xref: /openbmc/qemu/hw/block/m25p80.c (revision 08a5d04606292b3cf6f5756bf2a095654a290626)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 #include "m25p80_sfdp.h"
39 
40 /* 16 MiB max in 3 byte address mode */
41 #define MAX_3BYTES_SIZE 0x1000000
42 #define SPI_NOR_MAX_ID_LEN 6
43 
44 /* Fields for FlashPartInfo->flags */
45 enum spi_flash_option_flags {
46     ER_4K                  = BIT(0),
47     ER_32K                 = BIT(1),
48     EEPROM                 = BIT(2),
49     HAS_SR_TB              = BIT(3),
50     HAS_SR_BP3_BIT6        = BIT(4),
51 };
52 
53 typedef struct FlashPartInfo {
54     const char *part_name;
55     /*
56      * This array stores the ID bytes.
57      * The first three bytes are the JEDIC ID.
58      * JEDEC ID zero means "no ID" (mostly older chips).
59      */
60     uint8_t id[SPI_NOR_MAX_ID_LEN];
61     uint8_t id_len;
62     /* there is confusion between manufacturers as to what a sector is. In this
63      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64      * command (opcode 0xd8).
65      */
66     uint32_t sector_size;
67     uint32_t n_sectors;
68     uint32_t page_size;
69     uint16_t flags;
70     /*
71      * Big sized spi nor are often stacked devices, thus sometime
72      * replace chip erase with die erase.
73      * This field inform how many die is in the chip.
74      */
75     uint8_t die_cnt;
76     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* ISSI */
214     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
216     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
218     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
219     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
220     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
221     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
225 
226     /* Macronix */
227     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
228     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
229     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
230     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
231     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
232     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
233     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
234     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
235     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
236             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
237     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
238             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
239     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
240     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
241     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
242     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
243     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
244       .sfdp_read = m25p80_sfdp_mx66l1g45g },
245 
246     /* Micron */
247     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
248     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
249     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
250     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
251     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
252     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
253     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
254     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
255       .sfdp_read = m25p80_sfdp_n25q256a },
256     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
257     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
258     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
259     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
260            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
261       .sfdp_read = m25p80_sfdp_n25q256a },
262    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
263     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
264     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
265     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
266                    ER_4K | ER_32K, 2) },
267     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
268     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
269     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
270     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
271     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
272     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
273 
274     /* Spansion -- single (large) sector size only, at least
275      * for the chips listed here (without boot sectors).
276      */
277     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
278     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
279     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
280     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
281     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
282     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
283     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
284     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
285     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
286     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
287     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
288     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
289     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
290     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
291     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
292     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
293     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
294 
295     /* Spansion --  boot sectors support  */
296     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
297     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
298 
299     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
300     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
301     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
302     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
303     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
304     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
305     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
306     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
307     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
308     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
309 
310     /* ST Microelectronics -- newer production may have feature updates */
311     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
312     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
313     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
314     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
315     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
316     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
317     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
318     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
319     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
320     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
321 
322     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
323     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
324     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
325 
326     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
327     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
328     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
329 
330     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
331     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
332     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
333     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
334 
335     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
336     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
337     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
338     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
339     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
340     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
341     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
342     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
343     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
344     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
345     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
346     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
347     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
348     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
349       .sfdp_read = m25p80_sfdp_w25q256 },
350     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
351       .sfdp_read = m25p80_sfdp_w25q512jv },
352     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
353       .sfdp_read = m25p80_sfdp_w25q01jvq },
354 };
355 
356 typedef enum {
357     NOP = 0,
358     WRSR = 0x1,
359     WRDI = 0x4,
360     RDSR = 0x5,
361     WREN = 0x6,
362     BRRD = 0x16,
363     BRWR = 0x17,
364     JEDEC_READ = 0x9f,
365     BULK_ERASE_60 = 0x60,
366     BULK_ERASE = 0xc7,
367     READ_FSR = 0x70,
368     RDCR = 0x15,
369     RDSFDP = 0x5a,
370 
371     READ = 0x03,
372     READ4 = 0x13,
373     FAST_READ = 0x0b,
374     FAST_READ4 = 0x0c,
375     DOR = 0x3b,
376     DOR4 = 0x3c,
377     QOR = 0x6b,
378     QOR4 = 0x6c,
379     DIOR = 0xbb,
380     DIOR4 = 0xbc,
381     QIOR = 0xeb,
382     QIOR4 = 0xec,
383 
384     PP = 0x02,
385     PP4 = 0x12,
386     PP4_4 = 0x3e,
387     DPP = 0xa2,
388     QPP = 0x32,
389     QPP_4 = 0x34,
390     RDID_90 = 0x90,
391     RDID_AB = 0xab,
392     AAI_WP = 0xad,
393 
394     ERASE_4K = 0x20,
395     ERASE4_4K = 0x21,
396     ERASE_32K = 0x52,
397     ERASE4_32K = 0x5c,
398     ERASE_SECTOR = 0xd8,
399     ERASE4_SECTOR = 0xdc,
400 
401     EN_4BYTE_ADDR = 0xB7,
402     EX_4BYTE_ADDR = 0xE9,
403 
404     EXTEND_ADDR_READ = 0xC8,
405     EXTEND_ADDR_WRITE = 0xC5,
406 
407     RESET_ENABLE = 0x66,
408     RESET_MEMORY = 0x99,
409 
410     /*
411      * Micron: 0x35 - enable QPI
412      * Spansion: 0x35 - read control register
413      */
414     RDCR_EQIO = 0x35,
415     RSTQIO = 0xf5,
416 
417     RNVCR = 0xB5,
418     WNVCR = 0xB1,
419 
420     RVCR = 0x85,
421     WVCR = 0x81,
422 
423     REVCR = 0x65,
424     WEVCR = 0x61,
425 
426     DIE_ERASE = 0xC4,
427 } FlashCMD;
428 
429 typedef enum {
430     STATE_IDLE,
431     STATE_PAGE_PROGRAM,
432     STATE_READ,
433     STATE_COLLECTING_DATA,
434     STATE_COLLECTING_VAR_LEN_DATA,
435     STATE_READING_DATA,
436     STATE_READING_SFDP,
437 } CMDState;
438 
439 typedef enum {
440     MAN_SPANSION,
441     MAN_MACRONIX,
442     MAN_NUMONYX,
443     MAN_WINBOND,
444     MAN_SST,
445     MAN_ISSI,
446     MAN_GENERIC,
447 } Manufacturer;
448 
449 typedef enum {
450     MODE_STD = 0,
451     MODE_DIO = 1,
452     MODE_QIO = 2
453 } SPIMode;
454 
455 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
456 
457 struct Flash {
458     SSIPeripheral parent_obj;
459 
460     BlockBackend *blk;
461 
462     uint8_t *storage;
463     uint32_t size;
464     int page_size;
465 
466     uint8_t state;
467     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
468     uint32_t len;
469     uint32_t pos;
470     bool data_read_loop;
471     uint8_t needed_bytes;
472     uint8_t cmd_in_progress;
473     uint32_t cur_addr;
474     uint32_t nonvolatile_cfg;
475     /* Configuration register for Macronix */
476     uint32_t volatile_cfg;
477     uint32_t enh_volatile_cfg;
478     /* Spansion cfg registers. */
479     uint8_t spansion_cr1nv;
480     uint8_t spansion_cr2nv;
481     uint8_t spansion_cr3nv;
482     uint8_t spansion_cr4nv;
483     uint8_t spansion_cr1v;
484     uint8_t spansion_cr2v;
485     uint8_t spansion_cr3v;
486     uint8_t spansion_cr4v;
487     bool wp_level;
488     bool write_enable;
489     bool four_bytes_address_mode;
490     bool reset_enable;
491     bool quad_enable;
492     bool aai_enable;
493     bool block_protect0;
494     bool block_protect1;
495     bool block_protect2;
496     bool block_protect3;
497     bool top_bottom_bit;
498     bool status_register_write_disabled;
499     uint8_t ear;
500 
501     int64_t dirty_page;
502 
503     const FlashPartInfo *pi;
504 
505 };
506 
507 struct M25P80Class {
508     SSIPeripheralClass parent_class;
509     FlashPartInfo *pi;
510 };
511 
512 #define TYPE_M25P80 "m25p80-generic"
513 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
514 
515 static inline Manufacturer get_man(Flash *s)
516 {
517     switch (s->pi->id[0]) {
518     case 0x20:
519         return MAN_NUMONYX;
520     case 0xEF:
521         return MAN_WINBOND;
522     case 0x01:
523         return MAN_SPANSION;
524     case 0xC2:
525         return MAN_MACRONIX;
526     case 0xBF:
527         return MAN_SST;
528     case 0x9D:
529         return MAN_ISSI;
530     default:
531         return MAN_GENERIC;
532     }
533 }
534 
535 static void blk_sync_complete(void *opaque, int ret)
536 {
537     QEMUIOVector *iov = opaque;
538 
539     qemu_iovec_destroy(iov);
540     g_free(iov);
541 
542     /* do nothing. Masters do not directly interact with the backing store,
543      * only the working copy so no mutexing required.
544      */
545 }
546 
547 static void flash_sync_page(Flash *s, int page)
548 {
549     QEMUIOVector *iov;
550 
551     if (!s->blk || !blk_is_writable(s->blk)) {
552         return;
553     }
554 
555     iov = g_new(QEMUIOVector, 1);
556     qemu_iovec_init(iov, 1);
557     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
558                    s->pi->page_size);
559     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
560                     blk_sync_complete, iov);
561 }
562 
563 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
564 {
565     QEMUIOVector *iov;
566 
567     if (!s->blk || !blk_is_writable(s->blk)) {
568         return;
569     }
570 
571     assert(!(len % BDRV_SECTOR_SIZE));
572     iov = g_new(QEMUIOVector, 1);
573     qemu_iovec_init(iov, 1);
574     qemu_iovec_add(iov, s->storage + off, len);
575     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
576 }
577 
578 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
579 {
580     uint32_t len;
581     uint8_t capa_to_assert = 0;
582 
583     switch (cmd) {
584     case ERASE_4K:
585     case ERASE4_4K:
586         len = 4 * KiB;
587         capa_to_assert = ER_4K;
588         break;
589     case ERASE_32K:
590     case ERASE4_32K:
591         len = 32 * KiB;
592         capa_to_assert = ER_32K;
593         break;
594     case ERASE_SECTOR:
595     case ERASE4_SECTOR:
596         len = s->pi->sector_size;
597         break;
598     case BULK_ERASE:
599         len = s->size;
600         break;
601     case DIE_ERASE:
602         if (s->pi->die_cnt) {
603             len = s->size / s->pi->die_cnt;
604             offset = offset & (~(len - 1));
605         } else {
606             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
607                           " by device\n");
608             return;
609         }
610         break;
611     default:
612         abort();
613     }
614 
615     trace_m25p80_flash_erase(s, offset, len);
616 
617     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
618         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
619                       " device\n", len);
620     }
621 
622     if (!s->write_enable) {
623         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
624         return;
625     }
626     memset(s->storage + offset, 0xff, len);
627     flash_sync_area(s, offset, len);
628 }
629 
630 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
631 {
632     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
633         flash_sync_page(s, s->dirty_page);
634         s->dirty_page = newpage;
635     }
636 }
637 
638 static inline
639 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
640 {
641     uint32_t page = addr / s->pi->page_size;
642     uint8_t prev = s->storage[s->cur_addr];
643     uint32_t block_protect_value = (s->block_protect3 << 3) |
644                                    (s->block_protect2 << 2) |
645                                    (s->block_protect1 << 1) |
646                                    (s->block_protect0 << 0);
647 
648     if (!s->write_enable) {
649         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
650         return;
651     }
652 
653     if (block_protect_value > 0) {
654         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
655         uint32_t sector = addr / s->pi->sector_size;
656 
657         /* top_bottom_bit == 0 means TOP */
658         if (!s->top_bottom_bit) {
659             if (s->pi->n_sectors <= sector + num_protected_sectors) {
660                 qemu_log_mask(LOG_GUEST_ERROR,
661                               "M25P80: write with write protect!\n");
662                 return;
663             }
664         } else {
665             if (sector < num_protected_sectors) {
666                 qemu_log_mask(LOG_GUEST_ERROR,
667                               "M25P80: write with write protect!\n");
668                 return;
669             }
670         }
671     }
672 
673     if ((prev ^ data) & data) {
674         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
675     }
676 
677     if (s->pi->flags & EEPROM) {
678         s->storage[s->cur_addr] = data;
679     } else {
680         s->storage[s->cur_addr] &= data;
681     }
682 
683     flash_sync_dirty(s, page);
684     s->dirty_page = page;
685 }
686 
687 static inline int get_addr_length(Flash *s)
688 {
689    /* check if eeprom is in use */
690     if (s->pi->flags == EEPROM) {
691         return 2;
692     }
693 
694    switch (s->cmd_in_progress) {
695    case RDSFDP:
696        return 3;
697    case PP4:
698    case PP4_4:
699    case QPP_4:
700    case READ4:
701    case QIOR4:
702    case ERASE4_4K:
703    case ERASE4_32K:
704    case ERASE4_SECTOR:
705    case FAST_READ4:
706    case DOR4:
707    case QOR4:
708    case DIOR4:
709        return 4;
710    default:
711        return s->four_bytes_address_mode ? 4 : 3;
712    }
713 }
714 
715 static void complete_collecting_data(Flash *s)
716 {
717     int i, n;
718 
719     n = get_addr_length(s);
720     s->cur_addr = (n == 3 ? s->ear : 0);
721     for (i = 0; i < n; ++i) {
722         s->cur_addr <<= 8;
723         s->cur_addr |= s->data[i];
724     }
725 
726     s->cur_addr &= s->size - 1;
727 
728     s->state = STATE_IDLE;
729 
730     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
731                                      s->cur_addr);
732 
733     switch (s->cmd_in_progress) {
734     case DPP:
735     case QPP:
736     case QPP_4:
737     case PP:
738     case PP4:
739     case PP4_4:
740         s->state = STATE_PAGE_PROGRAM;
741         break;
742     case AAI_WP:
743         /* AAI programming starts from the even address */
744         s->cur_addr &= ~BIT(0);
745         s->state = STATE_PAGE_PROGRAM;
746         break;
747     case READ:
748     case READ4:
749     case FAST_READ:
750     case FAST_READ4:
751     case DOR:
752     case DOR4:
753     case QOR:
754     case QOR4:
755     case DIOR:
756     case DIOR4:
757     case QIOR:
758     case QIOR4:
759         s->state = STATE_READ;
760         break;
761     case ERASE_4K:
762     case ERASE4_4K:
763     case ERASE_32K:
764     case ERASE4_32K:
765     case ERASE_SECTOR:
766     case ERASE4_SECTOR:
767     case DIE_ERASE:
768         flash_erase(s, s->cur_addr, s->cmd_in_progress);
769         break;
770     case WRSR:
771         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
772         s->block_protect0 = extract32(s->data[0], 2, 1);
773         s->block_protect1 = extract32(s->data[0], 3, 1);
774         s->block_protect2 = extract32(s->data[0], 4, 1);
775         if (s->pi->flags & HAS_SR_TB) {
776             s->top_bottom_bit = extract32(s->data[0], 5, 1);
777         }
778         if (s->pi->flags & HAS_SR_BP3_BIT6) {
779             s->block_protect3 = extract32(s->data[0], 6, 1);
780         }
781 
782         switch (get_man(s)) {
783         case MAN_SPANSION:
784             s->quad_enable = !!(s->data[1] & 0x02);
785             break;
786         case MAN_ISSI:
787             s->quad_enable = extract32(s->data[0], 6, 1);
788             break;
789         case MAN_MACRONIX:
790             s->quad_enable = extract32(s->data[0], 6, 1);
791             if (s->len > 1) {
792                 s->volatile_cfg = s->data[1];
793                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
794             }
795             break;
796         default:
797             break;
798         }
799         if (s->write_enable) {
800             s->write_enable = false;
801         }
802         break;
803     case BRWR:
804     case EXTEND_ADDR_WRITE:
805         s->ear = s->data[0];
806         break;
807     case WNVCR:
808         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
809         break;
810     case WVCR:
811         s->volatile_cfg = s->data[0];
812         break;
813     case WEVCR:
814         s->enh_volatile_cfg = s->data[0];
815         break;
816     case RDID_90:
817     case RDID_AB:
818         if (get_man(s) == MAN_SST) {
819             if (s->cur_addr <= 1) {
820                 if (s->cur_addr) {
821                     s->data[0] = s->pi->id[2];
822                     s->data[1] = s->pi->id[0];
823                 } else {
824                     s->data[0] = s->pi->id[0];
825                     s->data[1] = s->pi->id[2];
826                 }
827                 s->pos = 0;
828                 s->len = 2;
829                 s->data_read_loop = true;
830                 s->state = STATE_READING_DATA;
831             } else {
832                 qemu_log_mask(LOG_GUEST_ERROR,
833                               "M25P80: Invalid read id address\n");
834             }
835         } else {
836             qemu_log_mask(LOG_GUEST_ERROR,
837                           "M25P80: Read id (command 0x90/0xAB) is not supported"
838                           " by device\n");
839         }
840         break;
841 
842     case RDSFDP:
843         s->state = STATE_READING_SFDP;
844         break;
845 
846     default:
847         break;
848     }
849 }
850 
851 static void reset_memory(Flash *s)
852 {
853     s->cmd_in_progress = NOP;
854     s->cur_addr = 0;
855     s->ear = 0;
856     s->four_bytes_address_mode = false;
857     s->len = 0;
858     s->needed_bytes = 0;
859     s->pos = 0;
860     s->state = STATE_IDLE;
861     s->write_enable = false;
862     s->reset_enable = false;
863     s->quad_enable = false;
864     s->aai_enable = false;
865 
866     switch (get_man(s)) {
867     case MAN_NUMONYX:
868         s->volatile_cfg = 0;
869         s->volatile_cfg |= VCFG_DUMMY;
870         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
871         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
872                                 == NVCFG_XIP_MODE_DISABLED) {
873             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
874         }
875         s->volatile_cfg |= deposit32(s->volatile_cfg,
876                             VCFG_DUMMY_CLK_POS,
877                             CFG_DUMMY_CLK_LEN,
878                             extract32(s->nonvolatile_cfg,
879                                         NVCFG_DUMMY_CLK_POS,
880                                         CFG_DUMMY_CLK_LEN)
881                             );
882 
883         s->enh_volatile_cfg = 0;
884         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
885         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
886         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
887         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
888             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
889         }
890         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
891             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
892         }
893         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
894             s->four_bytes_address_mode = true;
895         }
896         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
897             s->ear = s->size / MAX_3BYTES_SIZE - 1;
898         }
899         break;
900     case MAN_MACRONIX:
901         s->volatile_cfg = 0x7;
902         break;
903     case MAN_SPANSION:
904         s->spansion_cr1v = s->spansion_cr1nv;
905         s->spansion_cr2v = s->spansion_cr2nv;
906         s->spansion_cr3v = s->spansion_cr3nv;
907         s->spansion_cr4v = s->spansion_cr4nv;
908         s->quad_enable = extract32(s->spansion_cr1v,
909                                    SPANSION_QUAD_CFG_POS,
910                                    SPANSION_QUAD_CFG_LEN
911                                    );
912         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
913                 SPANSION_ADDR_LEN_POS,
914                 SPANSION_ADDR_LEN_LEN
915                 );
916         break;
917     default:
918         break;
919     }
920 
921     trace_m25p80_reset_done(s);
922 }
923 
924 static uint8_t numonyx_mode(Flash *s)
925 {
926     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
927         return MODE_QIO;
928     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
929         return MODE_DIO;
930     } else {
931         return MODE_STD;
932     }
933 }
934 
935 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
936 {
937     uint8_t num_dummies;
938     uint8_t mode;
939     assert(get_man(s) == MAN_NUMONYX);
940 
941     mode = numonyx_mode(s);
942     num_dummies = extract32(s->volatile_cfg, 4, 4);
943 
944     if (num_dummies == 0x0 || num_dummies == 0xf) {
945         switch (s->cmd_in_progress) {
946         case QIOR:
947         case QIOR4:
948             num_dummies = 10;
949             break;
950         default:
951             num_dummies = (mode == MODE_QIO) ? 10 : 8;
952             break;
953         }
954     }
955 
956     return num_dummies;
957 }
958 
959 static void decode_fast_read_cmd(Flash *s)
960 {
961     s->needed_bytes = get_addr_length(s);
962     switch (get_man(s)) {
963     /* Dummy cycles - modeled with bytes writes instead of bits */
964     case MAN_SST:
965         s->needed_bytes += 1;
966         break;
967     case MAN_WINBOND:
968         s->needed_bytes += 8;
969         break;
970     case MAN_NUMONYX:
971         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
972         break;
973     case MAN_MACRONIX:
974         if (extract32(s->volatile_cfg, 6, 2) == 1) {
975             s->needed_bytes += 6;
976         } else {
977             s->needed_bytes += 8;
978         }
979         break;
980     case MAN_SPANSION:
981         s->needed_bytes += extract32(s->spansion_cr2v,
982                                     SPANSION_DUMMY_CLK_POS,
983                                     SPANSION_DUMMY_CLK_LEN
984                                     );
985         break;
986     case MAN_ISSI:
987         /*
988          * The Fast Read instruction code is followed by address bytes and
989          * dummy cycles, transmitted via the SI line.
990          *
991          * The number of dummy cycles is configurable but this is currently
992          * unmodeled, hence the default value 8 is used.
993          *
994          * QPI (Quad Peripheral Interface) mode has different default value
995          * of dummy cycles, but this is unsupported at the time being.
996          */
997         s->needed_bytes += 1;
998         break;
999     default:
1000         break;
1001     }
1002     s->pos = 0;
1003     s->len = 0;
1004     s->state = STATE_COLLECTING_DATA;
1005 }
1006 
1007 static void decode_dio_read_cmd(Flash *s)
1008 {
1009     s->needed_bytes = get_addr_length(s);
1010     /* Dummy cycles modeled with bytes writes instead of bits */
1011     switch (get_man(s)) {
1012     case MAN_WINBOND:
1013         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1014         break;
1015     case MAN_SPANSION:
1016         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1017         s->needed_bytes += extract32(s->spansion_cr2v,
1018                                     SPANSION_DUMMY_CLK_POS,
1019                                     SPANSION_DUMMY_CLK_LEN
1020                                     );
1021         break;
1022     case MAN_NUMONYX:
1023         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1024         break;
1025     case MAN_MACRONIX:
1026         switch (extract32(s->volatile_cfg, 6, 2)) {
1027         case 1:
1028             s->needed_bytes += 6;
1029             break;
1030         case 2:
1031             s->needed_bytes += 8;
1032             break;
1033         default:
1034             s->needed_bytes += 4;
1035             break;
1036         }
1037         break;
1038     case MAN_ISSI:
1039         /*
1040          * The Fast Read Dual I/O instruction code is followed by address bytes
1041          * and dummy cycles, transmitted via the IO1 and IO0 line.
1042          *
1043          * The number of dummy cycles is configurable but this is currently
1044          * unmodeled, hence the default value 4 is used.
1045          */
1046         s->needed_bytes += 1;
1047         break;
1048     default:
1049         break;
1050     }
1051     s->pos = 0;
1052     s->len = 0;
1053     s->state = STATE_COLLECTING_DATA;
1054 }
1055 
1056 static void decode_qio_read_cmd(Flash *s)
1057 {
1058     s->needed_bytes = get_addr_length(s);
1059     /* Dummy cycles modeled with bytes writes instead of bits */
1060     switch (get_man(s)) {
1061     case MAN_WINBOND:
1062         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1063         s->needed_bytes += 4;
1064         break;
1065     case MAN_SPANSION:
1066         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1067         s->needed_bytes += extract32(s->spansion_cr2v,
1068                                     SPANSION_DUMMY_CLK_POS,
1069                                     SPANSION_DUMMY_CLK_LEN
1070                                     );
1071         break;
1072     case MAN_NUMONYX:
1073         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1074         break;
1075     case MAN_MACRONIX:
1076         switch (extract32(s->volatile_cfg, 6, 2)) {
1077         case 1:
1078             s->needed_bytes += 4;
1079             break;
1080         case 2:
1081             s->needed_bytes += 8;
1082             break;
1083         default:
1084             s->needed_bytes += 6;
1085             break;
1086         }
1087         break;
1088     case MAN_ISSI:
1089         /*
1090          * The Fast Read Quad I/O instruction code is followed by address bytes
1091          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1092          *
1093          * The number of dummy cycles is configurable but this is currently
1094          * unmodeled, hence the default value 6 is used.
1095          *
1096          * QPI (Quad Peripheral Interface) mode has different default value
1097          * of dummy cycles, but this is unsupported at the time being.
1098          */
1099         s->needed_bytes += 3;
1100         break;
1101     default:
1102         break;
1103     }
1104     s->pos = 0;
1105     s->len = 0;
1106     s->state = STATE_COLLECTING_DATA;
1107 }
1108 
1109 static bool is_valid_aai_cmd(uint32_t cmd)
1110 {
1111     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1112 }
1113 
1114 static void decode_new_cmd(Flash *s, uint32_t value)
1115 {
1116     int i;
1117 
1118     s->cmd_in_progress = value;
1119     trace_m25p80_command_decoded(s, value);
1120 
1121     if (value != RESET_MEMORY) {
1122         s->reset_enable = false;
1123     }
1124 
1125     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1126         qemu_log_mask(LOG_GUEST_ERROR,
1127                       "M25P80: Invalid cmd within AAI programming sequence");
1128     }
1129 
1130     switch (value) {
1131 
1132     case ERASE_4K:
1133     case ERASE4_4K:
1134     case ERASE_32K:
1135     case ERASE4_32K:
1136     case ERASE_SECTOR:
1137     case ERASE4_SECTOR:
1138     case PP:
1139     case PP4:
1140     case DIE_ERASE:
1141     case RDID_90:
1142     case RDID_AB:
1143         s->needed_bytes = get_addr_length(s);
1144         s->pos = 0;
1145         s->len = 0;
1146         s->state = STATE_COLLECTING_DATA;
1147         break;
1148     case READ:
1149     case READ4:
1150         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1151             s->needed_bytes = get_addr_length(s);
1152             s->pos = 0;
1153             s->len = 0;
1154             s->state = STATE_COLLECTING_DATA;
1155         } else {
1156             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1157                           "DIO or QIO mode\n", s->cmd_in_progress);
1158         }
1159         break;
1160     case DPP:
1161         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1162             s->needed_bytes = get_addr_length(s);
1163             s->pos = 0;
1164             s->len = 0;
1165             s->state = STATE_COLLECTING_DATA;
1166         } else {
1167             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1168                           "QIO mode\n", s->cmd_in_progress);
1169         }
1170         break;
1171     case QPP:
1172     case QPP_4:
1173     case PP4_4:
1174         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1175             s->needed_bytes = get_addr_length(s);
1176             s->pos = 0;
1177             s->len = 0;
1178             s->state = STATE_COLLECTING_DATA;
1179         } else {
1180             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1181                           "DIO mode\n", s->cmd_in_progress);
1182         }
1183         break;
1184 
1185     case FAST_READ:
1186     case FAST_READ4:
1187         decode_fast_read_cmd(s);
1188         break;
1189     case DOR:
1190     case DOR4:
1191         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1192             decode_fast_read_cmd(s);
1193         } else {
1194             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1195                           "QIO mode\n", s->cmd_in_progress);
1196         }
1197         break;
1198     case QOR:
1199     case QOR4:
1200         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1201             decode_fast_read_cmd(s);
1202         } else {
1203             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1204                           "DIO mode\n", s->cmd_in_progress);
1205         }
1206         break;
1207 
1208     case DIOR:
1209     case DIOR4:
1210         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1211             decode_dio_read_cmd(s);
1212         } else {
1213             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1214                           "QIO mode\n", s->cmd_in_progress);
1215         }
1216         break;
1217 
1218     case QIOR:
1219     case QIOR4:
1220         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1221             decode_qio_read_cmd(s);
1222         } else {
1223             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1224                           "DIO mode\n", s->cmd_in_progress);
1225         }
1226         break;
1227 
1228     case WRSR:
1229         /*
1230          * If WP# is low and status_register_write_disabled is high,
1231          * status register writes are disabled.
1232          * This is also called "hardware protected mode" (HPM). All other
1233          * combinations of the two states are called "software protected mode"
1234          * (SPM), and status register writes are permitted.
1235          */
1236         if ((s->wp_level == 0 && s->status_register_write_disabled)
1237             || !s->write_enable) {
1238             qemu_log_mask(LOG_GUEST_ERROR,
1239                           "M25P80: Status register write is disabled!\n");
1240             break;
1241         }
1242 
1243         switch (get_man(s)) {
1244         case MAN_SPANSION:
1245             s->needed_bytes = 2;
1246             s->state = STATE_COLLECTING_DATA;
1247             break;
1248         case MAN_MACRONIX:
1249             s->needed_bytes = 2;
1250             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1251             break;
1252         default:
1253             s->needed_bytes = 1;
1254             s->state = STATE_COLLECTING_DATA;
1255         }
1256         s->pos = 0;
1257         break;
1258 
1259     case WRDI:
1260         s->write_enable = false;
1261         if (get_man(s) == MAN_SST) {
1262             s->aai_enable = false;
1263         }
1264         break;
1265     case WREN:
1266         s->write_enable = true;
1267         break;
1268 
1269     case RDSR:
1270         s->data[0] = (!!s->write_enable) << 1;
1271         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1272         s->data[0] |= (!!s->block_protect0) << 2;
1273         s->data[0] |= (!!s->block_protect1) << 3;
1274         s->data[0] |= (!!s->block_protect2) << 4;
1275         if (s->pi->flags & HAS_SR_TB) {
1276             s->data[0] |= (!!s->top_bottom_bit) << 5;
1277         }
1278         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1279             s->data[0] |= (!!s->block_protect3) << 6;
1280         }
1281 
1282         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1283             s->data[0] |= (!!s->quad_enable) << 6;
1284         }
1285         if (get_man(s) == MAN_SST) {
1286             s->data[0] |= (!!s->aai_enable) << 6;
1287         }
1288 
1289         s->pos = 0;
1290         s->len = 1;
1291         s->data_read_loop = true;
1292         s->state = STATE_READING_DATA;
1293         break;
1294 
1295     case READ_FSR:
1296         s->data[0] = FSR_FLASH_READY;
1297         if (s->four_bytes_address_mode) {
1298             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1299         }
1300         s->pos = 0;
1301         s->len = 1;
1302         s->data_read_loop = true;
1303         s->state = STATE_READING_DATA;
1304         break;
1305 
1306     case JEDEC_READ:
1307         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1308             trace_m25p80_populated_jedec(s);
1309             for (i = 0; i < s->pi->id_len; i++) {
1310                 s->data[i] = s->pi->id[i];
1311             }
1312             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1313                 s->data[i] = 0;
1314             }
1315 
1316             s->len = SPI_NOR_MAX_ID_LEN;
1317             s->pos = 0;
1318             s->state = STATE_READING_DATA;
1319         } else {
1320             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1321                           "in DIO or QIO mode\n");
1322         }
1323         break;
1324 
1325     case RDCR:
1326         s->data[0] = s->volatile_cfg & 0xFF;
1327         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1328         s->pos = 0;
1329         s->len = 1;
1330         s->state = STATE_READING_DATA;
1331         break;
1332 
1333     case BULK_ERASE_60:
1334     case BULK_ERASE:
1335         if (s->write_enable) {
1336             trace_m25p80_chip_erase(s);
1337             flash_erase(s, 0, BULK_ERASE);
1338         } else {
1339             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1340                           "protect!\n");
1341         }
1342         break;
1343     case NOP:
1344         break;
1345     case EN_4BYTE_ADDR:
1346         s->four_bytes_address_mode = true;
1347         break;
1348     case EX_4BYTE_ADDR:
1349         s->four_bytes_address_mode = false;
1350         break;
1351     case BRRD:
1352     case EXTEND_ADDR_READ:
1353         s->data[0] = s->ear;
1354         s->pos = 0;
1355         s->len = 1;
1356         s->state = STATE_READING_DATA;
1357         break;
1358     case BRWR:
1359     case EXTEND_ADDR_WRITE:
1360         if (s->write_enable) {
1361             s->needed_bytes = 1;
1362             s->pos = 0;
1363             s->len = 0;
1364             s->state = STATE_COLLECTING_DATA;
1365         }
1366         break;
1367     case RNVCR:
1368         s->data[0] = s->nonvolatile_cfg & 0xFF;
1369         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1370         s->pos = 0;
1371         s->len = 2;
1372         s->state = STATE_READING_DATA;
1373         break;
1374     case WNVCR:
1375         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1376             s->needed_bytes = 2;
1377             s->pos = 0;
1378             s->len = 0;
1379             s->state = STATE_COLLECTING_DATA;
1380         }
1381         break;
1382     case RVCR:
1383         s->data[0] = s->volatile_cfg & 0xFF;
1384         s->pos = 0;
1385         s->len = 1;
1386         s->state = STATE_READING_DATA;
1387         break;
1388     case WVCR:
1389         if (s->write_enable) {
1390             s->needed_bytes = 1;
1391             s->pos = 0;
1392             s->len = 0;
1393             s->state = STATE_COLLECTING_DATA;
1394         }
1395         break;
1396     case REVCR:
1397         s->data[0] = s->enh_volatile_cfg & 0xFF;
1398         s->pos = 0;
1399         s->len = 1;
1400         s->state = STATE_READING_DATA;
1401         break;
1402     case WEVCR:
1403         if (s->write_enable) {
1404             s->needed_bytes = 1;
1405             s->pos = 0;
1406             s->len = 0;
1407             s->state = STATE_COLLECTING_DATA;
1408         }
1409         break;
1410     case RESET_ENABLE:
1411         s->reset_enable = true;
1412         break;
1413     case RESET_MEMORY:
1414         if (s->reset_enable) {
1415             reset_memory(s);
1416         }
1417         break;
1418     case RDCR_EQIO:
1419         switch (get_man(s)) {
1420         case MAN_SPANSION:
1421             s->data[0] = (!!s->quad_enable) << 1;
1422             s->pos = 0;
1423             s->len = 1;
1424             s->state = STATE_READING_DATA;
1425             break;
1426         case MAN_MACRONIX:
1427             s->quad_enable = true;
1428             break;
1429         default:
1430             break;
1431         }
1432         break;
1433     case RSTQIO:
1434         s->quad_enable = false;
1435         break;
1436     case AAI_WP:
1437         if (get_man(s) == MAN_SST) {
1438             if (s->write_enable) {
1439                 if (s->aai_enable) {
1440                     s->state = STATE_PAGE_PROGRAM;
1441                 } else {
1442                     s->aai_enable = true;
1443                     s->needed_bytes = get_addr_length(s);
1444                     s->state = STATE_COLLECTING_DATA;
1445                 }
1446             } else {
1447                 qemu_log_mask(LOG_GUEST_ERROR,
1448                               "M25P80: AAI_WP with write protect\n");
1449             }
1450         } else {
1451             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1452         }
1453         break;
1454     case RDSFDP:
1455         if (s->pi->sfdp_read) {
1456             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1457             s->pos = 0;
1458             s->len = 0;
1459             s->state = STATE_COLLECTING_DATA;
1460             break;
1461         }
1462         /* Fallthrough */
1463 
1464     default:
1465         s->pos = 0;
1466         s->len = 1;
1467         s->state = STATE_READING_DATA;
1468         s->data_read_loop = true;
1469         s->data[0] = 0;
1470         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1471         break;
1472     }
1473 }
1474 
1475 static int m25p80_cs(SSIPeripheral *ss, bool select)
1476 {
1477     Flash *s = M25P80(ss);
1478 
1479     if (select) {
1480         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1481             complete_collecting_data(s);
1482         }
1483         s->len = 0;
1484         s->pos = 0;
1485         s->state = STATE_IDLE;
1486         flash_sync_dirty(s, -1);
1487         s->data_read_loop = false;
1488     }
1489 
1490     trace_m25p80_select(s, select ? "de" : "");
1491 
1492     return 0;
1493 }
1494 
1495 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1496 {
1497     Flash *s = M25P80(ss);
1498     uint32_t r = 0;
1499 
1500     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1501                           s->cur_addr, (uint8_t)tx);
1502 
1503     switch (s->state) {
1504 
1505     case STATE_PAGE_PROGRAM:
1506         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1507         flash_write8(s, s->cur_addr, (uint8_t)tx);
1508         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1509 
1510         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1511             /*
1512              * There is no wrap mode during AAI programming once the highest
1513              * unprotected memory address is reached. The Write-Enable-Latch
1514              * bit is automatically reset, and AAI programming mode aborts.
1515              */
1516             s->write_enable = false;
1517             s->aai_enable = false;
1518         }
1519 
1520         break;
1521 
1522     case STATE_READ:
1523         r = s->storage[s->cur_addr];
1524         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1525         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1526         break;
1527 
1528     case STATE_COLLECTING_DATA:
1529     case STATE_COLLECTING_VAR_LEN_DATA:
1530 
1531         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1532             qemu_log_mask(LOG_GUEST_ERROR,
1533                           "M25P80: Write overrun internal data buffer. "
1534                           "SPI controller (QEMU emulator or guest driver) "
1535                           "is misbehaving\n");
1536             s->len = s->pos = 0;
1537             s->state = STATE_IDLE;
1538             break;
1539         }
1540 
1541         s->data[s->len] = (uint8_t)tx;
1542         s->len++;
1543 
1544         if (s->len == s->needed_bytes) {
1545             complete_collecting_data(s);
1546         }
1547         break;
1548 
1549     case STATE_READING_DATA:
1550 
1551         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1552             qemu_log_mask(LOG_GUEST_ERROR,
1553                           "M25P80: Read overrun internal data buffer. "
1554                           "SPI controller (QEMU emulator or guest driver) "
1555                           "is misbehaving\n");
1556             s->len = s->pos = 0;
1557             s->state = STATE_IDLE;
1558             break;
1559         }
1560 
1561         r = s->data[s->pos];
1562         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1563         s->pos++;
1564         if (s->pos == s->len) {
1565             s->pos = 0;
1566             if (!s->data_read_loop) {
1567                 s->state = STATE_IDLE;
1568             }
1569         }
1570         break;
1571     case STATE_READING_SFDP:
1572         assert(s->pi->sfdp_read);
1573         r = s->pi->sfdp_read(s->cur_addr);
1574         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1575         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1576         break;
1577 
1578     default:
1579     case STATE_IDLE:
1580         decode_new_cmd(s, (uint8_t)tx);
1581         break;
1582     }
1583 
1584     return r;
1585 }
1586 
1587 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1588 {
1589     Flash *s = M25P80(opaque);
1590     /* WP# is just a single pin. */
1591     assert(n == 0);
1592     s->wp_level = !!level;
1593 }
1594 
1595 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1596 {
1597     Flash *s = M25P80(ss);
1598     M25P80Class *mc = M25P80_GET_CLASS(s);
1599     int ret;
1600 
1601     s->pi = mc->pi;
1602 
1603     s->size = s->pi->sector_size * s->pi->n_sectors;
1604     s->dirty_page = -1;
1605 
1606     if (s->blk) {
1607         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1608                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1609         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1610         if (ret < 0) {
1611             return;
1612         }
1613 
1614         trace_m25p80_binding(s);
1615         s->storage = blk_blockalign(s->blk, s->size);
1616 
1617         if (blk_pread(s->blk, 0, s->size, s->storage, 0) < 0) {
1618             error_setg(errp, "failed to read the initial flash content");
1619             return;
1620         }
1621     } else {
1622         trace_m25p80_binding_no_bdrv(s);
1623         s->storage = blk_blockalign(NULL, s->size);
1624         memset(s->storage, 0xFF, s->size);
1625     }
1626 
1627     qdev_init_gpio_in_named(DEVICE(s),
1628                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1629 }
1630 
1631 static void m25p80_reset(DeviceState *d)
1632 {
1633     Flash *s = M25P80(d);
1634 
1635     s->wp_level = true;
1636     s->status_register_write_disabled = false;
1637     s->block_protect0 = false;
1638     s->block_protect1 = false;
1639     s->block_protect2 = false;
1640     s->block_protect3 = false;
1641     s->top_bottom_bit = false;
1642 
1643     reset_memory(s);
1644 }
1645 
1646 static int m25p80_pre_save(void *opaque)
1647 {
1648     flash_sync_dirty((Flash *)opaque, -1);
1649 
1650     return 0;
1651 }
1652 
1653 static Property m25p80_properties[] = {
1654     /* This is default value for Micron flash */
1655     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1656     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1657     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1658     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1659     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1660     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1661     DEFINE_PROP_DRIVE("drive", Flash, blk),
1662     DEFINE_PROP_END_OF_LIST(),
1663 };
1664 
1665 static int m25p80_pre_load(void *opaque)
1666 {
1667     Flash *s = (Flash *)opaque;
1668 
1669     s->data_read_loop = false;
1670     return 0;
1671 }
1672 
1673 static bool m25p80_data_read_loop_needed(void *opaque)
1674 {
1675     Flash *s = (Flash *)opaque;
1676 
1677     return s->data_read_loop;
1678 }
1679 
1680 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1681     .name = "m25p80/data_read_loop",
1682     .version_id = 1,
1683     .minimum_version_id = 1,
1684     .needed = m25p80_data_read_loop_needed,
1685     .fields = (VMStateField[]) {
1686         VMSTATE_BOOL(data_read_loop, Flash),
1687         VMSTATE_END_OF_LIST()
1688     }
1689 };
1690 
1691 static bool m25p80_aai_enable_needed(void *opaque)
1692 {
1693     Flash *s = (Flash *)opaque;
1694 
1695     return s->aai_enable;
1696 }
1697 
1698 static const VMStateDescription vmstate_m25p80_aai_enable = {
1699     .name = "m25p80/aai_enable",
1700     .version_id = 1,
1701     .minimum_version_id = 1,
1702     .needed = m25p80_aai_enable_needed,
1703     .fields = (VMStateField[]) {
1704         VMSTATE_BOOL(aai_enable, Flash),
1705         VMSTATE_END_OF_LIST()
1706     }
1707 };
1708 
1709 static bool m25p80_wp_level_srwd_needed(void *opaque)
1710 {
1711     Flash *s = (Flash *)opaque;
1712 
1713     return !s->wp_level || s->status_register_write_disabled;
1714 }
1715 
1716 static const VMStateDescription vmstate_m25p80_write_protect = {
1717     .name = "m25p80/write_protect",
1718     .version_id = 1,
1719     .minimum_version_id = 1,
1720     .needed = m25p80_wp_level_srwd_needed,
1721     .fields = (VMStateField[]) {
1722         VMSTATE_BOOL(wp_level, Flash),
1723         VMSTATE_BOOL(status_register_write_disabled, Flash),
1724         VMSTATE_END_OF_LIST()
1725     }
1726 };
1727 
1728 static bool m25p80_block_protect_needed(void *opaque)
1729 {
1730     Flash *s = (Flash *)opaque;
1731 
1732     return s->block_protect0 ||
1733            s->block_protect1 ||
1734            s->block_protect2 ||
1735            s->block_protect3 ||
1736            s->top_bottom_bit;
1737 }
1738 
1739 static const VMStateDescription vmstate_m25p80_block_protect = {
1740     .name = "m25p80/block_protect",
1741     .version_id = 1,
1742     .minimum_version_id = 1,
1743     .needed = m25p80_block_protect_needed,
1744     .fields = (VMStateField[]) {
1745         VMSTATE_BOOL(block_protect0, Flash),
1746         VMSTATE_BOOL(block_protect1, Flash),
1747         VMSTATE_BOOL(block_protect2, Flash),
1748         VMSTATE_BOOL(block_protect3, Flash),
1749         VMSTATE_BOOL(top_bottom_bit, Flash),
1750         VMSTATE_END_OF_LIST()
1751     }
1752 };
1753 
1754 static const VMStateDescription vmstate_m25p80 = {
1755     .name = "m25p80",
1756     .version_id = 0,
1757     .minimum_version_id = 0,
1758     .pre_save = m25p80_pre_save,
1759     .pre_load = m25p80_pre_load,
1760     .fields = (VMStateField[]) {
1761         VMSTATE_UINT8(state, Flash),
1762         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1763         VMSTATE_UINT32(len, Flash),
1764         VMSTATE_UINT32(pos, Flash),
1765         VMSTATE_UINT8(needed_bytes, Flash),
1766         VMSTATE_UINT8(cmd_in_progress, Flash),
1767         VMSTATE_UINT32(cur_addr, Flash),
1768         VMSTATE_BOOL(write_enable, Flash),
1769         VMSTATE_BOOL(reset_enable, Flash),
1770         VMSTATE_UINT8(ear, Flash),
1771         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1772         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1773         VMSTATE_UINT32(volatile_cfg, Flash),
1774         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1775         VMSTATE_BOOL(quad_enable, Flash),
1776         VMSTATE_UINT8(spansion_cr1nv, Flash),
1777         VMSTATE_UINT8(spansion_cr2nv, Flash),
1778         VMSTATE_UINT8(spansion_cr3nv, Flash),
1779         VMSTATE_UINT8(spansion_cr4nv, Flash),
1780         VMSTATE_END_OF_LIST()
1781     },
1782     .subsections = (const VMStateDescription * []) {
1783         &vmstate_m25p80_data_read_loop,
1784         &vmstate_m25p80_aai_enable,
1785         &vmstate_m25p80_write_protect,
1786         &vmstate_m25p80_block_protect,
1787         NULL
1788     }
1789 };
1790 
1791 static void m25p80_class_init(ObjectClass *klass, void *data)
1792 {
1793     DeviceClass *dc = DEVICE_CLASS(klass);
1794     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1795     M25P80Class *mc = M25P80_CLASS(klass);
1796 
1797     k->realize = m25p80_realize;
1798     k->transfer = m25p80_transfer8;
1799     k->set_cs = m25p80_cs;
1800     k->cs_polarity = SSI_CS_LOW;
1801     dc->vmsd = &vmstate_m25p80;
1802     device_class_set_props(dc, m25p80_properties);
1803     dc->reset = m25p80_reset;
1804     mc->pi = data;
1805 }
1806 
1807 static const TypeInfo m25p80_info = {
1808     .name           = TYPE_M25P80,
1809     .parent         = TYPE_SSI_PERIPHERAL,
1810     .instance_size  = sizeof(Flash),
1811     .class_size     = sizeof(M25P80Class),
1812     .abstract       = true,
1813 };
1814 
1815 static void m25p80_register_types(void)
1816 {
1817     int i;
1818 
1819     type_register_static(&m25p80_info);
1820     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1821         TypeInfo ti = {
1822             .name       = known_devices[i].part_name,
1823             .parent     = TYPE_M25P80,
1824             .class_init = m25p80_class_init,
1825             .class_data = (void *)&known_devices[i],
1826         };
1827         type_register(&ti);
1828     }
1829 }
1830 
1831 type_init(m25p80_register_types)
1832