xref: /openbmc/qemu/hw/audio/asc.c (revision 83baec642a13a69398a2643a1f905606c13cd363)
1 /*
2  * QEMU Apple Sound Chip emulation
3  *
4  * Apple Sound Chip (ASC) 344S0063
5  * Enhanced Apple Sound Chip (EASC) 343S1063
6  *
7  * Copyright (c) 2012-2018 Laurent Vivier <laurent@vivier.eu>
8  * Copyright (c) 2022 Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
9  *
10  * SPDX-License-Identifier: GPL-2.0-or-later
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/timer.h"
15 #include "hw/sysbus.h"
16 #include "hw/irq.h"
17 #include "audio/audio.h"
18 #include "hw/audio/asc.h"
19 #include "hw/qdev-properties.h"
20 #include "migration/vmstate.h"
21 #include "trace.h"
22 
23 /*
24  * Linux doesn't provide information about ASC, see arch/m68k/mac/macboing.c
25  * and arch/m68k/include/asm/mac_asc.h
26  *
27  * best information is coming from MAME:
28  *   https://github.com/mamedev/mame/blob/master/src/devices/sound/asc.h
29  *   https://github.com/mamedev/mame/blob/master/src/devices/sound/asc.cpp
30  *   Emulation by R. Belmont
31  * or MESS:
32  *   http://mess.redump.net/mess/driver_info/easc
33  *
34  *     0x800: VERSION
35  *     0x801: MODE
36  *            1=FIFO mode,
37  *            2=wavetable mode
38  *     0x802: CONTROL
39  *            bit 0=analog or PWM output,
40  *                1=stereo/mono,
41  *                7=processing time exceeded
42  *     0x803: FIFO MODE
43  *            bit 7=clear FIFO,
44  *            bit 1="non-ROM companding",
45  *            bit 0="ROM companding")
46  *     0x804: FIFO IRQ STATUS
47  *            bit 0=ch A 1/2 full,
48  *                1=ch A full,
49  *                2=ch B 1/2 full,
50  *                3=ch B full)
51  *     0x805: WAVETABLE CONTROL
52  *            bits 0-3 wavetables 0-3 start
53  *     0x806: VOLUME
54  *            bits 2-4 = 3 bit internal ASC volume,
55  *            bits 5-7 = volume control sent to Sony sound chip
56  *     0x807: CLOCK RATE
57  *            0 = Mac 22257 Hz,
58  *            1 = undefined,
59  *            2 = 22050 Hz,
60  *            3 = 44100 Hz
61  *     0x80a: PLAY REC A
62  *     0x80f: TEST
63  *            bits 6-7 = digital test,
64  *            bits 4-5 = analog test
65  *     0x810: WAVETABLE 0 PHASE
66  *            big-endian 9.15 fixed-point, only 24 bits valid
67  *     0x814: WAVETABLE 0 INCREMENT
68  *            big-endian 9.15 fixed-point, only 24 bits valid
69  *     0x818: WAVETABLE 1 PHASE
70  *     0x81C: WAVETABLE 1 INCREMENT
71  *     0x820: WAVETABLE 2 PHASE
72  *     0x824: WAVETABLE 2 INCREMENT
73  *     0x828: WAVETABLE 3 PHASE
74  *     0x82C: WAVETABLE 3 INCREMENT
75  *     0x830: UNKNOWN START
76  *            NetBSD writes Wavetable data here (are there more
77  *            wavetables/channels than we know about?)
78  *     0x857: UNKNOWN END
79  */
80 
81 #define ASC_SIZE           0x2000
82 
83 enum {
84     ASC_VERSION     = 0x00,
85     ASC_MODE        = 0x01,
86     ASC_CONTROL     = 0x02,
87     ASC_FIFOMODE    = 0x03,
88     ASC_FIFOIRQ     = 0x04,
89     ASC_WAVECTRL    = 0x05,
90     ASC_VOLUME      = 0x06,
91     ASC_CLOCK       = 0x07,
92     ASC_PLAYRECA    = 0x0a,
93     ASC_TEST        = 0x0f,
94     ASC_WAVETABLE   = 0x10
95 };
96 
97 #define ASC_FIFO_STATUS_HALF_FULL      1
98 #define ASC_FIFO_STATUS_FULL_EMPTY     2
99 
100 #define ASC_EXTREGS_FIFOCTRL           0x8
101 #define ASC_EXTREGS_INTCTRL            0x9
102 #define ASC_EXTREGS_CDXA_DECOMP_FILT   0x10
103 
104 #define ASC_FIFO_CYCLE_TIME            ((NANOSECONDS_PER_SECOND / ASC_FREQ) * \
105                                         0x400)
106 
asc_raise_irq(ASCState * s)107 static void asc_raise_irq(ASCState *s)
108 {
109     qemu_set_irq(s->irq, 1);
110 }
111 
asc_lower_irq(ASCState * s)112 static void asc_lower_irq(ASCState *s)
113 {
114     qemu_set_irq(s->irq, 0);
115 }
116 
asc_fifo_get(ASCFIFOState * fs)117 static uint8_t asc_fifo_get(ASCFIFOState *fs)
118 {
119     ASCState *s = container_of(fs, ASCState, fifos[fs->index]);
120     bool fifo_half_irq_enabled = fs->extregs[ASC_EXTREGS_INTCTRL] & 1;
121     uint8_t val;
122 
123     assert(fs->cnt);
124 
125     val = fs->fifo[fs->rptr];
126     trace_asc_fifo_get('A' + fs->index, fs->rptr, fs->cnt, val);
127 
128     fs->rptr++;
129     fs->rptr &= 0x3ff;
130     fs->cnt--;
131 
132     if (fs->cnt <= 0x1ff) {
133         /* FIFO less than half full */
134         fs->int_status |= ASC_FIFO_STATUS_HALF_FULL;
135     } else {
136         /* FIFO more than half full */
137         fs->int_status &= ~ASC_FIFO_STATUS_HALF_FULL;
138     }
139 
140     if (fs->cnt == 0x1ff && fifo_half_irq_enabled) {
141         /* Raise FIFO half full IRQ */
142         asc_raise_irq(s);
143     }
144 
145     if (fs->cnt == 0) {
146         /* Raise FIFO empty IRQ */
147         fs->int_status |= ASC_FIFO_STATUS_FULL_EMPTY;
148         asc_raise_irq(s);
149     }
150 
151     return val;
152 }
153 
generate_fifo(ASCState * s,int maxsamples)154 static int generate_fifo(ASCState *s, int maxsamples)
155 {
156     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
157     uint8_t *buf = s->mixbuf;
158     int i, wcount = 0;
159 
160     while (wcount < maxsamples) {
161         uint8_t val;
162         int16_t d, f0, f1;
163         int32_t t;
164         int shift, filter;
165         bool hasdata = false;
166 
167         for (i = 0; i < 2; i++) {
168             ASCFIFOState *fs = &s->fifos[i];
169 
170             switch (fs->extregs[ASC_EXTREGS_FIFOCTRL] & 0x83) {
171             case 0x82:
172                 /*
173                  * CD-XA BRR mode: decompress 15 bytes into 28 16-bit
174                  * samples
175                  */
176                 if (!fs->cnt) {
177                     val = 0x80;
178                     break;
179                 }
180 
181                 if (fs->xa_cnt == -1) {
182                     /* Start of packet, get flags */
183                     fs->xa_flags = asc_fifo_get(fs);
184                     fs->xa_cnt = 0;
185                 }
186 
187                 shift = fs->xa_flags & 0xf;
188                 filter = fs->xa_flags >> 4;
189                 f0 = (int8_t)fs->extregs[ASC_EXTREGS_CDXA_DECOMP_FILT +
190                                  (filter << 1) + 1];
191                 f1 = (int8_t)fs->extregs[ASC_EXTREGS_CDXA_DECOMP_FILT +
192                                  (filter << 1)];
193 
194                 if ((fs->xa_cnt & 1) == 0) {
195                     if (!fs->cnt) {
196                         val = 0x80;
197                         break;
198                     }
199 
200                     fs->xa_val = asc_fifo_get(fs);
201                     d = (fs->xa_val & 0xf) << 12;
202                 } else {
203                     d = (fs->xa_val & 0xf0) << 8;
204                 }
205                 t = (d >> shift) + (((fs->xa_last[0] * f0) +
206                                      (fs->xa_last[1] * f1) + 32) >> 6);
207                 if (t < -32768) {
208                     t = -32768;
209                 } else if (t > 32767) {
210                     t = 32767;
211                 }
212 
213                 /*
214                  * CD-XA BRR generates 16-bit signed output, so convert to
215                  * 8-bit before writing to buffer. Does real hardware do the
216                  * same?
217                  */
218                 val = (uint8_t)(t / 256) ^ 0x80;
219                 hasdata = true;
220                 fs->xa_cnt++;
221 
222                 fs->xa_last[1] = fs->xa_last[0];
223                 fs->xa_last[0] = (int16_t)t;
224 
225                 if (fs->xa_cnt == 28) {
226                     /* End of packet */
227                     fs->xa_cnt = -1;
228                 }
229                 break;
230 
231             default:
232                 /* fallthrough */
233             case 0x80:
234                 /* Raw mode */
235                 if (fs->cnt) {
236                     val = asc_fifo_get(fs);
237                     hasdata = true;
238                 } else {
239                     val = 0x80;
240                 }
241                 break;
242             }
243 
244             buf[wcount * 2 + i] = val;
245         }
246 
247         if (!hasdata) {
248             break;
249         }
250 
251         wcount++;
252     }
253 
254     /*
255      * MacOS (un)helpfully leaves the FIFO engine running even when it has
256      * finished writing out samples, but still expects the FIFO empty
257      * interrupts to be generated for each FIFO cycle (without these interrupts
258      * MacOS will freeze)
259      */
260     if (s->fifos[0].cnt == 0 && s->fifos[1].cnt == 0) {
261         if (!s->fifo_empty_ns) {
262             /* FIFO has completed first empty cycle */
263             s->fifo_empty_ns = now;
264         } else if (now > (s->fifo_empty_ns + ASC_FIFO_CYCLE_TIME)) {
265             /* FIFO has completed entire cycle with no data */
266             s->fifos[0].int_status |= ASC_FIFO_STATUS_HALF_FULL |
267                                       ASC_FIFO_STATUS_FULL_EMPTY;
268             s->fifos[1].int_status |= ASC_FIFO_STATUS_HALF_FULL |
269                                       ASC_FIFO_STATUS_FULL_EMPTY;
270             s->fifo_empty_ns = now;
271             asc_raise_irq(s);
272         }
273     } else {
274         /* FIFO contains data, reset empty time */
275         s->fifo_empty_ns = 0;
276     }
277 
278     return wcount;
279 }
280 
generate_wavetable(ASCState * s,int maxsamples)281 static int generate_wavetable(ASCState *s, int maxsamples)
282 {
283     uint8_t *buf = s->mixbuf;
284     int channel, count = 0;
285 
286     while (count < maxsamples) {
287         uint32_t left = 0, right = 0;
288         uint8_t sample;
289 
290         for (channel = 0; channel < 4; channel++) {
291             ASCFIFOState *fs = &s->fifos[channel >> 1];
292             int chanreg = ASC_WAVETABLE + (channel << 3);
293             uint32_t phase, incr, offset;
294 
295             phase = ldl_be_p(&s->regs[chanreg]);
296             incr = ldl_be_p(&s->regs[chanreg + sizeof(uint32_t)]);
297 
298             phase += incr;
299             offset = (phase >> 15) & 0x1ff;
300             sample = fs->fifo[0x200 * (channel >> 1) + offset];
301 
302             stl_be_p(&s->regs[chanreg], phase);
303 
304             left += sample;
305             right += sample;
306         }
307 
308         buf[count * 2] = left >> 2;
309         buf[count * 2 + 1] = right >> 2;
310 
311         count++;
312     }
313 
314     return count;
315 }
316 
asc_out_cb(void * opaque,int free_b)317 static void asc_out_cb(void *opaque, int free_b)
318 {
319     ASCState *s = opaque;
320     int samples, generated;
321 
322     if (free_b == 0) {
323         return;
324     }
325 
326     samples = MIN(s->samples, free_b >> s->shift);
327 
328     switch (s->regs[ASC_MODE] & 3) {
329     default:
330         /* Off */
331         generated = 0;
332         break;
333     case 1:
334         /* FIFO mode */
335         generated = generate_fifo(s, samples);
336         break;
337     case 2:
338         /* Wave table mode */
339         generated = generate_wavetable(s, samples);
340         break;
341     }
342 
343     if (!generated) {
344         /* Workaround for audio underflow bug on Windows dsound backend */
345         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
346         int silent_samples = muldiv64(now - s->fifo_empty_ns,
347                                       NANOSECONDS_PER_SECOND, ASC_FREQ);
348 
349         if (silent_samples > ASC_FIFO_CYCLE_TIME / 2) {
350             /*
351              * No new FIFO data within half a cycle time (~23ms) so fill the
352              * entire available buffer with silence. This prevents an issue
353              * with the Windows dsound backend whereby the sound appears to
354              * loop because the FIFO has run out of data, and the driver
355              * reuses the stale content in its circular audio buffer.
356              */
357             AUD_write(s->voice, s->silentbuf, samples << s->shift);
358         }
359         return;
360     }
361 
362     AUD_write(s->voice, s->mixbuf, generated << s->shift);
363 }
364 
asc_fifo_read(void * opaque,hwaddr addr,unsigned size)365 static uint64_t asc_fifo_read(void *opaque, hwaddr addr,
366                               unsigned size)
367 {
368     ASCFIFOState *fs = opaque;
369 
370     trace_asc_read_fifo('A' + fs->index, addr, size, fs->fifo[addr]);
371     return fs->fifo[addr];
372 }
373 
asc_fifo_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)374 static void asc_fifo_write(void *opaque, hwaddr addr, uint64_t value,
375                            unsigned size)
376 {
377     ASCFIFOState *fs = opaque;
378     ASCState *s = container_of(fs, ASCState, fifos[fs->index]);
379     bool fifo_half_irq_enabled = fs->extregs[ASC_EXTREGS_INTCTRL] & 1;
380 
381     trace_asc_write_fifo('A' + fs->index, addr, size, fs->wptr, fs->cnt, value);
382 
383     if (s->regs[ASC_MODE] == 1) {
384         fs->fifo[fs->wptr++] = value;
385         fs->wptr &= 0x3ff;
386         fs->cnt++;
387 
388         if (fs->cnt <= 0x1ff) {
389             /* FIFO less than half full */
390             fs->int_status |= ASC_FIFO_STATUS_HALF_FULL;
391         } else {
392             /* FIFO at least half full */
393             fs->int_status &= ~ASC_FIFO_STATUS_HALF_FULL;
394         }
395 
396         if (fs->cnt == 0x200 && fifo_half_irq_enabled) {
397             /* Raise FIFO half full interrupt */
398             asc_raise_irq(s);
399         }
400 
401         if (fs->cnt == 0x3ff) {
402             /* Raise FIFO full interrupt */
403             fs->int_status |= ASC_FIFO_STATUS_FULL_EMPTY;
404             asc_raise_irq(s);
405         }
406     } else {
407         fs->fifo[addr] = value;
408     }
409     return;
410 }
411 
412 static const MemoryRegionOps asc_fifo_ops = {
413     .read = asc_fifo_read,
414     .write = asc_fifo_write,
415     .impl = {
416         .min_access_size = 1,
417         .max_access_size = 1,
418     },
419     .endianness = DEVICE_BIG_ENDIAN,
420 };
421 
422 static void asc_fifo_reset(ASCFIFOState *fs);
423 
asc_read(void * opaque,hwaddr addr,unsigned size)424 static uint64_t asc_read(void *opaque, hwaddr addr,
425                          unsigned size)
426 {
427     ASCState *s = opaque;
428     uint64_t prev, value;
429 
430     switch (addr) {
431     case ASC_VERSION:
432         switch (s->type) {
433         default:
434         case ASC_TYPE_ASC:
435             value = 0;
436             break;
437         case ASC_TYPE_EASC:
438             value = 0xb0;
439             break;
440         }
441         break;
442     case ASC_FIFOIRQ:
443         prev = (s->fifos[0].int_status & 0x3) |
444                 (s->fifos[1].int_status & 0x3) << 2;
445 
446         s->fifos[0].int_status = 0;
447         s->fifos[1].int_status = 0;
448         asc_lower_irq(s);
449         value = prev;
450         break;
451     default:
452         value = s->regs[addr];
453         break;
454     }
455 
456     trace_asc_read_reg(addr, size, value);
457     return value;
458 }
459 
asc_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)460 static void asc_write(void *opaque, hwaddr addr, uint64_t value,
461                       unsigned size)
462 {
463     ASCState *s = opaque;
464 
465     switch (addr) {
466     case ASC_MODE:
467         value &= 3;
468         if (value != s->regs[ASC_MODE]) {
469             asc_fifo_reset(&s->fifos[0]);
470             asc_fifo_reset(&s->fifos[1]);
471             asc_lower_irq(s);
472             if (value != 0) {
473                 AUD_set_active_out(s->voice, 1);
474             } else {
475                 AUD_set_active_out(s->voice, 0);
476             }
477         }
478         break;
479     case ASC_FIFOMODE:
480         if (value & 0x80) {
481             asc_fifo_reset(&s->fifos[0]);
482             asc_fifo_reset(&s->fifos[1]);
483             asc_lower_irq(s);
484         }
485         break;
486     case ASC_WAVECTRL:
487         break;
488     case ASC_VOLUME:
489         {
490             int vol = (value & 0xe0);
491 
492             AUD_set_volume_out(s->voice, 0, vol, vol);
493             break;
494         }
495     }
496 
497     trace_asc_write_reg(addr, size, value);
498     s->regs[addr] = value;
499 }
500 
501 static const MemoryRegionOps asc_regs_ops = {
502     .read = asc_read,
503     .write = asc_write,
504     .endianness = DEVICE_BIG_ENDIAN,
505     .impl = {
506         .min_access_size = 1,
507         .max_access_size = 1,
508     }
509 };
510 
asc_ext_read(void * opaque,hwaddr addr,unsigned size)511 static uint64_t asc_ext_read(void *opaque, hwaddr addr,
512                              unsigned size)
513 {
514     ASCFIFOState *fs = opaque;
515     uint64_t value;
516 
517     value = fs->extregs[addr];
518 
519     trace_asc_read_extreg('A' + fs->index, addr, size, value);
520     return value;
521 }
522 
asc_ext_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)523 static void asc_ext_write(void *opaque, hwaddr addr, uint64_t value,
524                           unsigned size)
525 {
526     ASCFIFOState *fs = opaque;
527 
528     trace_asc_write_extreg('A' + fs->index, addr, size, value);
529 
530     fs->extregs[addr] = value;
531 }
532 
533 static const MemoryRegionOps asc_extregs_ops = {
534     .read = asc_ext_read,
535     .write = asc_ext_write,
536     .impl = {
537         .min_access_size = 1,
538         .max_access_size = 1,
539     },
540     .endianness = DEVICE_BIG_ENDIAN,
541 };
542 
asc_post_load(void * opaque,int version)543 static int asc_post_load(void *opaque, int version)
544 {
545     ASCState *s = ASC(opaque);
546 
547     if (s->regs[ASC_MODE] != 0) {
548         AUD_set_active_out(s->voice, 1);
549     }
550 
551     return 0;
552 }
553 
554 static const VMStateDescription vmstate_asc_fifo = {
555     .name = "apple-sound-chip.fifo",
556     .version_id = 0,
557     .minimum_version_id = 0,
558     .fields = (const VMStateField[]) {
559         VMSTATE_UINT8_ARRAY(fifo, ASCFIFOState, ASC_FIFO_SIZE),
560         VMSTATE_UINT8(int_status, ASCFIFOState),
561         VMSTATE_INT32(cnt, ASCFIFOState),
562         VMSTATE_INT32(wptr, ASCFIFOState),
563         VMSTATE_INT32(rptr, ASCFIFOState),
564         VMSTATE_UINT8_ARRAY(extregs, ASCFIFOState, ASC_EXTREG_SIZE),
565         VMSTATE_INT32(xa_cnt, ASCFIFOState),
566         VMSTATE_UINT8(xa_val, ASCFIFOState),
567         VMSTATE_UINT8(xa_flags, ASCFIFOState),
568         VMSTATE_INT16_ARRAY(xa_last, ASCFIFOState, 2),
569         VMSTATE_END_OF_LIST()
570     }
571 };
572 
573 static const VMStateDescription vmstate_asc = {
574     .name = "apple-sound-chip",
575     .version_id = 0,
576     .minimum_version_id = 0,
577     .post_load = asc_post_load,
578     .fields = (const VMStateField[]) {
579         VMSTATE_STRUCT_ARRAY(fifos, ASCState, 2, 0, vmstate_asc_fifo,
580                              ASCFIFOState),
581         VMSTATE_UINT8_ARRAY(regs, ASCState, ASC_REG_SIZE),
582         VMSTATE_INT64(fifo_empty_ns, ASCState),
583         VMSTATE_END_OF_LIST()
584     }
585 };
586 
asc_fifo_reset(ASCFIFOState * fs)587 static void asc_fifo_reset(ASCFIFOState *fs)
588 {
589     fs->wptr = 0;
590     fs->rptr = 0;
591     fs->cnt = 0;
592     fs->xa_cnt = -1;
593     fs->int_status = 0;
594 }
595 
asc_fifo_init(ASCFIFOState * fs,int index)596 static void asc_fifo_init(ASCFIFOState *fs, int index)
597 {
598     ASCState *s = container_of(fs, ASCState, fifos[index]);
599     char *name;
600 
601     fs->index = index;
602     name = g_strdup_printf("asc.fifo%c", 'A' + index);
603     memory_region_init_io(&fs->mem_fifo, OBJECT(s), &asc_fifo_ops, fs,
604                           name, ASC_FIFO_SIZE);
605     g_free(name);
606 
607     name = g_strdup_printf("asc.extregs%c", 'A' + index);
608     memory_region_init_io(&fs->mem_extregs, OBJECT(s), &asc_extregs_ops,
609                           fs, name, ASC_EXTREG_SIZE);
610     g_free(name);
611 }
612 
asc_reset_hold(Object * obj,ResetType type)613 static void asc_reset_hold(Object *obj, ResetType type)
614 {
615     ASCState *s = ASC(obj);
616 
617     AUD_set_active_out(s->voice, 0);
618 
619     memset(s->regs, 0, sizeof(s->regs));
620     asc_fifo_reset(&s->fifos[0]);
621     asc_fifo_reset(&s->fifos[1]);
622     s->fifo_empty_ns = 0;
623 
624     if (s->type == ASC_TYPE_ASC) {
625         /* FIFO half full IRQs enabled by default */
626         s->fifos[0].extregs[ASC_EXTREGS_INTCTRL] = 1;
627         s->fifos[1].extregs[ASC_EXTREGS_INTCTRL] = 1;
628     }
629 }
630 
asc_unrealize(DeviceState * dev)631 static void asc_unrealize(DeviceState *dev)
632 {
633     ASCState *s = ASC(dev);
634 
635     g_free(s->mixbuf);
636     g_free(s->silentbuf);
637 
638     AUD_remove_card(&s->card);
639 }
640 
asc_realize(DeviceState * dev,Error ** errp)641 static void asc_realize(DeviceState *dev, Error **errp)
642 {
643     ASCState *s = ASC(dev);
644     struct audsettings as;
645 
646     if (!AUD_register_card("Apple Sound Chip", &s->card, errp)) {
647         return;
648     }
649 
650     as.freq = ASC_FREQ;
651     as.nchannels = 2;
652     as.fmt = AUDIO_FORMAT_U8;
653     as.endianness = AUDIO_HOST_ENDIANNESS;
654 
655     s->voice = AUD_open_out(&s->card, s->voice, "asc.out", s, asc_out_cb,
656                             &as);
657     s->shift = 1;
658     s->samples = AUD_get_buffer_size_out(s->voice) >> s->shift;
659     s->mixbuf = g_malloc0(s->samples << s->shift);
660 
661     s->silentbuf = g_malloc0(s->samples << s->shift);
662     memset(s->silentbuf, 0x80, s->samples << s->shift);
663 
664     /* Add easc registers if required */
665     if (s->type == ASC_TYPE_EASC) {
666         memory_region_add_subregion(&s->asc, ASC_EXTREG_OFFSET,
667                                     &s->fifos[0].mem_extregs);
668         memory_region_add_subregion(&s->asc,
669                                     ASC_EXTREG_OFFSET + ASC_EXTREG_SIZE,
670                                     &s->fifos[1].mem_extregs);
671     }
672 }
673 
asc_init(Object * obj)674 static void asc_init(Object *obj)
675 {
676     ASCState *s = ASC(obj);
677     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
678 
679     memory_region_init(&s->asc, OBJECT(obj), "asc", ASC_SIZE);
680 
681     asc_fifo_init(&s->fifos[0], 0);
682     asc_fifo_init(&s->fifos[1], 1);
683 
684     memory_region_add_subregion(&s->asc, ASC_FIFO_OFFSET,
685                                 &s->fifos[0].mem_fifo);
686     memory_region_add_subregion(&s->asc,
687                                 ASC_FIFO_OFFSET + ASC_FIFO_SIZE,
688                                 &s->fifos[1].mem_fifo);
689 
690     memory_region_init_io(&s->mem_regs, OBJECT(obj), &asc_regs_ops, s,
691                           "asc.regs", ASC_REG_SIZE);
692     memory_region_add_subregion(&s->asc, ASC_REG_OFFSET, &s->mem_regs);
693 
694     sysbus_init_irq(sbd, &s->irq);
695     sysbus_init_mmio(sbd, &s->asc);
696 }
697 
698 static Property asc_properties[] = {
699     DEFINE_AUDIO_PROPERTIES(ASCState, card),
700     DEFINE_PROP_UINT8("asctype", ASCState, type, ASC_TYPE_ASC),
701     DEFINE_PROP_END_OF_LIST(),
702 };
703 
asc_class_init(ObjectClass * oc,void * data)704 static void asc_class_init(ObjectClass *oc, void *data)
705 {
706     DeviceClass *dc = DEVICE_CLASS(oc);
707     ResettableClass *rc = RESETTABLE_CLASS(oc);
708 
709     dc->realize = asc_realize;
710     dc->unrealize = asc_unrealize;
711     set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
712     dc->vmsd = &vmstate_asc;
713     device_class_set_props(dc, asc_properties);
714     rc->phases.hold = asc_reset_hold;
715 }
716 
717 static const TypeInfo asc_info_types[] = {
718     {
719         .name = TYPE_ASC,
720         .parent = TYPE_SYS_BUS_DEVICE,
721         .instance_size = sizeof(ASCState),
722         .instance_init = asc_init,
723         .class_init = asc_class_init,
724     },
725 };
726 
727 DEFINE_TYPES(asc_info_types)
728