");
745             }
746         } else {
747             qemu_log_mask(LOG_GUEST_ERROR,
748                           "M25P80: Read id (command 0x90/0xAB) is not supported"
749                           " by device\n");
750         }
751         break;
752     default:
753         break;
754     }
755 }
756 
757 static void reset_memory(Flash *s)
758 {
759     s->cmd_in_progress = NOP;
760     s->cur_addr = 0;
761     s->ear = 0;
762     s->four_bytes_address_mode = false;
763     s->len = 0;
764     s->needed_bytes = 0;
765     s->pos = 0;
766     s->state = STATE_IDLE;
767     s->write_enable = false;
768     s->reset_enable = false;
769     s->quad_enable = false;
770 
771     switch (get_man(s)) {
772     case MAN_NUMONYX:
773         s->volatile_cfg = 0;
774         s->volatile_cfg |= VCFG_DUMMY;
775         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
776         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
777                                 != NVCFG_XIP_MODE_DISABLED) {
778             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
779         }
780         s->volatile_cfg |= deposit32(s->volatile_cfg,
781                             VCFG_DUMMY_CLK_POS,
782                             CFG_DUMMY_CLK_LEN,
783                             extract32(s->nonvolatile_cfg,
784                                         NVCFG_DUMMY_CLK_POS,
785                                         CFG_DUMMY_CLK_LEN)
786                             );
787 
788         s->enh_volatile_cfg = 0;
789         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
790         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
791         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
792         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
793             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
794         }
795         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
796             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
797         }
798         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
799             s->four_bytes_address_mode = true;
800         }
801         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
802             s->ear = s->size / MAX_3BYTES_SIZE - 1;
803         }
804         break;
805     case MAN_MACRONIX:
806         s->volatile_cfg = 0x7;
807         break;
808     case MAN_SPANSION:
809         s->spansion_cr1v = s->spansion_cr1nv;
810         s->spansion_cr2v = s->spansion_cr2nv;
811         s->spansion_cr3v = s->spansion_cr3nv;
812         s->spansion_cr4v = s->spansion_cr4nv;
813         s->quad_enable = extract32(s->spansion_cr1v,
814                                    SPANSION_QUAD_CFG_POS,
815                                    SPANSION_QUAD_CFG_LEN
816                                    );
817         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
818                 SPANSION_ADDR_LEN_POS,
819                 SPANSION_ADDR_LEN_LEN
820                 );
821         break;
822     default:
823         break;
824     }
825 
826     DB_PRINT_L(0, "Reset done.\n");
827 }
828 
829 static void decode_fast_read_cmd(Flash *s)
830 {
831     s->needed_bytes = get_addr_length(s);
832     switch (get_man(s)) {
833     /* Dummy cycles - modeled with bytes writes instead of bits */
834     case MAN_WINBOND:
835         s->needed_bytes += 8;
836         break;
837     case MAN_NUMONYX:
838         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
839         break;
840     case MAN_MACRONIX:
841         if (extract32(s->volatile_cfg, 6, 2) == 1) {
842             s->needed_bytes += 6;
843         } else {
844             s->needed_bytes += 8;
845         }
846         break;
847     case MAN_SPANSION:
848         s->needed_bytes += extract32(s->spansion_cr2v,
849                                     SPANSION_DUMMY_CLK_POS,
850                                     SPANSION_DUMMY_CLK_LEN
851                                     );
852         break;
853     default:
854         break;
855     }
856     s->pos = 0;
857     s->len = 0;
858     s->state = STATE_COLLECTING_DATA;
859 }
860 
861 static void decode_dio_read_cmd(Flash *s)
862 {
863     s->needed_bytes = get_addr_length(s);
864     /* Dummy cycles modeled with bytes writes instead of bits */
865     switch (get_man(s)) {
866     case MAN_WINBOND:
867         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
868         break;
869     case MAN_SPANSION:
870         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
871         s->needed_bytes += extract32(s->spansion_cr2v,
872                                     SPANSION_DUMMY_CLK_POS,
873                                     SPANSION_DUMMY_CLK_LEN
874                                     );
875         break;
876     case MAN_NUMONYX:
877         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
878         break;
879     case MAN_MACRONIX:
880         switch (extract32(s->volatile_cfg, 6, 2)) {
881         case 1:
882             s->needed_bytes += 6;
883             break;
884         case 2:
885             s->needed_bytes += 8;
886             break;
887         default:
888             s->needed_bytes += 4;
889             break;
890         }
891         break;
892     default:
893         break;
894     }
895     s->pos = 0;
896     s->len = 0;
897     s->state = STATE_COLLECTING_DATA;
898 }
899 
900 static void decode_qio_read_cmd(Flash *s)
901 {
902     s->needed_bytes = get_addr_length(s);
903     /* Dummy cycles modeled with bytes writes instead of bits */
904     switch (get_man(s)) {
905     case MAN_WINBOND:
906         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
907         s->needed_bytes += 4;
908         break;
909     case MAN_SPANSION:
910         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
911         s->needed_bytes += extract32(s->spansion_cr2v,
912                                     SPANSION_DUMMY_CLK_POS,
913                                     SPANSION_DUMMY_CLK_LEN
914                                     );
915         break;
916     case MAN_NUMONYX:
917         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
918         break;
919     case MAN_MACRONIX:
920         switch (extract32(s->volatile_cfg, 6, 2)) {
921         case 1:
922             s->needed_bytes += 4;
923             break;
924         case 2:
925             s->needed_bytes += 8;
926             break;
927         default:
928             s->needed_bytes += 6;
929             break;
930         }
931         break;
932     default:
933         break;
934     }
935     s->pos = 0;
936     s->len = 0;
937     s->state = STATE_COLLECTING_DATA;
938 }
939 
940 static void decode_new_cmd(Flash *s, uint32_t value)
941 {
942     s->cmd_in_progress = value;
943     int i;
944     DB_PRINT_L(0, "decoded new command:%x\n", value);
945 
946     if (value != RESET_MEMORY) {
947         s->reset_enable = false;
948     }
949 
950     switch (value) {
951 
952     case ERASE_4K:
953     case ERASE4_4K:
954     case ERASE_32K:
955     case ERASE4_32K:
956     case ERASE_SECTOR:
957     case ERASE4_SECTOR:
958     case READ:
959     case READ4:
960     case DPP:
961     case QPP:
962     case QPP_4:
963     case PP:
964     case PP4:
965     case PP4_4:
966     case DIE_ERASE:
967     case RDID_90:
968     case RDID_AB:
969         s->needed_bytes = get_addr_length(s);
970         s->pos = 0;
971         s->len = 0;
972         s->state = STATE_COLLECTING_DATA;
973         break;
974 
975     case FAST_READ:
976     case FAST_READ4:
977     case DOR:
978     case DOR4:
979     case QOR:
980     case QOR4:
981         decode_fast_read_cmd(s);
982         break;
983 
984     case DIOR:
985     case DIOR4:
986         decode_dio_read_cmd(s);
987         break;
988 
989     case QIOR:
990     case QIOR4:
991         decode_qio_read_cmd(s);
992         break;
993 
994     case WRSR:
995         if (s->write_enable) {
996             switch (get_man(s)) {
997             case MAN_SPANSION:
998                 s->needed_bytes = 2;
999                 s->state = STATE_COLLECTING_DATA;
1000                 break;
1001             case MAN_MACRONIX:
1002                 s->needed_bytes = 2;
1003                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1004                 break;
1005             default:
1006                 s->needed_bytes = 1;
1007                 s->state = STATE_COLLECTING_DATA;
1008             }
1009             s->pos = 0;
1010         }
1011         break;
1012 
1013     case WRDI:
1014         s->write_enable = false;
1015         break;
1016     case WREN:
1017         s->write_enable = true;
1018         break;
1019 
1020     case RDSR:
1021         s->data[0] = (!!s->write_enable) << 1;
1022         if (get_man(s) == MAN_MACRONIX) {
1023             s->data[0] |= (!!s->quad_enable) << 6;
1024         }
1025         s->pos = 0;
1026         s->len = 1;
1027         s->data_read_loop = true;
1028         s->state = STATE_READING_DATA;
1029         break;
1030 
1031     case READ_FSR:
1032         s->data[0] = FSR_FLASH_READY;
1033         if (s->four_bytes_address_mode) {
1034             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1035         }
1036         s->pos = 0;
1037         s->len = 1;
1038         s->data_read_loop = true;
1039         s->state = STATE_READING_DATA;
1040         break;
1041 
1042     case JEDEC_READ:
1043         DB_PRINT_L(0, "populated jedec code\n");
1044         for (i = 0; i < s->pi->id_len; i++) {
1045             s->data[i] = s->pi->id[i];
1046         }
1047 
1048         s->len = s->pi->id_len;
1049         s->pos = 0;
1050         s->state = STATE_READING_DATA;
1051         break;
1052 
1053     case RDCR:
1054         s->data[0] = s->volatile_cfg & 0xFF;
1055         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1056         s->pos = 0;
1057         s->len = 1;
1058         s->state = STATE_READING_DATA;
1059         break;
1060 
1061     case BULK_ERASE_60:
1062     case BULK_ERASE:
1063         if (s->write_enable) {
1064             DB_PRINT_L(0, "chip erase\n");
1065             flash_erase(s, 0, BULK_ERASE);
1066         } else {
1067             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1068                           "protect!\n");
1069         }
1070         break;
1071     case NOP:
1072         break;
1073     case EN_4BYTE_ADDR:
1074         s->four_bytes_address_mode = true;
1075         break;
1076     case EX_4BYTE_ADDR:
1077         s->four_bytes_address_mode = false;
1078         break;
1079     case BRRD:
1080     case EXTEND_ADDR_READ:
1081         s->data[0] = s->ear;
1082         s->pos = 0;
1083         s->len = 1;
1084         s->state = STATE_READING_DATA;
1085         break;
1086     case BRWR:
1087     case EXTEND_ADDR_WRITE:
1088         if (s->write_enable) {
1089             s->needed_bytes = 1;
1090             s->pos = 0;
1091             s->len = 0;
1092             s->state = STATE_COLLECTING_DATA;
1093         }
1094         break;
1095     case RNVCR:
1096         s->data[0] = s->nonvolatile_cfg & 0xFF;
1097         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1098         s->pos = 0;
1099         s->len = 2;
1100         s->state = STATE_READING_DATA;
1101         break;
1102     case WNVCR:
1103         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1104             s->needed_bytes = 2;
1105             s->pos = 0;
1106             s->len = 0;
1107             s->state = STATE_COLLECTING_DATA;
1108         }
1109         break;
1110     case RVCR:
1111         s->data[0] = s->volatile_cfg & 0xFF;
1112         s->pos = 0;
1113         s->len = 1;
1114         s->state = STATE_READING_DATA;
1115         break;
1116     case WVCR:
1117         if (s->write_enable) {
1118             s->needed_bytes = 1;
1119             s->pos = 0;
1120             s->len = 0;
1121             s->state = STATE_COLLECTING_DATA;
1122         }
1123         break;
1124     case REVCR:
1125         s->data[0] = s->enh_volatile_cfg & 0xFF;
1126         s->pos = 0;
1127         s->len = 1;
1128         s->state = STATE_READING_DATA;
1129         break;
1130     case WEVCR:
1131         if (s->write_enable) {
1132             s->needed_bytes = 1;
1133             s->pos = 0;
1134             s->len = 0;
1135             s->state = STATE_COLLECTING_DATA;
1136         }
1137         break;
1138     case RESET_ENABLE:
1139         s->reset_enable = true;
1140         break;
1141     case RESET_MEMORY:
1142         if (s->reset_enable) {
1143             reset_memory(s);
1144         }
1145         break;
1146     case RDCR_EQIO:
1147         switch (get_man(s)) {
1148         case MAN_SPANSION:
1149             s->data[0] = (!!s->quad_enable) << 1;
1150             s->pos = 0;
1151             s->len = 1;
1152             s->state = STATE_READING_DATA;
1153             break;
1154         case MAN_MACRONIX:
1155             s->quad_enable = true;
1156             break;
1157         default:
1158             break;
1159         }
1160         break;
1161     case RSTQIO:
1162         s->quad_enable = false;
1163         break;
1164     default:
1165         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1166         break;
1167     }
1168 }
1169 
1170 static int m25p80_cs(SSISlave *ss, bool select)
1171 {
1172     Flash *s = M25P80(ss);
1173 
1174     if (select) {
1175         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1176             complete_collecting_data(s);
1177         }
1178         s->len = 0;
1179         s->pos = 0;
1180         s->state = STATE_IDLE;
1181         flash_sync_dirty(s, -1);
1182         s->data_read_loop = false;
1183     }
1184 
1185     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1186 
1187     return 0;
1188 }
1189 
1190 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1191 {
1192     Flash *s = M25P80(ss);
1193     uint32_t r = 0;
1194 
1195     switch (s->state) {
1196 
1197     case STATE_PAGE_PROGRAM:
1198         DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1199                    s->cur_addr, (uint8_t)tx);
1200         flash_write8(s, s->cur_addr, (uint8_t)tx);
1201         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1202         break;
1203 
1204     case STATE_READ:
1205         r = s->storage[s->cur_addr];
1206         DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1207                    (uint8_t)r);
1208         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1209         break;
1210 
1211     case STATE_COLLECTING_DATA:
1212     case STATE_COLLECTING_VAR_LEN_DATA:
1213 
1214         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1215             qemu_log_mask(LOG_GUEST_ERROR,
1216                           "M25P80: Write overrun internal data buffer. "
1217                           "SPI controller (QEMU emulator or guest driver) "
1218                           "is misbehaving\n");
1219             s->len = s->pos = 0;
1220             s->state = STATE_IDLE;
1221             break;
1222         }
1223 
1224         s->data[s->len] = (uint8_t)tx;
1225         s->len++;
1226 
1227         if (s->len == s->needed_bytes) {
1228             complete_collecting_data(s);
1229         }
1230         break;
1231 
1232     case STATE_READING_DATA:
1233 
1234         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1235             qemu_log_mask(LOG_GUEST_ERROR,
1236                           "M25P80: Read overrun internal data buffer. "
1237                           "SPI controller (QEMU emulator or guest driver) "
1238                           "is misbehaving\n");
1239             s->len = s->pos = 0;
1240             s->state = STATE_IDLE;
1241             break;
1242         }
1243 
1244         r = s->data[s->pos];
1245         s->pos++;
1246         if (s->pos == s->len) {
1247             s->pos = 0;
1248             if (!s->data_read_loop) {
1249                 s->state = STATE_IDLE;
1250             }
1251         }
1252         break;
1253 
1254     default:
1255     case STATE_IDLE:
1256         decode_new_cmd(s, (uint8_t)tx);
1257         break;
1258     }
1259 
1260     return r;
1261 }
1262 
1263 static void m25p80_realize(SSISlave *ss, Error **errp)
1264 {
1265     Flash *s = M25P80(ss);
1266     M25P80Class *mc = M25P80_GET_CLASS(s);
1267     int ret;
1268 
1269     s->pi = mc->pi;
1270 
1271     s->size = s->pi->sector_size * s->pi->n_sectors;
1272     s->dirty_page = -1;
1273 
1274     if (s->blk) {
1275         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1276                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1277         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1278         if (ret < 0) {
1279             return;
1280         }
1281 
1282         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1283         s->storage = blk_blockalign(s->blk, s->size);
1284 
1285         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1286             error_setg(errp, "failed to read the initial flash content");
1287             return;
1288         }
1289     } else {
1290         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1291         s->storage = blk_blockalign(NULL, s->size);
1292         memset(s->storage, 0xFF, s->size);
1293     }
1294 }
1295 
1296 static void m25p80_reset(DeviceState *d)
1297 {
1298     Flash *s = M25P80(d);
1299 
1300     reset_memory(s);
1301 }
1302 
1303 static int m25p80_pre_save(void *opaque)
1304 {
1305     flash_sync_dirty((Flash *)opaque, -1);
1306 
1307     return 0;
1308 }
1309 
1310 static Property m25p80_properties[] = {
1311     /* This is default value for Micron flash */
1312     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1313     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1314     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1315     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1316     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1317     DEFINE_PROP_DRIVE("drive", Flash, blk),
1318     DEFINE_PROP_END_OF_LIST(),
1319 };
1320 
1321 static int m25p80_pre_load(void *opaque)
1322 {
1323     Flash *s = (Flash *)opaque;
1324 
1325     s->data_read_loop = false;
1326     return 0;
1327 }
1328 
1329 static bool m25p80_data_read_loop_needed(void *opaque)
1330 {
1331     Flash *s = (Flash *)opaque;
1332 
1333     return s->data_read_loop;
1334 }
1335 
1336 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1337     .name = "m25p80/data_read_loop",
1338     .version_id = 1,
1339     .minimum_version_id = 1,
1340     .needed = m25p80_data_read_loop_needed,
1341     .fields = (VMStateField[]) {
1342         VMSTATE_BOOL(data_read_loop, Flash),
1343         VMSTATE_END_OF_LIST()
1344     }
1345 };
1346 
1347 static const VMStateDescription vmstate_m25p80 = {
1348     .name = "m25p80",
1349     .version_id = 0,
1350     .minimum_version_id = 0,
1351     .pre_save = m25p80_pre_save,
1352     .pre_load = m25p80_pre_load,
1353     .fields = (VMStateField[]) {
1354         VMSTATE_UINT8(state, Flash),
1355         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1356         VMSTATE_UINT32(len, Flash),
1357         VMSTATE_UINT32(pos, Flash),
1358         VMSTATE_UINT8(needed_bytes, Flash),
1359         VMSTATE_UINT8(cmd_in_progress, Flash),
1360         VMSTATE_UINT32(cur_addr, Flash),
1361         VMSTATE_BOOL(write_enable, Flash),
1362         VMSTATE_BOOL(reset_enable, Flash),
1363         VMSTATE_UINT8(ear, Flash),
1364         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1365         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1366         VMSTATE_UINT32(volatile_cfg, Flash),
1367         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1368         VMSTATE_BOOL(quad_enable, Flash),
1369         VMSTATE_UINT8(spansion_cr1nv, Flash),
1370         VMSTATE_UINT8(spansion_cr2nv, Flash),
1371         VMSTATE_UINT8(spansion_cr3nv, Flash),
1372         VMSTATE_UINT8(spansion_cr4nv, Flash),
1373         VMSTATE_END_OF_LIST()
1374     },
1375     .subsections = (const VMStateDescription * []) {
1376         &vmstate_m25p80_data_read_loop,
1377         NULL
1378     }
1379 };
1380 
1381 static void m25p80_class_init(ObjectClass *klass, void *data)
1382 {
1383     DeviceClass *dc = DEVICE_CLASS(klass);
1384     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1385     M25P80Class *mc = M25P80_CLASS(klass);
1386 
1387     k->realize = m25p80_realize;
1388     k->transfer = m25p80_transfer8;
1389     k->set_cs = m25p80_cs;
1390     k->cs_polarity = SSI_CS_LOW;
1391     dc->vmsd = &vmstate_m25p80;
1392     dc->props = m25p80_properties;
1393     dc->reset = m25p80_reset;
1394     mc->pi = data;
1395 }
1396 
1397 static const TypeInfo m25p80_info = {
1398     .name           = TYPE_M25P80,
1399     .parent         = TYPE_SSI_SLAVE,
1400     .instance_size  = sizeof(Flash),
1401     .class_size     = sizeof(M25P80Class),
1402     .abstract       = true,
1403 };
1404 
1405 static void m25p80_register_types(void)
1406 {
1407     int i;
1408 
1409     type_register_static(&m25p80_info);
1410     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1411         TypeInfo ti = {
1412             .name       = known_devices[i].part_name,
1413             .parent     = TYPE_M25P80,
1414             .class_init = m25p80_class_init,
1415             .class_data = (void *)&known_devices[i],
1416         };
1417         type_register(&ti);
1418     }
1419 }
1420 
1421 type_init(m25p80_register_types)
1422