xref: /openbmc/qemu/hw/block/fdc.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/sysbus.h"
40 #include "migration/vmstate.h"
41 #include "hw/block/block.h"
42 #include "sysemu/block-backend.h"
43 #include "sysemu/blockdev.h"
44 #include "sysemu/sysemu.h"
45 #include "qemu/log.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/module.h"
48 #include "trace.h"
49 
50 /********************************************************/
51 /* debug Floppy devices */
52 
53 #define DEBUG_FLOPPY 0
54 
55 #define FLOPPY_DPRINTF(fmt, ...)                                \
56     do {                                                        \
57         if (DEBUG_FLOPPY) {                                     \
58             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
59         }                                                       \
60     } while (0)
61 
62 
63 /********************************************************/
64 /* qdev floppy bus                                      */
65 
66 #define TYPE_FLOPPY_BUS "floppy-bus"
67 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
68 
69 typedef struct FDCtrl FDCtrl;
70 typedef struct FDrive FDrive;
71 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
72 
73 typedef struct FloppyBus {
74     BusState bus;
75     FDCtrl *fdc;
76 } FloppyBus;
77 
78 static const TypeInfo floppy_bus_info = {
79     .name = TYPE_FLOPPY_BUS,
80     .parent = TYPE_BUS,
81     .instance_size = sizeof(FloppyBus),
82 };
83 
84 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
85 {
86     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
87     bus->fdc = fdc;
88 }
89 
90 
91 /********************************************************/
92 /* Floppy drive emulation                               */
93 
94 typedef enum FDriveRate {
95     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
96     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
97     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
98     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
99 } FDriveRate;
100 
101 typedef enum FDriveSize {
102     FDRIVE_SIZE_UNKNOWN,
103     FDRIVE_SIZE_350,
104     FDRIVE_SIZE_525,
105 } FDriveSize;
106 
107 typedef struct FDFormat {
108     FloppyDriveType drive;
109     uint8_t last_sect;
110     uint8_t max_track;
111     uint8_t max_head;
112     FDriveRate rate;
113 } FDFormat;
114 
115 /* In many cases, the total sector size of a format is enough to uniquely
116  * identify it. However, there are some total sector collisions between
117  * formats of different physical size, and these are noted below by
118  * highlighting the total sector size for entries with collisions. */
119 static const FDFormat fd_formats[] = {
120     /* First entry is default format */
121     /* 1.44 MB 3"1/2 floppy disks */
122     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
123     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
124     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
125     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
126     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
127     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
128     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
129     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
130     /* 2.88 MB 3"1/2 floppy disks */
131     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
132     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
133     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
134     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
135     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
136     /* 720 kB 3"1/2 floppy disks */
137     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
138     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
139     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
140     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
141     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
142     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
143     /* 1.2 MB 5"1/4 floppy disks */
144     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
145     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
146     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
147     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
148     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
149     /* 720 kB 5"1/4 floppy disks */
150     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
151     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
152     /* 360 kB 5"1/4 floppy disks */
153     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
154     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
155     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
156     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
157     /* 320 kB 5"1/4 floppy disks */
158     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
159     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
160     /* 360 kB must match 5"1/4 better than 3"1/2... */
161     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
162     /* end */
163     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
164 };
165 
166 static FDriveSize drive_size(FloppyDriveType drive)
167 {
168     switch (drive) {
169     case FLOPPY_DRIVE_TYPE_120:
170         return FDRIVE_SIZE_525;
171     case FLOPPY_DRIVE_TYPE_144:
172     case FLOPPY_DRIVE_TYPE_288:
173         return FDRIVE_SIZE_350;
174     default:
175         return FDRIVE_SIZE_UNKNOWN;
176     }
177 }
178 
179 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
180 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
181 
182 /* Will always be a fixed parameter for us */
183 #define FD_SECTOR_LEN          512
184 #define FD_SECTOR_SC           2   /* Sector size code */
185 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
186 
187 /* Floppy disk drive emulation */
188 typedef enum FDiskFlags {
189     FDISK_DBL_SIDES  = 0x01,
190 } FDiskFlags;
191 
192 struct FDrive {
193     FDCtrl *fdctrl;
194     BlockBackend *blk;
195     BlockConf *conf;
196     /* Drive status */
197     FloppyDriveType drive;    /* CMOS drive type        */
198     uint8_t perpendicular;    /* 2.88 MB access mode    */
199     /* Position */
200     uint8_t head;
201     uint8_t track;
202     uint8_t sect;
203     /* Media */
204     FloppyDriveType disk;     /* Current disk type      */
205     FDiskFlags flags;
206     uint8_t last_sect;        /* Nb sector per track    */
207     uint8_t max_track;        /* Nb of tracks           */
208     uint16_t bps;             /* Bytes per sector       */
209     uint8_t ro;               /* Is read-only           */
210     uint8_t media_changed;    /* Is media changed       */
211     uint8_t media_rate;       /* Data rate of medium    */
212 
213     bool media_validated;     /* Have we validated the media? */
214 };
215 
216 
217 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
218 
219 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
220  * currently goes through some pains to keep seeks within the bounds
221  * established by last_sect and max_track. Correcting this is difficult,
222  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
223  *
224  * For now: allow empty drives to have large bounds so we can seek around,
225  * with the understanding that when a diskette is inserted, the bounds will
226  * properly tighten to match the geometry of that inserted medium.
227  */
228 static void fd_empty_seek_hack(FDrive *drv)
229 {
230     drv->last_sect = 0xFF;
231     drv->max_track = 0xFF;
232 }
233 
234 static void fd_init(FDrive *drv)
235 {
236     /* Drive */
237     drv->perpendicular = 0;
238     /* Disk */
239     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
240     drv->last_sect = 0;
241     drv->max_track = 0;
242     drv->ro = true;
243     drv->media_changed = 1;
244 }
245 
246 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
247 
248 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
249                           uint8_t last_sect, uint8_t num_sides)
250 {
251     return (((track * num_sides) + head) * last_sect) + sect - 1;
252 }
253 
254 /* Returns current position, in sectors, for given drive */
255 static int fd_sector(FDrive *drv)
256 {
257     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
258                           NUM_SIDES(drv));
259 }
260 
261 /* Returns current position, in bytes, for given drive */
262 static int fd_offset(FDrive *drv)
263 {
264     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
265     return fd_sector(drv) << BDRV_SECTOR_BITS;
266 }
267 
268 /* Seek to a new position:
269  * returns 0 if already on right track
270  * returns 1 if track changed
271  * returns 2 if track is invalid
272  * returns 3 if sector is invalid
273  * returns 4 if seek is disabled
274  */
275 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
276                    int enable_seek)
277 {
278     uint32_t sector;
279     int ret;
280 
281     if (track > drv->max_track ||
282         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
283         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
284                        head, track, sect, 1,
285                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
286                        drv->max_track, drv->last_sect);
287         return 2;
288     }
289     if (sect > drv->last_sect) {
290         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
291                        head, track, sect, 1,
292                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
293                        drv->max_track, drv->last_sect);
294         return 3;
295     }
296     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
297     ret = 0;
298     if (sector != fd_sector(drv)) {
299 #if 0
300         if (!enable_seek) {
301             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
302                            " (max=%d %02x %02x)\n",
303                            head, track, sect, 1, drv->max_track,
304                            drv->last_sect);
305             return 4;
306         }
307 #endif
308         drv->head = head;
309         if (drv->track != track) {
310             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
311                 drv->media_changed = 0;
312             }
313             ret = 1;
314         }
315         drv->track = track;
316         drv->sect = sect;
317     }
318 
319     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
320         ret = 2;
321     }
322 
323     return ret;
324 }
325 
326 /* Set drive back to track 0 */
327 static void fd_recalibrate(FDrive *drv)
328 {
329     FLOPPY_DPRINTF("recalibrate\n");
330     fd_seek(drv, 0, 0, 1, 1);
331 }
332 
333 /**
334  * Determine geometry based on inserted diskette.
335  * Will not operate on an empty drive.
336  *
337  * @return: 0 on success, -1 if the drive is empty.
338  */
339 static int pick_geometry(FDrive *drv)
340 {
341     BlockBackend *blk = drv->blk;
342     const FDFormat *parse;
343     uint64_t nb_sectors, size;
344     int i;
345     int match, size_match, type_match;
346     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
347 
348     /* We can only pick a geometry if we have a diskette. */
349     if (!drv->blk || !blk_is_inserted(drv->blk) ||
350         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
351     {
352         return -1;
353     }
354 
355     /* We need to determine the likely geometry of the inserted medium.
356      * In order of preference, we look for:
357      * (1) The same drive type and number of sectors,
358      * (2) The same diskette size and number of sectors,
359      * (3) The same drive type.
360      *
361      * In all cases, matches that occur higher in the drive table will take
362      * precedence over matches that occur later in the table.
363      */
364     blk_get_geometry(blk, &nb_sectors);
365     match = size_match = type_match = -1;
366     for (i = 0; ; i++) {
367         parse = &fd_formats[i];
368         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
369             break;
370         }
371         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
372         if (nb_sectors == size) {
373             if (magic || parse->drive == drv->drive) {
374                 /* (1) perfect match -- nb_sectors and drive type */
375                 goto out;
376             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
377                 /* (2) size match -- nb_sectors and physical medium size */
378                 match = (match == -1) ? i : match;
379             } else {
380                 /* This is suspicious -- Did the user misconfigure? */
381                 size_match = (size_match == -1) ? i : size_match;
382             }
383         } else if (type_match == -1) {
384             if ((parse->drive == drv->drive) ||
385                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
386                 /* (3) type match -- nb_sectors mismatch, but matches the type
387                  *     specified explicitly by the user, or matches the fallback
388                  *     default type when using the drive autodetect mechanism */
389                 type_match = i;
390             }
391         }
392     }
393 
394     /* No exact match found */
395     if (match == -1) {
396         if (size_match != -1) {
397             parse = &fd_formats[size_match];
398             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
399                            "but inserted medium appears to be a "
400                            "%"PRId64" sector '%s' type\n",
401                            FloppyDriveType_str(drv->drive),
402                            nb_sectors,
403                            FloppyDriveType_str(parse->drive));
404         }
405         assert(type_match != -1 && "misconfigured fd_format");
406         match = type_match;
407     }
408     parse = &(fd_formats[match]);
409 
410  out:
411     if (parse->max_head == 0) {
412         drv->flags &= ~FDISK_DBL_SIDES;
413     } else {
414         drv->flags |= FDISK_DBL_SIDES;
415     }
416     drv->max_track = parse->max_track;
417     drv->last_sect = parse->last_sect;
418     drv->disk = parse->drive;
419     drv->media_rate = parse->rate;
420     return 0;
421 }
422 
423 static void pick_drive_type(FDrive *drv)
424 {
425     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
426         return;
427     }
428 
429     if (pick_geometry(drv) == 0) {
430         drv->drive = drv->disk;
431     } else {
432         drv->drive = get_fallback_drive_type(drv);
433     }
434 
435     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
436 }
437 
438 /* Revalidate a disk drive after a disk change */
439 static void fd_revalidate(FDrive *drv)
440 {
441     int rc;
442 
443     FLOPPY_DPRINTF("revalidate\n");
444     if (drv->blk != NULL) {
445         drv->ro = blk_is_read_only(drv->blk);
446         if (!blk_is_inserted(drv->blk)) {
447             FLOPPY_DPRINTF("No disk in drive\n");
448             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
449             fd_empty_seek_hack(drv);
450         } else if (!drv->media_validated) {
451             rc = pick_geometry(drv);
452             if (rc) {
453                 FLOPPY_DPRINTF("Could not validate floppy drive media");
454             } else {
455                 drv->media_validated = true;
456                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
457                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
458                                drv->max_track, drv->last_sect,
459                                drv->ro ? "ro" : "rw");
460             }
461         }
462     } else {
463         FLOPPY_DPRINTF("No drive connected\n");
464         drv->last_sect = 0;
465         drv->max_track = 0;
466         drv->flags &= ~FDISK_DBL_SIDES;
467         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
468         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
469     }
470 }
471 
472 static void fd_change_cb(void *opaque, bool load, Error **errp)
473 {
474     FDrive *drive = opaque;
475 
476     if (!load) {
477         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
478     } else {
479         if (!blkconf_apply_backend_options(drive->conf,
480                                            blk_is_read_only(drive->blk), false,
481                                            errp)) {
482             return;
483         }
484     }
485 
486     drive->media_changed = 1;
487     drive->media_validated = false;
488     fd_revalidate(drive);
489 }
490 
491 static const BlockDevOps fd_block_ops = {
492     .change_media_cb = fd_change_cb,
493 };
494 
495 
496 #define TYPE_FLOPPY_DRIVE "floppy"
497 #define FLOPPY_DRIVE(obj) \
498      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
499 
500 typedef struct FloppyDrive {
501     DeviceState     qdev;
502     uint32_t        unit;
503     BlockConf       conf;
504     FloppyDriveType type;
505 } FloppyDrive;
506 
507 static Property floppy_drive_properties[] = {
508     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
509     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
510     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
511                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
512                         FloppyDriveType),
513     DEFINE_PROP_END_OF_LIST(),
514 };
515 
516 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
517 {
518     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
519     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
520     FDrive *drive;
521     bool read_only;
522     int ret;
523 
524     if (dev->unit == -1) {
525         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
526             drive = get_drv(bus->fdc, dev->unit);
527             if (!drive->blk) {
528                 break;
529             }
530         }
531     }
532 
533     if (dev->unit >= MAX_FD) {
534         error_setg(errp, "Can't create floppy unit %d, bus supports "
535                    "only %d units", dev->unit, MAX_FD);
536         return;
537     }
538 
539     drive = get_drv(bus->fdc, dev->unit);
540     if (drive->blk) {
541         error_setg(errp, "Floppy unit %d is in use", dev->unit);
542         return;
543     }
544 
545     if (!dev->conf.blk) {
546         /* Anonymous BlockBackend for an empty drive */
547         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
548         ret = blk_attach_dev(dev->conf.blk, qdev);
549         assert(ret == 0);
550 
551         /* Don't take write permissions on an empty drive to allow attaching a
552          * read-only node later */
553         read_only = true;
554     } else {
555         read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk);
556     }
557 
558     if (!blkconf_blocksizes(&dev->conf, errp)) {
559         return;
560     }
561 
562     if (dev->conf.logical_block_size != 512 ||
563         dev->conf.physical_block_size != 512)
564     {
565         error_setg(errp, "Physical and logical block size must "
566                    "be 512 for floppy");
567         return;
568     }
569 
570     /* rerror/werror aren't supported by fdc and therefore not even registered
571      * with qdev. So set the defaults manually before they are used in
572      * blkconf_apply_backend_options(). */
573     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
574     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
575 
576     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
577         return;
578     }
579 
580     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
581      * for empty drives. */
582     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
583         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
584         error_setg(errp, "fdc doesn't support drive option werror");
585         return;
586     }
587     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
588         error_setg(errp, "fdc doesn't support drive option rerror");
589         return;
590     }
591 
592     drive->conf = &dev->conf;
593     drive->blk = dev->conf.blk;
594     drive->fdctrl = bus->fdc;
595 
596     fd_init(drive);
597     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
598 
599     /* Keep 'type' qdev property and FDrive->drive in sync */
600     drive->drive = dev->type;
601     pick_drive_type(drive);
602     dev->type = drive->drive;
603 
604     fd_revalidate(drive);
605 }
606 
607 static void floppy_drive_class_init(ObjectClass *klass, void *data)
608 {
609     DeviceClass *k = DEVICE_CLASS(klass);
610     k->realize = floppy_drive_realize;
611     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
612     k->bus_type = TYPE_FLOPPY_BUS;
613     device_class_set_props(k, floppy_drive_properties);
614     k->desc = "virtual floppy drive";
615 }
616 
617 static const TypeInfo floppy_drive_info = {
618     .name = TYPE_FLOPPY_DRIVE,
619     .parent = TYPE_DEVICE,
620     .instance_size = sizeof(FloppyDrive),
621     .class_init = floppy_drive_class_init,
622 };
623 
624 /********************************************************/
625 /* Intel 82078 floppy disk controller emulation          */
626 
627 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
628 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
629 static int fdctrl_transfer_handler (void *opaque, int nchan,
630                                     int dma_pos, int dma_len);
631 static void fdctrl_raise_irq(FDCtrl *fdctrl);
632 static FDrive *get_cur_drv(FDCtrl *fdctrl);
633 
634 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
635 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
636 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
637 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
638 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
639 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
641 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
643 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
644 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
645 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
646 
647 enum {
648     FD_DIR_WRITE   = 0,
649     FD_DIR_READ    = 1,
650     FD_DIR_SCANE   = 2,
651     FD_DIR_SCANL   = 3,
652     FD_DIR_SCANH   = 4,
653     FD_DIR_VERIFY  = 5,
654 };
655 
656 enum {
657     FD_STATE_MULTI  = 0x01,	/* multi track flag */
658     FD_STATE_FORMAT = 0x02,	/* format flag */
659 };
660 
661 enum {
662     FD_REG_SRA = 0x00,
663     FD_REG_SRB = 0x01,
664     FD_REG_DOR = 0x02,
665     FD_REG_TDR = 0x03,
666     FD_REG_MSR = 0x04,
667     FD_REG_DSR = 0x04,
668     FD_REG_FIFO = 0x05,
669     FD_REG_DIR = 0x07,
670     FD_REG_CCR = 0x07,
671 };
672 
673 enum {
674     FD_CMD_READ_TRACK = 0x02,
675     FD_CMD_SPECIFY = 0x03,
676     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
677     FD_CMD_WRITE = 0x05,
678     FD_CMD_READ = 0x06,
679     FD_CMD_RECALIBRATE = 0x07,
680     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
681     FD_CMD_WRITE_DELETED = 0x09,
682     FD_CMD_READ_ID = 0x0a,
683     FD_CMD_READ_DELETED = 0x0c,
684     FD_CMD_FORMAT_TRACK = 0x0d,
685     FD_CMD_DUMPREG = 0x0e,
686     FD_CMD_SEEK = 0x0f,
687     FD_CMD_VERSION = 0x10,
688     FD_CMD_SCAN_EQUAL = 0x11,
689     FD_CMD_PERPENDICULAR_MODE = 0x12,
690     FD_CMD_CONFIGURE = 0x13,
691     FD_CMD_LOCK = 0x14,
692     FD_CMD_VERIFY = 0x16,
693     FD_CMD_POWERDOWN_MODE = 0x17,
694     FD_CMD_PART_ID = 0x18,
695     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
696     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
697     FD_CMD_SAVE = 0x2e,
698     FD_CMD_OPTION = 0x33,
699     FD_CMD_RESTORE = 0x4e,
700     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
701     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
702     FD_CMD_FORMAT_AND_WRITE = 0xcd,
703     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
704 };
705 
706 enum {
707     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
708     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
709     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
710     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
711     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
712 };
713 
714 enum {
715     FD_SR0_DS0      = 0x01,
716     FD_SR0_DS1      = 0x02,
717     FD_SR0_HEAD     = 0x04,
718     FD_SR0_EQPMT    = 0x10,
719     FD_SR0_SEEK     = 0x20,
720     FD_SR0_ABNTERM  = 0x40,
721     FD_SR0_INVCMD   = 0x80,
722     FD_SR0_RDYCHG   = 0xc0,
723 };
724 
725 enum {
726     FD_SR1_MA       = 0x01, /* Missing address mark */
727     FD_SR1_NW       = 0x02, /* Not writable */
728     FD_SR1_EC       = 0x80, /* End of cylinder */
729 };
730 
731 enum {
732     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
733     FD_SR2_SEH      = 0x08, /* Scan equal hit */
734 };
735 
736 enum {
737     FD_SRA_DIR      = 0x01,
738     FD_SRA_nWP      = 0x02,
739     FD_SRA_nINDX    = 0x04,
740     FD_SRA_HDSEL    = 0x08,
741     FD_SRA_nTRK0    = 0x10,
742     FD_SRA_STEP     = 0x20,
743     FD_SRA_nDRV2    = 0x40,
744     FD_SRA_INTPEND  = 0x80,
745 };
746 
747 enum {
748     FD_SRB_MTR0     = 0x01,
749     FD_SRB_MTR1     = 0x02,
750     FD_SRB_WGATE    = 0x04,
751     FD_SRB_RDATA    = 0x08,
752     FD_SRB_WDATA    = 0x10,
753     FD_SRB_DR0      = 0x20,
754 };
755 
756 enum {
757 #if MAX_FD == 4
758     FD_DOR_SELMASK  = 0x03,
759 #else
760     FD_DOR_SELMASK  = 0x01,
761 #endif
762     FD_DOR_nRESET   = 0x04,
763     FD_DOR_DMAEN    = 0x08,
764     FD_DOR_MOTEN0   = 0x10,
765     FD_DOR_MOTEN1   = 0x20,
766     FD_DOR_MOTEN2   = 0x40,
767     FD_DOR_MOTEN3   = 0x80,
768 };
769 
770 enum {
771 #if MAX_FD == 4
772     FD_TDR_BOOTSEL  = 0x0c,
773 #else
774     FD_TDR_BOOTSEL  = 0x04,
775 #endif
776 };
777 
778 enum {
779     FD_DSR_DRATEMASK= 0x03,
780     FD_DSR_PWRDOWN  = 0x40,
781     FD_DSR_SWRESET  = 0x80,
782 };
783 
784 enum {
785     FD_MSR_DRV0BUSY = 0x01,
786     FD_MSR_DRV1BUSY = 0x02,
787     FD_MSR_DRV2BUSY = 0x04,
788     FD_MSR_DRV3BUSY = 0x08,
789     FD_MSR_CMDBUSY  = 0x10,
790     FD_MSR_NONDMA   = 0x20,
791     FD_MSR_DIO      = 0x40,
792     FD_MSR_RQM      = 0x80,
793 };
794 
795 enum {
796     FD_DIR_DSKCHG   = 0x80,
797 };
798 
799 /*
800  * See chapter 5.0 "Controller phases" of the spec:
801  *
802  * Command phase:
803  * The host writes a command and its parameters into the FIFO. The command
804  * phase is completed when all parameters for the command have been supplied,
805  * and execution phase is entered.
806  *
807  * Execution phase:
808  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
809  * contains the payload now, otherwise it's unused. When all bytes of the
810  * required data have been transferred, the state is switched to either result
811  * phase (if the command produces status bytes) or directly back into the
812  * command phase for the next command.
813  *
814  * Result phase:
815  * The host reads out the FIFO, which contains one or more result bytes now.
816  */
817 enum {
818     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
819     FD_PHASE_RECONSTRUCT    = 0,
820 
821     FD_PHASE_COMMAND        = 1,
822     FD_PHASE_EXECUTION      = 2,
823     FD_PHASE_RESULT         = 3,
824 };
825 
826 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
827 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
828 
829 struct FDCtrl {
830     MemoryRegion iomem;
831     qemu_irq irq;
832     /* Controller state */
833     QEMUTimer *result_timer;
834     int dma_chann;
835     uint8_t phase;
836     IsaDma *dma;
837     /* Controller's identification */
838     uint8_t version;
839     /* HW */
840     uint8_t sra;
841     uint8_t srb;
842     uint8_t dor;
843     uint8_t dor_vmstate; /* only used as temp during vmstate */
844     uint8_t tdr;
845     uint8_t dsr;
846     uint8_t msr;
847     uint8_t cur_drv;
848     uint8_t status0;
849     uint8_t status1;
850     uint8_t status2;
851     /* Command FIFO */
852     uint8_t *fifo;
853     int32_t fifo_size;
854     uint32_t data_pos;
855     uint32_t data_len;
856     uint8_t data_state;
857     uint8_t data_dir;
858     uint8_t eot; /* last wanted sector */
859     /* States kept only to be returned back */
860     /* precompensation */
861     uint8_t precomp_trk;
862     uint8_t config;
863     uint8_t lock;
864     /* Power down config (also with status regB access mode */
865     uint8_t pwrd;
866     /* Floppy drives */
867     FloppyBus bus;
868     uint8_t num_floppies;
869     FDrive drives[MAX_FD];
870     struct {
871         BlockBackend *blk;
872         FloppyDriveType type;
873     } qdev_for_drives[MAX_FD];
874     int reset_sensei;
875     uint32_t check_media_rate;
876     FloppyDriveType fallback; /* type=auto failure fallback */
877     /* Timers state */
878     uint8_t timer0;
879     uint8_t timer1;
880     PortioList portio_list;
881 };
882 
883 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
884 {
885     return drv->fdctrl->fallback;
886 }
887 
888 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
889 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
890 
891 typedef struct FDCtrlSysBus {
892     /*< private >*/
893     SysBusDevice parent_obj;
894     /*< public >*/
895 
896     struct FDCtrl state;
897 } FDCtrlSysBus;
898 
899 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
900 
901 typedef struct FDCtrlISABus {
902     ISADevice parent_obj;
903 
904     uint32_t iobase;
905     uint32_t irq;
906     uint32_t dma;
907     struct FDCtrl state;
908     int32_t bootindexA;
909     int32_t bootindexB;
910 } FDCtrlISABus;
911 
912 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
913 {
914     FDCtrl *fdctrl = opaque;
915     uint32_t retval;
916 
917     reg &= 7;
918     switch (reg) {
919     case FD_REG_SRA:
920         retval = fdctrl_read_statusA(fdctrl);
921         break;
922     case FD_REG_SRB:
923         retval = fdctrl_read_statusB(fdctrl);
924         break;
925     case FD_REG_DOR:
926         retval = fdctrl_read_dor(fdctrl);
927         break;
928     case FD_REG_TDR:
929         retval = fdctrl_read_tape(fdctrl);
930         break;
931     case FD_REG_MSR:
932         retval = fdctrl_read_main_status(fdctrl);
933         break;
934     case FD_REG_FIFO:
935         retval = fdctrl_read_data(fdctrl);
936         break;
937     case FD_REG_DIR:
938         retval = fdctrl_read_dir(fdctrl);
939         break;
940     default:
941         retval = (uint32_t)(-1);
942         break;
943     }
944     trace_fdc_ioport_read(reg, retval);
945 
946     return retval;
947 }
948 
949 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
950 {
951     FDCtrl *fdctrl = opaque;
952 
953     reg &= 7;
954     trace_fdc_ioport_write(reg, value);
955     switch (reg) {
956     case FD_REG_DOR:
957         fdctrl_write_dor(fdctrl, value);
958         break;
959     case FD_REG_TDR:
960         fdctrl_write_tape(fdctrl, value);
961         break;
962     case FD_REG_DSR:
963         fdctrl_write_rate(fdctrl, value);
964         break;
965     case FD_REG_FIFO:
966         fdctrl_write_data(fdctrl, value);
967         break;
968     case FD_REG_CCR:
969         fdctrl_write_ccr(fdctrl, value);
970         break;
971     default:
972         break;
973     }
974 }
975 
976 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
977                                  unsigned ize)
978 {
979     return fdctrl_read(opaque, (uint32_t)reg);
980 }
981 
982 static void fdctrl_write_mem (void *opaque, hwaddr reg,
983                               uint64_t value, unsigned size)
984 {
985     fdctrl_write(opaque, (uint32_t)reg, value);
986 }
987 
988 static const MemoryRegionOps fdctrl_mem_ops = {
989     .read = fdctrl_read_mem,
990     .write = fdctrl_write_mem,
991     .endianness = DEVICE_NATIVE_ENDIAN,
992 };
993 
994 static const MemoryRegionOps fdctrl_mem_strict_ops = {
995     .read = fdctrl_read_mem,
996     .write = fdctrl_write_mem,
997     .endianness = DEVICE_NATIVE_ENDIAN,
998     .valid = {
999         .min_access_size = 1,
1000         .max_access_size = 1,
1001     },
1002 };
1003 
1004 static bool fdrive_media_changed_needed(void *opaque)
1005 {
1006     FDrive *drive = opaque;
1007 
1008     return (drive->blk != NULL && drive->media_changed != 1);
1009 }
1010 
1011 static const VMStateDescription vmstate_fdrive_media_changed = {
1012     .name = "fdrive/media_changed",
1013     .version_id = 1,
1014     .minimum_version_id = 1,
1015     .needed = fdrive_media_changed_needed,
1016     .fields = (VMStateField[]) {
1017         VMSTATE_UINT8(media_changed, FDrive),
1018         VMSTATE_END_OF_LIST()
1019     }
1020 };
1021 
1022 static bool fdrive_media_rate_needed(void *opaque)
1023 {
1024     FDrive *drive = opaque;
1025 
1026     return drive->fdctrl->check_media_rate;
1027 }
1028 
1029 static const VMStateDescription vmstate_fdrive_media_rate = {
1030     .name = "fdrive/media_rate",
1031     .version_id = 1,
1032     .minimum_version_id = 1,
1033     .needed = fdrive_media_rate_needed,
1034     .fields = (VMStateField[]) {
1035         VMSTATE_UINT8(media_rate, FDrive),
1036         VMSTATE_END_OF_LIST()
1037     }
1038 };
1039 
1040 static bool fdrive_perpendicular_needed(void *opaque)
1041 {
1042     FDrive *drive = opaque;
1043 
1044     return drive->perpendicular != 0;
1045 }
1046 
1047 static const VMStateDescription vmstate_fdrive_perpendicular = {
1048     .name = "fdrive/perpendicular",
1049     .version_id = 1,
1050     .minimum_version_id = 1,
1051     .needed = fdrive_perpendicular_needed,
1052     .fields = (VMStateField[]) {
1053         VMSTATE_UINT8(perpendicular, FDrive),
1054         VMSTATE_END_OF_LIST()
1055     }
1056 };
1057 
1058 static int fdrive_post_load(void *opaque, int version_id)
1059 {
1060     fd_revalidate(opaque);
1061     return 0;
1062 }
1063 
1064 static const VMStateDescription vmstate_fdrive = {
1065     .name = "fdrive",
1066     .version_id = 1,
1067     .minimum_version_id = 1,
1068     .post_load = fdrive_post_load,
1069     .fields = (VMStateField[]) {
1070         VMSTATE_UINT8(head, FDrive),
1071         VMSTATE_UINT8(track, FDrive),
1072         VMSTATE_UINT8(sect, FDrive),
1073         VMSTATE_END_OF_LIST()
1074     },
1075     .subsections = (const VMStateDescription*[]) {
1076         &vmstate_fdrive_media_changed,
1077         &vmstate_fdrive_media_rate,
1078         &vmstate_fdrive_perpendicular,
1079         NULL
1080     }
1081 };
1082 
1083 /*
1084  * Reconstructs the phase from register values according to the logic that was
1085  * implemented in qemu 2.3. This is the default value that is used if the phase
1086  * subsection is not present on migration.
1087  *
1088  * Don't change this function to reflect newer qemu versions, it is part of
1089  * the migration ABI.
1090  */
1091 static int reconstruct_phase(FDCtrl *fdctrl)
1092 {
1093     if (fdctrl->msr & FD_MSR_NONDMA) {
1094         return FD_PHASE_EXECUTION;
1095     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1096         /* qemu 2.3 disabled RQM only during DMA transfers */
1097         return FD_PHASE_EXECUTION;
1098     } else if (fdctrl->msr & FD_MSR_DIO) {
1099         return FD_PHASE_RESULT;
1100     } else {
1101         return FD_PHASE_COMMAND;
1102     }
1103 }
1104 
1105 static int fdc_pre_save(void *opaque)
1106 {
1107     FDCtrl *s = opaque;
1108 
1109     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1110 
1111     return 0;
1112 }
1113 
1114 static int fdc_pre_load(void *opaque)
1115 {
1116     FDCtrl *s = opaque;
1117     s->phase = FD_PHASE_RECONSTRUCT;
1118     return 0;
1119 }
1120 
1121 static int fdc_post_load(void *opaque, int version_id)
1122 {
1123     FDCtrl *s = opaque;
1124 
1125     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1126     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1127 
1128     if (s->phase == FD_PHASE_RECONSTRUCT) {
1129         s->phase = reconstruct_phase(s);
1130     }
1131 
1132     return 0;
1133 }
1134 
1135 static bool fdc_reset_sensei_needed(void *opaque)
1136 {
1137     FDCtrl *s = opaque;
1138 
1139     return s->reset_sensei != 0;
1140 }
1141 
1142 static const VMStateDescription vmstate_fdc_reset_sensei = {
1143     .name = "fdc/reset_sensei",
1144     .version_id = 1,
1145     .minimum_version_id = 1,
1146     .needed = fdc_reset_sensei_needed,
1147     .fields = (VMStateField[]) {
1148         VMSTATE_INT32(reset_sensei, FDCtrl),
1149         VMSTATE_END_OF_LIST()
1150     }
1151 };
1152 
1153 static bool fdc_result_timer_needed(void *opaque)
1154 {
1155     FDCtrl *s = opaque;
1156 
1157     return timer_pending(s->result_timer);
1158 }
1159 
1160 static const VMStateDescription vmstate_fdc_result_timer = {
1161     .name = "fdc/result_timer",
1162     .version_id = 1,
1163     .minimum_version_id = 1,
1164     .needed = fdc_result_timer_needed,
1165     .fields = (VMStateField[]) {
1166         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1167         VMSTATE_END_OF_LIST()
1168     }
1169 };
1170 
1171 static bool fdc_phase_needed(void *opaque)
1172 {
1173     FDCtrl *fdctrl = opaque;
1174 
1175     return reconstruct_phase(fdctrl) != fdctrl->phase;
1176 }
1177 
1178 static const VMStateDescription vmstate_fdc_phase = {
1179     .name = "fdc/phase",
1180     .version_id = 1,
1181     .minimum_version_id = 1,
1182     .needed = fdc_phase_needed,
1183     .fields = (VMStateField[]) {
1184         VMSTATE_UINT8(phase, FDCtrl),
1185         VMSTATE_END_OF_LIST()
1186     }
1187 };
1188 
1189 static const VMStateDescription vmstate_fdc = {
1190     .name = "fdc",
1191     .version_id = 2,
1192     .minimum_version_id = 2,
1193     .pre_save = fdc_pre_save,
1194     .pre_load = fdc_pre_load,
1195     .post_load = fdc_post_load,
1196     .fields = (VMStateField[]) {
1197         /* Controller State */
1198         VMSTATE_UINT8(sra, FDCtrl),
1199         VMSTATE_UINT8(srb, FDCtrl),
1200         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1201         VMSTATE_UINT8(tdr, FDCtrl),
1202         VMSTATE_UINT8(dsr, FDCtrl),
1203         VMSTATE_UINT8(msr, FDCtrl),
1204         VMSTATE_UINT8(status0, FDCtrl),
1205         VMSTATE_UINT8(status1, FDCtrl),
1206         VMSTATE_UINT8(status2, FDCtrl),
1207         /* Command FIFO */
1208         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1209                              uint8_t),
1210         VMSTATE_UINT32(data_pos, FDCtrl),
1211         VMSTATE_UINT32(data_len, FDCtrl),
1212         VMSTATE_UINT8(data_state, FDCtrl),
1213         VMSTATE_UINT8(data_dir, FDCtrl),
1214         VMSTATE_UINT8(eot, FDCtrl),
1215         /* States kept only to be returned back */
1216         VMSTATE_UINT8(timer0, FDCtrl),
1217         VMSTATE_UINT8(timer1, FDCtrl),
1218         VMSTATE_UINT8(precomp_trk, FDCtrl),
1219         VMSTATE_UINT8(config, FDCtrl),
1220         VMSTATE_UINT8(lock, FDCtrl),
1221         VMSTATE_UINT8(pwrd, FDCtrl),
1222         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1223         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1224                              vmstate_fdrive, FDrive),
1225         VMSTATE_END_OF_LIST()
1226     },
1227     .subsections = (const VMStateDescription*[]) {
1228         &vmstate_fdc_reset_sensei,
1229         &vmstate_fdc_result_timer,
1230         &vmstate_fdc_phase,
1231         NULL
1232     }
1233 };
1234 
1235 static void fdctrl_external_reset_sysbus(DeviceState *d)
1236 {
1237     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1238     FDCtrl *s = &sys->state;
1239 
1240     fdctrl_reset(s, 0);
1241 }
1242 
1243 static void fdctrl_external_reset_isa(DeviceState *d)
1244 {
1245     FDCtrlISABus *isa = ISA_FDC(d);
1246     FDCtrl *s = &isa->state;
1247 
1248     fdctrl_reset(s, 0);
1249 }
1250 
1251 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1252 {
1253     //FDCtrl *s = opaque;
1254 
1255     if (level) {
1256         // XXX
1257         FLOPPY_DPRINTF("TC pulsed\n");
1258     }
1259 }
1260 
1261 /* Change IRQ state */
1262 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1263 {
1264     fdctrl->status0 = 0;
1265     if (!(fdctrl->sra & FD_SRA_INTPEND))
1266         return;
1267     FLOPPY_DPRINTF("Reset interrupt\n");
1268     qemu_set_irq(fdctrl->irq, 0);
1269     fdctrl->sra &= ~FD_SRA_INTPEND;
1270 }
1271 
1272 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1273 {
1274     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1275         qemu_set_irq(fdctrl->irq, 1);
1276         fdctrl->sra |= FD_SRA_INTPEND;
1277     }
1278 
1279     fdctrl->reset_sensei = 0;
1280     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1281 }
1282 
1283 /* Reset controller */
1284 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1285 {
1286     int i;
1287 
1288     FLOPPY_DPRINTF("reset controller\n");
1289     fdctrl_reset_irq(fdctrl);
1290     /* Initialise controller */
1291     fdctrl->sra = 0;
1292     fdctrl->srb = 0xc0;
1293     if (!fdctrl->drives[1].blk) {
1294         fdctrl->sra |= FD_SRA_nDRV2;
1295     }
1296     fdctrl->cur_drv = 0;
1297     fdctrl->dor = FD_DOR_nRESET;
1298     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1299     fdctrl->msr = FD_MSR_RQM;
1300     fdctrl->reset_sensei = 0;
1301     timer_del(fdctrl->result_timer);
1302     /* FIFO state */
1303     fdctrl->data_pos = 0;
1304     fdctrl->data_len = 0;
1305     fdctrl->data_state = 0;
1306     fdctrl->data_dir = FD_DIR_WRITE;
1307     for (i = 0; i < MAX_FD; i++)
1308         fd_recalibrate(&fdctrl->drives[i]);
1309     fdctrl_to_command_phase(fdctrl);
1310     if (do_irq) {
1311         fdctrl->status0 |= FD_SR0_RDYCHG;
1312         fdctrl_raise_irq(fdctrl);
1313         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1314     }
1315 }
1316 
1317 static inline FDrive *drv0(FDCtrl *fdctrl)
1318 {
1319     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1320 }
1321 
1322 static inline FDrive *drv1(FDCtrl *fdctrl)
1323 {
1324     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1325         return &fdctrl->drives[1];
1326     else
1327         return &fdctrl->drives[0];
1328 }
1329 
1330 #if MAX_FD == 4
1331 static inline FDrive *drv2(FDCtrl *fdctrl)
1332 {
1333     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1334         return &fdctrl->drives[2];
1335     else
1336         return &fdctrl->drives[1];
1337 }
1338 
1339 static inline FDrive *drv3(FDCtrl *fdctrl)
1340 {
1341     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1342         return &fdctrl->drives[3];
1343     else
1344         return &fdctrl->drives[2];
1345 }
1346 #endif
1347 
1348 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1349 {
1350     switch (unit) {
1351         case 0: return drv0(fdctrl);
1352         case 1: return drv1(fdctrl);
1353 #if MAX_FD == 4
1354         case 2: return drv2(fdctrl);
1355         case 3: return drv3(fdctrl);
1356 #endif
1357         default: return NULL;
1358     }
1359 }
1360 
1361 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1362 {
1363     return get_drv(fdctrl, fdctrl->cur_drv);
1364 }
1365 
1366 /* Status A register : 0x00 (read-only) */
1367 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1368 {
1369     uint32_t retval = fdctrl->sra;
1370 
1371     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1372 
1373     return retval;
1374 }
1375 
1376 /* Status B register : 0x01 (read-only) */
1377 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1378 {
1379     uint32_t retval = fdctrl->srb;
1380 
1381     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1382 
1383     return retval;
1384 }
1385 
1386 /* Digital output register : 0x02 */
1387 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1388 {
1389     uint32_t retval = fdctrl->dor;
1390 
1391     /* Selected drive */
1392     retval |= fdctrl->cur_drv;
1393     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1394 
1395     return retval;
1396 }
1397 
1398 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1399 {
1400     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1401 
1402     /* Motors */
1403     if (value & FD_DOR_MOTEN0)
1404         fdctrl->srb |= FD_SRB_MTR0;
1405     else
1406         fdctrl->srb &= ~FD_SRB_MTR0;
1407     if (value & FD_DOR_MOTEN1)
1408         fdctrl->srb |= FD_SRB_MTR1;
1409     else
1410         fdctrl->srb &= ~FD_SRB_MTR1;
1411 
1412     /* Drive */
1413     if (value & 1)
1414         fdctrl->srb |= FD_SRB_DR0;
1415     else
1416         fdctrl->srb &= ~FD_SRB_DR0;
1417 
1418     /* Reset */
1419     if (!(value & FD_DOR_nRESET)) {
1420         if (fdctrl->dor & FD_DOR_nRESET) {
1421             FLOPPY_DPRINTF("controller enter RESET state\n");
1422         }
1423     } else {
1424         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1425             FLOPPY_DPRINTF("controller out of RESET state\n");
1426             fdctrl_reset(fdctrl, 1);
1427             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1428         }
1429     }
1430     /* Selected drive */
1431     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1432 
1433     fdctrl->dor = value;
1434 }
1435 
1436 /* Tape drive register : 0x03 */
1437 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1438 {
1439     uint32_t retval = fdctrl->tdr;
1440 
1441     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1442 
1443     return retval;
1444 }
1445 
1446 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1447 {
1448     /* Reset mode */
1449     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1450         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1451         return;
1452     }
1453     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1454     /* Disk boot selection indicator */
1455     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1456     /* Tape indicators: never allow */
1457 }
1458 
1459 /* Main status register : 0x04 (read) */
1460 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1461 {
1462     uint32_t retval = fdctrl->msr;
1463 
1464     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1465     fdctrl->dor |= FD_DOR_nRESET;
1466 
1467     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1468 
1469     return retval;
1470 }
1471 
1472 /* Data select rate register : 0x04 (write) */
1473 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1474 {
1475     /* Reset mode */
1476     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1477         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1478         return;
1479     }
1480     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1481     /* Reset: autoclear */
1482     if (value & FD_DSR_SWRESET) {
1483         fdctrl->dor &= ~FD_DOR_nRESET;
1484         fdctrl_reset(fdctrl, 1);
1485         fdctrl->dor |= FD_DOR_nRESET;
1486     }
1487     if (value & FD_DSR_PWRDOWN) {
1488         fdctrl_reset(fdctrl, 1);
1489     }
1490     fdctrl->dsr = value;
1491 }
1492 
1493 /* Configuration control register: 0x07 (write) */
1494 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1495 {
1496     /* Reset mode */
1497     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1498         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1499         return;
1500     }
1501     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1502 
1503     /* Only the rate selection bits used in AT mode, and we
1504      * store those in the DSR.
1505      */
1506     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1507                   (value & FD_DSR_DRATEMASK);
1508 }
1509 
1510 static int fdctrl_media_changed(FDrive *drv)
1511 {
1512     return drv->media_changed;
1513 }
1514 
1515 /* Digital input register : 0x07 (read-only) */
1516 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1517 {
1518     uint32_t retval = 0;
1519 
1520     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1521         retval |= FD_DIR_DSKCHG;
1522     }
1523     if (retval != 0) {
1524         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1525     }
1526 
1527     return retval;
1528 }
1529 
1530 /* Clear the FIFO and update the state for receiving the next command */
1531 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1532 {
1533     fdctrl->phase = FD_PHASE_COMMAND;
1534     fdctrl->data_dir = FD_DIR_WRITE;
1535     fdctrl->data_pos = 0;
1536     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1537     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1538     fdctrl->msr |= FD_MSR_RQM;
1539 }
1540 
1541 /* Update the state to allow the guest to read out the command status.
1542  * @fifo_len is the number of result bytes to be read out. */
1543 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1544 {
1545     fdctrl->phase = FD_PHASE_RESULT;
1546     fdctrl->data_dir = FD_DIR_READ;
1547     fdctrl->data_len = fifo_len;
1548     fdctrl->data_pos = 0;
1549     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1550 }
1551 
1552 /* Set an error: unimplemented/unknown command */
1553 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1554 {
1555     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1556                   fdctrl->fifo[0]);
1557     fdctrl->fifo[0] = FD_SR0_INVCMD;
1558     fdctrl_to_result_phase(fdctrl, 1);
1559 }
1560 
1561 /* Seek to next sector
1562  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1563  * otherwise returns 1
1564  */
1565 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1566 {
1567     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1568                    cur_drv->head, cur_drv->track, cur_drv->sect,
1569                    fd_sector(cur_drv));
1570     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1571        error in fact */
1572     uint8_t new_head = cur_drv->head;
1573     uint8_t new_track = cur_drv->track;
1574     uint8_t new_sect = cur_drv->sect;
1575 
1576     int ret = 1;
1577 
1578     if (new_sect >= cur_drv->last_sect ||
1579         new_sect == fdctrl->eot) {
1580         new_sect = 1;
1581         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1582             if (new_head == 0 &&
1583                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1584                 new_head = 1;
1585             } else {
1586                 new_head = 0;
1587                 new_track++;
1588                 fdctrl->status0 |= FD_SR0_SEEK;
1589                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1590                     ret = 0;
1591                 }
1592             }
1593         } else {
1594             fdctrl->status0 |= FD_SR0_SEEK;
1595             new_track++;
1596             ret = 0;
1597         }
1598         if (ret == 1) {
1599             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1600                     new_head, new_track, new_sect, fd_sector(cur_drv));
1601         }
1602     } else {
1603         new_sect++;
1604     }
1605     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1606     return ret;
1607 }
1608 
1609 /* Callback for transfer end (stop or abort) */
1610 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1611                                  uint8_t status1, uint8_t status2)
1612 {
1613     FDrive *cur_drv;
1614     cur_drv = get_cur_drv(fdctrl);
1615 
1616     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1617     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1618     if (cur_drv->head) {
1619         fdctrl->status0 |= FD_SR0_HEAD;
1620     }
1621     fdctrl->status0 |= status0;
1622 
1623     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1624                    status0, status1, status2, fdctrl->status0);
1625     fdctrl->fifo[0] = fdctrl->status0;
1626     fdctrl->fifo[1] = status1;
1627     fdctrl->fifo[2] = status2;
1628     fdctrl->fifo[3] = cur_drv->track;
1629     fdctrl->fifo[4] = cur_drv->head;
1630     fdctrl->fifo[5] = cur_drv->sect;
1631     fdctrl->fifo[6] = FD_SECTOR_SC;
1632     fdctrl->data_dir = FD_DIR_READ;
1633     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1634         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1635         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1636     }
1637     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1638     fdctrl->msr &= ~FD_MSR_NONDMA;
1639 
1640     fdctrl_to_result_phase(fdctrl, 7);
1641     fdctrl_raise_irq(fdctrl);
1642 }
1643 
1644 /* Prepare a data transfer (either DMA or FIFO) */
1645 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1646 {
1647     FDrive *cur_drv;
1648     uint8_t kh, kt, ks;
1649 
1650     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1651     cur_drv = get_cur_drv(fdctrl);
1652     kt = fdctrl->fifo[2];
1653     kh = fdctrl->fifo[3];
1654     ks = fdctrl->fifo[4];
1655     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1656                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1657                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1658                                   NUM_SIDES(cur_drv)));
1659     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1660     case 2:
1661         /* sect too big */
1662         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1663         fdctrl->fifo[3] = kt;
1664         fdctrl->fifo[4] = kh;
1665         fdctrl->fifo[5] = ks;
1666         return;
1667     case 3:
1668         /* track too big */
1669         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1670         fdctrl->fifo[3] = kt;
1671         fdctrl->fifo[4] = kh;
1672         fdctrl->fifo[5] = ks;
1673         return;
1674     case 4:
1675         /* No seek enabled */
1676         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1677         fdctrl->fifo[3] = kt;
1678         fdctrl->fifo[4] = kh;
1679         fdctrl->fifo[5] = ks;
1680         return;
1681     case 1:
1682         fdctrl->status0 |= FD_SR0_SEEK;
1683         break;
1684     default:
1685         break;
1686     }
1687 
1688     /* Check the data rate. If the programmed data rate does not match
1689      * the currently inserted medium, the operation has to fail. */
1690     if (fdctrl->check_media_rate &&
1691         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1692         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1693                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1694         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1695         fdctrl->fifo[3] = kt;
1696         fdctrl->fifo[4] = kh;
1697         fdctrl->fifo[5] = ks;
1698         return;
1699     }
1700 
1701     /* Set the FIFO state */
1702     fdctrl->data_dir = direction;
1703     fdctrl->data_pos = 0;
1704     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1705     if (fdctrl->fifo[0] & 0x80)
1706         fdctrl->data_state |= FD_STATE_MULTI;
1707     else
1708         fdctrl->data_state &= ~FD_STATE_MULTI;
1709     if (fdctrl->fifo[5] == 0) {
1710         fdctrl->data_len = fdctrl->fifo[8];
1711     } else {
1712         int tmp;
1713         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1714         tmp = (fdctrl->fifo[6] - ks + 1);
1715         if (fdctrl->fifo[0] & 0x80)
1716             tmp += fdctrl->fifo[6];
1717         fdctrl->data_len *= tmp;
1718     }
1719     fdctrl->eot = fdctrl->fifo[6];
1720     if (fdctrl->dor & FD_DOR_DMAEN) {
1721         /* DMA transfer is enabled. */
1722         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1723 
1724         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1725                        direction, (128 << fdctrl->fifo[5]) *
1726                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1727 
1728         /* No access is allowed until DMA transfer has completed */
1729         fdctrl->msr &= ~FD_MSR_RQM;
1730         if (direction != FD_DIR_VERIFY) {
1731             /*
1732              * Now, we just have to wait for the DMA controller to
1733              * recall us...
1734              */
1735             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1736             k->schedule(fdctrl->dma);
1737         } else {
1738             /* Start transfer */
1739             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1740                     fdctrl->data_len);
1741         }
1742         return;
1743     }
1744     FLOPPY_DPRINTF("start non-DMA transfer\n");
1745     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1746     if (direction != FD_DIR_WRITE)
1747         fdctrl->msr |= FD_MSR_DIO;
1748     /* IO based transfer: calculate len */
1749     fdctrl_raise_irq(fdctrl);
1750 }
1751 
1752 /* Prepare a transfer of deleted data */
1753 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1754 {
1755     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1756 
1757     /* We don't handle deleted data,
1758      * so we don't return *ANYTHING*
1759      */
1760     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1761 }
1762 
1763 /* handlers for DMA transfers */
1764 static int fdctrl_transfer_handler (void *opaque, int nchan,
1765                                     int dma_pos, int dma_len)
1766 {
1767     FDCtrl *fdctrl;
1768     FDrive *cur_drv;
1769     int len, start_pos, rel_pos;
1770     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1771     IsaDmaClass *k;
1772 
1773     fdctrl = opaque;
1774     if (fdctrl->msr & FD_MSR_RQM) {
1775         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1776         return 0;
1777     }
1778     k = ISADMA_GET_CLASS(fdctrl->dma);
1779     cur_drv = get_cur_drv(fdctrl);
1780     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1781         fdctrl->data_dir == FD_DIR_SCANH)
1782         status2 = FD_SR2_SNS;
1783     if (dma_len > fdctrl->data_len)
1784         dma_len = fdctrl->data_len;
1785     if (cur_drv->blk == NULL) {
1786         if (fdctrl->data_dir == FD_DIR_WRITE)
1787             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1788         else
1789             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1790         len = 0;
1791         goto transfer_error;
1792     }
1793     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1794     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1795         len = dma_len - fdctrl->data_pos;
1796         if (len + rel_pos > FD_SECTOR_LEN)
1797             len = FD_SECTOR_LEN - rel_pos;
1798         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1799                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1800                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1801                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1802                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1803         if (fdctrl->data_dir != FD_DIR_WRITE ||
1804             len < FD_SECTOR_LEN || rel_pos != 0) {
1805             /* READ & SCAN commands and realign to a sector for WRITE */
1806             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1807                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1808                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1809                                fd_sector(cur_drv));
1810                 /* Sure, image size is too small... */
1811                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1812             }
1813         }
1814         switch (fdctrl->data_dir) {
1815         case FD_DIR_READ:
1816             /* READ commands */
1817             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1818                             fdctrl->data_pos, len);
1819             break;
1820         case FD_DIR_WRITE:
1821             /* WRITE commands */
1822             if (cur_drv->ro) {
1823                 /* Handle readonly medium early, no need to do DMA, touch the
1824                  * LED or attempt any writes. A real floppy doesn't attempt
1825                  * to write to readonly media either. */
1826                 fdctrl_stop_transfer(fdctrl,
1827                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1828                                      0x00);
1829                 goto transfer_error;
1830             }
1831 
1832             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1833                            fdctrl->data_pos, len);
1834             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1835                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1836                 FLOPPY_DPRINTF("error writing sector %d\n",
1837                                fd_sector(cur_drv));
1838                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1839                 goto transfer_error;
1840             }
1841             break;
1842         case FD_DIR_VERIFY:
1843             /* VERIFY commands */
1844             break;
1845         default:
1846             /* SCAN commands */
1847             {
1848                 uint8_t tmpbuf[FD_SECTOR_LEN];
1849                 int ret;
1850                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1851                                len);
1852                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1853                 if (ret == 0) {
1854                     status2 = FD_SR2_SEH;
1855                     goto end_transfer;
1856                 }
1857                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1858                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1859                     status2 = 0x00;
1860                     goto end_transfer;
1861                 }
1862             }
1863             break;
1864         }
1865         fdctrl->data_pos += len;
1866         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1867         if (rel_pos == 0) {
1868             /* Seek to next sector */
1869             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1870                 break;
1871         }
1872     }
1873  end_transfer:
1874     len = fdctrl->data_pos - start_pos;
1875     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1876                    fdctrl->data_pos, len, fdctrl->data_len);
1877     if (fdctrl->data_dir == FD_DIR_SCANE ||
1878         fdctrl->data_dir == FD_DIR_SCANL ||
1879         fdctrl->data_dir == FD_DIR_SCANH)
1880         status2 = FD_SR2_SEH;
1881     fdctrl->data_len -= len;
1882     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1883  transfer_error:
1884 
1885     return len;
1886 }
1887 
1888 /* Data register : 0x05 */
1889 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1890 {
1891     FDrive *cur_drv;
1892     uint32_t retval = 0;
1893     uint32_t pos;
1894 
1895     cur_drv = get_cur_drv(fdctrl);
1896     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1897     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1898         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1899         return 0;
1900     }
1901 
1902     /* If data_len spans multiple sectors, the current position in the FIFO
1903      * wraps around while fdctrl->data_pos is the real position in the whole
1904      * request. */
1905     pos = fdctrl->data_pos;
1906     pos %= FD_SECTOR_LEN;
1907 
1908     switch (fdctrl->phase) {
1909     case FD_PHASE_EXECUTION:
1910         assert(fdctrl->msr & FD_MSR_NONDMA);
1911         if (pos == 0) {
1912             if (fdctrl->data_pos != 0)
1913                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1914                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1915                                    fd_sector(cur_drv));
1916                     return 0;
1917                 }
1918             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1919                           BDRV_SECTOR_SIZE)
1920                 < 0) {
1921                 FLOPPY_DPRINTF("error getting sector %d\n",
1922                                fd_sector(cur_drv));
1923                 /* Sure, image size is too small... */
1924                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1925             }
1926         }
1927 
1928         if (++fdctrl->data_pos == fdctrl->data_len) {
1929             fdctrl->msr &= ~FD_MSR_RQM;
1930             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1931         }
1932         break;
1933 
1934     case FD_PHASE_RESULT:
1935         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1936         if (++fdctrl->data_pos == fdctrl->data_len) {
1937             fdctrl->msr &= ~FD_MSR_RQM;
1938             fdctrl_to_command_phase(fdctrl);
1939             fdctrl_reset_irq(fdctrl);
1940         }
1941         break;
1942 
1943     case FD_PHASE_COMMAND:
1944     default:
1945         abort();
1946     }
1947 
1948     retval = fdctrl->fifo[pos];
1949     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1950 
1951     return retval;
1952 }
1953 
1954 static void fdctrl_format_sector(FDCtrl *fdctrl)
1955 {
1956     FDrive *cur_drv;
1957     uint8_t kh, kt, ks;
1958 
1959     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1960     cur_drv = get_cur_drv(fdctrl);
1961     kt = fdctrl->fifo[6];
1962     kh = fdctrl->fifo[7];
1963     ks = fdctrl->fifo[8];
1964     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1965                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1966                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1967                                   NUM_SIDES(cur_drv)));
1968     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1969     case 2:
1970         /* sect too big */
1971         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1972         fdctrl->fifo[3] = kt;
1973         fdctrl->fifo[4] = kh;
1974         fdctrl->fifo[5] = ks;
1975         return;
1976     case 3:
1977         /* track too big */
1978         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1979         fdctrl->fifo[3] = kt;
1980         fdctrl->fifo[4] = kh;
1981         fdctrl->fifo[5] = ks;
1982         return;
1983     case 4:
1984         /* No seek enabled */
1985         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1986         fdctrl->fifo[3] = kt;
1987         fdctrl->fifo[4] = kh;
1988         fdctrl->fifo[5] = ks;
1989         return;
1990     case 1:
1991         fdctrl->status0 |= FD_SR0_SEEK;
1992         break;
1993     default:
1994         break;
1995     }
1996     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1997     if (cur_drv->blk == NULL ||
1998         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1999                    BDRV_SECTOR_SIZE, 0) < 0) {
2000         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2001         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2002     } else {
2003         if (cur_drv->sect == cur_drv->last_sect) {
2004             fdctrl->data_state &= ~FD_STATE_FORMAT;
2005             /* Last sector done */
2006             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2007         } else {
2008             /* More to do */
2009             fdctrl->data_pos = 0;
2010             fdctrl->data_len = 4;
2011         }
2012     }
2013 }
2014 
2015 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2016 {
2017     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2018     fdctrl->fifo[0] = fdctrl->lock << 4;
2019     fdctrl_to_result_phase(fdctrl, 1);
2020 }
2021 
2022 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2023 {
2024     FDrive *cur_drv = get_cur_drv(fdctrl);
2025 
2026     /* Drives position */
2027     fdctrl->fifo[0] = drv0(fdctrl)->track;
2028     fdctrl->fifo[1] = drv1(fdctrl)->track;
2029 #if MAX_FD == 4
2030     fdctrl->fifo[2] = drv2(fdctrl)->track;
2031     fdctrl->fifo[3] = drv3(fdctrl)->track;
2032 #else
2033     fdctrl->fifo[2] = 0;
2034     fdctrl->fifo[3] = 0;
2035 #endif
2036     /* timers */
2037     fdctrl->fifo[4] = fdctrl->timer0;
2038     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2039     fdctrl->fifo[6] = cur_drv->last_sect;
2040     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2041         (cur_drv->perpendicular << 2);
2042     fdctrl->fifo[8] = fdctrl->config;
2043     fdctrl->fifo[9] = fdctrl->precomp_trk;
2044     fdctrl_to_result_phase(fdctrl, 10);
2045 }
2046 
2047 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2048 {
2049     /* Controller's version */
2050     fdctrl->fifo[0] = fdctrl->version;
2051     fdctrl_to_result_phase(fdctrl, 1);
2052 }
2053 
2054 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2055 {
2056     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2057     fdctrl_to_result_phase(fdctrl, 1);
2058 }
2059 
2060 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2061 {
2062     FDrive *cur_drv = get_cur_drv(fdctrl);
2063 
2064     /* Drives position */
2065     drv0(fdctrl)->track = fdctrl->fifo[3];
2066     drv1(fdctrl)->track = fdctrl->fifo[4];
2067 #if MAX_FD == 4
2068     drv2(fdctrl)->track = fdctrl->fifo[5];
2069     drv3(fdctrl)->track = fdctrl->fifo[6];
2070 #endif
2071     /* timers */
2072     fdctrl->timer0 = fdctrl->fifo[7];
2073     fdctrl->timer1 = fdctrl->fifo[8];
2074     cur_drv->last_sect = fdctrl->fifo[9];
2075     fdctrl->lock = fdctrl->fifo[10] >> 7;
2076     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2077     fdctrl->config = fdctrl->fifo[11];
2078     fdctrl->precomp_trk = fdctrl->fifo[12];
2079     fdctrl->pwrd = fdctrl->fifo[13];
2080     fdctrl_to_command_phase(fdctrl);
2081 }
2082 
2083 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2084 {
2085     FDrive *cur_drv = get_cur_drv(fdctrl);
2086 
2087     fdctrl->fifo[0] = 0;
2088     fdctrl->fifo[1] = 0;
2089     /* Drives position */
2090     fdctrl->fifo[2] = drv0(fdctrl)->track;
2091     fdctrl->fifo[3] = drv1(fdctrl)->track;
2092 #if MAX_FD == 4
2093     fdctrl->fifo[4] = drv2(fdctrl)->track;
2094     fdctrl->fifo[5] = drv3(fdctrl)->track;
2095 #else
2096     fdctrl->fifo[4] = 0;
2097     fdctrl->fifo[5] = 0;
2098 #endif
2099     /* timers */
2100     fdctrl->fifo[6] = fdctrl->timer0;
2101     fdctrl->fifo[7] = fdctrl->timer1;
2102     fdctrl->fifo[8] = cur_drv->last_sect;
2103     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2104         (cur_drv->perpendicular << 2);
2105     fdctrl->fifo[10] = fdctrl->config;
2106     fdctrl->fifo[11] = fdctrl->precomp_trk;
2107     fdctrl->fifo[12] = fdctrl->pwrd;
2108     fdctrl->fifo[13] = 0;
2109     fdctrl->fifo[14] = 0;
2110     fdctrl_to_result_phase(fdctrl, 15);
2111 }
2112 
2113 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2114 {
2115     FDrive *cur_drv = get_cur_drv(fdctrl);
2116 
2117     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2118     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2119              (NANOSECONDS_PER_SECOND / 50));
2120 }
2121 
2122 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2123 {
2124     FDrive *cur_drv;
2125 
2126     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2127     cur_drv = get_cur_drv(fdctrl);
2128     fdctrl->data_state |= FD_STATE_FORMAT;
2129     if (fdctrl->fifo[0] & 0x80)
2130         fdctrl->data_state |= FD_STATE_MULTI;
2131     else
2132         fdctrl->data_state &= ~FD_STATE_MULTI;
2133     cur_drv->bps =
2134         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2135 #if 0
2136     cur_drv->last_sect =
2137         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2138         fdctrl->fifo[3] / 2;
2139 #else
2140     cur_drv->last_sect = fdctrl->fifo[3];
2141 #endif
2142     /* TODO: implement format using DMA expected by the Bochs BIOS
2143      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2144      * the sector with the specified fill byte
2145      */
2146     fdctrl->data_state &= ~FD_STATE_FORMAT;
2147     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2148 }
2149 
2150 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2151 {
2152     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2153     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2154     if (fdctrl->fifo[2] & 1)
2155         fdctrl->dor &= ~FD_DOR_DMAEN;
2156     else
2157         fdctrl->dor |= FD_DOR_DMAEN;
2158     /* No result back */
2159     fdctrl_to_command_phase(fdctrl);
2160 }
2161 
2162 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2163 {
2164     FDrive *cur_drv;
2165 
2166     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2167     cur_drv = get_cur_drv(fdctrl);
2168     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2169     /* 1 Byte status back */
2170     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2171         (cur_drv->track == 0 ? 0x10 : 0x00) |
2172         (cur_drv->head << 2) |
2173         GET_CUR_DRV(fdctrl) |
2174         0x28;
2175     fdctrl_to_result_phase(fdctrl, 1);
2176 }
2177 
2178 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2179 {
2180     FDrive *cur_drv;
2181 
2182     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2183     cur_drv = get_cur_drv(fdctrl);
2184     fd_recalibrate(cur_drv);
2185     fdctrl_to_command_phase(fdctrl);
2186     /* Raise Interrupt */
2187     fdctrl->status0 |= FD_SR0_SEEK;
2188     fdctrl_raise_irq(fdctrl);
2189 }
2190 
2191 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2192 {
2193     FDrive *cur_drv = get_cur_drv(fdctrl);
2194 
2195     if (fdctrl->reset_sensei > 0) {
2196         fdctrl->fifo[0] =
2197             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2198         fdctrl->reset_sensei--;
2199     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2200         fdctrl->fifo[0] = FD_SR0_INVCMD;
2201         fdctrl_to_result_phase(fdctrl, 1);
2202         return;
2203     } else {
2204         fdctrl->fifo[0] =
2205                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2206                 | GET_CUR_DRV(fdctrl);
2207     }
2208 
2209     fdctrl->fifo[1] = cur_drv->track;
2210     fdctrl_to_result_phase(fdctrl, 2);
2211     fdctrl_reset_irq(fdctrl);
2212     fdctrl->status0 = FD_SR0_RDYCHG;
2213 }
2214 
2215 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2216 {
2217     FDrive *cur_drv;
2218 
2219     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2220     cur_drv = get_cur_drv(fdctrl);
2221     fdctrl_to_command_phase(fdctrl);
2222     /* The seek command just sends step pulses to the drive and doesn't care if
2223      * there is a medium inserted of if it's banging the head against the drive.
2224      */
2225     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2226     /* Raise Interrupt */
2227     fdctrl->status0 |= FD_SR0_SEEK;
2228     fdctrl_raise_irq(fdctrl);
2229 }
2230 
2231 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2232 {
2233     FDrive *cur_drv = get_cur_drv(fdctrl);
2234 
2235     if (fdctrl->fifo[1] & 0x80)
2236         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2237     /* No result back */
2238     fdctrl_to_command_phase(fdctrl);
2239 }
2240 
2241 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2242 {
2243     fdctrl->config = fdctrl->fifo[2];
2244     fdctrl->precomp_trk =  fdctrl->fifo[3];
2245     /* No result back */
2246     fdctrl_to_command_phase(fdctrl);
2247 }
2248 
2249 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2250 {
2251     fdctrl->pwrd = fdctrl->fifo[1];
2252     fdctrl->fifo[0] = fdctrl->fifo[1];
2253     fdctrl_to_result_phase(fdctrl, 1);
2254 }
2255 
2256 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2257 {
2258     /* No result back */
2259     fdctrl_to_command_phase(fdctrl);
2260 }
2261 
2262 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2263 {
2264     FDrive *cur_drv = get_cur_drv(fdctrl);
2265     uint32_t pos;
2266 
2267     pos = fdctrl->data_pos - 1;
2268     pos %= FD_SECTOR_LEN;
2269     if (fdctrl->fifo[pos] & 0x80) {
2270         /* Command parameters done */
2271         if (fdctrl->fifo[pos] & 0x40) {
2272             fdctrl->fifo[0] = fdctrl->fifo[1];
2273             fdctrl->fifo[2] = 0;
2274             fdctrl->fifo[3] = 0;
2275             fdctrl_to_result_phase(fdctrl, 4);
2276         } else {
2277             fdctrl_to_command_phase(fdctrl);
2278         }
2279     } else if (fdctrl->data_len > 7) {
2280         /* ERROR */
2281         fdctrl->fifo[0] = 0x80 |
2282             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2283         fdctrl_to_result_phase(fdctrl, 1);
2284     }
2285 }
2286 
2287 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2288 {
2289     FDrive *cur_drv;
2290 
2291     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2292     cur_drv = get_cur_drv(fdctrl);
2293     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2294         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2295                 cur_drv->sect, 1);
2296     } else {
2297         fd_seek(cur_drv, cur_drv->head,
2298                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2299     }
2300     fdctrl_to_command_phase(fdctrl);
2301     /* Raise Interrupt */
2302     fdctrl->status0 |= FD_SR0_SEEK;
2303     fdctrl_raise_irq(fdctrl);
2304 }
2305 
2306 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2307 {
2308     FDrive *cur_drv;
2309 
2310     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2311     cur_drv = get_cur_drv(fdctrl);
2312     if (fdctrl->fifo[2] > cur_drv->track) {
2313         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2314     } else {
2315         fd_seek(cur_drv, cur_drv->head,
2316                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2317     }
2318     fdctrl_to_command_phase(fdctrl);
2319     /* Raise Interrupt */
2320     fdctrl->status0 |= FD_SR0_SEEK;
2321     fdctrl_raise_irq(fdctrl);
2322 }
2323 
2324 /*
2325  * Handlers for the execution phase of each command
2326  */
2327 typedef struct FDCtrlCommand {
2328     uint8_t value;
2329     uint8_t mask;
2330     const char* name;
2331     int parameters;
2332     void (*handler)(FDCtrl *fdctrl, int direction);
2333     int direction;
2334 } FDCtrlCommand;
2335 
2336 static const FDCtrlCommand handlers[] = {
2337     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2338     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2339     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2340     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2341     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2342     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2343     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2344     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2345     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2346     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2347     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2348     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2349     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2350     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2351     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2352     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2353     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2354     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2355     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2356     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2357     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2358     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2359     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2360     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2361     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2362     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2363     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2364     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2365     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2366     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2367     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2368     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2369 };
2370 /* Associate command to an index in the 'handlers' array */
2371 static uint8_t command_to_handler[256];
2372 
2373 static const FDCtrlCommand *get_command(uint8_t cmd)
2374 {
2375     int idx;
2376 
2377     idx = command_to_handler[cmd];
2378     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2379     return &handlers[idx];
2380 }
2381 
2382 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2383 {
2384     FDrive *cur_drv;
2385     const FDCtrlCommand *cmd;
2386     uint32_t pos;
2387 
2388     /* Reset mode */
2389     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2390         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2391         return;
2392     }
2393     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2394         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2395         return;
2396     }
2397     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2398 
2399     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2400 
2401     /* If data_len spans multiple sectors, the current position in the FIFO
2402      * wraps around while fdctrl->data_pos is the real position in the whole
2403      * request. */
2404     pos = fdctrl->data_pos++;
2405     pos %= FD_SECTOR_LEN;
2406     fdctrl->fifo[pos] = value;
2407 
2408     if (fdctrl->data_pos == fdctrl->data_len) {
2409         fdctrl->msr &= ~FD_MSR_RQM;
2410     }
2411 
2412     switch (fdctrl->phase) {
2413     case FD_PHASE_EXECUTION:
2414         /* For DMA requests, RQM should be cleared during execution phase, so
2415          * we would have errored out above. */
2416         assert(fdctrl->msr & FD_MSR_NONDMA);
2417 
2418         /* FIFO data write */
2419         if (pos == FD_SECTOR_LEN - 1 ||
2420             fdctrl->data_pos == fdctrl->data_len) {
2421             cur_drv = get_cur_drv(fdctrl);
2422             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2423                            BDRV_SECTOR_SIZE, 0) < 0) {
2424                 FLOPPY_DPRINTF("error writing sector %d\n",
2425                                fd_sector(cur_drv));
2426                 break;
2427             }
2428             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2429                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2430                                fd_sector(cur_drv));
2431                 break;
2432             }
2433         }
2434 
2435         /* Switch to result phase when done with the transfer */
2436         if (fdctrl->data_pos == fdctrl->data_len) {
2437             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2438         }
2439         break;
2440 
2441     case FD_PHASE_COMMAND:
2442         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2443         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2444 
2445         if (pos == 0) {
2446             /* The first byte specifies the command. Now we start reading
2447              * as many parameters as this command requires. */
2448             cmd = get_command(value);
2449             fdctrl->data_len = cmd->parameters + 1;
2450             if (cmd->parameters) {
2451                 fdctrl->msr |= FD_MSR_RQM;
2452             }
2453             fdctrl->msr |= FD_MSR_CMDBUSY;
2454         }
2455 
2456         if (fdctrl->data_pos == fdctrl->data_len) {
2457             /* We have all parameters now, execute the command */
2458             fdctrl->phase = FD_PHASE_EXECUTION;
2459 
2460             if (fdctrl->data_state & FD_STATE_FORMAT) {
2461                 fdctrl_format_sector(fdctrl);
2462                 break;
2463             }
2464 
2465             cmd = get_command(fdctrl->fifo[0]);
2466             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2467             cmd->handler(fdctrl, cmd->direction);
2468         }
2469         break;
2470 
2471     case FD_PHASE_RESULT:
2472     default:
2473         abort();
2474     }
2475 }
2476 
2477 static void fdctrl_result_timer(void *opaque)
2478 {
2479     FDCtrl *fdctrl = opaque;
2480     FDrive *cur_drv = get_cur_drv(fdctrl);
2481 
2482     /* Pretend we are spinning.
2483      * This is needed for Coherent, which uses READ ID to check for
2484      * sector interleaving.
2485      */
2486     if (cur_drv->last_sect != 0) {
2487         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2488     }
2489     /* READ_ID can't automatically succeed! */
2490     if (fdctrl->check_media_rate &&
2491         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2492         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2493                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2494         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2495     } else {
2496         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2497     }
2498 }
2499 
2500 /* Init functions */
2501 
2502 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2503 {
2504     DeviceState *dev;
2505     int i;
2506 
2507     for (i = 0; i < MAX_FD; i++) {
2508         if (fds[i]) {
2509             dev = qdev_new("floppy");
2510             qdev_prop_set_uint32(dev, "unit", i);
2511             qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2512             qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2513                                     &error_fatal);
2514             qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2515         }
2516     }
2517 }
2518 
2519 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds)
2520 {
2521     fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds);
2522 }
2523 
2524 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2525                                   Error **errp)
2526 {
2527     unsigned int i;
2528     FDrive *drive;
2529     DeviceState *dev;
2530     BlockBackend *blk;
2531     Error *local_err = NULL;
2532     const char *fdc_name, *drive_suffix;
2533 
2534     for (i = 0; i < MAX_FD; i++) {
2535         drive = &fdctrl->drives[i];
2536         drive->fdctrl = fdctrl;
2537 
2538         /* If the drive is not present, we skip creating the qdev device, but
2539          * still have to initialise the controller. */
2540         blk = fdctrl->qdev_for_drives[i].blk;
2541         if (!blk) {
2542             fd_init(drive);
2543             fd_revalidate(drive);
2544             continue;
2545         }
2546 
2547         fdc_name = object_get_typename(OBJECT(fdc_dev));
2548         drive_suffix = !strcmp(fdc_name, "SUNW,fdtwo") ? "" : i ? "B" : "A";
2549         warn_report("warning: property %s.drive%s is deprecated",
2550                     fdc_name, drive_suffix);
2551         error_printf("Use -device floppy,unit=%d,drive=... instead.\n", i);
2552 
2553         dev = qdev_new("floppy");
2554         qdev_prop_set_uint32(dev, "unit", i);
2555         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2556 
2557         /*
2558          * Hack alert: we move the backend from the floppy controller
2559          * device to the floppy device.  We first need to detach the
2560          * controller, or else floppy_create()'s qdev_prop_set_drive()
2561          * will die when it attaches floppy device.  We also need to
2562          * take another reference so that blk_detach_dev() doesn't
2563          * free blk while we still need it.
2564          *
2565          * The hack is probably a bad idea.
2566          */
2567         blk_ref(blk);
2568         blk_detach_dev(blk, fdc_dev);
2569         fdctrl->qdev_for_drives[i].blk = NULL;
2570         qdev_prop_set_drive_err(dev, "drive", blk, &local_err);
2571         blk_unref(blk);
2572 
2573         if (local_err) {
2574             error_propagate(errp, local_err);
2575             return;
2576         }
2577 
2578         qdev_realize_and_unref(dev, &fdctrl->bus.bus, &local_err);
2579         if (local_err) {
2580             error_propagate(errp, local_err);
2581             return;
2582         }
2583     }
2584 }
2585 
2586 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2587                         hwaddr mmio_base, DriveInfo **fds)
2588 {
2589     FDCtrl *fdctrl;
2590     DeviceState *dev;
2591     SysBusDevice *sbd;
2592     FDCtrlSysBus *sys;
2593 
2594     dev = qdev_new("sysbus-fdc");
2595     sys = SYSBUS_FDC(dev);
2596     fdctrl = &sys->state;
2597     fdctrl->dma_chann = dma_chann; /* FIXME */
2598     sbd = SYS_BUS_DEVICE(dev);
2599     sysbus_realize_and_unref(sbd, &error_fatal);
2600     sysbus_connect_irq(sbd, 0, irq);
2601     sysbus_mmio_map(sbd, 0, mmio_base);
2602 
2603     fdctrl_init_drives(&sys->state.bus, fds);
2604 }
2605 
2606 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2607                        DriveInfo **fds, qemu_irq *fdc_tc)
2608 {
2609     DeviceState *dev;
2610     FDCtrlSysBus *sys;
2611 
2612     dev = qdev_new("SUNW,fdtwo");
2613     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2614     sys = SYSBUS_FDC(dev);
2615     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2616     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2617     *fdc_tc = qdev_get_gpio_in(dev, 0);
2618 
2619     fdctrl_init_drives(&sys->state.bus, fds);
2620 }
2621 
2622 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2623                                   Error **errp)
2624 {
2625     int i, j;
2626     static int command_tables_inited = 0;
2627 
2628     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2629         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2630         return;
2631     }
2632 
2633     /* Fill 'command_to_handler' lookup table */
2634     if (!command_tables_inited) {
2635         command_tables_inited = 1;
2636         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2637             for (j = 0; j < sizeof(command_to_handler); j++) {
2638                 if ((j & handlers[i].mask) == handlers[i].value) {
2639                     command_to_handler[j] = i;
2640                 }
2641             }
2642         }
2643     }
2644 
2645     FLOPPY_DPRINTF("init controller\n");
2646     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2647     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2648     fdctrl->fifo_size = 512;
2649     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2650                                              fdctrl_result_timer, fdctrl);
2651 
2652     fdctrl->version = 0x90; /* Intel 82078 controller */
2653     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2654     fdctrl->num_floppies = MAX_FD;
2655 
2656     if (fdctrl->dma_chann != -1) {
2657         IsaDmaClass *k;
2658         assert(fdctrl->dma);
2659         k = ISADMA_GET_CLASS(fdctrl->dma);
2660         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2661                             &fdctrl_transfer_handler, fdctrl);
2662     }
2663 
2664     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2665     fdctrl_connect_drives(fdctrl, dev, errp);
2666 }
2667 
2668 static const MemoryRegionPortio fdc_portio_list[] = {
2669     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2670     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2671     PORTIO_END_OF_LIST(),
2672 };
2673 
2674 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2675 {
2676     ISADevice *isadev = ISA_DEVICE(dev);
2677     FDCtrlISABus *isa = ISA_FDC(dev);
2678     FDCtrl *fdctrl = &isa->state;
2679     Error *err = NULL;
2680 
2681     isa_register_portio_list(isadev, &fdctrl->portio_list,
2682                              isa->iobase, fdc_portio_list, fdctrl,
2683                              "fdc");
2684 
2685     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2686     fdctrl->dma_chann = isa->dma;
2687     if (fdctrl->dma_chann != -1) {
2688         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2689         if (!fdctrl->dma) {
2690             error_setg(errp, "ISA controller does not support DMA");
2691             return;
2692         }
2693     }
2694 
2695     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2696     fdctrl_realize_common(dev, fdctrl, &err);
2697     if (err != NULL) {
2698         error_propagate(errp, err);
2699         return;
2700     }
2701 }
2702 
2703 static void sysbus_fdc_initfn(Object *obj)
2704 {
2705     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2706     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2707     FDCtrl *fdctrl = &sys->state;
2708 
2709     fdctrl->dma_chann = -1;
2710 
2711     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2712                           "fdc", 0x08);
2713     sysbus_init_mmio(sbd, &fdctrl->iomem);
2714 }
2715 
2716 static void sun4m_fdc_initfn(Object *obj)
2717 {
2718     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2719     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2720     FDCtrl *fdctrl = &sys->state;
2721 
2722     fdctrl->dma_chann = -1;
2723 
2724     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2725                           fdctrl, "fdctrl", 0x08);
2726     sysbus_init_mmio(sbd, &fdctrl->iomem);
2727 }
2728 
2729 static void sysbus_fdc_common_initfn(Object *obj)
2730 {
2731     DeviceState *dev = DEVICE(obj);
2732     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2733     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2734     FDCtrl *fdctrl = &sys->state;
2735 
2736     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2737 
2738     sysbus_init_irq(sbd, &fdctrl->irq);
2739     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2740 }
2741 
2742 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2743 {
2744     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2745     FDCtrl *fdctrl = &sys->state;
2746 
2747     fdctrl_realize_common(dev, fdctrl, errp);
2748 }
2749 
2750 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2751 {
2752     FDCtrlISABus *isa = ISA_FDC(fdc);
2753 
2754     return isa->state.drives[i].drive;
2755 }
2756 
2757 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc,
2758                                       uint8_t *maxh, uint8_t *maxs)
2759 {
2760     const FDFormat *fdf;
2761 
2762     *maxc = *maxh = *maxs = 0;
2763     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2764         if (fdf->drive != type) {
2765             continue;
2766         }
2767         if (*maxc < fdf->max_track) {
2768             *maxc = fdf->max_track;
2769         }
2770         if (*maxh < fdf->max_head) {
2771             *maxh = fdf->max_head;
2772         }
2773         if (*maxs < fdf->last_sect) {
2774             *maxs = fdf->last_sect;
2775         }
2776     }
2777     (*maxc)--;
2778 }
2779 
2780 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
2781 {
2782     Aml *dev, *fdi;
2783     uint8_t maxc, maxh, maxs;
2784 
2785     isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
2786 
2787     dev = aml_device("FLP%c", 'A' + idx);
2788 
2789     aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
2790 
2791     fdi = aml_package(16);
2792     aml_append(fdi, aml_int(idx));  /* Drive Number */
2793     aml_append(fdi,
2794         aml_int(cmos_get_fd_drive_type(type)));  /* Device Type */
2795     /*
2796      * the values below are the limits of the drive, and are thus independent
2797      * of the inserted media
2798      */
2799     aml_append(fdi, aml_int(maxc));  /* Maximum Cylinder Number */
2800     aml_append(fdi, aml_int(maxs));  /* Maximum Sector Number */
2801     aml_append(fdi, aml_int(maxh));  /* Maximum Head Number */
2802     /*
2803      * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2804      * the drive type, so shall we
2805      */
2806     aml_append(fdi, aml_int(0xAF));  /* disk_specify_1 */
2807     aml_append(fdi, aml_int(0x02));  /* disk_specify_2 */
2808     aml_append(fdi, aml_int(0x25));  /* disk_motor_wait */
2809     aml_append(fdi, aml_int(0x02));  /* disk_sector_siz */
2810     aml_append(fdi, aml_int(0x12));  /* disk_eot */
2811     aml_append(fdi, aml_int(0x1B));  /* disk_rw_gap */
2812     aml_append(fdi, aml_int(0xFF));  /* disk_dtl */
2813     aml_append(fdi, aml_int(0x6C));  /* disk_formt_gap */
2814     aml_append(fdi, aml_int(0xF6));  /* disk_fill */
2815     aml_append(fdi, aml_int(0x0F));  /* disk_head_sttl */
2816     aml_append(fdi, aml_int(0x08));  /* disk_motor_strt */
2817 
2818     aml_append(dev, aml_name_decl("_FDI", fdi));
2819     return dev;
2820 }
2821 
2822 int cmos_get_fd_drive_type(FloppyDriveType fd0)
2823 {
2824     int val;
2825 
2826     switch (fd0) {
2827     case FLOPPY_DRIVE_TYPE_144:
2828         /* 1.44 Mb 3"5 drive */
2829         val = 4;
2830         break;
2831     case FLOPPY_DRIVE_TYPE_288:
2832         /* 2.88 Mb 3"5 drive */
2833         val = 5;
2834         break;
2835     case FLOPPY_DRIVE_TYPE_120:
2836         /* 1.2 Mb 5"5 drive */
2837         val = 2;
2838         break;
2839     case FLOPPY_DRIVE_TYPE_NONE:
2840     default:
2841         val = 0;
2842         break;
2843     }
2844     return val;
2845 }
2846 
2847 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope)
2848 {
2849     Aml *dev;
2850     Aml *crs;
2851     int i;
2852 
2853 #define ACPI_FDE_MAX_FD 4
2854     uint32_t fde_buf[5] = {
2855         0, 0, 0, 0,     /* presence of floppy drives #0 - #3 */
2856         cpu_to_le32(2)  /* tape presence (2 == never present) */
2857     };
2858 
2859     crs = aml_resource_template();
2860     aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
2861     aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
2862     aml_append(crs, aml_irq_no_flags(6));
2863     aml_append(crs,
2864         aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
2865 
2866     dev = aml_device("FDC0");
2867     aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2868     aml_append(dev, aml_name_decl("_CRS", crs));
2869 
2870     for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
2871         FloppyDriveType type = isa_fdc_get_drive_type(isadev, i);
2872 
2873         if (type < FLOPPY_DRIVE_TYPE_NONE) {
2874             fde_buf[i] = cpu_to_le32(1);  /* drive present */
2875             aml_append(dev, build_fdinfo_aml(i, type));
2876         }
2877     }
2878     aml_append(dev, aml_name_decl("_FDE",
2879                aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
2880 
2881     aml_append(scope, dev);
2882 }
2883 
2884 static const VMStateDescription vmstate_isa_fdc ={
2885     .name = "fdc",
2886     .version_id = 2,
2887     .minimum_version_id = 2,
2888     .fields = (VMStateField[]) {
2889         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2890         VMSTATE_END_OF_LIST()
2891     }
2892 };
2893 
2894 static Property isa_fdc_properties[] = {
2895     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2896     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2897     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2898     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2899     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2900     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2901                     0, true),
2902     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2903                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2904                         FloppyDriveType),
2905     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2906                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2907                         FloppyDriveType),
2908     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2909                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2910                         FloppyDriveType),
2911     DEFINE_PROP_END_OF_LIST(),
2912 };
2913 
2914 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2915 {
2916     DeviceClass *dc = DEVICE_CLASS(klass);
2917     ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
2918 
2919     dc->realize = isabus_fdc_realize;
2920     dc->fw_name = "fdc";
2921     dc->reset = fdctrl_external_reset_isa;
2922     dc->vmsd = &vmstate_isa_fdc;
2923     isa->build_aml = fdc_isa_build_aml;
2924     device_class_set_props(dc, isa_fdc_properties);
2925     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2926 }
2927 
2928 static void isabus_fdc_instance_init(Object *obj)
2929 {
2930     FDCtrlISABus *isa = ISA_FDC(obj);
2931 
2932     device_add_bootindex_property(obj, &isa->bootindexA,
2933                                   "bootindexA", "/floppy@0",
2934                                   DEVICE(obj));
2935     device_add_bootindex_property(obj, &isa->bootindexB,
2936                                   "bootindexB", "/floppy@1",
2937                                   DEVICE(obj));
2938 }
2939 
2940 static const TypeInfo isa_fdc_info = {
2941     .name          = TYPE_ISA_FDC,
2942     .parent        = TYPE_ISA_DEVICE,
2943     .instance_size = sizeof(FDCtrlISABus),
2944     .class_init    = isabus_fdc_class_init,
2945     .instance_init = isabus_fdc_instance_init,
2946 };
2947 
2948 static const VMStateDescription vmstate_sysbus_fdc ={
2949     .name = "fdc",
2950     .version_id = 2,
2951     .minimum_version_id = 2,
2952     .fields = (VMStateField[]) {
2953         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2954         VMSTATE_END_OF_LIST()
2955     }
2956 };
2957 
2958 static Property sysbus_fdc_properties[] = {
2959     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2960     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2961     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2962                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2963                         FloppyDriveType),
2964     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2965                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2966                         FloppyDriveType),
2967     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2968                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2969                         FloppyDriveType),
2970     DEFINE_PROP_END_OF_LIST(),
2971 };
2972 
2973 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2974 {
2975     DeviceClass *dc = DEVICE_CLASS(klass);
2976 
2977     device_class_set_props(dc, sysbus_fdc_properties);
2978     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2979 }
2980 
2981 static const TypeInfo sysbus_fdc_info = {
2982     .name          = "sysbus-fdc",
2983     .parent        = TYPE_SYSBUS_FDC,
2984     .instance_init = sysbus_fdc_initfn,
2985     .class_init    = sysbus_fdc_class_init,
2986 };
2987 
2988 static Property sun4m_fdc_properties[] = {
2989     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2990     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2991                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2992                         FloppyDriveType),
2993     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2994                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2995                         FloppyDriveType),
2996     DEFINE_PROP_END_OF_LIST(),
2997 };
2998 
2999 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
3000 {
3001     DeviceClass *dc = DEVICE_CLASS(klass);
3002 
3003     device_class_set_props(dc, sun4m_fdc_properties);
3004     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
3005 }
3006 
3007 static const TypeInfo sun4m_fdc_info = {
3008     .name          = "SUNW,fdtwo",
3009     .parent        = TYPE_SYSBUS_FDC,
3010     .instance_init = sun4m_fdc_initfn,
3011     .class_init    = sun4m_fdc_class_init,
3012 };
3013 
3014 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
3015 {
3016     DeviceClass *dc = DEVICE_CLASS(klass);
3017 
3018     dc->realize = sysbus_fdc_common_realize;
3019     dc->reset = fdctrl_external_reset_sysbus;
3020     dc->vmsd = &vmstate_sysbus_fdc;
3021 }
3022 
3023 static const TypeInfo sysbus_fdc_type_info = {
3024     .name          = TYPE_SYSBUS_FDC,
3025     .parent        = TYPE_SYS_BUS_DEVICE,
3026     .instance_size = sizeof(FDCtrlSysBus),
3027     .instance_init = sysbus_fdc_common_initfn,
3028     .abstract      = true,
3029     .class_init    = sysbus_fdc_common_class_init,
3030 };
3031 
3032 static void fdc_register_types(void)
3033 {
3034     type_register_static(&isa_fdc_info);
3035     type_register_static(&sysbus_fdc_type_info);
3036     type_register_static(&sysbus_fdc_info);
3037     type_register_static(&sun4m_fdc_info);
3038     type_register_static(&floppy_bus_info);
3039     type_register_static(&floppy_drive_info);
3040 }
3041 
3042 type_init(fdc_register_types)
3043