xref: /openbmc/qemu/hw/arm/virt.c (revision d780d056f8acdee73a1c34d95733851d58aecd60)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "hw/mem/pc-dimm.h"
80 #include "hw/mem/nvdimm.h"
81 #include "hw/acpi/generic_event_device.h"
82 #include "hw/virtio/virtio-md-pci.h"
83 #include "hw/virtio/virtio-iommu.h"
84 #include "hw/char/pl011.h"
85 #include "qemu/guest-random.h"
86 
87 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
88     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
89                                                     void *data) \
90     { \
91         MachineClass *mc = MACHINE_CLASS(oc); \
92         virt_machine_##major##_##minor##_options(mc); \
93         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
94         if (latest) { \
95             mc->alias = "virt"; \
96         } \
97     } \
98     static const TypeInfo machvirt_##major##_##minor##_info = { \
99         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
100         .parent = TYPE_VIRT_MACHINE, \
101         .class_init = virt_##major##_##minor##_class_init, \
102     }; \
103     static void machvirt_machine_##major##_##minor##_init(void) \
104     { \
105         type_register_static(&machvirt_##major##_##minor##_info); \
106     } \
107     type_init(machvirt_machine_##major##_##minor##_init);
108 
109 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
110     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
111 #define DEFINE_VIRT_MACHINE(major, minor) \
112     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
113 
114 
115 /* Number of external interrupt lines to configure the GIC with */
116 #define NUM_IRQS 256
117 
118 #define PLATFORM_BUS_NUM_IRQS 64
119 
120 /* Legacy RAM limit in GB (< version 4.0) */
121 #define LEGACY_RAMLIMIT_GB 255
122 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
123 
124 /* Addresses and sizes of our components.
125  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
126  * 128MB..256MB is used for miscellaneous device I/O.
127  * 256MB..1GB is reserved for possible future PCI support (ie where the
128  * PCI memory window will go if we add a PCI host controller).
129  * 1GB and up is RAM (which may happily spill over into the
130  * high memory region beyond 4GB).
131  * This represents a compromise between how much RAM can be given to
132  * a 32 bit VM and leaving space for expansion and in particular for PCI.
133  * Note that devices should generally be placed at multiples of 0x10000,
134  * to accommodate guests using 64K pages.
135  */
136 static const MemMapEntry base_memmap[] = {
137     /* Space up to 0x8000000 is reserved for a boot ROM */
138     [VIRT_FLASH] =              {          0, 0x08000000 },
139     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
140     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
141     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
142     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
143     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
144     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
145     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
146     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
147     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
148     /* This redistributor space allows up to 2*64kB*123 CPUs */
149     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
150     [VIRT_UART] =               { 0x09000000, 0x00001000 },
151     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
152     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
153     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
154     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
155     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
156     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
157     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
158     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
159     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
160     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
161     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
162     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
163     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
164     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
165     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
166     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
167     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
168     /* Actual RAM size depends on initial RAM and device memory settings */
169     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
170 };
171 
172 /*
173  * Highmem IO Regions: This memory map is floating, located after the RAM.
174  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
175  * top of the RAM, so that its base get the same alignment as the size,
176  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
177  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
178  * Note the extended_memmap is sized so that it eventually also includes the
179  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
180  * index of base_memmap).
181  *
182  * The memory map for these Highmem IO Regions can be in legacy or compact
183  * layout, depending on 'compact-highmem' property. With legacy layout, the
184  * PA space for one specific region is always reserved, even if the region
185  * has been disabled or doesn't fit into the PA space. However, the PA space
186  * for the region won't be reserved in these circumstances with compact layout.
187  */
188 static MemMapEntry extended_memmap[] = {
189     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
190     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
191     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
192     /* Second PCIe window */
193     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
194 };
195 
196 static const int a15irqmap[] = {
197     [VIRT_UART] = 1,
198     [VIRT_RTC] = 2,
199     [VIRT_PCIE] = 3, /* ... to 6 */
200     [VIRT_GPIO] = 7,
201     [VIRT_SECURE_UART] = 8,
202     [VIRT_ACPI_GED] = 9,
203     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
204     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
205     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
206     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
207 };
208 
209 static void create_randomness(MachineState *ms, const char *node)
210 {
211     struct {
212         uint64_t kaslr;
213         uint8_t rng[32];
214     } seed;
215 
216     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
217         return;
218     }
219     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
220     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
221 }
222 
223 static void create_fdt(VirtMachineState *vms)
224 {
225     MachineState *ms = MACHINE(vms);
226     int nb_numa_nodes = ms->numa_state->num_nodes;
227     void *fdt = create_device_tree(&vms->fdt_size);
228 
229     if (!fdt) {
230         error_report("create_device_tree() failed");
231         exit(1);
232     }
233 
234     ms->fdt = fdt;
235 
236     /* Header */
237     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
238     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
239     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
240     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
241 
242     /* /chosen must exist for load_dtb to fill in necessary properties later */
243     qemu_fdt_add_subnode(fdt, "/chosen");
244     if (vms->dtb_randomness) {
245         create_randomness(ms, "/chosen");
246     }
247 
248     if (vms->secure) {
249         qemu_fdt_add_subnode(fdt, "/secure-chosen");
250         if (vms->dtb_randomness) {
251             create_randomness(ms, "/secure-chosen");
252         }
253     }
254 
255     /* Clock node, for the benefit of the UART. The kernel device tree
256      * binding documentation claims the PL011 node clock properties are
257      * optional but in practice if you omit them the kernel refuses to
258      * probe for the device.
259      */
260     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
261     qemu_fdt_add_subnode(fdt, "/apb-pclk");
262     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
263     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
264     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
265     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
266                                 "clk24mhz");
267     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
268 
269     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
270         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
271         uint32_t *matrix = g_malloc0(size);
272         int idx, i, j;
273 
274         for (i = 0; i < nb_numa_nodes; i++) {
275             for (j = 0; j < nb_numa_nodes; j++) {
276                 idx = (i * nb_numa_nodes + j) * 3;
277                 matrix[idx + 0] = cpu_to_be32(i);
278                 matrix[idx + 1] = cpu_to_be32(j);
279                 matrix[idx + 2] =
280                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
281             }
282         }
283 
284         qemu_fdt_add_subnode(fdt, "/distance-map");
285         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
286                                 "numa-distance-map-v1");
287         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
288                          matrix, size);
289         g_free(matrix);
290     }
291 }
292 
293 static void fdt_add_timer_nodes(const VirtMachineState *vms)
294 {
295     /* On real hardware these interrupts are level-triggered.
296      * On KVM they were edge-triggered before host kernel version 4.4,
297      * and level-triggered afterwards.
298      * On emulated QEMU they are level-triggered.
299      *
300      * Getting the DTB info about them wrong is awkward for some
301      * guest kernels:
302      *  pre-4.8 ignore the DT and leave the interrupt configured
303      *   with whatever the GIC reset value (or the bootloader) left it at
304      *  4.8 before rc6 honour the incorrect data by programming it back
305      *   into the GIC, causing problems
306      *  4.8rc6 and later ignore the DT and always write "level triggered"
307      *   into the GIC
308      *
309      * For backwards-compatibility, virt-2.8 and earlier will continue
310      * to say these are edge-triggered, but later machines will report
311      * the correct information.
312      */
313     ARMCPU *armcpu;
314     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
315     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
316     MachineState *ms = MACHINE(vms);
317 
318     if (vmc->claim_edge_triggered_timers) {
319         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
320     }
321 
322     if (vms->gic_version == VIRT_GIC_VERSION_2) {
323         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
324                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
325                              (1 << MACHINE(vms)->smp.cpus) - 1);
326     }
327 
328     qemu_fdt_add_subnode(ms->fdt, "/timer");
329 
330     armcpu = ARM_CPU(qemu_get_cpu(0));
331     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
332         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
333         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
334                          compat, sizeof(compat));
335     } else {
336         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
337                                 "arm,armv7-timer");
338     }
339     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
340     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
341                            GIC_FDT_IRQ_TYPE_PPI,
342                            INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
343                            GIC_FDT_IRQ_TYPE_PPI,
344                            INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
345                            GIC_FDT_IRQ_TYPE_PPI,
346                            INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
347                            GIC_FDT_IRQ_TYPE_PPI,
348                            INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
349 }
350 
351 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
352 {
353     int cpu;
354     int addr_cells = 1;
355     const MachineState *ms = MACHINE(vms);
356     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
357     int smp_cpus = ms->smp.cpus;
358 
359     /*
360      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
361      * On ARM v8 64-bit systems value should be set to 2,
362      * that corresponds to the MPIDR_EL1 register size.
363      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
364      * in the system, #address-cells can be set to 1, since
365      * MPIDR_EL1[63:32] bits are not used for CPUs
366      * identification.
367      *
368      * Here we actually don't know whether our system is 32- or 64-bit one.
369      * The simplest way to go is to examine affinity IDs of all our CPUs. If
370      * at least one of them has Aff3 populated, we set #address-cells to 2.
371      */
372     for (cpu = 0; cpu < smp_cpus; cpu++) {
373         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
374 
375         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
376             addr_cells = 2;
377             break;
378         }
379     }
380 
381     qemu_fdt_add_subnode(ms->fdt, "/cpus");
382     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
383     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
384 
385     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
386         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
387         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
388         CPUState *cs = CPU(armcpu);
389 
390         qemu_fdt_add_subnode(ms->fdt, nodename);
391         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
392         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
393                                     armcpu->dtb_compatible);
394 
395         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
396             qemu_fdt_setprop_string(ms->fdt, nodename,
397                                         "enable-method", "psci");
398         }
399 
400         if (addr_cells == 2) {
401             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
402                                  arm_cpu_mp_affinity(armcpu));
403         } else {
404             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
405                                   arm_cpu_mp_affinity(armcpu));
406         }
407 
408         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
409             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
410                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
411         }
412 
413         if (!vmc->no_cpu_topology) {
414             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
415                                   qemu_fdt_alloc_phandle(ms->fdt));
416         }
417 
418         g_free(nodename);
419     }
420 
421     if (!vmc->no_cpu_topology) {
422         /*
423          * Add vCPU topology description through fdt node cpu-map.
424          *
425          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
426          * In a SMP system, the hierarchy of CPUs can be defined through
427          * four entities that are used to describe the layout of CPUs in
428          * the system: socket/cluster/core/thread.
429          *
430          * A socket node represents the boundary of system physical package
431          * and its child nodes must be one or more cluster nodes. A system
432          * can contain several layers of clustering within a single physical
433          * package and cluster nodes can be contained in parent cluster nodes.
434          *
435          * Note: currently we only support one layer of clustering within
436          * each physical package.
437          */
438         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
439 
440         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
441             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
442             char *map_path;
443 
444             if (ms->smp.threads > 1) {
445                 map_path = g_strdup_printf(
446                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
447                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
448                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
449                     (cpu / ms->smp.threads) % ms->smp.cores,
450                     cpu % ms->smp.threads);
451             } else {
452                 map_path = g_strdup_printf(
453                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
454                     cpu / (ms->smp.clusters * ms->smp.cores),
455                     (cpu / ms->smp.cores) % ms->smp.clusters,
456                     cpu % ms->smp.cores);
457             }
458             qemu_fdt_add_path(ms->fdt, map_path);
459             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
460 
461             g_free(map_path);
462             g_free(cpu_path);
463         }
464     }
465 }
466 
467 static void fdt_add_its_gic_node(VirtMachineState *vms)
468 {
469     char *nodename;
470     MachineState *ms = MACHINE(vms);
471 
472     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
473     nodename = g_strdup_printf("/intc/its@%" PRIx64,
474                                vms->memmap[VIRT_GIC_ITS].base);
475     qemu_fdt_add_subnode(ms->fdt, nodename);
476     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
477                             "arm,gic-v3-its");
478     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
479     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
480     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
481                                  2, vms->memmap[VIRT_GIC_ITS].base,
482                                  2, vms->memmap[VIRT_GIC_ITS].size);
483     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
484     g_free(nodename);
485 }
486 
487 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
488 {
489     MachineState *ms = MACHINE(vms);
490     char *nodename;
491 
492     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
493                                vms->memmap[VIRT_GIC_V2M].base);
494     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
495     qemu_fdt_add_subnode(ms->fdt, nodename);
496     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
497                             "arm,gic-v2m-frame");
498     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
499     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
500                                  2, vms->memmap[VIRT_GIC_V2M].base,
501                                  2, vms->memmap[VIRT_GIC_V2M].size);
502     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
503     g_free(nodename);
504 }
505 
506 static void fdt_add_gic_node(VirtMachineState *vms)
507 {
508     MachineState *ms = MACHINE(vms);
509     char *nodename;
510 
511     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
512     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
513 
514     nodename = g_strdup_printf("/intc@%" PRIx64,
515                                vms->memmap[VIRT_GIC_DIST].base);
516     qemu_fdt_add_subnode(ms->fdt, nodename);
517     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
518     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
519     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
520     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
521     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
522     if (vms->gic_version != VIRT_GIC_VERSION_2) {
523         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
524 
525         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
526                                 "arm,gic-v3");
527 
528         qemu_fdt_setprop_cell(ms->fdt, nodename,
529                               "#redistributor-regions", nb_redist_regions);
530 
531         if (nb_redist_regions == 1) {
532             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
533                                          2, vms->memmap[VIRT_GIC_DIST].base,
534                                          2, vms->memmap[VIRT_GIC_DIST].size,
535                                          2, vms->memmap[VIRT_GIC_REDIST].base,
536                                          2, vms->memmap[VIRT_GIC_REDIST].size);
537         } else {
538             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
539                                  2, vms->memmap[VIRT_GIC_DIST].base,
540                                  2, vms->memmap[VIRT_GIC_DIST].size,
541                                  2, vms->memmap[VIRT_GIC_REDIST].base,
542                                  2, vms->memmap[VIRT_GIC_REDIST].size,
543                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
544                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
545         }
546 
547         if (vms->virt) {
548             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
549                                    GIC_FDT_IRQ_TYPE_PPI,
550                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
551                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
552         }
553     } else {
554         /* 'cortex-a15-gic' means 'GIC v2' */
555         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
556                                 "arm,cortex-a15-gic");
557         if (!vms->virt) {
558             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
559                                          2, vms->memmap[VIRT_GIC_DIST].base,
560                                          2, vms->memmap[VIRT_GIC_DIST].size,
561                                          2, vms->memmap[VIRT_GIC_CPU].base,
562                                          2, vms->memmap[VIRT_GIC_CPU].size);
563         } else {
564             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
565                                          2, vms->memmap[VIRT_GIC_DIST].base,
566                                          2, vms->memmap[VIRT_GIC_DIST].size,
567                                          2, vms->memmap[VIRT_GIC_CPU].base,
568                                          2, vms->memmap[VIRT_GIC_CPU].size,
569                                          2, vms->memmap[VIRT_GIC_HYP].base,
570                                          2, vms->memmap[VIRT_GIC_HYP].size,
571                                          2, vms->memmap[VIRT_GIC_VCPU].base,
572                                          2, vms->memmap[VIRT_GIC_VCPU].size);
573             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
574                                    GIC_FDT_IRQ_TYPE_PPI,
575                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
576                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
577         }
578     }
579 
580     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
581     g_free(nodename);
582 }
583 
584 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
585 {
586     ARMCPU *armcpu = ARM_CPU(first_cpu);
587     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
588     MachineState *ms = MACHINE(vms);
589 
590     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
591         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
592         return;
593     }
594 
595     if (vms->gic_version == VIRT_GIC_VERSION_2) {
596         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
597                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
598                              (1 << MACHINE(vms)->smp.cpus) - 1);
599     }
600 
601     qemu_fdt_add_subnode(ms->fdt, "/pmu");
602     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
603         const char compat[] = "arm,armv8-pmuv3";
604         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
605                          compat, sizeof(compat));
606         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
607                                GIC_FDT_IRQ_TYPE_PPI,
608                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
609     }
610 }
611 
612 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
613 {
614     DeviceState *dev;
615     MachineState *ms = MACHINE(vms);
616     int irq = vms->irqmap[VIRT_ACPI_GED];
617     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
618 
619     if (ms->ram_slots) {
620         event |= ACPI_GED_MEM_HOTPLUG_EVT;
621     }
622 
623     if (ms->nvdimms_state->is_enabled) {
624         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
625     }
626 
627     dev = qdev_new(TYPE_ACPI_GED);
628     qdev_prop_set_uint32(dev, "ged-event", event);
629     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
630 
631     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
632     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
633     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
634 
635     return dev;
636 }
637 
638 static void create_its(VirtMachineState *vms)
639 {
640     const char *itsclass = its_class_name();
641     DeviceState *dev;
642 
643     if (!strcmp(itsclass, "arm-gicv3-its")) {
644         if (!vms->tcg_its) {
645             itsclass = NULL;
646         }
647     }
648 
649     if (!itsclass) {
650         /* Do nothing if not supported */
651         return;
652     }
653 
654     dev = qdev_new(itsclass);
655 
656     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
657                              &error_abort);
658     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
659     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
660 
661     fdt_add_its_gic_node(vms);
662     vms->msi_controller = VIRT_MSI_CTRL_ITS;
663 }
664 
665 static void create_v2m(VirtMachineState *vms)
666 {
667     int i;
668     int irq = vms->irqmap[VIRT_GIC_V2M];
669     DeviceState *dev;
670 
671     dev = qdev_new("arm-gicv2m");
672     qdev_prop_set_uint32(dev, "base-spi", irq);
673     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
674     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
675     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
676 
677     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
678         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
679                            qdev_get_gpio_in(vms->gic, irq + i));
680     }
681 
682     fdt_add_v2m_gic_node(vms);
683     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
684 }
685 
686 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
687 {
688     MachineState *ms = MACHINE(vms);
689     /* We create a standalone GIC */
690     SysBusDevice *gicbusdev;
691     const char *gictype;
692     int i;
693     unsigned int smp_cpus = ms->smp.cpus;
694     uint32_t nb_redist_regions = 0;
695     int revision;
696 
697     if (vms->gic_version == VIRT_GIC_VERSION_2) {
698         gictype = gic_class_name();
699     } else {
700         gictype = gicv3_class_name();
701     }
702 
703     switch (vms->gic_version) {
704     case VIRT_GIC_VERSION_2:
705         revision = 2;
706         break;
707     case VIRT_GIC_VERSION_3:
708         revision = 3;
709         break;
710     case VIRT_GIC_VERSION_4:
711         revision = 4;
712         break;
713     default:
714         g_assert_not_reached();
715     }
716     vms->gic = qdev_new(gictype);
717     qdev_prop_set_uint32(vms->gic, "revision", revision);
718     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
719     /* Note that the num-irq property counts both internal and external
720      * interrupts; there are always 32 of the former (mandated by GIC spec).
721      */
722     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
723     if (!kvm_irqchip_in_kernel()) {
724         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
725     }
726 
727     if (vms->gic_version != VIRT_GIC_VERSION_2) {
728         QList *redist_region_count;
729         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
730         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
731 
732         nb_redist_regions = virt_gicv3_redist_region_count(vms);
733 
734         redist_region_count = qlist_new();
735         qlist_append_int(redist_region_count, redist0_count);
736         if (nb_redist_regions == 2) {
737             uint32_t redist1_capacity =
738                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
739 
740             qlist_append_int(redist_region_count,
741                 MIN(smp_cpus - redist0_count, redist1_capacity));
742         }
743         qdev_prop_set_array(vms->gic, "redist-region-count",
744                             redist_region_count);
745 
746         if (!kvm_irqchip_in_kernel()) {
747             if (vms->tcg_its) {
748                 object_property_set_link(OBJECT(vms->gic), "sysmem",
749                                          OBJECT(mem), &error_fatal);
750                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
751             }
752         }
753     } else {
754         if (!kvm_irqchip_in_kernel()) {
755             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
756                               vms->virt);
757         }
758     }
759     gicbusdev = SYS_BUS_DEVICE(vms->gic);
760     sysbus_realize_and_unref(gicbusdev, &error_fatal);
761     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
762     if (vms->gic_version != VIRT_GIC_VERSION_2) {
763         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
764         if (nb_redist_regions == 2) {
765             sysbus_mmio_map(gicbusdev, 2,
766                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
767         }
768     } else {
769         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
770         if (vms->virt) {
771             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
772             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
773         }
774     }
775 
776     /* Wire the outputs from each CPU's generic timer and the GICv3
777      * maintenance interrupt signal to the appropriate GIC PPI inputs,
778      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
779      */
780     for (i = 0; i < smp_cpus; i++) {
781         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
782         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
783         /* Mapping from the output timer irq lines from the CPU to the
784          * GIC PPI inputs we use for the virt board.
785          */
786         const int timer_irq[] = {
787             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
788             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
789             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
790             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
791         };
792 
793         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
794             qdev_connect_gpio_out(cpudev, irq,
795                                   qdev_get_gpio_in(vms->gic,
796                                                    intidbase + timer_irq[irq]));
797         }
798 
799         if (vms->gic_version != VIRT_GIC_VERSION_2) {
800             qemu_irq irq = qdev_get_gpio_in(vms->gic,
801                                             intidbase + ARCH_GIC_MAINT_IRQ);
802             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
803                                         0, irq);
804         } else if (vms->virt) {
805             qemu_irq irq = qdev_get_gpio_in(vms->gic,
806                                             intidbase + ARCH_GIC_MAINT_IRQ);
807             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
808         }
809 
810         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
811                                     qdev_get_gpio_in(vms->gic, intidbase
812                                                      + VIRTUAL_PMU_IRQ));
813 
814         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
815         sysbus_connect_irq(gicbusdev, i + smp_cpus,
816                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
817         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
818                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
819         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
820                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
821     }
822 
823     fdt_add_gic_node(vms);
824 
825     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
826         create_its(vms);
827     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
828         create_v2m(vms);
829     }
830 }
831 
832 static void create_uart(const VirtMachineState *vms, int uart,
833                         MemoryRegion *mem, Chardev *chr)
834 {
835     char *nodename;
836     hwaddr base = vms->memmap[uart].base;
837     hwaddr size = vms->memmap[uart].size;
838     int irq = vms->irqmap[uart];
839     const char compat[] = "arm,pl011\0arm,primecell";
840     const char clocknames[] = "uartclk\0apb_pclk";
841     DeviceState *dev = qdev_new(TYPE_PL011);
842     SysBusDevice *s = SYS_BUS_DEVICE(dev);
843     MachineState *ms = MACHINE(vms);
844 
845     qdev_prop_set_chr(dev, "chardev", chr);
846     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
847     memory_region_add_subregion(mem, base,
848                                 sysbus_mmio_get_region(s, 0));
849     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
850 
851     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
852     qemu_fdt_add_subnode(ms->fdt, nodename);
853     /* Note that we can't use setprop_string because of the embedded NUL */
854     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
855                          compat, sizeof(compat));
856     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
857                                      2, base, 2, size);
858     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
859                                GIC_FDT_IRQ_TYPE_SPI, irq,
860                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
861     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
862                                vms->clock_phandle, vms->clock_phandle);
863     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
864                          clocknames, sizeof(clocknames));
865 
866     if (uart == VIRT_UART) {
867         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
868     } else {
869         /* Mark as not usable by the normal world */
870         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
871         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
872 
873         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
874                                 nodename);
875     }
876 
877     g_free(nodename);
878 }
879 
880 static void create_rtc(const VirtMachineState *vms)
881 {
882     char *nodename;
883     hwaddr base = vms->memmap[VIRT_RTC].base;
884     hwaddr size = vms->memmap[VIRT_RTC].size;
885     int irq = vms->irqmap[VIRT_RTC];
886     const char compat[] = "arm,pl031\0arm,primecell";
887     MachineState *ms = MACHINE(vms);
888 
889     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
890 
891     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
892     qemu_fdt_add_subnode(ms->fdt, nodename);
893     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
894     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
895                                  2, base, 2, size);
896     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
897                            GIC_FDT_IRQ_TYPE_SPI, irq,
898                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
899     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
900     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
901     g_free(nodename);
902 }
903 
904 static DeviceState *gpio_key_dev;
905 static void virt_powerdown_req(Notifier *n, void *opaque)
906 {
907     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
908 
909     if (s->acpi_dev) {
910         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
911     } else {
912         /* use gpio Pin 3 for power button event */
913         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
914     }
915 }
916 
917 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
918                              uint32_t phandle)
919 {
920     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
921                                         qdev_get_gpio_in(pl061_dev, 3));
922 
923     qemu_fdt_add_subnode(fdt, "/gpio-keys");
924     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
925 
926     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
927     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
928                             "label", "GPIO Key Poweroff");
929     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
930                           KEY_POWER);
931     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
932                            "gpios", phandle, 3, 0);
933 }
934 
935 #define SECURE_GPIO_POWEROFF 0
936 #define SECURE_GPIO_RESET    1
937 
938 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
939                                    uint32_t phandle)
940 {
941     DeviceState *gpio_pwr_dev;
942 
943     /* gpio-pwr */
944     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
945 
946     /* connect secure pl061 to gpio-pwr */
947     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
948                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
949     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
950                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
951 
952     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
953     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
954                             "gpio-poweroff");
955     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
956                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
957     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
958     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
959                             "okay");
960 
961     qemu_fdt_add_subnode(fdt, "/gpio-restart");
962     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
963                             "gpio-restart");
964     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
965                            "gpios", phandle, SECURE_GPIO_RESET, 0);
966     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
967     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
968                             "okay");
969 }
970 
971 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
972                                 MemoryRegion *mem)
973 {
974     char *nodename;
975     DeviceState *pl061_dev;
976     hwaddr base = vms->memmap[gpio].base;
977     hwaddr size = vms->memmap[gpio].size;
978     int irq = vms->irqmap[gpio];
979     const char compat[] = "arm,pl061\0arm,primecell";
980     SysBusDevice *s;
981     MachineState *ms = MACHINE(vms);
982 
983     pl061_dev = qdev_new("pl061");
984     /* Pull lines down to 0 if not driven by the PL061 */
985     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
986     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
987     s = SYS_BUS_DEVICE(pl061_dev);
988     sysbus_realize_and_unref(s, &error_fatal);
989     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
990     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
991 
992     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
993     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
994     qemu_fdt_add_subnode(ms->fdt, nodename);
995     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
996                                  2, base, 2, size);
997     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
998     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
999     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1000     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1001                            GIC_FDT_IRQ_TYPE_SPI, irq,
1002                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1003     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1004     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1005     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1006 
1007     if (gpio != VIRT_GPIO) {
1008         /* Mark as not usable by the normal world */
1009         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1010         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1011     }
1012     g_free(nodename);
1013 
1014     /* Child gpio devices */
1015     if (gpio == VIRT_GPIO) {
1016         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1017     } else {
1018         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1019     }
1020 }
1021 
1022 static void create_virtio_devices(const VirtMachineState *vms)
1023 {
1024     int i;
1025     hwaddr size = vms->memmap[VIRT_MMIO].size;
1026     MachineState *ms = MACHINE(vms);
1027 
1028     /* We create the transports in forwards order. Since qbus_realize()
1029      * prepends (not appends) new child buses, the incrementing loop below will
1030      * create a list of virtio-mmio buses with decreasing base addresses.
1031      *
1032      * When a -device option is processed from the command line,
1033      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1034      * order. The upshot is that -device options in increasing command line
1035      * order are mapped to virtio-mmio buses with decreasing base addresses.
1036      *
1037      * When this code was originally written, that arrangement ensured that the
1038      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1039      * the first -device on the command line. (The end-to-end order is a
1040      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1041      * guest kernel's name-to-address assignment strategy.)
1042      *
1043      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1044      * the message, if not necessarily the code, of commit 70161ff336.
1045      * Therefore the loop now establishes the inverse of the original intent.
1046      *
1047      * Unfortunately, we can't counteract the kernel change by reversing the
1048      * loop; it would break existing command lines.
1049      *
1050      * In any case, the kernel makes no guarantee about the stability of
1051      * enumeration order of virtio devices (as demonstrated by it changing
1052      * between kernel versions). For reliable and stable identification
1053      * of disks users must use UUIDs or similar mechanisms.
1054      */
1055     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1056         int irq = vms->irqmap[VIRT_MMIO] + i;
1057         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1058 
1059         sysbus_create_simple("virtio-mmio", base,
1060                              qdev_get_gpio_in(vms->gic, irq));
1061     }
1062 
1063     /* We add dtb nodes in reverse order so that they appear in the finished
1064      * device tree lowest address first.
1065      *
1066      * Note that this mapping is independent of the loop above. The previous
1067      * loop influences virtio device to virtio transport assignment, whereas
1068      * this loop controls how virtio transports are laid out in the dtb.
1069      */
1070     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1071         char *nodename;
1072         int irq = vms->irqmap[VIRT_MMIO] + i;
1073         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1074 
1075         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1076         qemu_fdt_add_subnode(ms->fdt, nodename);
1077         qemu_fdt_setprop_string(ms->fdt, nodename,
1078                                 "compatible", "virtio,mmio");
1079         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1080                                      2, base, 2, size);
1081         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1082                                GIC_FDT_IRQ_TYPE_SPI, irq,
1083                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1084         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1085         g_free(nodename);
1086     }
1087 }
1088 
1089 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1090 
1091 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1092                                         const char *name,
1093                                         const char *alias_prop_name)
1094 {
1095     /*
1096      * Create a single flash device.  We use the same parameters as
1097      * the flash devices on the Versatile Express board.
1098      */
1099     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1100 
1101     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1102     qdev_prop_set_uint8(dev, "width", 4);
1103     qdev_prop_set_uint8(dev, "device-width", 2);
1104     qdev_prop_set_bit(dev, "big-endian", false);
1105     qdev_prop_set_uint16(dev, "id0", 0x89);
1106     qdev_prop_set_uint16(dev, "id1", 0x18);
1107     qdev_prop_set_uint16(dev, "id2", 0x00);
1108     qdev_prop_set_uint16(dev, "id3", 0x00);
1109     qdev_prop_set_string(dev, "name", name);
1110     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1111     object_property_add_alias(OBJECT(vms), alias_prop_name,
1112                               OBJECT(dev), "drive");
1113     return PFLASH_CFI01(dev);
1114 }
1115 
1116 static void virt_flash_create(VirtMachineState *vms)
1117 {
1118     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1119     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1120 }
1121 
1122 static void virt_flash_map1(PFlashCFI01 *flash,
1123                             hwaddr base, hwaddr size,
1124                             MemoryRegion *sysmem)
1125 {
1126     DeviceState *dev = DEVICE(flash);
1127 
1128     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1129     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1130     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1131     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1132 
1133     memory_region_add_subregion(sysmem, base,
1134                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1135                                                        0));
1136 }
1137 
1138 static void virt_flash_map(VirtMachineState *vms,
1139                            MemoryRegion *sysmem,
1140                            MemoryRegion *secure_sysmem)
1141 {
1142     /*
1143      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1144      * sysmem is the system memory space. secure_sysmem is the secure view
1145      * of the system, and the first flash device should be made visible only
1146      * there. The second flash device is visible to both secure and nonsecure.
1147      * If sysmem == secure_sysmem this means there is no separate Secure
1148      * address space and both flash devices are generally visible.
1149      */
1150     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1151     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1152 
1153     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1154                     secure_sysmem);
1155     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1156                     sysmem);
1157 }
1158 
1159 static void virt_flash_fdt(VirtMachineState *vms,
1160                            MemoryRegion *sysmem,
1161                            MemoryRegion *secure_sysmem)
1162 {
1163     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1164     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1165     MachineState *ms = MACHINE(vms);
1166     char *nodename;
1167 
1168     if (sysmem == secure_sysmem) {
1169         /* Report both flash devices as a single node in the DT */
1170         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1171         qemu_fdt_add_subnode(ms->fdt, nodename);
1172         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1173         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1174                                      2, flashbase, 2, flashsize,
1175                                      2, flashbase + flashsize, 2, flashsize);
1176         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1177         g_free(nodename);
1178     } else {
1179         /*
1180          * Report the devices as separate nodes so we can mark one as
1181          * only visible to the secure world.
1182          */
1183         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1184         qemu_fdt_add_subnode(ms->fdt, nodename);
1185         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1186         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1187                                      2, flashbase, 2, flashsize);
1188         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1189         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1190         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1191         g_free(nodename);
1192 
1193         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1194         qemu_fdt_add_subnode(ms->fdt, nodename);
1195         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1196         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1197                                      2, flashbase + flashsize, 2, flashsize);
1198         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1199         g_free(nodename);
1200     }
1201 }
1202 
1203 static bool virt_firmware_init(VirtMachineState *vms,
1204                                MemoryRegion *sysmem,
1205                                MemoryRegion *secure_sysmem)
1206 {
1207     int i;
1208     const char *bios_name;
1209     BlockBackend *pflash_blk0;
1210 
1211     /* Map legacy -drive if=pflash to machine properties */
1212     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1213         pflash_cfi01_legacy_drive(vms->flash[i],
1214                                   drive_get(IF_PFLASH, 0, i));
1215     }
1216 
1217     virt_flash_map(vms, sysmem, secure_sysmem);
1218 
1219     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1220 
1221     bios_name = MACHINE(vms)->firmware;
1222     if (bios_name) {
1223         char *fname;
1224         MemoryRegion *mr;
1225         int image_size;
1226 
1227         if (pflash_blk0) {
1228             error_report("The contents of the first flash device may be "
1229                          "specified with -bios or with -drive if=pflash... "
1230                          "but you cannot use both options at once");
1231             exit(1);
1232         }
1233 
1234         /* Fall back to -bios */
1235 
1236         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1237         if (!fname) {
1238             error_report("Could not find ROM image '%s'", bios_name);
1239             exit(1);
1240         }
1241         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1242         image_size = load_image_mr(fname, mr);
1243         g_free(fname);
1244         if (image_size < 0) {
1245             error_report("Could not load ROM image '%s'", bios_name);
1246             exit(1);
1247         }
1248     }
1249 
1250     return pflash_blk0 || bios_name;
1251 }
1252 
1253 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1254 {
1255     MachineState *ms = MACHINE(vms);
1256     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1257     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1258     FWCfgState *fw_cfg;
1259     char *nodename;
1260 
1261     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1262     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1263 
1264     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1265     qemu_fdt_add_subnode(ms->fdt, nodename);
1266     qemu_fdt_setprop_string(ms->fdt, nodename,
1267                             "compatible", "qemu,fw-cfg-mmio");
1268     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1269                                  2, base, 2, size);
1270     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1271     g_free(nodename);
1272     return fw_cfg;
1273 }
1274 
1275 static void create_pcie_irq_map(const MachineState *ms,
1276                                 uint32_t gic_phandle,
1277                                 int first_irq, const char *nodename)
1278 {
1279     int devfn, pin;
1280     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1281     uint32_t *irq_map = full_irq_map;
1282 
1283     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1284         for (pin = 0; pin < 4; pin++) {
1285             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1286             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1287             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1288             int i;
1289 
1290             uint32_t map[] = {
1291                 devfn << 8, 0, 0,                           /* devfn */
1292                 pin + 1,                                    /* PCI pin */
1293                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1294 
1295             /* Convert map to big endian */
1296             for (i = 0; i < 10; i++) {
1297                 irq_map[i] = cpu_to_be32(map[i]);
1298             }
1299             irq_map += 10;
1300         }
1301     }
1302 
1303     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1304                      full_irq_map, sizeof(full_irq_map));
1305 
1306     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1307                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1308                            0, 0,
1309                            0x7           /* PCI irq */);
1310 }
1311 
1312 static void create_smmu(const VirtMachineState *vms,
1313                         PCIBus *bus)
1314 {
1315     char *node;
1316     const char compat[] = "arm,smmu-v3";
1317     int irq =  vms->irqmap[VIRT_SMMU];
1318     int i;
1319     hwaddr base = vms->memmap[VIRT_SMMU].base;
1320     hwaddr size = vms->memmap[VIRT_SMMU].size;
1321     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1322     DeviceState *dev;
1323     MachineState *ms = MACHINE(vms);
1324 
1325     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1326         return;
1327     }
1328 
1329     dev = qdev_new(TYPE_ARM_SMMUV3);
1330 
1331     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1332                              &error_abort);
1333     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1334     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1335     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1336         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1337                            qdev_get_gpio_in(vms->gic, irq + i));
1338     }
1339 
1340     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1341     qemu_fdt_add_subnode(ms->fdt, node);
1342     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1343     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1344 
1345     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1346             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1347             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1348             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1349             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1350 
1351     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1352                      sizeof(irq_names));
1353 
1354     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1355 
1356     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1357 
1358     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1359     g_free(node);
1360 }
1361 
1362 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1363 {
1364     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1365     uint16_t bdf = vms->virtio_iommu_bdf;
1366     MachineState *ms = MACHINE(vms);
1367     char *node;
1368 
1369     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1370 
1371     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1372                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1373     qemu_fdt_add_subnode(ms->fdt, node);
1374     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1375     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1376                                  1, bdf << 8, 1, 0, 1, 0,
1377                                  1, 0, 1, 0);
1378 
1379     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1380     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1381     g_free(node);
1382 
1383     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1384                            0x0, vms->iommu_phandle, 0x0, bdf,
1385                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1386 }
1387 
1388 static void create_pcie(VirtMachineState *vms)
1389 {
1390     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1391     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1392     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1393     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1394     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1395     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1396     hwaddr base_ecam, size_ecam;
1397     hwaddr base = base_mmio;
1398     int nr_pcie_buses;
1399     int irq = vms->irqmap[VIRT_PCIE];
1400     MemoryRegion *mmio_alias;
1401     MemoryRegion *mmio_reg;
1402     MemoryRegion *ecam_alias;
1403     MemoryRegion *ecam_reg;
1404     DeviceState *dev;
1405     char *nodename;
1406     int i, ecam_id;
1407     PCIHostState *pci;
1408     MachineState *ms = MACHINE(vms);
1409     MachineClass *mc = MACHINE_GET_CLASS(ms);
1410 
1411     dev = qdev_new(TYPE_GPEX_HOST);
1412     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1413 
1414     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1415     base_ecam = vms->memmap[ecam_id].base;
1416     size_ecam = vms->memmap[ecam_id].size;
1417     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1418     /* Map only the first size_ecam bytes of ECAM space */
1419     ecam_alias = g_new0(MemoryRegion, 1);
1420     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1421     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1422                              ecam_reg, 0, size_ecam);
1423     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1424 
1425     /* Map the MMIO window into system address space so as to expose
1426      * the section of PCI MMIO space which starts at the same base address
1427      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1428      * the window).
1429      */
1430     mmio_alias = g_new0(MemoryRegion, 1);
1431     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1432     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1433                              mmio_reg, base_mmio, size_mmio);
1434     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1435 
1436     if (vms->highmem_mmio) {
1437         /* Map high MMIO space */
1438         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1439 
1440         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1441                                  mmio_reg, base_mmio_high, size_mmio_high);
1442         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1443                                     high_mmio_alias);
1444     }
1445 
1446     /* Map IO port space */
1447     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1448 
1449     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1450         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1451                            qdev_get_gpio_in(vms->gic, irq + i));
1452         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1453     }
1454 
1455     pci = PCI_HOST_BRIDGE(dev);
1456     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1457     vms->bus = pci->bus;
1458     if (vms->bus) {
1459         for (i = 0; i < nb_nics; i++) {
1460             pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1461         }
1462     }
1463 
1464     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1465     qemu_fdt_add_subnode(ms->fdt, nodename);
1466     qemu_fdt_setprop_string(ms->fdt, nodename,
1467                             "compatible", "pci-host-ecam-generic");
1468     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1469     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1470     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1471     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1472     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1473                            nr_pcie_buses - 1);
1474     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1475 
1476     if (vms->msi_phandle) {
1477         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1478                                0, vms->msi_phandle, 0, 0x10000);
1479     }
1480 
1481     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1482                                  2, base_ecam, 2, size_ecam);
1483 
1484     if (vms->highmem_mmio) {
1485         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1486                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1487                                      2, base_pio, 2, size_pio,
1488                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1489                                      2, base_mmio, 2, size_mmio,
1490                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1491                                      2, base_mmio_high,
1492                                      2, base_mmio_high, 2, size_mmio_high);
1493     } else {
1494         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1495                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1496                                      2, base_pio, 2, size_pio,
1497                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1498                                      2, base_mmio, 2, size_mmio);
1499     }
1500 
1501     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1502     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1503 
1504     if (vms->iommu) {
1505         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1506 
1507         switch (vms->iommu) {
1508         case VIRT_IOMMU_SMMUV3:
1509             create_smmu(vms, vms->bus);
1510             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1511                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1512             break;
1513         default:
1514             g_assert_not_reached();
1515         }
1516     }
1517 }
1518 
1519 static void create_platform_bus(VirtMachineState *vms)
1520 {
1521     DeviceState *dev;
1522     SysBusDevice *s;
1523     int i;
1524     MemoryRegion *sysmem = get_system_memory();
1525 
1526     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1527     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1528     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1529     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1530     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1531     vms->platform_bus_dev = dev;
1532 
1533     s = SYS_BUS_DEVICE(dev);
1534     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1535         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1536         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1537     }
1538 
1539     memory_region_add_subregion(sysmem,
1540                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1541                                 sysbus_mmio_get_region(s, 0));
1542 }
1543 
1544 static void create_tag_ram(MemoryRegion *tag_sysmem,
1545                            hwaddr base, hwaddr size,
1546                            const char *name)
1547 {
1548     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1549 
1550     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1551     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1552 }
1553 
1554 static void create_secure_ram(VirtMachineState *vms,
1555                               MemoryRegion *secure_sysmem,
1556                               MemoryRegion *secure_tag_sysmem)
1557 {
1558     MemoryRegion *secram = g_new(MemoryRegion, 1);
1559     char *nodename;
1560     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1561     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1562     MachineState *ms = MACHINE(vms);
1563 
1564     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1565                            &error_fatal);
1566     memory_region_add_subregion(secure_sysmem, base, secram);
1567 
1568     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1569     qemu_fdt_add_subnode(ms->fdt, nodename);
1570     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1571     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1572     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1573     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1574 
1575     if (secure_tag_sysmem) {
1576         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1577     }
1578 
1579     g_free(nodename);
1580 }
1581 
1582 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1583 {
1584     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1585                                                  bootinfo);
1586     MachineState *ms = MACHINE(board);
1587 
1588 
1589     *fdt_size = board->fdt_size;
1590     return ms->fdt;
1591 }
1592 
1593 static void virt_build_smbios(VirtMachineState *vms)
1594 {
1595     MachineClass *mc = MACHINE_GET_CLASS(vms);
1596     MachineState *ms = MACHINE(vms);
1597     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1598     uint8_t *smbios_tables, *smbios_anchor;
1599     size_t smbios_tables_len, smbios_anchor_len;
1600     struct smbios_phys_mem_area mem_array;
1601     const char *product = "QEMU Virtual Machine";
1602 
1603     if (kvm_enabled()) {
1604         product = "KVM Virtual Machine";
1605     }
1606 
1607     smbios_set_defaults("QEMU", product,
1608                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1609                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1610 
1611     /* build the array of physical mem area from base_memmap */
1612     mem_array.address = vms->memmap[VIRT_MEM].base;
1613     mem_array.length = ms->ram_size;
1614 
1615     smbios_get_tables(ms, &mem_array, 1,
1616                       &smbios_tables, &smbios_tables_len,
1617                       &smbios_anchor, &smbios_anchor_len,
1618                       &error_fatal);
1619 
1620     if (smbios_anchor) {
1621         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1622                         smbios_tables, smbios_tables_len);
1623         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1624                         smbios_anchor, smbios_anchor_len);
1625     }
1626 }
1627 
1628 static
1629 void virt_machine_done(Notifier *notifier, void *data)
1630 {
1631     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1632                                          machine_done);
1633     MachineState *ms = MACHINE(vms);
1634     ARMCPU *cpu = ARM_CPU(first_cpu);
1635     struct arm_boot_info *info = &vms->bootinfo;
1636     AddressSpace *as = arm_boot_address_space(cpu, info);
1637 
1638     /*
1639      * If the user provided a dtb, we assume the dynamic sysbus nodes
1640      * already are integrated there. This corresponds to a use case where
1641      * the dynamic sysbus nodes are complex and their generation is not yet
1642      * supported. In that case the user can take charge of the guest dt
1643      * while qemu takes charge of the qom stuff.
1644      */
1645     if (info->dtb_filename == NULL) {
1646         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1647                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1648                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1649                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1650     }
1651     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1652         exit(1);
1653     }
1654 
1655     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1656 
1657     virt_acpi_setup(vms);
1658     virt_build_smbios(vms);
1659 }
1660 
1661 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1662 {
1663     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1664     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1665 
1666     if (!vmc->disallow_affinity_adjustment) {
1667         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1668          * GIC's target-list limitations. 32-bit KVM hosts currently
1669          * always create clusters of 4 CPUs, but that is expected to
1670          * change when they gain support for gicv3. When KVM is enabled
1671          * it will override the changes we make here, therefore our
1672          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1673          * and to improve SGI efficiency.
1674          */
1675         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1676             clustersz = GIC_TARGETLIST_BITS;
1677         } else {
1678             clustersz = GICV3_TARGETLIST_BITS;
1679         }
1680     }
1681     return arm_build_mp_affinity(idx, clustersz);
1682 }
1683 
1684 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1685                                                  int index)
1686 {
1687     bool *enabled_array[] = {
1688         &vms->highmem_redists,
1689         &vms->highmem_ecam,
1690         &vms->highmem_mmio,
1691     };
1692 
1693     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1694            ARRAY_SIZE(enabled_array));
1695     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1696 
1697     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1698 }
1699 
1700 static void virt_set_high_memmap(VirtMachineState *vms,
1701                                  hwaddr base, int pa_bits)
1702 {
1703     hwaddr region_base, region_size;
1704     bool *region_enabled, fits;
1705     int i;
1706 
1707     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1708         region_enabled = virt_get_high_memmap_enabled(vms, i);
1709         region_base = ROUND_UP(base, extended_memmap[i].size);
1710         region_size = extended_memmap[i].size;
1711 
1712         vms->memmap[i].base = region_base;
1713         vms->memmap[i].size = region_size;
1714 
1715         /*
1716          * Check each device to see if it fits in the PA space,
1717          * moving highest_gpa as we go. For compatibility, move
1718          * highest_gpa for disabled fitting devices as well, if
1719          * the compact layout has been disabled.
1720          *
1721          * For each device that doesn't fit, disable it.
1722          */
1723         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1724         *region_enabled &= fits;
1725         if (vms->highmem_compact && !*region_enabled) {
1726             continue;
1727         }
1728 
1729         base = region_base + region_size;
1730         if (fits) {
1731             vms->highest_gpa = base - 1;
1732         }
1733     }
1734 }
1735 
1736 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1737 {
1738     MachineState *ms = MACHINE(vms);
1739     hwaddr base, device_memory_base, device_memory_size, memtop;
1740     int i;
1741 
1742     vms->memmap = extended_memmap;
1743 
1744     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1745         vms->memmap[i] = base_memmap[i];
1746     }
1747 
1748     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1749         error_report("unsupported number of memory slots: %"PRIu64,
1750                      ms->ram_slots);
1751         exit(EXIT_FAILURE);
1752     }
1753 
1754     /*
1755      * !highmem is exactly the same as limiting the PA space to 32bit,
1756      * irrespective of the underlying capabilities of the HW.
1757      */
1758     if (!vms->highmem) {
1759         pa_bits = 32;
1760     }
1761 
1762     /*
1763      * We compute the base of the high IO region depending on the
1764      * amount of initial and device memory. The device memory start/size
1765      * is aligned on 1GiB. We never put the high IO region below 256GiB
1766      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1767      * The device region size assumes 1GiB page max alignment per slot.
1768      */
1769     device_memory_base =
1770         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1771     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1772 
1773     /* Base address of the high IO region */
1774     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1775     if (memtop > BIT_ULL(pa_bits)) {
1776         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1777                      pa_bits, memtop - BIT_ULL(pa_bits));
1778         exit(EXIT_FAILURE);
1779     }
1780     if (base < device_memory_base) {
1781         error_report("maxmem/slots too huge");
1782         exit(EXIT_FAILURE);
1783     }
1784     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1785         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1786     }
1787 
1788     /* We know for sure that at least the memory fits in the PA space */
1789     vms->highest_gpa = memtop - 1;
1790 
1791     virt_set_high_memmap(vms, base, pa_bits);
1792 
1793     if (device_memory_size > 0) {
1794         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1795     }
1796 }
1797 
1798 static VirtGICType finalize_gic_version_do(const char *accel_name,
1799                                            VirtGICType gic_version,
1800                                            int gics_supported,
1801                                            unsigned int max_cpus)
1802 {
1803     /* Convert host/max/nosel to GIC version number */
1804     switch (gic_version) {
1805     case VIRT_GIC_VERSION_HOST:
1806         if (!kvm_enabled()) {
1807             error_report("gic-version=host requires KVM");
1808             exit(1);
1809         }
1810 
1811         /* For KVM, gic-version=host means gic-version=max */
1812         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1813                                        gics_supported, max_cpus);
1814     case VIRT_GIC_VERSION_MAX:
1815         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1816             gic_version = VIRT_GIC_VERSION_4;
1817         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1818             gic_version = VIRT_GIC_VERSION_3;
1819         } else {
1820             gic_version = VIRT_GIC_VERSION_2;
1821         }
1822         break;
1823     case VIRT_GIC_VERSION_NOSEL:
1824         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1825             max_cpus <= GIC_NCPU) {
1826             gic_version = VIRT_GIC_VERSION_2;
1827         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1828             /*
1829              * in case the host does not support v2 emulation or
1830              * the end-user requested more than 8 VCPUs we now default
1831              * to v3. In any case defaulting to v2 would be broken.
1832              */
1833             gic_version = VIRT_GIC_VERSION_3;
1834         } else if (max_cpus > GIC_NCPU) {
1835             error_report("%s only supports GICv2 emulation but more than 8 "
1836                          "vcpus are requested", accel_name);
1837             exit(1);
1838         }
1839         break;
1840     case VIRT_GIC_VERSION_2:
1841     case VIRT_GIC_VERSION_3:
1842     case VIRT_GIC_VERSION_4:
1843         break;
1844     }
1845 
1846     /* Check chosen version is effectively supported */
1847     switch (gic_version) {
1848     case VIRT_GIC_VERSION_2:
1849         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1850             error_report("%s does not support GICv2 emulation", accel_name);
1851             exit(1);
1852         }
1853         break;
1854     case VIRT_GIC_VERSION_3:
1855         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1856             error_report("%s does not support GICv3 emulation", accel_name);
1857             exit(1);
1858         }
1859         break;
1860     case VIRT_GIC_VERSION_4:
1861         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1862             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1863                          accel_name);
1864             exit(1);
1865         }
1866         break;
1867     default:
1868         error_report("logic error in finalize_gic_version");
1869         exit(1);
1870         break;
1871     }
1872 
1873     return gic_version;
1874 }
1875 
1876 /*
1877  * finalize_gic_version - Determines the final gic_version
1878  * according to the gic-version property
1879  *
1880  * Default GIC type is v2
1881  */
1882 static void finalize_gic_version(VirtMachineState *vms)
1883 {
1884     const char *accel_name = current_accel_name();
1885     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1886     int gics_supported = 0;
1887 
1888     /* Determine which GIC versions the current environment supports */
1889     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1890         int probe_bitmap = kvm_arm_vgic_probe();
1891 
1892         if (!probe_bitmap) {
1893             error_report("Unable to determine GIC version supported by host");
1894             exit(1);
1895         }
1896 
1897         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1898             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1899         }
1900         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1901             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1902         }
1903     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1904         /* KVM w/o kernel irqchip can only deal with GICv2 */
1905         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1906         accel_name = "KVM with kernel-irqchip=off";
1907     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1908         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1909         if (module_object_class_by_name("arm-gicv3")) {
1910             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1911             if (vms->virt) {
1912                 /* GICv4 only makes sense if CPU has EL2 */
1913                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1914             }
1915         }
1916     } else {
1917         error_report("Unsupported accelerator, can not determine GIC support");
1918         exit(1);
1919     }
1920 
1921     /*
1922      * Then convert helpers like host/max to concrete GIC versions and ensure
1923      * the desired version is supported
1924      */
1925     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1926                                                gics_supported, max_cpus);
1927 }
1928 
1929 /*
1930  * virt_cpu_post_init() must be called after the CPUs have
1931  * been realized and the GIC has been created.
1932  */
1933 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1934 {
1935     int max_cpus = MACHINE(vms)->smp.max_cpus;
1936     bool aarch64, pmu, steal_time;
1937     CPUState *cpu;
1938 
1939     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1940     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1941     steal_time = object_property_get_bool(OBJECT(first_cpu),
1942                                           "kvm-steal-time", NULL);
1943 
1944     if (kvm_enabled()) {
1945         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1946         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1947 
1948         if (steal_time) {
1949             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1950             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1951 
1952             /* The memory region size must be a multiple of host page size. */
1953             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1954 
1955             if (pvtime_size > pvtime_reg_size) {
1956                 error_report("pvtime requires a %" HWADDR_PRId
1957                              " byte memory region for %d CPUs,"
1958                              " but only %" HWADDR_PRId " has been reserved",
1959                              pvtime_size, max_cpus, pvtime_reg_size);
1960                 exit(1);
1961             }
1962 
1963             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1964             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1965         }
1966 
1967         CPU_FOREACH(cpu) {
1968             if (pmu) {
1969                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1970                 if (kvm_irqchip_in_kernel()) {
1971                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
1972                 }
1973                 kvm_arm_pmu_init(ARM_CPU(cpu));
1974             }
1975             if (steal_time) {
1976                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
1977                                                   + cpu->cpu_index
1978                                                     * PVTIME_SIZE_PER_CPU);
1979             }
1980         }
1981     } else {
1982         if (aarch64 && vms->highmem) {
1983             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1984             int pamax = arm_pamax(ARM_CPU(first_cpu));
1985 
1986             if (pamax < requested_pa_size) {
1987                 error_report("VCPU supports less PA bits (%d) than "
1988                              "requested by the memory map (%d)",
1989                              pamax, requested_pa_size);
1990                 exit(1);
1991             }
1992         }
1993     }
1994 }
1995 
1996 static void machvirt_init(MachineState *machine)
1997 {
1998     VirtMachineState *vms = VIRT_MACHINE(machine);
1999     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2000     MachineClass *mc = MACHINE_GET_CLASS(machine);
2001     const CPUArchIdList *possible_cpus;
2002     MemoryRegion *sysmem = get_system_memory();
2003     MemoryRegion *secure_sysmem = NULL;
2004     MemoryRegion *tag_sysmem = NULL;
2005     MemoryRegion *secure_tag_sysmem = NULL;
2006     int n, virt_max_cpus;
2007     bool firmware_loaded;
2008     bool aarch64 = true;
2009     bool has_ged = !vmc->no_ged;
2010     unsigned int smp_cpus = machine->smp.cpus;
2011     unsigned int max_cpus = machine->smp.max_cpus;
2012 
2013     possible_cpus = mc->possible_cpu_arch_ids(machine);
2014 
2015     /*
2016      * In accelerated mode, the memory map is computed earlier in kvm_type()
2017      * to create a VM with the right number of IPA bits.
2018      */
2019     if (!vms->memmap) {
2020         Object *cpuobj;
2021         ARMCPU *armcpu;
2022         int pa_bits;
2023 
2024         /*
2025          * Instantiate a temporary CPU object to find out about what
2026          * we are about to deal with. Once this is done, get rid of
2027          * the object.
2028          */
2029         cpuobj = object_new(possible_cpus->cpus[0].type);
2030         armcpu = ARM_CPU(cpuobj);
2031 
2032         pa_bits = arm_pamax(armcpu);
2033 
2034         object_unref(cpuobj);
2035 
2036         virt_set_memmap(vms, pa_bits);
2037     }
2038 
2039     /* We can probe only here because during property set
2040      * KVM is not available yet
2041      */
2042     finalize_gic_version(vms);
2043 
2044     if (vms->secure) {
2045         /*
2046          * The Secure view of the world is the same as the NonSecure,
2047          * but with a few extra devices. Create it as a container region
2048          * containing the system memory at low priority; any secure-only
2049          * devices go in at higher priority and take precedence.
2050          */
2051         secure_sysmem = g_new(MemoryRegion, 1);
2052         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2053                            UINT64_MAX);
2054         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2055     }
2056 
2057     firmware_loaded = virt_firmware_init(vms, sysmem,
2058                                          secure_sysmem ?: sysmem);
2059 
2060     /* If we have an EL3 boot ROM then the assumption is that it will
2061      * implement PSCI itself, so disable QEMU's internal implementation
2062      * so it doesn't get in the way. Instead of starting secondary
2063      * CPUs in PSCI powerdown state we will start them all running and
2064      * let the boot ROM sort them out.
2065      * The usual case is that we do use QEMU's PSCI implementation;
2066      * if the guest has EL2 then we will use SMC as the conduit,
2067      * and otherwise we will use HVC (for backwards compatibility and
2068      * because if we're using KVM then we must use HVC).
2069      */
2070     if (vms->secure && firmware_loaded) {
2071         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2072     } else if (vms->virt) {
2073         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2074     } else {
2075         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2076     }
2077 
2078     /*
2079      * The maximum number of CPUs depends on the GIC version, or on how
2080      * many redistributors we can fit into the memory map (which in turn
2081      * depends on whether this is a GICv3 or v4).
2082      */
2083     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2084         virt_max_cpus = GIC_NCPU;
2085     } else {
2086         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2087         if (vms->highmem_redists) {
2088             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2089         }
2090     }
2091 
2092     if (max_cpus > virt_max_cpus) {
2093         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2094                      "supported by machine 'mach-virt' (%d)",
2095                      max_cpus, virt_max_cpus);
2096         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2097             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2098         }
2099 
2100         exit(1);
2101     }
2102 
2103     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2104         error_report("mach-virt: %s does not support providing "
2105                      "Security extensions (TrustZone) to the guest CPU",
2106                      current_accel_name());
2107         exit(1);
2108     }
2109 
2110     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2111         error_report("mach-virt: %s does not support providing "
2112                      "Virtualization extensions to the guest CPU",
2113                      current_accel_name());
2114         exit(1);
2115     }
2116 
2117     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2118         error_report("mach-virt: %s does not support providing "
2119                      "MTE to the guest CPU",
2120                      current_accel_name());
2121         exit(1);
2122     }
2123 
2124     create_fdt(vms);
2125 
2126     assert(possible_cpus->len == max_cpus);
2127     for (n = 0; n < possible_cpus->len; n++) {
2128         Object *cpuobj;
2129         CPUState *cs;
2130 
2131         if (n >= smp_cpus) {
2132             break;
2133         }
2134 
2135         cpuobj = object_new(possible_cpus->cpus[n].type);
2136         object_property_set_int(cpuobj, "mp-affinity",
2137                                 possible_cpus->cpus[n].arch_id, NULL);
2138 
2139         cs = CPU(cpuobj);
2140         cs->cpu_index = n;
2141 
2142         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2143                           &error_fatal);
2144 
2145         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2146 
2147         if (!vms->secure) {
2148             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2149         }
2150 
2151         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2152             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2153         }
2154 
2155         if (vmc->kvm_no_adjvtime &&
2156             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2157             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2158         }
2159 
2160         if (vmc->no_kvm_steal_time &&
2161             object_property_find(cpuobj, "kvm-steal-time")) {
2162             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2163         }
2164 
2165         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2166             object_property_set_bool(cpuobj, "pmu", false, NULL);
2167         }
2168 
2169         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2170             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2171         }
2172 
2173         if (object_property_find(cpuobj, "reset-cbar")) {
2174             object_property_set_int(cpuobj, "reset-cbar",
2175                                     vms->memmap[VIRT_CPUPERIPHS].base,
2176                                     &error_abort);
2177         }
2178 
2179         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2180                                  &error_abort);
2181         if (vms->secure) {
2182             object_property_set_link(cpuobj, "secure-memory",
2183                                      OBJECT(secure_sysmem), &error_abort);
2184         }
2185 
2186         if (vms->mte) {
2187             /* Create the memory region only once, but link to all cpus. */
2188             if (!tag_sysmem) {
2189                 /*
2190                  * The property exists only if MemTag is supported.
2191                  * If it is, we must allocate the ram to back that up.
2192                  */
2193                 if (!object_property_find(cpuobj, "tag-memory")) {
2194                     error_report("MTE requested, but not supported "
2195                                  "by the guest CPU");
2196                     exit(1);
2197                 }
2198 
2199                 tag_sysmem = g_new(MemoryRegion, 1);
2200                 memory_region_init(tag_sysmem, OBJECT(machine),
2201                                    "tag-memory", UINT64_MAX / 32);
2202 
2203                 if (vms->secure) {
2204                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2205                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2206                                        "secure-tag-memory", UINT64_MAX / 32);
2207 
2208                     /* As with ram, secure-tag takes precedence over tag.  */
2209                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2210                                                         tag_sysmem, -1);
2211                 }
2212             }
2213 
2214             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2215                                      &error_abort);
2216             if (vms->secure) {
2217                 object_property_set_link(cpuobj, "secure-tag-memory",
2218                                          OBJECT(secure_tag_sysmem),
2219                                          &error_abort);
2220             }
2221         }
2222 
2223         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2224         object_unref(cpuobj);
2225     }
2226     fdt_add_timer_nodes(vms);
2227     fdt_add_cpu_nodes(vms);
2228 
2229     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2230                                 machine->ram);
2231 
2232     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2233 
2234     create_gic(vms, sysmem);
2235 
2236     virt_cpu_post_init(vms, sysmem);
2237 
2238     fdt_add_pmu_nodes(vms);
2239 
2240     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2241 
2242     if (vms->secure) {
2243         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2244         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2245     }
2246 
2247     if (tag_sysmem) {
2248         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2249                        machine->ram_size, "mach-virt.tag");
2250     }
2251 
2252     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2253 
2254     create_rtc(vms);
2255 
2256     create_pcie(vms);
2257 
2258     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2259         vms->acpi_dev = create_acpi_ged(vms);
2260     } else {
2261         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2262     }
2263 
2264     if (vms->secure && !vmc->no_secure_gpio) {
2265         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2266     }
2267 
2268      /* connect powerdown request */
2269      vms->powerdown_notifier.notify = virt_powerdown_req;
2270      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2271 
2272     /* Create mmio transports, so the user can create virtio backends
2273      * (which will be automatically plugged in to the transports). If
2274      * no backend is created the transport will just sit harmlessly idle.
2275      */
2276     create_virtio_devices(vms);
2277 
2278     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2279     rom_set_fw(vms->fw_cfg);
2280 
2281     create_platform_bus(vms);
2282 
2283     if (machine->nvdimms_state->is_enabled) {
2284         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2285             .space_id = AML_AS_SYSTEM_MEMORY,
2286             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2287             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2288         };
2289 
2290         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2291                                arm_virt_nvdimm_acpi_dsmio,
2292                                vms->fw_cfg, OBJECT(vms));
2293     }
2294 
2295     vms->bootinfo.ram_size = machine->ram_size;
2296     vms->bootinfo.board_id = -1;
2297     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2298     vms->bootinfo.get_dtb = machvirt_dtb;
2299     vms->bootinfo.skip_dtb_autoload = true;
2300     vms->bootinfo.firmware_loaded = firmware_loaded;
2301     vms->bootinfo.psci_conduit = vms->psci_conduit;
2302     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2303 
2304     vms->machine_done.notify = virt_machine_done;
2305     qemu_add_machine_init_done_notifier(&vms->machine_done);
2306 }
2307 
2308 static bool virt_get_secure(Object *obj, Error **errp)
2309 {
2310     VirtMachineState *vms = VIRT_MACHINE(obj);
2311 
2312     return vms->secure;
2313 }
2314 
2315 static void virt_set_secure(Object *obj, bool value, Error **errp)
2316 {
2317     VirtMachineState *vms = VIRT_MACHINE(obj);
2318 
2319     vms->secure = value;
2320 }
2321 
2322 static bool virt_get_virt(Object *obj, Error **errp)
2323 {
2324     VirtMachineState *vms = VIRT_MACHINE(obj);
2325 
2326     return vms->virt;
2327 }
2328 
2329 static void virt_set_virt(Object *obj, bool value, Error **errp)
2330 {
2331     VirtMachineState *vms = VIRT_MACHINE(obj);
2332 
2333     vms->virt = value;
2334 }
2335 
2336 static bool virt_get_highmem(Object *obj, Error **errp)
2337 {
2338     VirtMachineState *vms = VIRT_MACHINE(obj);
2339 
2340     return vms->highmem;
2341 }
2342 
2343 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2344 {
2345     VirtMachineState *vms = VIRT_MACHINE(obj);
2346 
2347     vms->highmem = value;
2348 }
2349 
2350 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2351 {
2352     VirtMachineState *vms = VIRT_MACHINE(obj);
2353 
2354     return vms->highmem_compact;
2355 }
2356 
2357 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2358 {
2359     VirtMachineState *vms = VIRT_MACHINE(obj);
2360 
2361     vms->highmem_compact = value;
2362 }
2363 
2364 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2365 {
2366     VirtMachineState *vms = VIRT_MACHINE(obj);
2367 
2368     return vms->highmem_redists;
2369 }
2370 
2371 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2372 {
2373     VirtMachineState *vms = VIRT_MACHINE(obj);
2374 
2375     vms->highmem_redists = value;
2376 }
2377 
2378 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2379 {
2380     VirtMachineState *vms = VIRT_MACHINE(obj);
2381 
2382     return vms->highmem_ecam;
2383 }
2384 
2385 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2386 {
2387     VirtMachineState *vms = VIRT_MACHINE(obj);
2388 
2389     vms->highmem_ecam = value;
2390 }
2391 
2392 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2393 {
2394     VirtMachineState *vms = VIRT_MACHINE(obj);
2395 
2396     return vms->highmem_mmio;
2397 }
2398 
2399 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2400 {
2401     VirtMachineState *vms = VIRT_MACHINE(obj);
2402 
2403     vms->highmem_mmio = value;
2404 }
2405 
2406 
2407 static bool virt_get_its(Object *obj, Error **errp)
2408 {
2409     VirtMachineState *vms = VIRT_MACHINE(obj);
2410 
2411     return vms->its;
2412 }
2413 
2414 static void virt_set_its(Object *obj, bool value, Error **errp)
2415 {
2416     VirtMachineState *vms = VIRT_MACHINE(obj);
2417 
2418     vms->its = value;
2419 }
2420 
2421 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2422 {
2423     VirtMachineState *vms = VIRT_MACHINE(obj);
2424 
2425     return vms->dtb_randomness;
2426 }
2427 
2428 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2429 {
2430     VirtMachineState *vms = VIRT_MACHINE(obj);
2431 
2432     vms->dtb_randomness = value;
2433 }
2434 
2435 static char *virt_get_oem_id(Object *obj, Error **errp)
2436 {
2437     VirtMachineState *vms = VIRT_MACHINE(obj);
2438 
2439     return g_strdup(vms->oem_id);
2440 }
2441 
2442 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2443 {
2444     VirtMachineState *vms = VIRT_MACHINE(obj);
2445     size_t len = strlen(value);
2446 
2447     if (len > 6) {
2448         error_setg(errp,
2449                    "User specified oem-id value is bigger than 6 bytes in size");
2450         return;
2451     }
2452 
2453     strncpy(vms->oem_id, value, 6);
2454 }
2455 
2456 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2457 {
2458     VirtMachineState *vms = VIRT_MACHINE(obj);
2459 
2460     return g_strdup(vms->oem_table_id);
2461 }
2462 
2463 static void virt_set_oem_table_id(Object *obj, const char *value,
2464                                   Error **errp)
2465 {
2466     VirtMachineState *vms = VIRT_MACHINE(obj);
2467     size_t len = strlen(value);
2468 
2469     if (len > 8) {
2470         error_setg(errp,
2471                    "User specified oem-table-id value is bigger than 8 bytes in size");
2472         return;
2473     }
2474     strncpy(vms->oem_table_id, value, 8);
2475 }
2476 
2477 
2478 bool virt_is_acpi_enabled(VirtMachineState *vms)
2479 {
2480     if (vms->acpi == ON_OFF_AUTO_OFF) {
2481         return false;
2482     }
2483     return true;
2484 }
2485 
2486 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2487                           void *opaque, Error **errp)
2488 {
2489     VirtMachineState *vms = VIRT_MACHINE(obj);
2490     OnOffAuto acpi = vms->acpi;
2491 
2492     visit_type_OnOffAuto(v, name, &acpi, errp);
2493 }
2494 
2495 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2496                           void *opaque, Error **errp)
2497 {
2498     VirtMachineState *vms = VIRT_MACHINE(obj);
2499 
2500     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2501 }
2502 
2503 static bool virt_get_ras(Object *obj, Error **errp)
2504 {
2505     VirtMachineState *vms = VIRT_MACHINE(obj);
2506 
2507     return vms->ras;
2508 }
2509 
2510 static void virt_set_ras(Object *obj, bool value, Error **errp)
2511 {
2512     VirtMachineState *vms = VIRT_MACHINE(obj);
2513 
2514     vms->ras = value;
2515 }
2516 
2517 static bool virt_get_mte(Object *obj, Error **errp)
2518 {
2519     VirtMachineState *vms = VIRT_MACHINE(obj);
2520 
2521     return vms->mte;
2522 }
2523 
2524 static void virt_set_mte(Object *obj, bool value, Error **errp)
2525 {
2526     VirtMachineState *vms = VIRT_MACHINE(obj);
2527 
2528     vms->mte = value;
2529 }
2530 
2531 static char *virt_get_gic_version(Object *obj, Error **errp)
2532 {
2533     VirtMachineState *vms = VIRT_MACHINE(obj);
2534     const char *val;
2535 
2536     switch (vms->gic_version) {
2537     case VIRT_GIC_VERSION_4:
2538         val = "4";
2539         break;
2540     case VIRT_GIC_VERSION_3:
2541         val = "3";
2542         break;
2543     default:
2544         val = "2";
2545         break;
2546     }
2547     return g_strdup(val);
2548 }
2549 
2550 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2551 {
2552     VirtMachineState *vms = VIRT_MACHINE(obj);
2553 
2554     if (!strcmp(value, "4")) {
2555         vms->gic_version = VIRT_GIC_VERSION_4;
2556     } else if (!strcmp(value, "3")) {
2557         vms->gic_version = VIRT_GIC_VERSION_3;
2558     } else if (!strcmp(value, "2")) {
2559         vms->gic_version = VIRT_GIC_VERSION_2;
2560     } else if (!strcmp(value, "host")) {
2561         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2562     } else if (!strcmp(value, "max")) {
2563         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2564     } else {
2565         error_setg(errp, "Invalid gic-version value");
2566         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2567     }
2568 }
2569 
2570 static char *virt_get_iommu(Object *obj, Error **errp)
2571 {
2572     VirtMachineState *vms = VIRT_MACHINE(obj);
2573 
2574     switch (vms->iommu) {
2575     case VIRT_IOMMU_NONE:
2576         return g_strdup("none");
2577     case VIRT_IOMMU_SMMUV3:
2578         return g_strdup("smmuv3");
2579     default:
2580         g_assert_not_reached();
2581     }
2582 }
2583 
2584 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2585 {
2586     VirtMachineState *vms = VIRT_MACHINE(obj);
2587 
2588     if (!strcmp(value, "smmuv3")) {
2589         vms->iommu = VIRT_IOMMU_SMMUV3;
2590     } else if (!strcmp(value, "none")) {
2591         vms->iommu = VIRT_IOMMU_NONE;
2592     } else {
2593         error_setg(errp, "Invalid iommu value");
2594         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2595     }
2596 }
2597 
2598 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2599 {
2600     VirtMachineState *vms = VIRT_MACHINE(obj);
2601 
2602     return vms->default_bus_bypass_iommu;
2603 }
2604 
2605 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2606                                               Error **errp)
2607 {
2608     VirtMachineState *vms = VIRT_MACHINE(obj);
2609 
2610     vms->default_bus_bypass_iommu = value;
2611 }
2612 
2613 static CpuInstanceProperties
2614 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2615 {
2616     MachineClass *mc = MACHINE_GET_CLASS(ms);
2617     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2618 
2619     assert(cpu_index < possible_cpus->len);
2620     return possible_cpus->cpus[cpu_index].props;
2621 }
2622 
2623 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2624 {
2625     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2626 
2627     return socket_id % ms->numa_state->num_nodes;
2628 }
2629 
2630 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2631 {
2632     int n;
2633     unsigned int max_cpus = ms->smp.max_cpus;
2634     VirtMachineState *vms = VIRT_MACHINE(ms);
2635     MachineClass *mc = MACHINE_GET_CLASS(vms);
2636 
2637     if (ms->possible_cpus) {
2638         assert(ms->possible_cpus->len == max_cpus);
2639         return ms->possible_cpus;
2640     }
2641 
2642     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2643                                   sizeof(CPUArchId) * max_cpus);
2644     ms->possible_cpus->len = max_cpus;
2645     for (n = 0; n < ms->possible_cpus->len; n++) {
2646         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2647         ms->possible_cpus->cpus[n].arch_id =
2648             virt_cpu_mp_affinity(vms, n);
2649 
2650         assert(!mc->smp_props.dies_supported);
2651         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2652         ms->possible_cpus->cpus[n].props.socket_id =
2653             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2654         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2655         ms->possible_cpus->cpus[n].props.cluster_id =
2656             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2657         ms->possible_cpus->cpus[n].props.has_core_id = true;
2658         ms->possible_cpus->cpus[n].props.core_id =
2659             (n / ms->smp.threads) % ms->smp.cores;
2660         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2661         ms->possible_cpus->cpus[n].props.thread_id =
2662             n % ms->smp.threads;
2663     }
2664     return ms->possible_cpus;
2665 }
2666 
2667 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2668                                  Error **errp)
2669 {
2670     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2671     const MachineState *ms = MACHINE(hotplug_dev);
2672     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2673 
2674     if (!vms->acpi_dev) {
2675         error_setg(errp,
2676                    "memory hotplug is not enabled: missing acpi-ged device");
2677         return;
2678     }
2679 
2680     if (vms->mte) {
2681         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2682         return;
2683     }
2684 
2685     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2686         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2687         return;
2688     }
2689 
2690     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2691 }
2692 
2693 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2694                              DeviceState *dev, Error **errp)
2695 {
2696     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2697     MachineState *ms = MACHINE(hotplug_dev);
2698     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2699 
2700     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2701 
2702     if (is_nvdimm) {
2703         nvdimm_plug(ms->nvdimms_state);
2704     }
2705 
2706     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2707                          dev, &error_abort);
2708 }
2709 
2710 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2711                                             DeviceState *dev, Error **errp)
2712 {
2713     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2714 
2715     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2716         virt_memory_pre_plug(hotplug_dev, dev, errp);
2717     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2718         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2719     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2720         hwaddr db_start = 0, db_end = 0;
2721         QList *reserved_regions;
2722         char *resv_prop_str;
2723 
2724         if (vms->iommu != VIRT_IOMMU_NONE) {
2725             error_setg(errp, "virt machine does not support multiple IOMMUs");
2726             return;
2727         }
2728 
2729         switch (vms->msi_controller) {
2730         case VIRT_MSI_CTRL_NONE:
2731             return;
2732         case VIRT_MSI_CTRL_ITS:
2733             /* GITS_TRANSLATER page */
2734             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2735             db_end = base_memmap[VIRT_GIC_ITS].base +
2736                      base_memmap[VIRT_GIC_ITS].size - 1;
2737             break;
2738         case VIRT_MSI_CTRL_GICV2M:
2739             /* MSI_SETSPI_NS page */
2740             db_start = base_memmap[VIRT_GIC_V2M].base;
2741             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2742             break;
2743         }
2744         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2745                                         db_start, db_end,
2746                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2747 
2748         reserved_regions = qlist_new();
2749         qlist_append_str(reserved_regions, resv_prop_str);
2750         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2751         g_free(resv_prop_str);
2752     }
2753 }
2754 
2755 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2756                                         DeviceState *dev, Error **errp)
2757 {
2758     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2759 
2760     if (vms->platform_bus_dev) {
2761         MachineClass *mc = MACHINE_GET_CLASS(vms);
2762 
2763         if (device_is_dynamic_sysbus(mc, dev)) {
2764             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2765                                      SYS_BUS_DEVICE(dev));
2766         }
2767     }
2768 
2769     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2770         virt_memory_plug(hotplug_dev, dev, errp);
2771     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2772         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2773     }
2774 
2775     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2776         PCIDevice *pdev = PCI_DEVICE(dev);
2777 
2778         vms->iommu = VIRT_IOMMU_VIRTIO;
2779         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2780         create_virtio_iommu_dt_bindings(vms);
2781     }
2782 }
2783 
2784 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2785                                      DeviceState *dev, Error **errp)
2786 {
2787     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2788 
2789     if (!vms->acpi_dev) {
2790         error_setg(errp,
2791                    "memory hotplug is not enabled: missing acpi-ged device");
2792         return;
2793     }
2794 
2795     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2796         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2797         return;
2798     }
2799 
2800     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2801                                    errp);
2802 }
2803 
2804 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2805                              DeviceState *dev, Error **errp)
2806 {
2807     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2808     Error *local_err = NULL;
2809 
2810     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2811     if (local_err) {
2812         goto out;
2813     }
2814 
2815     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2816     qdev_unrealize(dev);
2817 
2818 out:
2819     error_propagate(errp, local_err);
2820 }
2821 
2822 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2823                                           DeviceState *dev, Error **errp)
2824 {
2825     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2826         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2827     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2828         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2829                                      errp);
2830     } else {
2831         error_setg(errp, "device unplug request for unsupported device"
2832                    " type: %s", object_get_typename(OBJECT(dev)));
2833     }
2834 }
2835 
2836 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2837                                           DeviceState *dev, Error **errp)
2838 {
2839     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2840         virt_dimm_unplug(hotplug_dev, dev, errp);
2841     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2842         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2843     } else {
2844         error_setg(errp, "virt: device unplug for unsupported device"
2845                    " type: %s", object_get_typename(OBJECT(dev)));
2846     }
2847 }
2848 
2849 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2850                                                         DeviceState *dev)
2851 {
2852     MachineClass *mc = MACHINE_GET_CLASS(machine);
2853 
2854     if (device_is_dynamic_sysbus(mc, dev) ||
2855         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2856         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2857         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2858         return HOTPLUG_HANDLER(machine);
2859     }
2860     return NULL;
2861 }
2862 
2863 /*
2864  * for arm64 kvm_type [7-0] encodes the requested number of bits
2865  * in the IPA address space
2866  */
2867 static int virt_kvm_type(MachineState *ms, const char *type_str)
2868 {
2869     VirtMachineState *vms = VIRT_MACHINE(ms);
2870     int max_vm_pa_size, requested_pa_size;
2871     bool fixed_ipa;
2872 
2873     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2874 
2875     /* we freeze the memory map to compute the highest gpa */
2876     virt_set_memmap(vms, max_vm_pa_size);
2877 
2878     requested_pa_size = 64 - clz64(vms->highest_gpa);
2879 
2880     /*
2881      * KVM requires the IPA size to be at least 32 bits.
2882      */
2883     if (requested_pa_size < 32) {
2884         requested_pa_size = 32;
2885     }
2886 
2887     if (requested_pa_size > max_vm_pa_size) {
2888         error_report("-m and ,maxmem option values "
2889                      "require an IPA range (%d bits) larger than "
2890                      "the one supported by the host (%d bits)",
2891                      requested_pa_size, max_vm_pa_size);
2892         return -1;
2893     }
2894     /*
2895      * We return the requested PA log size, unless KVM only supports
2896      * the implicit legacy 40b IPA setting, in which case the kvm_type
2897      * must be 0.
2898      */
2899     return fixed_ipa ? 0 : requested_pa_size;
2900 }
2901 
2902 static void virt_machine_class_init(ObjectClass *oc, void *data)
2903 {
2904     MachineClass *mc = MACHINE_CLASS(oc);
2905     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2906     static const char * const valid_cpu_types[] = {
2907 #ifdef CONFIG_TCG
2908         ARM_CPU_TYPE_NAME("cortex-a7"),
2909         ARM_CPU_TYPE_NAME("cortex-a15"),
2910 #ifdef TARGET_AARCH64
2911         ARM_CPU_TYPE_NAME("cortex-a35"),
2912         ARM_CPU_TYPE_NAME("cortex-a55"),
2913         ARM_CPU_TYPE_NAME("cortex-a72"),
2914         ARM_CPU_TYPE_NAME("cortex-a76"),
2915         ARM_CPU_TYPE_NAME("cortex-a710"),
2916         ARM_CPU_TYPE_NAME("a64fx"),
2917         ARM_CPU_TYPE_NAME("neoverse-n1"),
2918         ARM_CPU_TYPE_NAME("neoverse-v1"),
2919         ARM_CPU_TYPE_NAME("neoverse-n2"),
2920 #endif /* TARGET_AARCH64 */
2921 #endif /* CONFIG_TCG */
2922 #ifdef TARGET_AARCH64
2923         ARM_CPU_TYPE_NAME("cortex-a53"),
2924         ARM_CPU_TYPE_NAME("cortex-a57"),
2925 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2926         ARM_CPU_TYPE_NAME("host"),
2927 #endif /* CONFIG_KVM || CONFIG_HVF */
2928 #endif /* TARGET_AARCH64 */
2929         ARM_CPU_TYPE_NAME("max"),
2930         NULL
2931     };
2932 
2933     mc->init = machvirt_init;
2934     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2935      * The value may be reduced later when we have more information about the
2936      * configuration of the particular instance.
2937      */
2938     mc->max_cpus = 512;
2939     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2940     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2941     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2942     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2943 #ifdef CONFIG_TPM
2944     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2945 #endif
2946     mc->block_default_type = IF_VIRTIO;
2947     mc->no_cdrom = 1;
2948     mc->pci_allow_0_address = true;
2949     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2950     mc->minimum_page_bits = 12;
2951     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2952     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2953 #ifdef CONFIG_TCG
2954     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2955 #else
2956     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2957 #endif
2958     mc->valid_cpu_types = valid_cpu_types;
2959     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2960     mc->kvm_type = virt_kvm_type;
2961     assert(!mc->get_hotplug_handler);
2962     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2963     hc->pre_plug = virt_machine_device_pre_plug_cb;
2964     hc->plug = virt_machine_device_plug_cb;
2965     hc->unplug_request = virt_machine_device_unplug_request_cb;
2966     hc->unplug = virt_machine_device_unplug_cb;
2967     mc->nvdimm_supported = true;
2968     mc->smp_props.clusters_supported = true;
2969     mc->auto_enable_numa_with_memhp = true;
2970     mc->auto_enable_numa_with_memdev = true;
2971     /* platform instead of architectural choice */
2972     mc->cpu_cluster_has_numa_boundary = true;
2973     mc->default_ram_id = "mach-virt.ram";
2974     mc->default_nic = "virtio-net-pci";
2975 
2976     object_class_property_add(oc, "acpi", "OnOffAuto",
2977         virt_get_acpi, virt_set_acpi,
2978         NULL, NULL);
2979     object_class_property_set_description(oc, "acpi",
2980         "Enable ACPI");
2981     object_class_property_add_bool(oc, "secure", virt_get_secure,
2982                                    virt_set_secure);
2983     object_class_property_set_description(oc, "secure",
2984                                                 "Set on/off to enable/disable the ARM "
2985                                                 "Security Extensions (TrustZone)");
2986 
2987     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2988                                    virt_set_virt);
2989     object_class_property_set_description(oc, "virtualization",
2990                                           "Set on/off to enable/disable emulating a "
2991                                           "guest CPU which implements the ARM "
2992                                           "Virtualization Extensions");
2993 
2994     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2995                                    virt_set_highmem);
2996     object_class_property_set_description(oc, "highmem",
2997                                           "Set on/off to enable/disable using "
2998                                           "physical address space above 32 bits");
2999 
3000     object_class_property_add_bool(oc, "compact-highmem",
3001                                    virt_get_compact_highmem,
3002                                    virt_set_compact_highmem);
3003     object_class_property_set_description(oc, "compact-highmem",
3004                                           "Set on/off to enable/disable compact "
3005                                           "layout for high memory regions");
3006 
3007     object_class_property_add_bool(oc, "highmem-redists",
3008                                    virt_get_highmem_redists,
3009                                    virt_set_highmem_redists);
3010     object_class_property_set_description(oc, "highmem-redists",
3011                                           "Set on/off to enable/disable high "
3012                                           "memory region for GICv3 or GICv4 "
3013                                           "redistributor");
3014 
3015     object_class_property_add_bool(oc, "highmem-ecam",
3016                                    virt_get_highmem_ecam,
3017                                    virt_set_highmem_ecam);
3018     object_class_property_set_description(oc, "highmem-ecam",
3019                                           "Set on/off to enable/disable high "
3020                                           "memory region for PCI ECAM");
3021 
3022     object_class_property_add_bool(oc, "highmem-mmio",
3023                                    virt_get_highmem_mmio,
3024                                    virt_set_highmem_mmio);
3025     object_class_property_set_description(oc, "highmem-mmio",
3026                                           "Set on/off to enable/disable high "
3027                                           "memory region for PCI MMIO");
3028 
3029     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3030                                   virt_set_gic_version);
3031     object_class_property_set_description(oc, "gic-version",
3032                                           "Set GIC version. "
3033                                           "Valid values are 2, 3, 4, host and max");
3034 
3035     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3036     object_class_property_set_description(oc, "iommu",
3037                                           "Set the IOMMU type. "
3038                                           "Valid values are none and smmuv3");
3039 
3040     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3041                                    virt_get_default_bus_bypass_iommu,
3042                                    virt_set_default_bus_bypass_iommu);
3043     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3044                                           "Set on/off to enable/disable "
3045                                           "bypass_iommu for default root bus");
3046 
3047     object_class_property_add_bool(oc, "ras", virt_get_ras,
3048                                    virt_set_ras);
3049     object_class_property_set_description(oc, "ras",
3050                                           "Set on/off to enable/disable reporting host memory errors "
3051                                           "to a KVM guest using ACPI and guest external abort exceptions");
3052 
3053     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3054     object_class_property_set_description(oc, "mte",
3055                                           "Set on/off to enable/disable emulating a "
3056                                           "guest CPU which implements the ARM "
3057                                           "Memory Tagging Extension");
3058 
3059     object_class_property_add_bool(oc, "its", virt_get_its,
3060                                    virt_set_its);
3061     object_class_property_set_description(oc, "its",
3062                                           "Set on/off to enable/disable "
3063                                           "ITS instantiation");
3064 
3065     object_class_property_add_bool(oc, "dtb-randomness",
3066                                    virt_get_dtb_randomness,
3067                                    virt_set_dtb_randomness);
3068     object_class_property_set_description(oc, "dtb-randomness",
3069                                           "Set off to disable passing random or "
3070                                           "non-deterministic dtb nodes to guest");
3071 
3072     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3073                                    virt_get_dtb_randomness,
3074                                    virt_set_dtb_randomness);
3075     object_class_property_set_description(oc, "dtb-kaslr-seed",
3076                                           "Deprecated synonym of dtb-randomness");
3077 
3078     object_class_property_add_str(oc, "x-oem-id",
3079                                   virt_get_oem_id,
3080                                   virt_set_oem_id);
3081     object_class_property_set_description(oc, "x-oem-id",
3082                                           "Override the default value of field OEMID "
3083                                           "in ACPI table header."
3084                                           "The string may be up to 6 bytes in size");
3085 
3086 
3087     object_class_property_add_str(oc, "x-oem-table-id",
3088                                   virt_get_oem_table_id,
3089                                   virt_set_oem_table_id);
3090     object_class_property_set_description(oc, "x-oem-table-id",
3091                                           "Override the default value of field OEM Table ID "
3092                                           "in ACPI table header."
3093                                           "The string may be up to 8 bytes in size");
3094 
3095 }
3096 
3097 static void virt_instance_init(Object *obj)
3098 {
3099     VirtMachineState *vms = VIRT_MACHINE(obj);
3100     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3101 
3102     /* EL3 is disabled by default on virt: this makes us consistent
3103      * between KVM and TCG for this board, and it also allows us to
3104      * boot UEFI blobs which assume no TrustZone support.
3105      */
3106     vms->secure = false;
3107 
3108     /* EL2 is also disabled by default, for similar reasons */
3109     vms->virt = false;
3110 
3111     /* High memory is enabled by default */
3112     vms->highmem = true;
3113     vms->highmem_compact = !vmc->no_highmem_compact;
3114     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3115 
3116     vms->highmem_ecam = !vmc->no_highmem_ecam;
3117     vms->highmem_mmio = true;
3118     vms->highmem_redists = true;
3119 
3120     if (vmc->no_its) {
3121         vms->its = false;
3122     } else {
3123         /* Default allows ITS instantiation */
3124         vms->its = true;
3125 
3126         if (vmc->no_tcg_its) {
3127             vms->tcg_its = false;
3128         } else {
3129             vms->tcg_its = true;
3130         }
3131     }
3132 
3133     /* Default disallows iommu instantiation */
3134     vms->iommu = VIRT_IOMMU_NONE;
3135 
3136     /* The default root bus is attached to iommu by default */
3137     vms->default_bus_bypass_iommu = false;
3138 
3139     /* Default disallows RAS instantiation */
3140     vms->ras = false;
3141 
3142     /* MTE is disabled by default.  */
3143     vms->mte = false;
3144 
3145     /* Supply kaslr-seed and rng-seed by default */
3146     vms->dtb_randomness = true;
3147 
3148     vms->irqmap = a15irqmap;
3149 
3150     virt_flash_create(vms);
3151 
3152     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3153     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3154 }
3155 
3156 static const TypeInfo virt_machine_info = {
3157     .name          = TYPE_VIRT_MACHINE,
3158     .parent        = TYPE_MACHINE,
3159     .abstract      = true,
3160     .instance_size = sizeof(VirtMachineState),
3161     .class_size    = sizeof(VirtMachineClass),
3162     .class_init    = virt_machine_class_init,
3163     .instance_init = virt_instance_init,
3164     .interfaces = (InterfaceInfo[]) {
3165          { TYPE_HOTPLUG_HANDLER },
3166          { }
3167     },
3168 };
3169 
3170 static void machvirt_machine_init(void)
3171 {
3172     type_register_static(&virt_machine_info);
3173 }
3174 type_init(machvirt_machine_init);
3175 
3176 static void virt_machine_9_0_options(MachineClass *mc)
3177 {
3178 }
3179 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3180 
3181 static void virt_machine_8_2_options(MachineClass *mc)
3182 {
3183     virt_machine_9_0_options(mc);
3184     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3185 }
3186 DEFINE_VIRT_MACHINE(8, 2)
3187 
3188 static void virt_machine_8_1_options(MachineClass *mc)
3189 {
3190     virt_machine_8_2_options(mc);
3191     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3192 }
3193 DEFINE_VIRT_MACHINE(8, 1)
3194 
3195 static void virt_machine_8_0_options(MachineClass *mc)
3196 {
3197     virt_machine_8_1_options(mc);
3198     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3199 }
3200 DEFINE_VIRT_MACHINE(8, 0)
3201 
3202 static void virt_machine_7_2_options(MachineClass *mc)
3203 {
3204     virt_machine_8_0_options(mc);
3205     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3206 }
3207 DEFINE_VIRT_MACHINE(7, 2)
3208 
3209 static void virt_machine_7_1_options(MachineClass *mc)
3210 {
3211     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3212 
3213     virt_machine_7_2_options(mc);
3214     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3215     /* Compact layout for high memory regions was introduced with 7.2 */
3216     vmc->no_highmem_compact = true;
3217 }
3218 DEFINE_VIRT_MACHINE(7, 1)
3219 
3220 static void virt_machine_7_0_options(MachineClass *mc)
3221 {
3222     virt_machine_7_1_options(mc);
3223     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3224 }
3225 DEFINE_VIRT_MACHINE(7, 0)
3226 
3227 static void virt_machine_6_2_options(MachineClass *mc)
3228 {
3229     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3230 
3231     virt_machine_7_0_options(mc);
3232     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3233     vmc->no_tcg_lpa2 = true;
3234 }
3235 DEFINE_VIRT_MACHINE(6, 2)
3236 
3237 static void virt_machine_6_1_options(MachineClass *mc)
3238 {
3239     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3240 
3241     virt_machine_6_2_options(mc);
3242     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3243     mc->smp_props.prefer_sockets = true;
3244     vmc->no_cpu_topology = true;
3245 
3246     /* qemu ITS was introduced with 6.2 */
3247     vmc->no_tcg_its = true;
3248 }
3249 DEFINE_VIRT_MACHINE(6, 1)
3250 
3251 static void virt_machine_6_0_options(MachineClass *mc)
3252 {
3253     virt_machine_6_1_options(mc);
3254     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3255 }
3256 DEFINE_VIRT_MACHINE(6, 0)
3257 
3258 static void virt_machine_5_2_options(MachineClass *mc)
3259 {
3260     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3261 
3262     virt_machine_6_0_options(mc);
3263     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3264     vmc->no_secure_gpio = true;
3265 }
3266 DEFINE_VIRT_MACHINE(5, 2)
3267 
3268 static void virt_machine_5_1_options(MachineClass *mc)
3269 {
3270     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3271 
3272     virt_machine_5_2_options(mc);
3273     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3274     vmc->no_kvm_steal_time = true;
3275 }
3276 DEFINE_VIRT_MACHINE(5, 1)
3277 
3278 static void virt_machine_5_0_options(MachineClass *mc)
3279 {
3280     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3281 
3282     virt_machine_5_1_options(mc);
3283     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3284     mc->numa_mem_supported = true;
3285     vmc->acpi_expose_flash = true;
3286     mc->auto_enable_numa_with_memdev = false;
3287 }
3288 DEFINE_VIRT_MACHINE(5, 0)
3289 
3290 static void virt_machine_4_2_options(MachineClass *mc)
3291 {
3292     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3293 
3294     virt_machine_5_0_options(mc);
3295     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3296     vmc->kvm_no_adjvtime = true;
3297 }
3298 DEFINE_VIRT_MACHINE(4, 2)
3299 
3300 static void virt_machine_4_1_options(MachineClass *mc)
3301 {
3302     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3303 
3304     virt_machine_4_2_options(mc);
3305     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3306     vmc->no_ged = true;
3307     mc->auto_enable_numa_with_memhp = false;
3308 }
3309 DEFINE_VIRT_MACHINE(4, 1)
3310 
3311 static void virt_machine_4_0_options(MachineClass *mc)
3312 {
3313     virt_machine_4_1_options(mc);
3314     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3315 }
3316 DEFINE_VIRT_MACHINE(4, 0)
3317 
3318 static void virt_machine_3_1_options(MachineClass *mc)
3319 {
3320     virt_machine_4_0_options(mc);
3321     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3322 }
3323 DEFINE_VIRT_MACHINE(3, 1)
3324 
3325 static void virt_machine_3_0_options(MachineClass *mc)
3326 {
3327     virt_machine_3_1_options(mc);
3328     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3329 }
3330 DEFINE_VIRT_MACHINE(3, 0)
3331 
3332 static void virt_machine_2_12_options(MachineClass *mc)
3333 {
3334     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3335 
3336     virt_machine_3_0_options(mc);
3337     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3338     vmc->no_highmem_ecam = true;
3339     mc->max_cpus = 255;
3340 }
3341 DEFINE_VIRT_MACHINE(2, 12)
3342 
3343 static void virt_machine_2_11_options(MachineClass *mc)
3344 {
3345     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3346 
3347     virt_machine_2_12_options(mc);
3348     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3349     vmc->smbios_old_sys_ver = true;
3350 }
3351 DEFINE_VIRT_MACHINE(2, 11)
3352 
3353 static void virt_machine_2_10_options(MachineClass *mc)
3354 {
3355     virt_machine_2_11_options(mc);
3356     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3357     /* before 2.11 we never faulted accesses to bad addresses */
3358     mc->ignore_memory_transaction_failures = true;
3359 }
3360 DEFINE_VIRT_MACHINE(2, 10)
3361 
3362 static void virt_machine_2_9_options(MachineClass *mc)
3363 {
3364     virt_machine_2_10_options(mc);
3365     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3366 }
3367 DEFINE_VIRT_MACHINE(2, 9)
3368 
3369 static void virt_machine_2_8_options(MachineClass *mc)
3370 {
3371     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3372 
3373     virt_machine_2_9_options(mc);
3374     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3375     /* For 2.8 and earlier we falsely claimed in the DT that
3376      * our timers were edge-triggered, not level-triggered.
3377      */
3378     vmc->claim_edge_triggered_timers = true;
3379 }
3380 DEFINE_VIRT_MACHINE(2, 8)
3381 
3382 static void virt_machine_2_7_options(MachineClass *mc)
3383 {
3384     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3385 
3386     virt_machine_2_8_options(mc);
3387     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3388     /* ITS was introduced with 2.8 */
3389     vmc->no_its = true;
3390     /* Stick with 1K pages for migration compatibility */
3391     mc->minimum_page_bits = 0;
3392 }
3393 DEFINE_VIRT_MACHINE(2, 7)
3394 
3395 static void virt_machine_2_6_options(MachineClass *mc)
3396 {
3397     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3398 
3399     virt_machine_2_7_options(mc);
3400     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3401     vmc->disallow_affinity_adjustment = true;
3402     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3403     vmc->no_pmu = true;
3404 }
3405 DEFINE_VIRT_MACHINE(2, 6)
3406