xref: /openbmc/qemu/hw/arm/strongarm.c (revision 92335a0d4021a3b44ccc88c9fc6c0fd2113f1882)
1 /*
2  * StrongARM SA-1100/SA-1110 emulation
3  *
4  * Copyright (C) 2011 Dmitry Eremin-Solenikov
5  *
6  * Largely based on StrongARM emulation:
7  * Copyright (c) 2006 Openedhand Ltd.
8  * Written by Andrzej Zaborowski <balrog@zabor.org>
9  *
10  * UART code based on QEMU 16550A UART emulation
11  * Copyright (c) 2003-2004 Fabrice Bellard
12  * Copyright (c) 2008 Citrix Systems, Inc.
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License version 2 as
16  *  published by the Free Software Foundation.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License along
24  *  with this program; if not, see <http://www.gnu.org/licenses/>.
25  *
26  *  Contributions after 2012-01-13 are licensed under the terms of the
27  *  GNU GPL, version 2 or (at your option) any later version.
28  */
29 #include "hw/sysbus.h"
30 #include "strongarm.h"
31 #include "qemu/error-report.h"
32 #include "hw/arm/arm.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/ssi.h"
36 
37 //#define DEBUG
38 
39 /*
40  TODO
41  - Implement cp15, c14 ?
42  - Implement cp15, c15 !!! (idle used in L)
43  - Implement idle mode handling/DIM
44  - Implement sleep mode/Wake sources
45  - Implement reset control
46  - Implement memory control regs
47  - PCMCIA handling
48  - Maybe support MBGNT/MBREQ
49  - DMA channels
50  - GPCLK
51  - IrDA
52  - MCP
53  - Enhance UART with modem signals
54  */
55 
56 #ifdef DEBUG
57 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
58 #else
59 # define DPRINTF(format, ...) do { } while (0)
60 #endif
61 
62 static struct {
63     hwaddr io_base;
64     int irq;
65 } sa_serial[] = {
66     { 0x80010000, SA_PIC_UART1 },
67     { 0x80030000, SA_PIC_UART2 },
68     { 0x80050000, SA_PIC_UART3 },
69     { 0, 0 }
70 };
71 
72 /* Interrupt Controller */
73 
74 #define TYPE_STRONGARM_PIC "strongarm_pic"
75 #define STRONGARM_PIC(obj) \
76     OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
77 
78 typedef struct StrongARMPICState {
79     SysBusDevice parent_obj;
80 
81     MemoryRegion iomem;
82     qemu_irq    irq;
83     qemu_irq    fiq;
84 
85     uint32_t pending;
86     uint32_t enabled;
87     uint32_t is_fiq;
88     uint32_t int_idle;
89 } StrongARMPICState;
90 
91 #define ICIP    0x00
92 #define ICMR    0x04
93 #define ICLR    0x08
94 #define ICFP    0x10
95 #define ICPR    0x20
96 #define ICCR    0x0c
97 
98 #define SA_PIC_SRCS     32
99 
100 
101 static void strongarm_pic_update(void *opaque)
102 {
103     StrongARMPICState *s = opaque;
104 
105     /* FIXME: reflect DIM */
106     qemu_set_irq(s->fiq, s->pending & s->enabled &  s->is_fiq);
107     qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
108 }
109 
110 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
111 {
112     StrongARMPICState *s = opaque;
113 
114     if (level) {
115         s->pending |= 1 << irq;
116     } else {
117         s->pending &= ~(1 << irq);
118     }
119 
120     strongarm_pic_update(s);
121 }
122 
123 static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
124                                        unsigned size)
125 {
126     StrongARMPICState *s = opaque;
127 
128     switch (offset) {
129     case ICIP:
130         return s->pending & ~s->is_fiq & s->enabled;
131     case ICMR:
132         return s->enabled;
133     case ICLR:
134         return s->is_fiq;
135     case ICCR:
136         return s->int_idle == 0;
137     case ICFP:
138         return s->pending & s->is_fiq & s->enabled;
139     case ICPR:
140         return s->pending;
141     default:
142         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
143                         __func__, offset);
144         return 0;
145     }
146 }
147 
148 static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
149                                     uint64_t value, unsigned size)
150 {
151     StrongARMPICState *s = opaque;
152 
153     switch (offset) {
154     case ICMR:
155         s->enabled = value;
156         break;
157     case ICLR:
158         s->is_fiq = value;
159         break;
160     case ICCR:
161         s->int_idle = (value & 1) ? 0 : ~0;
162         break;
163     default:
164         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
165                         __func__, offset);
166         break;
167     }
168     strongarm_pic_update(s);
169 }
170 
171 static const MemoryRegionOps strongarm_pic_ops = {
172     .read = strongarm_pic_mem_read,
173     .write = strongarm_pic_mem_write,
174     .endianness = DEVICE_NATIVE_ENDIAN,
175 };
176 
177 static int strongarm_pic_initfn(SysBusDevice *sbd)
178 {
179     DeviceState *dev = DEVICE(sbd);
180     StrongARMPICState *s = STRONGARM_PIC(dev);
181 
182     qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
183     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_pic_ops, s,
184                           "pic", 0x1000);
185     sysbus_init_mmio(sbd, &s->iomem);
186     sysbus_init_irq(sbd, &s->irq);
187     sysbus_init_irq(sbd, &s->fiq);
188 
189     return 0;
190 }
191 
192 static int strongarm_pic_post_load(void *opaque, int version_id)
193 {
194     strongarm_pic_update(opaque);
195     return 0;
196 }
197 
198 static VMStateDescription vmstate_strongarm_pic_regs = {
199     .name = "strongarm_pic",
200     .version_id = 0,
201     .minimum_version_id = 0,
202     .post_load = strongarm_pic_post_load,
203     .fields = (VMStateField[]) {
204         VMSTATE_UINT32(pending, StrongARMPICState),
205         VMSTATE_UINT32(enabled, StrongARMPICState),
206         VMSTATE_UINT32(is_fiq, StrongARMPICState),
207         VMSTATE_UINT32(int_idle, StrongARMPICState),
208         VMSTATE_END_OF_LIST(),
209     },
210 };
211 
212 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
213 {
214     DeviceClass *dc = DEVICE_CLASS(klass);
215     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
216 
217     k->init = strongarm_pic_initfn;
218     dc->desc = "StrongARM PIC";
219     dc->vmsd = &vmstate_strongarm_pic_regs;
220 }
221 
222 static const TypeInfo strongarm_pic_info = {
223     .name          = TYPE_STRONGARM_PIC,
224     .parent        = TYPE_SYS_BUS_DEVICE,
225     .instance_size = sizeof(StrongARMPICState),
226     .class_init    = strongarm_pic_class_init,
227 };
228 
229 /* Real-Time Clock */
230 #define RTAR 0x00 /* RTC Alarm register */
231 #define RCNR 0x04 /* RTC Counter register */
232 #define RTTR 0x08 /* RTC Timer Trim register */
233 #define RTSR 0x10 /* RTC Status register */
234 
235 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
236 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
237 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
238 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
239 
240 /* 16 LSB of RTTR are clockdiv for internal trim logic,
241  * trim delete isn't emulated, so
242  * f = 32 768 / (RTTR_trim + 1) */
243 
244 #define TYPE_STRONGARM_RTC "strongarm-rtc"
245 #define STRONGARM_RTC(obj) \
246     OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
247 
248 typedef struct StrongARMRTCState {
249     SysBusDevice parent_obj;
250 
251     MemoryRegion iomem;
252     uint32_t rttr;
253     uint32_t rtsr;
254     uint32_t rtar;
255     uint32_t last_rcnr;
256     int64_t last_hz;
257     QEMUTimer *rtc_alarm;
258     QEMUTimer *rtc_hz;
259     qemu_irq rtc_irq;
260     qemu_irq rtc_hz_irq;
261 } StrongARMRTCState;
262 
263 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
264 {
265     qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
266     qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
267 }
268 
269 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
270 {
271     int64_t rt = qemu_clock_get_ms(rtc_clock);
272     s->last_rcnr += ((rt - s->last_hz) << 15) /
273             (1000 * ((s->rttr & 0xffff) + 1));
274     s->last_hz = rt;
275 }
276 
277 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
278 {
279     if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
280         timer_mod(s->rtc_hz, s->last_hz + 1000);
281     } else {
282         timer_del(s->rtc_hz);
283     }
284 
285     if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
286         timer_mod(s->rtc_alarm, s->last_hz +
287                 (((s->rtar - s->last_rcnr) * 1000 *
288                   ((s->rttr & 0xffff) + 1)) >> 15));
289     } else {
290         timer_del(s->rtc_alarm);
291     }
292 }
293 
294 static inline void strongarm_rtc_alarm_tick(void *opaque)
295 {
296     StrongARMRTCState *s = opaque;
297     s->rtsr |= RTSR_AL;
298     strongarm_rtc_timer_update(s);
299     strongarm_rtc_int_update(s);
300 }
301 
302 static inline void strongarm_rtc_hz_tick(void *opaque)
303 {
304     StrongARMRTCState *s = opaque;
305     s->rtsr |= RTSR_HZ;
306     strongarm_rtc_timer_update(s);
307     strongarm_rtc_int_update(s);
308 }
309 
310 static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
311                                    unsigned size)
312 {
313     StrongARMRTCState *s = opaque;
314 
315     switch (addr) {
316     case RTTR:
317         return s->rttr;
318     case RTSR:
319         return s->rtsr;
320     case RTAR:
321         return s->rtar;
322     case RCNR:
323         return s->last_rcnr +
324                 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
325                 (1000 * ((s->rttr & 0xffff) + 1));
326     default:
327         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
328         return 0;
329     }
330 }
331 
332 static void strongarm_rtc_write(void *opaque, hwaddr addr,
333                                 uint64_t value, unsigned size)
334 {
335     StrongARMRTCState *s = opaque;
336     uint32_t old_rtsr;
337 
338     switch (addr) {
339     case RTTR:
340         strongarm_rtc_hzupdate(s);
341         s->rttr = value;
342         strongarm_rtc_timer_update(s);
343         break;
344 
345     case RTSR:
346         old_rtsr = s->rtsr;
347         s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
348                   (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
349 
350         if (s->rtsr != old_rtsr) {
351             strongarm_rtc_timer_update(s);
352         }
353 
354         strongarm_rtc_int_update(s);
355         break;
356 
357     case RTAR:
358         s->rtar = value;
359         strongarm_rtc_timer_update(s);
360         break;
361 
362     case RCNR:
363         strongarm_rtc_hzupdate(s);
364         s->last_rcnr = value;
365         strongarm_rtc_timer_update(s);
366         break;
367 
368     default:
369         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
370     }
371 }
372 
373 static const MemoryRegionOps strongarm_rtc_ops = {
374     .read = strongarm_rtc_read,
375     .write = strongarm_rtc_write,
376     .endianness = DEVICE_NATIVE_ENDIAN,
377 };
378 
379 static int strongarm_rtc_init(SysBusDevice *dev)
380 {
381     StrongARMRTCState *s = STRONGARM_RTC(dev);
382     struct tm tm;
383 
384     s->rttr = 0x0;
385     s->rtsr = 0;
386 
387     qemu_get_timedate(&tm, 0);
388 
389     s->last_rcnr = (uint32_t) mktimegm(&tm);
390     s->last_hz = qemu_clock_get_ms(rtc_clock);
391 
392     s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
393     s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
394 
395     sysbus_init_irq(dev, &s->rtc_irq);
396     sysbus_init_irq(dev, &s->rtc_hz_irq);
397 
398     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_rtc_ops, s,
399                           "rtc", 0x10000);
400     sysbus_init_mmio(dev, &s->iomem);
401 
402     return 0;
403 }
404 
405 static void strongarm_rtc_pre_save(void *opaque)
406 {
407     StrongARMRTCState *s = opaque;
408 
409     strongarm_rtc_hzupdate(s);
410 }
411 
412 static int strongarm_rtc_post_load(void *opaque, int version_id)
413 {
414     StrongARMRTCState *s = opaque;
415 
416     strongarm_rtc_timer_update(s);
417     strongarm_rtc_int_update(s);
418 
419     return 0;
420 }
421 
422 static const VMStateDescription vmstate_strongarm_rtc_regs = {
423     .name = "strongarm-rtc",
424     .version_id = 0,
425     .minimum_version_id = 0,
426     .pre_save = strongarm_rtc_pre_save,
427     .post_load = strongarm_rtc_post_load,
428     .fields = (VMStateField[]) {
429         VMSTATE_UINT32(rttr, StrongARMRTCState),
430         VMSTATE_UINT32(rtsr, StrongARMRTCState),
431         VMSTATE_UINT32(rtar, StrongARMRTCState),
432         VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
433         VMSTATE_INT64(last_hz, StrongARMRTCState),
434         VMSTATE_END_OF_LIST(),
435     },
436 };
437 
438 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
439 {
440     DeviceClass *dc = DEVICE_CLASS(klass);
441     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
442 
443     k->init = strongarm_rtc_init;
444     dc->desc = "StrongARM RTC Controller";
445     dc->vmsd = &vmstate_strongarm_rtc_regs;
446 }
447 
448 static const TypeInfo strongarm_rtc_sysbus_info = {
449     .name          = TYPE_STRONGARM_RTC,
450     .parent        = TYPE_SYS_BUS_DEVICE,
451     .instance_size = sizeof(StrongARMRTCState),
452     .class_init    = strongarm_rtc_sysbus_class_init,
453 };
454 
455 /* GPIO */
456 #define GPLR 0x00
457 #define GPDR 0x04
458 #define GPSR 0x08
459 #define GPCR 0x0c
460 #define GRER 0x10
461 #define GFER 0x14
462 #define GEDR 0x18
463 #define GAFR 0x1c
464 
465 #define TYPE_STRONGARM_GPIO "strongarm-gpio"
466 #define STRONGARM_GPIO(obj) \
467     OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
468 
469 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
470 struct StrongARMGPIOInfo {
471     SysBusDevice busdev;
472     MemoryRegion iomem;
473     qemu_irq handler[28];
474     qemu_irq irqs[11];
475     qemu_irq irqX;
476 
477     uint32_t ilevel;
478     uint32_t olevel;
479     uint32_t dir;
480     uint32_t rising;
481     uint32_t falling;
482     uint32_t status;
483     uint32_t gafr;
484 
485     uint32_t prev_level;
486 };
487 
488 
489 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
490 {
491     int i;
492     for (i = 0; i < 11; i++) {
493         qemu_set_irq(s->irqs[i], s->status & (1 << i));
494     }
495 
496     qemu_set_irq(s->irqX, (s->status & ~0x7ff));
497 }
498 
499 static void strongarm_gpio_set(void *opaque, int line, int level)
500 {
501     StrongARMGPIOInfo *s = opaque;
502     uint32_t mask;
503 
504     mask = 1 << line;
505 
506     if (level) {
507         s->status |= s->rising & mask &
508                 ~s->ilevel & ~s->dir;
509         s->ilevel |= mask;
510     } else {
511         s->status |= s->falling & mask &
512                 s->ilevel & ~s->dir;
513         s->ilevel &= ~mask;
514     }
515 
516     if (s->status & mask) {
517         strongarm_gpio_irq_update(s);
518     }
519 }
520 
521 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
522 {
523     uint32_t level, diff;
524     int bit;
525 
526     level = s->olevel & s->dir;
527 
528     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
529         bit = ffs(diff) - 1;
530         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
531     }
532 
533     s->prev_level = level;
534 }
535 
536 static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
537                                     unsigned size)
538 {
539     StrongARMGPIOInfo *s = opaque;
540 
541     switch (offset) {
542     case GPDR:        /* GPIO Pin-Direction registers */
543         return s->dir;
544 
545     case GPSR:        /* GPIO Pin-Output Set registers */
546         qemu_log_mask(LOG_GUEST_ERROR,
547                       "strongarm GPIO: read from write only register GPSR\n");
548         return 0;
549 
550     case GPCR:        /* GPIO Pin-Output Clear registers */
551         qemu_log_mask(LOG_GUEST_ERROR,
552                       "strongarm GPIO: read from write only register GPCR\n");
553         return 0;
554 
555     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
556         return s->rising;
557 
558     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
559         return s->falling;
560 
561     case GAFR:        /* GPIO Alternate Function registers */
562         return s->gafr;
563 
564     case GPLR:        /* GPIO Pin-Level registers */
565         return (s->olevel & s->dir) |
566                (s->ilevel & ~s->dir);
567 
568     case GEDR:        /* GPIO Edge Detect Status registers */
569         return s->status;
570 
571     default:
572         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
573     }
574 
575     return 0;
576 }
577 
578 static void strongarm_gpio_write(void *opaque, hwaddr offset,
579                                  uint64_t value, unsigned size)
580 {
581     StrongARMGPIOInfo *s = opaque;
582 
583     switch (offset) {
584     case GPDR:        /* GPIO Pin-Direction registers */
585         s->dir = value;
586         strongarm_gpio_handler_update(s);
587         break;
588 
589     case GPSR:        /* GPIO Pin-Output Set registers */
590         s->olevel |= value;
591         strongarm_gpio_handler_update(s);
592         break;
593 
594     case GPCR:        /* GPIO Pin-Output Clear registers */
595         s->olevel &= ~value;
596         strongarm_gpio_handler_update(s);
597         break;
598 
599     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
600         s->rising = value;
601         break;
602 
603     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
604         s->falling = value;
605         break;
606 
607     case GAFR:        /* GPIO Alternate Function registers */
608         s->gafr = value;
609         break;
610 
611     case GEDR:        /* GPIO Edge Detect Status registers */
612         s->status &= ~value;
613         strongarm_gpio_irq_update(s);
614         break;
615 
616     default:
617         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
618     }
619 }
620 
621 static const MemoryRegionOps strongarm_gpio_ops = {
622     .read = strongarm_gpio_read,
623     .write = strongarm_gpio_write,
624     .endianness = DEVICE_NATIVE_ENDIAN,
625 };
626 
627 static DeviceState *strongarm_gpio_init(hwaddr base,
628                 DeviceState *pic)
629 {
630     DeviceState *dev;
631     int i;
632 
633     dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
634     qdev_init_nofail(dev);
635 
636     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
637     for (i = 0; i < 12; i++)
638         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
639                     qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
640 
641     return dev;
642 }
643 
644 static int strongarm_gpio_initfn(SysBusDevice *sbd)
645 {
646     DeviceState *dev = DEVICE(sbd);
647     StrongARMGPIOInfo *s = STRONGARM_GPIO(dev);
648     int i;
649 
650     qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
651     qdev_init_gpio_out(dev, s->handler, 28);
652 
653     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_gpio_ops, s,
654                           "gpio", 0x1000);
655 
656     sysbus_init_mmio(sbd, &s->iomem);
657     for (i = 0; i < 11; i++) {
658         sysbus_init_irq(sbd, &s->irqs[i]);
659     }
660     sysbus_init_irq(sbd, &s->irqX);
661 
662     return 0;
663 }
664 
665 static const VMStateDescription vmstate_strongarm_gpio_regs = {
666     .name = "strongarm-gpio",
667     .version_id = 0,
668     .minimum_version_id = 0,
669     .fields = (VMStateField[]) {
670         VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
671         VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
672         VMSTATE_UINT32(dir, StrongARMGPIOInfo),
673         VMSTATE_UINT32(rising, StrongARMGPIOInfo),
674         VMSTATE_UINT32(falling, StrongARMGPIOInfo),
675         VMSTATE_UINT32(status, StrongARMGPIOInfo),
676         VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
677         VMSTATE_END_OF_LIST(),
678     },
679 };
680 
681 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
682 {
683     DeviceClass *dc = DEVICE_CLASS(klass);
684     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
685 
686     k->init = strongarm_gpio_initfn;
687     dc->desc = "StrongARM GPIO controller";
688 }
689 
690 static const TypeInfo strongarm_gpio_info = {
691     .name          = TYPE_STRONGARM_GPIO,
692     .parent        = TYPE_SYS_BUS_DEVICE,
693     .instance_size = sizeof(StrongARMGPIOInfo),
694     .class_init    = strongarm_gpio_class_init,
695 };
696 
697 /* Peripheral Pin Controller */
698 #define PPDR 0x00
699 #define PPSR 0x04
700 #define PPAR 0x08
701 #define PSDR 0x0c
702 #define PPFR 0x10
703 
704 #define TYPE_STRONGARM_PPC "strongarm-ppc"
705 #define STRONGARM_PPC(obj) \
706     OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
707 
708 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
709 struct StrongARMPPCInfo {
710     SysBusDevice parent_obj;
711 
712     MemoryRegion iomem;
713     qemu_irq handler[28];
714 
715     uint32_t ilevel;
716     uint32_t olevel;
717     uint32_t dir;
718     uint32_t ppar;
719     uint32_t psdr;
720     uint32_t ppfr;
721 
722     uint32_t prev_level;
723 };
724 
725 static void strongarm_ppc_set(void *opaque, int line, int level)
726 {
727     StrongARMPPCInfo *s = opaque;
728 
729     if (level) {
730         s->ilevel |= 1 << line;
731     } else {
732         s->ilevel &= ~(1 << line);
733     }
734 }
735 
736 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
737 {
738     uint32_t level, diff;
739     int bit;
740 
741     level = s->olevel & s->dir;
742 
743     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
744         bit = ffs(diff) - 1;
745         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
746     }
747 
748     s->prev_level = level;
749 }
750 
751 static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
752                                    unsigned size)
753 {
754     StrongARMPPCInfo *s = opaque;
755 
756     switch (offset) {
757     case PPDR:        /* PPC Pin Direction registers */
758         return s->dir | ~0x3fffff;
759 
760     case PPSR:        /* PPC Pin State registers */
761         return (s->olevel & s->dir) |
762                (s->ilevel & ~s->dir) |
763                ~0x3fffff;
764 
765     case PPAR:
766         return s->ppar | ~0x41000;
767 
768     case PSDR:
769         return s->psdr;
770 
771     case PPFR:
772         return s->ppfr | ~0x7f001;
773 
774     default:
775         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
776     }
777 
778     return 0;
779 }
780 
781 static void strongarm_ppc_write(void *opaque, hwaddr offset,
782                                 uint64_t value, unsigned size)
783 {
784     StrongARMPPCInfo *s = opaque;
785 
786     switch (offset) {
787     case PPDR:        /* PPC Pin Direction registers */
788         s->dir = value & 0x3fffff;
789         strongarm_ppc_handler_update(s);
790         break;
791 
792     case PPSR:        /* PPC Pin State registers */
793         s->olevel = value & s->dir & 0x3fffff;
794         strongarm_ppc_handler_update(s);
795         break;
796 
797     case PPAR:
798         s->ppar = value & 0x41000;
799         break;
800 
801     case PSDR:
802         s->psdr = value & 0x3fffff;
803         break;
804 
805     case PPFR:
806         s->ppfr = value & 0x7f001;
807         break;
808 
809     default:
810         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
811     }
812 }
813 
814 static const MemoryRegionOps strongarm_ppc_ops = {
815     .read = strongarm_ppc_read,
816     .write = strongarm_ppc_write,
817     .endianness = DEVICE_NATIVE_ENDIAN,
818 };
819 
820 static int strongarm_ppc_init(SysBusDevice *sbd)
821 {
822     DeviceState *dev = DEVICE(sbd);
823     StrongARMPPCInfo *s = STRONGARM_PPC(dev);
824 
825     qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
826     qdev_init_gpio_out(dev, s->handler, 22);
827 
828     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ppc_ops, s,
829                           "ppc", 0x1000);
830 
831     sysbus_init_mmio(sbd, &s->iomem);
832 
833     return 0;
834 }
835 
836 static const VMStateDescription vmstate_strongarm_ppc_regs = {
837     .name = "strongarm-ppc",
838     .version_id = 0,
839     .minimum_version_id = 0,
840     .fields = (VMStateField[]) {
841         VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
842         VMSTATE_UINT32(olevel, StrongARMPPCInfo),
843         VMSTATE_UINT32(dir, StrongARMPPCInfo),
844         VMSTATE_UINT32(ppar, StrongARMPPCInfo),
845         VMSTATE_UINT32(psdr, StrongARMPPCInfo),
846         VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
847         VMSTATE_END_OF_LIST(),
848     },
849 };
850 
851 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
852 {
853     DeviceClass *dc = DEVICE_CLASS(klass);
854     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
855 
856     k->init = strongarm_ppc_init;
857     dc->desc = "StrongARM PPC controller";
858 }
859 
860 static const TypeInfo strongarm_ppc_info = {
861     .name          = TYPE_STRONGARM_PPC,
862     .parent        = TYPE_SYS_BUS_DEVICE,
863     .instance_size = sizeof(StrongARMPPCInfo),
864     .class_init    = strongarm_ppc_class_init,
865 };
866 
867 /* UART Ports */
868 #define UTCR0 0x00
869 #define UTCR1 0x04
870 #define UTCR2 0x08
871 #define UTCR3 0x0c
872 #define UTDR  0x14
873 #define UTSR0 0x1c
874 #define UTSR1 0x20
875 
876 #define UTCR0_PE  (1 << 0) /* Parity enable */
877 #define UTCR0_OES (1 << 1) /* Even parity */
878 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
879 #define UTCR0_DSS (1 << 3) /* 8-bit data */
880 
881 #define UTCR3_RXE (1 << 0) /* Rx enable */
882 #define UTCR3_TXE (1 << 1) /* Tx enable */
883 #define UTCR3_BRK (1 << 2) /* Force Break */
884 #define UTCR3_RIE (1 << 3) /* Rx int enable */
885 #define UTCR3_TIE (1 << 4) /* Tx int enable */
886 #define UTCR3_LBM (1 << 5) /* Loopback */
887 
888 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
889 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
890 #define UTSR0_RID (1 << 2) /* Receiver Idle */
891 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
892 #define UTSR0_REB (1 << 4) /* Receiver end break */
893 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
894 
895 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
896 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
897 #define UTSR1_PRE (1 << 3) /* Parity error */
898 #define UTSR1_FRE (1 << 4) /* Frame error */
899 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
900 
901 #define RX_FIFO_PRE (1 << 8)
902 #define RX_FIFO_FRE (1 << 9)
903 #define RX_FIFO_ROR (1 << 10)
904 
905 #define TYPE_STRONGARM_UART "strongarm-uart"
906 #define STRONGARM_UART(obj) \
907     OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
908 
909 typedef struct StrongARMUARTState {
910     SysBusDevice parent_obj;
911 
912     MemoryRegion iomem;
913     CharDriverState *chr;
914     qemu_irq irq;
915 
916     uint8_t utcr0;
917     uint16_t brd;
918     uint8_t utcr3;
919     uint8_t utsr0;
920     uint8_t utsr1;
921 
922     uint8_t tx_fifo[8];
923     uint8_t tx_start;
924     uint8_t tx_len;
925     uint16_t rx_fifo[12]; /* value + error flags in high bits */
926     uint8_t rx_start;
927     uint8_t rx_len;
928 
929     uint64_t char_transmit_time; /* time to transmit a char in ticks*/
930     bool wait_break_end;
931     QEMUTimer *rx_timeout_timer;
932     QEMUTimer *tx_timer;
933 } StrongARMUARTState;
934 
935 static void strongarm_uart_update_status(StrongARMUARTState *s)
936 {
937     uint16_t utsr1 = 0;
938 
939     if (s->tx_len != 8) {
940         utsr1 |= UTSR1_TNF;
941     }
942 
943     if (s->rx_len != 0) {
944         uint16_t ent = s->rx_fifo[s->rx_start];
945 
946         utsr1 |= UTSR1_RNE;
947         if (ent & RX_FIFO_PRE) {
948             s->utsr1 |= UTSR1_PRE;
949         }
950         if (ent & RX_FIFO_FRE) {
951             s->utsr1 |= UTSR1_FRE;
952         }
953         if (ent & RX_FIFO_ROR) {
954             s->utsr1 |= UTSR1_ROR;
955         }
956     }
957 
958     s->utsr1 = utsr1;
959 }
960 
961 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
962 {
963     uint16_t utsr0 = s->utsr0 &
964             (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
965     int i;
966 
967     if ((s->utcr3 & UTCR3_TXE) &&
968                 (s->utcr3 & UTCR3_TIE) &&
969                 s->tx_len <= 4) {
970         utsr0 |= UTSR0_TFS;
971     }
972 
973     if ((s->utcr3 & UTCR3_RXE) &&
974                 (s->utcr3 & UTCR3_RIE) &&
975                 s->rx_len > 4) {
976         utsr0 |= UTSR0_RFS;
977     }
978 
979     for (i = 0; i < s->rx_len && i < 4; i++)
980         if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
981             utsr0 |= UTSR0_EIF;
982             break;
983         }
984 
985     s->utsr0 = utsr0;
986     qemu_set_irq(s->irq, utsr0);
987 }
988 
989 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
990 {
991     int speed, parity, data_bits, stop_bits, frame_size;
992     QEMUSerialSetParams ssp;
993 
994     /* Start bit. */
995     frame_size = 1;
996     if (s->utcr0 & UTCR0_PE) {
997         /* Parity bit. */
998         frame_size++;
999         if (s->utcr0 & UTCR0_OES) {
1000             parity = 'E';
1001         } else {
1002             parity = 'O';
1003         }
1004     } else {
1005             parity = 'N';
1006     }
1007     if (s->utcr0 & UTCR0_SBS) {
1008         stop_bits = 2;
1009     } else {
1010         stop_bits = 1;
1011     }
1012 
1013     data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
1014     frame_size += data_bits + stop_bits;
1015     speed = 3686400 / 16 / (s->brd + 1);
1016     ssp.speed = speed;
1017     ssp.parity = parity;
1018     ssp.data_bits = data_bits;
1019     ssp.stop_bits = stop_bits;
1020     s->char_transmit_time =  (get_ticks_per_sec() / speed) * frame_size;
1021     if (s->chr) {
1022         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
1023     }
1024 
1025     DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
1026             speed, parity, data_bits, stop_bits);
1027 }
1028 
1029 static void strongarm_uart_rx_to(void *opaque)
1030 {
1031     StrongARMUARTState *s = opaque;
1032 
1033     if (s->rx_len) {
1034         s->utsr0 |= UTSR0_RID;
1035         strongarm_uart_update_int_status(s);
1036     }
1037 }
1038 
1039 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1040 {
1041     if ((s->utcr3 & UTCR3_RXE) == 0) {
1042         /* rx disabled */
1043         return;
1044     }
1045 
1046     if (s->wait_break_end) {
1047         s->utsr0 |= UTSR0_REB;
1048         s->wait_break_end = false;
1049     }
1050 
1051     if (s->rx_len < 12) {
1052         s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1053         s->rx_len++;
1054     } else
1055         s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1056 }
1057 
1058 static int strongarm_uart_can_receive(void *opaque)
1059 {
1060     StrongARMUARTState *s = opaque;
1061 
1062     if (s->rx_len == 12) {
1063         return 0;
1064     }
1065     /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1066     if (s->rx_len < 8) {
1067         return 8 - s->rx_len;
1068     }
1069     return 1;
1070 }
1071 
1072 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1073 {
1074     StrongARMUARTState *s = opaque;
1075     int i;
1076 
1077     for (i = 0; i < size; i++) {
1078         strongarm_uart_rx_push(s, buf[i]);
1079     }
1080 
1081     /* call the timeout receive callback in 3 char transmit time */
1082     timer_mod(s->rx_timeout_timer,
1083                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1084 
1085     strongarm_uart_update_status(s);
1086     strongarm_uart_update_int_status(s);
1087 }
1088 
1089 static void strongarm_uart_event(void *opaque, int event)
1090 {
1091     StrongARMUARTState *s = opaque;
1092     if (event == CHR_EVENT_BREAK) {
1093         s->utsr0 |= UTSR0_RBB;
1094         strongarm_uart_rx_push(s, RX_FIFO_FRE);
1095         s->wait_break_end = true;
1096         strongarm_uart_update_status(s);
1097         strongarm_uart_update_int_status(s);
1098     }
1099 }
1100 
1101 static void strongarm_uart_tx(void *opaque)
1102 {
1103     StrongARMUARTState *s = opaque;
1104     uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1105 
1106     if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1107         strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1108     } else if (s->chr) {
1109         qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1110     }
1111 
1112     s->tx_start = (s->tx_start + 1) % 8;
1113     s->tx_len--;
1114     if (s->tx_len) {
1115         timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1116     }
1117     strongarm_uart_update_status(s);
1118     strongarm_uart_update_int_status(s);
1119 }
1120 
1121 static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
1122                                     unsigned size)
1123 {
1124     StrongARMUARTState *s = opaque;
1125     uint16_t ret;
1126 
1127     switch (addr) {
1128     case UTCR0:
1129         return s->utcr0;
1130 
1131     case UTCR1:
1132         return s->brd >> 8;
1133 
1134     case UTCR2:
1135         return s->brd & 0xff;
1136 
1137     case UTCR3:
1138         return s->utcr3;
1139 
1140     case UTDR:
1141         if (s->rx_len != 0) {
1142             ret = s->rx_fifo[s->rx_start];
1143             s->rx_start = (s->rx_start + 1) % 12;
1144             s->rx_len--;
1145             strongarm_uart_update_status(s);
1146             strongarm_uart_update_int_status(s);
1147             return ret;
1148         }
1149         return 0;
1150 
1151     case UTSR0:
1152         return s->utsr0;
1153 
1154     case UTSR1:
1155         return s->utsr1;
1156 
1157     default:
1158         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1159         return 0;
1160     }
1161 }
1162 
1163 static void strongarm_uart_write(void *opaque, hwaddr addr,
1164                                  uint64_t value, unsigned size)
1165 {
1166     StrongARMUARTState *s = opaque;
1167 
1168     switch (addr) {
1169     case UTCR0:
1170         s->utcr0 = value & 0x7f;
1171         strongarm_uart_update_parameters(s);
1172         break;
1173 
1174     case UTCR1:
1175         s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1176         strongarm_uart_update_parameters(s);
1177         break;
1178 
1179     case UTCR2:
1180         s->brd = (s->brd & 0xf00) | (value & 0xff);
1181         strongarm_uart_update_parameters(s);
1182         break;
1183 
1184     case UTCR3:
1185         s->utcr3 = value & 0x3f;
1186         if ((s->utcr3 & UTCR3_RXE) == 0) {
1187             s->rx_len = 0;
1188         }
1189         if ((s->utcr3 & UTCR3_TXE) == 0) {
1190             s->tx_len = 0;
1191         }
1192         strongarm_uart_update_status(s);
1193         strongarm_uart_update_int_status(s);
1194         break;
1195 
1196     case UTDR:
1197         if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1198             s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1199             s->tx_len++;
1200             strongarm_uart_update_status(s);
1201             strongarm_uart_update_int_status(s);
1202             if (s->tx_len == 1) {
1203                 strongarm_uart_tx(s);
1204             }
1205         }
1206         break;
1207 
1208     case UTSR0:
1209         s->utsr0 = s->utsr0 & ~(value &
1210                 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1211         strongarm_uart_update_int_status(s);
1212         break;
1213 
1214     default:
1215         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1216     }
1217 }
1218 
1219 static const MemoryRegionOps strongarm_uart_ops = {
1220     .read = strongarm_uart_read,
1221     .write = strongarm_uart_write,
1222     .endianness = DEVICE_NATIVE_ENDIAN,
1223 };
1224 
1225 static int strongarm_uart_init(SysBusDevice *dev)
1226 {
1227     StrongARMUARTState *s = STRONGARM_UART(dev);
1228 
1229     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_uart_ops, s,
1230                           "uart", 0x10000);
1231     sysbus_init_mmio(dev, &s->iomem);
1232     sysbus_init_irq(dev, &s->irq);
1233 
1234     s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_rx_to, s);
1235     s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
1236 
1237     if (s->chr) {
1238         qemu_chr_add_handlers(s->chr,
1239                         strongarm_uart_can_receive,
1240                         strongarm_uart_receive,
1241                         strongarm_uart_event,
1242                         s);
1243     }
1244 
1245     return 0;
1246 }
1247 
1248 static void strongarm_uart_reset(DeviceState *dev)
1249 {
1250     StrongARMUARTState *s = STRONGARM_UART(dev);
1251 
1252     s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1253     s->brd = 23;    /* 9600 */
1254     /* enable send & recv - this actually violates spec */
1255     s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1256 
1257     s->rx_len = s->tx_len = 0;
1258 
1259     strongarm_uart_update_parameters(s);
1260     strongarm_uart_update_status(s);
1261     strongarm_uart_update_int_status(s);
1262 }
1263 
1264 static int strongarm_uart_post_load(void *opaque, int version_id)
1265 {
1266     StrongARMUARTState *s = opaque;
1267 
1268     strongarm_uart_update_parameters(s);
1269     strongarm_uart_update_status(s);
1270     strongarm_uart_update_int_status(s);
1271 
1272     /* tx and restart timer */
1273     if (s->tx_len) {
1274         strongarm_uart_tx(s);
1275     }
1276 
1277     /* restart rx timeout timer */
1278     if (s->rx_len) {
1279         timer_mod(s->rx_timeout_timer,
1280                 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1281     }
1282 
1283     return 0;
1284 }
1285 
1286 static const VMStateDescription vmstate_strongarm_uart_regs = {
1287     .name = "strongarm-uart",
1288     .version_id = 0,
1289     .minimum_version_id = 0,
1290     .post_load = strongarm_uart_post_load,
1291     .fields = (VMStateField[]) {
1292         VMSTATE_UINT8(utcr0, StrongARMUARTState),
1293         VMSTATE_UINT16(brd, StrongARMUARTState),
1294         VMSTATE_UINT8(utcr3, StrongARMUARTState),
1295         VMSTATE_UINT8(utsr0, StrongARMUARTState),
1296         VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1297         VMSTATE_UINT8(tx_start, StrongARMUARTState),
1298         VMSTATE_UINT8(tx_len, StrongARMUARTState),
1299         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1300         VMSTATE_UINT8(rx_start, StrongARMUARTState),
1301         VMSTATE_UINT8(rx_len, StrongARMUARTState),
1302         VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1303         VMSTATE_END_OF_LIST(),
1304     },
1305 };
1306 
1307 static Property strongarm_uart_properties[] = {
1308     DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1309     DEFINE_PROP_END_OF_LIST(),
1310 };
1311 
1312 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1313 {
1314     DeviceClass *dc = DEVICE_CLASS(klass);
1315     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1316 
1317     k->init = strongarm_uart_init;
1318     dc->desc = "StrongARM UART controller";
1319     dc->reset = strongarm_uart_reset;
1320     dc->vmsd = &vmstate_strongarm_uart_regs;
1321     dc->props = strongarm_uart_properties;
1322 }
1323 
1324 static const TypeInfo strongarm_uart_info = {
1325     .name          = TYPE_STRONGARM_UART,
1326     .parent        = TYPE_SYS_BUS_DEVICE,
1327     .instance_size = sizeof(StrongARMUARTState),
1328     .class_init    = strongarm_uart_class_init,
1329 };
1330 
1331 /* Synchronous Serial Ports */
1332 
1333 #define TYPE_STRONGARM_SSP "strongarm-ssp"
1334 #define STRONGARM_SSP(obj) \
1335     OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
1336 
1337 typedef struct StrongARMSSPState {
1338     SysBusDevice parent_obj;
1339 
1340     MemoryRegion iomem;
1341     qemu_irq irq;
1342     SSIBus *bus;
1343 
1344     uint16_t sscr[2];
1345     uint16_t sssr;
1346 
1347     uint16_t rx_fifo[8];
1348     uint8_t rx_level;
1349     uint8_t rx_start;
1350 } StrongARMSSPState;
1351 
1352 #define SSCR0 0x60 /* SSP Control register 0 */
1353 #define SSCR1 0x64 /* SSP Control register 1 */
1354 #define SSDR  0x6c /* SSP Data register */
1355 #define SSSR  0x74 /* SSP Status register */
1356 
1357 /* Bitfields for above registers */
1358 #define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
1359 #define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
1360 #define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
1361 #define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
1362 #define SSCR0_SSE       (1 << 7)
1363 #define SSCR0_DSS(x)    (((x) & 0xf) + 1)
1364 #define SSCR1_RIE       (1 << 0)
1365 #define SSCR1_TIE       (1 << 1)
1366 #define SSCR1_LBM       (1 << 2)
1367 #define SSSR_TNF        (1 << 2)
1368 #define SSSR_RNE        (1 << 3)
1369 #define SSSR_TFS        (1 << 5)
1370 #define SSSR_RFS        (1 << 6)
1371 #define SSSR_ROR        (1 << 7)
1372 #define SSSR_RW         0x0080
1373 
1374 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1375 {
1376     int level = 0;
1377 
1378     level |= (s->sssr & SSSR_ROR);
1379     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
1380     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
1381     qemu_set_irq(s->irq, level);
1382 }
1383 
1384 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1385 {
1386     s->sssr &= ~SSSR_TFS;
1387     s->sssr &= ~SSSR_TNF;
1388     if (s->sscr[0] & SSCR0_SSE) {
1389         if (s->rx_level >= 4) {
1390             s->sssr |= SSSR_RFS;
1391         } else {
1392             s->sssr &= ~SSSR_RFS;
1393         }
1394         if (s->rx_level) {
1395             s->sssr |= SSSR_RNE;
1396         } else {
1397             s->sssr &= ~SSSR_RNE;
1398         }
1399         /* TX FIFO is never filled, so it is always in underrun
1400            condition if SSP is enabled */
1401         s->sssr |= SSSR_TFS;
1402         s->sssr |= SSSR_TNF;
1403     }
1404 
1405     strongarm_ssp_int_update(s);
1406 }
1407 
1408 static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
1409                                    unsigned size)
1410 {
1411     StrongARMSSPState *s = opaque;
1412     uint32_t retval;
1413 
1414     switch (addr) {
1415     case SSCR0:
1416         return s->sscr[0];
1417     case SSCR1:
1418         return s->sscr[1];
1419     case SSSR:
1420         return s->sssr;
1421     case SSDR:
1422         if (~s->sscr[0] & SSCR0_SSE) {
1423             return 0xffffffff;
1424         }
1425         if (s->rx_level < 1) {
1426             printf("%s: SSP Rx Underrun\n", __func__);
1427             return 0xffffffff;
1428         }
1429         s->rx_level--;
1430         retval = s->rx_fifo[s->rx_start++];
1431         s->rx_start &= 0x7;
1432         strongarm_ssp_fifo_update(s);
1433         return retval;
1434     default:
1435         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1436         break;
1437     }
1438     return 0;
1439 }
1440 
1441 static void strongarm_ssp_write(void *opaque, hwaddr addr,
1442                                 uint64_t value, unsigned size)
1443 {
1444     StrongARMSSPState *s = opaque;
1445 
1446     switch (addr) {
1447     case SSCR0:
1448         s->sscr[0] = value & 0xffbf;
1449         if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1450             printf("%s: Wrong data size: %i bits\n", __func__,
1451                    (int)SSCR0_DSS(value));
1452         }
1453         if (!(value & SSCR0_SSE)) {
1454             s->sssr = 0;
1455             s->rx_level = 0;
1456         }
1457         strongarm_ssp_fifo_update(s);
1458         break;
1459 
1460     case SSCR1:
1461         s->sscr[1] = value & 0x2f;
1462         if (value & SSCR1_LBM) {
1463             printf("%s: Attempt to use SSP LBM mode\n", __func__);
1464         }
1465         strongarm_ssp_fifo_update(s);
1466         break;
1467 
1468     case SSSR:
1469         s->sssr &= ~(value & SSSR_RW);
1470         strongarm_ssp_int_update(s);
1471         break;
1472 
1473     case SSDR:
1474         if (SSCR0_UWIRE(s->sscr[0])) {
1475             value &= 0xff;
1476         } else
1477             /* Note how 32bits overflow does no harm here */
1478             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1479 
1480         /* Data goes from here to the Tx FIFO and is shifted out from
1481          * there directly to the slave, no need to buffer it.
1482          */
1483         if (s->sscr[0] & SSCR0_SSE) {
1484             uint32_t readval;
1485             if (s->sscr[1] & SSCR1_LBM) {
1486                 readval = value;
1487             } else {
1488                 readval = ssi_transfer(s->bus, value);
1489             }
1490 
1491             if (s->rx_level < 0x08) {
1492                 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1493             } else {
1494                 s->sssr |= SSSR_ROR;
1495             }
1496         }
1497         strongarm_ssp_fifo_update(s);
1498         break;
1499 
1500     default:
1501         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1502         break;
1503     }
1504 }
1505 
1506 static const MemoryRegionOps strongarm_ssp_ops = {
1507     .read = strongarm_ssp_read,
1508     .write = strongarm_ssp_write,
1509     .endianness = DEVICE_NATIVE_ENDIAN,
1510 };
1511 
1512 static int strongarm_ssp_post_load(void *opaque, int version_id)
1513 {
1514     StrongARMSSPState *s = opaque;
1515 
1516     strongarm_ssp_fifo_update(s);
1517 
1518     return 0;
1519 }
1520 
1521 static int strongarm_ssp_init(SysBusDevice *sbd)
1522 {
1523     DeviceState *dev = DEVICE(sbd);
1524     StrongARMSSPState *s = STRONGARM_SSP(dev);
1525 
1526     sysbus_init_irq(sbd, &s->irq);
1527 
1528     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ssp_ops, s,
1529                           "ssp", 0x1000);
1530     sysbus_init_mmio(sbd, &s->iomem);
1531 
1532     s->bus = ssi_create_bus(dev, "ssi");
1533     return 0;
1534 }
1535 
1536 static void strongarm_ssp_reset(DeviceState *dev)
1537 {
1538     StrongARMSSPState *s = STRONGARM_SSP(dev);
1539 
1540     s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1541     s->rx_start = 0;
1542     s->rx_level = 0;
1543 }
1544 
1545 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1546     .name = "strongarm-ssp",
1547     .version_id = 0,
1548     .minimum_version_id = 0,
1549     .post_load = strongarm_ssp_post_load,
1550     .fields = (VMStateField[]) {
1551         VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1552         VMSTATE_UINT16(sssr, StrongARMSSPState),
1553         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1554         VMSTATE_UINT8(rx_start, StrongARMSSPState),
1555         VMSTATE_UINT8(rx_level, StrongARMSSPState),
1556         VMSTATE_END_OF_LIST(),
1557     },
1558 };
1559 
1560 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1561 {
1562     DeviceClass *dc = DEVICE_CLASS(klass);
1563     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1564 
1565     k->init = strongarm_ssp_init;
1566     dc->desc = "StrongARM SSP controller";
1567     dc->reset = strongarm_ssp_reset;
1568     dc->vmsd = &vmstate_strongarm_ssp_regs;
1569 }
1570 
1571 static const TypeInfo strongarm_ssp_info = {
1572     .name          = TYPE_STRONGARM_SSP,
1573     .parent        = TYPE_SYS_BUS_DEVICE,
1574     .instance_size = sizeof(StrongARMSSPState),
1575     .class_init    = strongarm_ssp_class_init,
1576 };
1577 
1578 /* Main CPU functions */
1579 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1580                             unsigned int sdram_size, const char *rev)
1581 {
1582     StrongARMState *s;
1583     int i;
1584 
1585     s = g_malloc0(sizeof(StrongARMState));
1586 
1587     if (!rev) {
1588         rev = "sa1110-b5";
1589     }
1590 
1591     if (strncmp(rev, "sa1110", 6)) {
1592         error_report("Machine requires a SA1110 processor.");
1593         exit(1);
1594     }
1595 
1596     s->cpu = cpu_arm_init(rev);
1597 
1598     if (!s->cpu) {
1599         error_report("Unable to find CPU definition");
1600         exit(1);
1601     }
1602 
1603     memory_region_init_ram(&s->sdram, NULL, "strongarm.sdram", sdram_size);
1604     vmstate_register_ram_global(&s->sdram);
1605     memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1606 
1607     s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1608                     qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
1609                     qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
1610                     NULL);
1611 
1612     sysbus_create_varargs("pxa25x-timer", 0x90000000,
1613                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1614                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1615                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1616                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1617                     NULL);
1618 
1619     sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
1620                     qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1621 
1622     s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1623 
1624     s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
1625 
1626     for (i = 0; sa_serial[i].io_base; i++) {
1627         DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
1628         qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1629         qdev_init_nofail(dev);
1630         sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
1631                 sa_serial[i].io_base);
1632         sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
1633                 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1634     }
1635 
1636     s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
1637                 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1638     s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1639 
1640     return s;
1641 }
1642 
1643 static void strongarm_register_types(void)
1644 {
1645     type_register_static(&strongarm_pic_info);
1646     type_register_static(&strongarm_rtc_sysbus_info);
1647     type_register_static(&strongarm_gpio_info);
1648     type_register_static(&strongarm_ppc_info);
1649     type_register_static(&strongarm_uart_info);
1650     type_register_static(&strongarm_ssp_info);
1651 }
1652 
1653 type_init(strongarm_register_types)
1654