xref: /openbmc/qemu/hw/arm/stellaris.c (revision 48805df9c22a0700fba4b3b548fafaa21726ca68)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/core/split-irq.h"
13 #include "hw/sysbus.h"
14 #include "hw/sd/sd.h"
15 #include "hw/ssi/ssi.h"
16 #include "hw/arm/boot.h"
17 #include "qemu/timer.h"
18 #include "hw/i2c/i2c.h"
19 #include "net/net.h"
20 #include "hw/boards.h"
21 #include "qemu/log.h"
22 #include "exec/address-spaces.h"
23 #include "sysemu/sysemu.h"
24 #include "hw/arm/armv7m.h"
25 #include "hw/char/pl011.h"
26 #include "hw/input/gamepad.h"
27 #include "hw/irq.h"
28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/unimp.h"
31 #include "hw/timer/stellaris-gptm.h"
32 #include "hw/qdev-clock.h"
33 #include "qom/object.h"
34 
35 #define GPIO_A 0
36 #define GPIO_B 1
37 #define GPIO_C 2
38 #define GPIO_D 3
39 #define GPIO_E 4
40 #define GPIO_F 5
41 #define GPIO_G 6
42 
43 #define BP_OLED_I2C  0x01
44 #define BP_OLED_SSI  0x02
45 #define BP_GAMEPAD   0x04
46 
47 #define NUM_IRQ_LINES 64
48 
49 typedef const struct {
50     const char *name;
51     uint32_t did0;
52     uint32_t did1;
53     uint32_t dc0;
54     uint32_t dc1;
55     uint32_t dc2;
56     uint32_t dc3;
57     uint32_t dc4;
58     uint32_t peripherals;
59 } stellaris_board_info;
60 
61 /* System controller.  */
62 
63 #define TYPE_STELLARIS_SYS "stellaris-sys"
64 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
65 
66 struct ssys_state {
67     SysBusDevice parent_obj;
68 
69     MemoryRegion iomem;
70     uint32_t pborctl;
71     uint32_t ldopctl;
72     uint32_t int_status;
73     uint32_t int_mask;
74     uint32_t resc;
75     uint32_t rcc;
76     uint32_t rcc2;
77     uint32_t rcgc[3];
78     uint32_t scgc[3];
79     uint32_t dcgc[3];
80     uint32_t clkvclr;
81     uint32_t ldoarst;
82     qemu_irq irq;
83     Clock *sysclk;
84     /* Properties (all read-only registers) */
85     uint32_t user0;
86     uint32_t user1;
87     uint32_t did0;
88     uint32_t did1;
89     uint32_t dc0;
90     uint32_t dc1;
91     uint32_t dc2;
92     uint32_t dc3;
93     uint32_t dc4;
94 };
95 
96 static void ssys_update(ssys_state *s)
97 {
98   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
99 }
100 
101 static uint32_t pllcfg_sandstorm[16] = {
102     0x31c0, /* 1 Mhz */
103     0x1ae0, /* 1.8432 Mhz */
104     0x18c0, /* 2 Mhz */
105     0xd573, /* 2.4576 Mhz */
106     0x37a6, /* 3.57954 Mhz */
107     0x1ae2, /* 3.6864 Mhz */
108     0x0c40, /* 4 Mhz */
109     0x98bc, /* 4.906 Mhz */
110     0x935b, /* 4.9152 Mhz */
111     0x09c0, /* 5 Mhz */
112     0x4dee, /* 5.12 Mhz */
113     0x0c41, /* 6 Mhz */
114     0x75db, /* 6.144 Mhz */
115     0x1ae6, /* 7.3728 Mhz */
116     0x0600, /* 8 Mhz */
117     0x585b /* 8.192 Mhz */
118 };
119 
120 static uint32_t pllcfg_fury[16] = {
121     0x3200, /* 1 Mhz */
122     0x1b20, /* 1.8432 Mhz */
123     0x1900, /* 2 Mhz */
124     0xf42b, /* 2.4576 Mhz */
125     0x37e3, /* 3.57954 Mhz */
126     0x1b21, /* 3.6864 Mhz */
127     0x0c80, /* 4 Mhz */
128     0x98ee, /* 4.906 Mhz */
129     0xd5b4, /* 4.9152 Mhz */
130     0x0a00, /* 5 Mhz */
131     0x4e27, /* 5.12 Mhz */
132     0x1902, /* 6 Mhz */
133     0xec1c, /* 6.144 Mhz */
134     0x1b23, /* 7.3728 Mhz */
135     0x0640, /* 8 Mhz */
136     0xb11c /* 8.192 Mhz */
137 };
138 
139 #define DID0_VER_MASK        0x70000000
140 #define DID0_VER_0           0x00000000
141 #define DID0_VER_1           0x10000000
142 
143 #define DID0_CLASS_MASK      0x00FF0000
144 #define DID0_CLASS_SANDSTORM 0x00000000
145 #define DID0_CLASS_FURY      0x00010000
146 
147 static int ssys_board_class(const ssys_state *s)
148 {
149     uint32_t did0 = s->did0;
150     switch (did0 & DID0_VER_MASK) {
151     case DID0_VER_0:
152         return DID0_CLASS_SANDSTORM;
153     case DID0_VER_1:
154         switch (did0 & DID0_CLASS_MASK) {
155         case DID0_CLASS_SANDSTORM:
156         case DID0_CLASS_FURY:
157             return did0 & DID0_CLASS_MASK;
158         }
159         /* for unknown classes, fall through */
160     default:
161         /* This can only happen if the hardwired constant did0 value
162          * in this board's stellaris_board_info struct is wrong.
163          */
164         g_assert_not_reached();
165     }
166 }
167 
168 static uint64_t ssys_read(void *opaque, hwaddr offset,
169                           unsigned size)
170 {
171     ssys_state *s = (ssys_state *)opaque;
172 
173     switch (offset) {
174     case 0x000: /* DID0 */
175         return s->did0;
176     case 0x004: /* DID1 */
177         return s->did1;
178     case 0x008: /* DC0 */
179         return s->dc0;
180     case 0x010: /* DC1 */
181         return s->dc1;
182     case 0x014: /* DC2 */
183         return s->dc2;
184     case 0x018: /* DC3 */
185         return s->dc3;
186     case 0x01c: /* DC4 */
187         return s->dc4;
188     case 0x030: /* PBORCTL */
189         return s->pborctl;
190     case 0x034: /* LDOPCTL */
191         return s->ldopctl;
192     case 0x040: /* SRCR0 */
193         return 0;
194     case 0x044: /* SRCR1 */
195         return 0;
196     case 0x048: /* SRCR2 */
197         return 0;
198     case 0x050: /* RIS */
199         return s->int_status;
200     case 0x054: /* IMC */
201         return s->int_mask;
202     case 0x058: /* MISC */
203         return s->int_status & s->int_mask;
204     case 0x05c: /* RESC */
205         return s->resc;
206     case 0x060: /* RCC */
207         return s->rcc;
208     case 0x064: /* PLLCFG */
209         {
210             int xtal;
211             xtal = (s->rcc >> 6) & 0xf;
212             switch (ssys_board_class(s)) {
213             case DID0_CLASS_FURY:
214                 return pllcfg_fury[xtal];
215             case DID0_CLASS_SANDSTORM:
216                 return pllcfg_sandstorm[xtal];
217             default:
218                 g_assert_not_reached();
219             }
220         }
221     case 0x070: /* RCC2 */
222         return s->rcc2;
223     case 0x100: /* RCGC0 */
224         return s->rcgc[0];
225     case 0x104: /* RCGC1 */
226         return s->rcgc[1];
227     case 0x108: /* RCGC2 */
228         return s->rcgc[2];
229     case 0x110: /* SCGC0 */
230         return s->scgc[0];
231     case 0x114: /* SCGC1 */
232         return s->scgc[1];
233     case 0x118: /* SCGC2 */
234         return s->scgc[2];
235     case 0x120: /* DCGC0 */
236         return s->dcgc[0];
237     case 0x124: /* DCGC1 */
238         return s->dcgc[1];
239     case 0x128: /* DCGC2 */
240         return s->dcgc[2];
241     case 0x150: /* CLKVCLR */
242         return s->clkvclr;
243     case 0x160: /* LDOARST */
244         return s->ldoarst;
245     case 0x1e0: /* USER0 */
246         return s->user0;
247     case 0x1e4: /* USER1 */
248         return s->user1;
249     default:
250         qemu_log_mask(LOG_GUEST_ERROR,
251                       "SSYS: read at bad offset 0x%x\n", (int)offset);
252         return 0;
253     }
254 }
255 
256 static bool ssys_use_rcc2(ssys_state *s)
257 {
258     return (s->rcc2 >> 31) & 0x1;
259 }
260 
261 /*
262  * Calculate the system clock period. We only want to propagate
263  * this change to the rest of the system if we're not being called
264  * from migration post-load.
265  */
266 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
267 {
268     int period_ns;
269     /*
270      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
271      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
272      * frequency by X is the same as multiplying the period by X.
273      */
274     if (ssys_use_rcc2(s)) {
275         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
276     } else {
277         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
278     }
279     clock_set_ns(s->sysclk, period_ns);
280     if (propagate_clock) {
281         clock_propagate(s->sysclk);
282     }
283 }
284 
285 static void ssys_write(void *opaque, hwaddr offset,
286                        uint64_t value, unsigned size)
287 {
288     ssys_state *s = (ssys_state *)opaque;
289 
290     switch (offset) {
291     case 0x030: /* PBORCTL */
292         s->pborctl = value & 0xffff;
293         break;
294     case 0x034: /* LDOPCTL */
295         s->ldopctl = value & 0x1f;
296         break;
297     case 0x040: /* SRCR0 */
298     case 0x044: /* SRCR1 */
299     case 0x048: /* SRCR2 */
300         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
301         break;
302     case 0x054: /* IMC */
303         s->int_mask = value & 0x7f;
304         break;
305     case 0x058: /* MISC */
306         s->int_status &= ~value;
307         break;
308     case 0x05c: /* RESC */
309         s->resc = value & 0x3f;
310         break;
311     case 0x060: /* RCC */
312         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
313             /* PLL enable.  */
314             s->int_status |= (1 << 6);
315         }
316         s->rcc = value;
317         ssys_calculate_system_clock(s, true);
318         break;
319     case 0x070: /* RCC2 */
320         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
321             break;
322         }
323 
324         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
325             /* PLL enable.  */
326             s->int_status |= (1 << 6);
327         }
328         s->rcc2 = value;
329         ssys_calculate_system_clock(s, true);
330         break;
331     case 0x100: /* RCGC0 */
332         s->rcgc[0] = value;
333         break;
334     case 0x104: /* RCGC1 */
335         s->rcgc[1] = value;
336         break;
337     case 0x108: /* RCGC2 */
338         s->rcgc[2] = value;
339         break;
340     case 0x110: /* SCGC0 */
341         s->scgc[0] = value;
342         break;
343     case 0x114: /* SCGC1 */
344         s->scgc[1] = value;
345         break;
346     case 0x118: /* SCGC2 */
347         s->scgc[2] = value;
348         break;
349     case 0x120: /* DCGC0 */
350         s->dcgc[0] = value;
351         break;
352     case 0x124: /* DCGC1 */
353         s->dcgc[1] = value;
354         break;
355     case 0x128: /* DCGC2 */
356         s->dcgc[2] = value;
357         break;
358     case 0x150: /* CLKVCLR */
359         s->clkvclr = value;
360         break;
361     case 0x160: /* LDOARST */
362         s->ldoarst = value;
363         break;
364     default:
365         qemu_log_mask(LOG_GUEST_ERROR,
366                       "SSYS: write at bad offset 0x%x\n", (int)offset);
367     }
368     ssys_update(s);
369 }
370 
371 static const MemoryRegionOps ssys_ops = {
372     .read = ssys_read,
373     .write = ssys_write,
374     .endianness = DEVICE_NATIVE_ENDIAN,
375 };
376 
377 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
378 {
379     ssys_state *s = STELLARIS_SYS(obj);
380 
381     s->pborctl = 0x7ffd;
382     s->rcc = 0x078e3ac0;
383 
384     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
385         s->rcc2 = 0;
386     } else {
387         s->rcc2 = 0x07802810;
388     }
389     s->rcgc[0] = 1;
390     s->scgc[0] = 1;
391     s->dcgc[0] = 1;
392 }
393 
394 static void stellaris_sys_reset_hold(Object *obj)
395 {
396     ssys_state *s = STELLARIS_SYS(obj);
397 
398     /* OK to propagate clocks from the hold phase */
399     ssys_calculate_system_clock(s, true);
400 }
401 
402 static void stellaris_sys_reset_exit(Object *obj)
403 {
404 }
405 
406 static int stellaris_sys_post_load(void *opaque, int version_id)
407 {
408     ssys_state *s = opaque;
409 
410     ssys_calculate_system_clock(s, false);
411 
412     return 0;
413 }
414 
415 static const VMStateDescription vmstate_stellaris_sys = {
416     .name = "stellaris_sys",
417     .version_id = 2,
418     .minimum_version_id = 1,
419     .post_load = stellaris_sys_post_load,
420     .fields = (VMStateField[]) {
421         VMSTATE_UINT32(pborctl, ssys_state),
422         VMSTATE_UINT32(ldopctl, ssys_state),
423         VMSTATE_UINT32(int_mask, ssys_state),
424         VMSTATE_UINT32(int_status, ssys_state),
425         VMSTATE_UINT32(resc, ssys_state),
426         VMSTATE_UINT32(rcc, ssys_state),
427         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
428         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
429         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
430         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
431         VMSTATE_UINT32(clkvclr, ssys_state),
432         VMSTATE_UINT32(ldoarst, ssys_state),
433         /* No field for sysclk -- handled in post-load instead */
434         VMSTATE_END_OF_LIST()
435     }
436 };
437 
438 static Property stellaris_sys_properties[] = {
439     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
440     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
441     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
442     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
443     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
444     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
445     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
446     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
447     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
448     DEFINE_PROP_END_OF_LIST()
449 };
450 
451 static void stellaris_sys_instance_init(Object *obj)
452 {
453     ssys_state *s = STELLARIS_SYS(obj);
454     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
455 
456     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
457     sysbus_init_mmio(sbd, &s->iomem);
458     sysbus_init_irq(sbd, &s->irq);
459     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
460 }
461 
462 /* I2C controller.  */
463 
464 #define TYPE_STELLARIS_I2C "stellaris-i2c"
465 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
466 
467 struct stellaris_i2c_state {
468     SysBusDevice parent_obj;
469 
470     I2CBus *bus;
471     qemu_irq irq;
472     MemoryRegion iomem;
473     uint32_t msa;
474     uint32_t mcs;
475     uint32_t mdr;
476     uint32_t mtpr;
477     uint32_t mimr;
478     uint32_t mris;
479     uint32_t mcr;
480 };
481 
482 #define STELLARIS_I2C_MCS_BUSY    0x01
483 #define STELLARIS_I2C_MCS_ERROR   0x02
484 #define STELLARIS_I2C_MCS_ADRACK  0x04
485 #define STELLARIS_I2C_MCS_DATACK  0x08
486 #define STELLARIS_I2C_MCS_ARBLST  0x10
487 #define STELLARIS_I2C_MCS_IDLE    0x20
488 #define STELLARIS_I2C_MCS_BUSBSY  0x40
489 
490 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
491                                    unsigned size)
492 {
493     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
494 
495     switch (offset) {
496     case 0x00: /* MSA */
497         return s->msa;
498     case 0x04: /* MCS */
499         /* We don't emulate timing, so the controller is never busy.  */
500         return s->mcs | STELLARIS_I2C_MCS_IDLE;
501     case 0x08: /* MDR */
502         return s->mdr;
503     case 0x0c: /* MTPR */
504         return s->mtpr;
505     case 0x10: /* MIMR */
506         return s->mimr;
507     case 0x14: /* MRIS */
508         return s->mris;
509     case 0x18: /* MMIS */
510         return s->mris & s->mimr;
511     case 0x20: /* MCR */
512         return s->mcr;
513     default:
514         qemu_log_mask(LOG_GUEST_ERROR,
515                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
516         return 0;
517     }
518 }
519 
520 static void stellaris_i2c_update(stellaris_i2c_state *s)
521 {
522     int level;
523 
524     level = (s->mris & s->mimr) != 0;
525     qemu_set_irq(s->irq, level);
526 }
527 
528 static void stellaris_i2c_write(void *opaque, hwaddr offset,
529                                 uint64_t value, unsigned size)
530 {
531     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
532 
533     switch (offset) {
534     case 0x00: /* MSA */
535         s->msa = value & 0xff;
536         break;
537     case 0x04: /* MCS */
538         if ((s->mcr & 0x10) == 0) {
539             /* Disabled.  Do nothing.  */
540             break;
541         }
542         /* Grab the bus if this is starting a transfer.  */
543         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
544             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
545                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
546             } else {
547                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
548                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
549             }
550         }
551         /* If we don't have the bus then indicate an error.  */
552         if (!i2c_bus_busy(s->bus)
553                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
554             s->mcs |= STELLARIS_I2C_MCS_ERROR;
555             break;
556         }
557         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
558         if (value & 1) {
559             /* Transfer a byte.  */
560             /* TODO: Handle errors.  */
561             if (s->msa & 1) {
562                 /* Recv */
563                 s->mdr = i2c_recv(s->bus);
564             } else {
565                 /* Send */
566                 i2c_send(s->bus, s->mdr);
567             }
568             /* Raise an interrupt.  */
569             s->mris |= 1;
570         }
571         if (value & 4) {
572             /* Finish transfer.  */
573             i2c_end_transfer(s->bus);
574             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
575         }
576         break;
577     case 0x08: /* MDR */
578         s->mdr = value & 0xff;
579         break;
580     case 0x0c: /* MTPR */
581         s->mtpr = value & 0xff;
582         break;
583     case 0x10: /* MIMR */
584         s->mimr = 1;
585         break;
586     case 0x1c: /* MICR */
587         s->mris &= ~value;
588         break;
589     case 0x20: /* MCR */
590         if (value & 1) {
591             qemu_log_mask(LOG_UNIMP,
592                           "stellaris_i2c: Loopback not implemented\n");
593         }
594         if (value & 0x20) {
595             qemu_log_mask(LOG_UNIMP,
596                           "stellaris_i2c: Slave mode not implemented\n");
597         }
598         s->mcr = value & 0x31;
599         break;
600     default:
601         qemu_log_mask(LOG_GUEST_ERROR,
602                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
603     }
604     stellaris_i2c_update(s);
605 }
606 
607 static void stellaris_i2c_reset(stellaris_i2c_state *s)
608 {
609     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
610         i2c_end_transfer(s->bus);
611 
612     s->msa = 0;
613     s->mcs = 0;
614     s->mdr = 0;
615     s->mtpr = 1;
616     s->mimr = 0;
617     s->mris = 0;
618     s->mcr = 0;
619     stellaris_i2c_update(s);
620 }
621 
622 static const MemoryRegionOps stellaris_i2c_ops = {
623     .read = stellaris_i2c_read,
624     .write = stellaris_i2c_write,
625     .endianness = DEVICE_NATIVE_ENDIAN,
626 };
627 
628 static const VMStateDescription vmstate_stellaris_i2c = {
629     .name = "stellaris_i2c",
630     .version_id = 1,
631     .minimum_version_id = 1,
632     .fields = (VMStateField[]) {
633         VMSTATE_UINT32(msa, stellaris_i2c_state),
634         VMSTATE_UINT32(mcs, stellaris_i2c_state),
635         VMSTATE_UINT32(mdr, stellaris_i2c_state),
636         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
637         VMSTATE_UINT32(mimr, stellaris_i2c_state),
638         VMSTATE_UINT32(mris, stellaris_i2c_state),
639         VMSTATE_UINT32(mcr, stellaris_i2c_state),
640         VMSTATE_END_OF_LIST()
641     }
642 };
643 
644 static void stellaris_i2c_init(Object *obj)
645 {
646     DeviceState *dev = DEVICE(obj);
647     stellaris_i2c_state *s = STELLARIS_I2C(obj);
648     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
649     I2CBus *bus;
650 
651     sysbus_init_irq(sbd, &s->irq);
652     bus = i2c_init_bus(dev, "i2c");
653     s->bus = bus;
654 
655     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
656                           "i2c", 0x1000);
657     sysbus_init_mmio(sbd, &s->iomem);
658     /* ??? For now we only implement the master interface.  */
659     stellaris_i2c_reset(s);
660 }
661 
662 /* Analogue to Digital Converter.  This is only partially implemented,
663    enough for applications that use a combined ADC and timer tick.  */
664 
665 #define STELLARIS_ADC_EM_CONTROLLER 0
666 #define STELLARIS_ADC_EM_COMP       1
667 #define STELLARIS_ADC_EM_EXTERNAL   4
668 #define STELLARIS_ADC_EM_TIMER      5
669 #define STELLARIS_ADC_EM_PWM0       6
670 #define STELLARIS_ADC_EM_PWM1       7
671 #define STELLARIS_ADC_EM_PWM2       8
672 
673 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
674 #define STELLARIS_ADC_FIFO_FULL     0x1000
675 
676 #define TYPE_STELLARIS_ADC "stellaris-adc"
677 typedef struct StellarisADCState StellarisADCState;
678 DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
679 
680 struct StellarisADCState {
681     SysBusDevice parent_obj;
682 
683     MemoryRegion iomem;
684     uint32_t actss;
685     uint32_t ris;
686     uint32_t im;
687     uint32_t emux;
688     uint32_t ostat;
689     uint32_t ustat;
690     uint32_t sspri;
691     uint32_t sac;
692     struct {
693         uint32_t state;
694         uint32_t data[16];
695     } fifo[4];
696     uint32_t ssmux[4];
697     uint32_t ssctl[4];
698     uint32_t noise;
699     qemu_irq irq[4];
700 };
701 
702 static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
703 {
704     int tail;
705 
706     tail = s->fifo[n].state & 0xf;
707     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
708         s->ustat |= 1 << n;
709     } else {
710         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
711         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
712         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
713             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
714     }
715     return s->fifo[n].data[tail];
716 }
717 
718 static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
719                                      uint32_t value)
720 {
721     int head;
722 
723     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
724        FIFO fir each sequencer.  */
725     head = (s->fifo[n].state >> 4) & 0xf;
726     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
727         s->ostat |= 1 << n;
728         return;
729     }
730     s->fifo[n].data[head] = value;
731     head = (head + 1) & 0xf;
732     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
733     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
734     if ((s->fifo[n].state & 0xf) == head)
735         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
736 }
737 
738 static void stellaris_adc_update(StellarisADCState *s)
739 {
740     int level;
741     int n;
742 
743     for (n = 0; n < 4; n++) {
744         level = (s->ris & s->im & (1 << n)) != 0;
745         qemu_set_irq(s->irq[n], level);
746     }
747 }
748 
749 static void stellaris_adc_trigger(void *opaque, int irq, int level)
750 {
751     StellarisADCState *s = opaque;
752     int n;
753 
754     for (n = 0; n < 4; n++) {
755         if ((s->actss & (1 << n)) == 0) {
756             continue;
757         }
758 
759         if (((s->emux >> (n * 4)) & 0xff) != 5) {
760             continue;
761         }
762 
763         /* Some applications use the ADC as a random number source, so introduce
764            some variation into the signal.  */
765         s->noise = s->noise * 314159 + 1;
766         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
767         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
768         s->ris |= (1 << n);
769         stellaris_adc_update(s);
770     }
771 }
772 
773 static void stellaris_adc_reset(StellarisADCState *s)
774 {
775     int n;
776 
777     for (n = 0; n < 4; n++) {
778         s->ssmux[n] = 0;
779         s->ssctl[n] = 0;
780         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
781     }
782 }
783 
784 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
785                                    unsigned size)
786 {
787     StellarisADCState *s = opaque;
788 
789     /* TODO: Implement this.  */
790     if (offset >= 0x40 && offset < 0xc0) {
791         int n;
792         n = (offset - 0x40) >> 5;
793         switch (offset & 0x1f) {
794         case 0x00: /* SSMUX */
795             return s->ssmux[n];
796         case 0x04: /* SSCTL */
797             return s->ssctl[n];
798         case 0x08: /* SSFIFO */
799             return stellaris_adc_fifo_read(s, n);
800         case 0x0c: /* SSFSTAT */
801             return s->fifo[n].state;
802         default:
803             break;
804         }
805     }
806     switch (offset) {
807     case 0x00: /* ACTSS */
808         return s->actss;
809     case 0x04: /* RIS */
810         return s->ris;
811     case 0x08: /* IM */
812         return s->im;
813     case 0x0c: /* ISC */
814         return s->ris & s->im;
815     case 0x10: /* OSTAT */
816         return s->ostat;
817     case 0x14: /* EMUX */
818         return s->emux;
819     case 0x18: /* USTAT */
820         return s->ustat;
821     case 0x20: /* SSPRI */
822         return s->sspri;
823     case 0x30: /* SAC */
824         return s->sac;
825     default:
826         qemu_log_mask(LOG_GUEST_ERROR,
827                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
828         return 0;
829     }
830 }
831 
832 static void stellaris_adc_write(void *opaque, hwaddr offset,
833                                 uint64_t value, unsigned size)
834 {
835     StellarisADCState *s = opaque;
836 
837     /* TODO: Implement this.  */
838     if (offset >= 0x40 && offset < 0xc0) {
839         int n;
840         n = (offset - 0x40) >> 5;
841         switch (offset & 0x1f) {
842         case 0x00: /* SSMUX */
843             s->ssmux[n] = value & 0x33333333;
844             return;
845         case 0x04: /* SSCTL */
846             if (value != 6) {
847                 qemu_log_mask(LOG_UNIMP,
848                               "ADC: Unimplemented sequence %" PRIx64 "\n",
849                               value);
850             }
851             s->ssctl[n] = value;
852             return;
853         default:
854             break;
855         }
856     }
857     switch (offset) {
858     case 0x00: /* ACTSS */
859         s->actss = value & 0xf;
860         break;
861     case 0x08: /* IM */
862         s->im = value;
863         break;
864     case 0x0c: /* ISC */
865         s->ris &= ~value;
866         break;
867     case 0x10: /* OSTAT */
868         s->ostat &= ~value;
869         break;
870     case 0x14: /* EMUX */
871         s->emux = value;
872         break;
873     case 0x18: /* USTAT */
874         s->ustat &= ~value;
875         break;
876     case 0x20: /* SSPRI */
877         s->sspri = value;
878         break;
879     case 0x28: /* PSSI */
880         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
881         break;
882     case 0x30: /* SAC */
883         s->sac = value;
884         break;
885     default:
886         qemu_log_mask(LOG_GUEST_ERROR,
887                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
888     }
889     stellaris_adc_update(s);
890 }
891 
892 static const MemoryRegionOps stellaris_adc_ops = {
893     .read = stellaris_adc_read,
894     .write = stellaris_adc_write,
895     .endianness = DEVICE_NATIVE_ENDIAN,
896 };
897 
898 static const VMStateDescription vmstate_stellaris_adc = {
899     .name = "stellaris_adc",
900     .version_id = 1,
901     .minimum_version_id = 1,
902     .fields = (VMStateField[]) {
903         VMSTATE_UINT32(actss, StellarisADCState),
904         VMSTATE_UINT32(ris, StellarisADCState),
905         VMSTATE_UINT32(im, StellarisADCState),
906         VMSTATE_UINT32(emux, StellarisADCState),
907         VMSTATE_UINT32(ostat, StellarisADCState),
908         VMSTATE_UINT32(ustat, StellarisADCState),
909         VMSTATE_UINT32(sspri, StellarisADCState),
910         VMSTATE_UINT32(sac, StellarisADCState),
911         VMSTATE_UINT32(fifo[0].state, StellarisADCState),
912         VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
913         VMSTATE_UINT32(ssmux[0], StellarisADCState),
914         VMSTATE_UINT32(ssctl[0], StellarisADCState),
915         VMSTATE_UINT32(fifo[1].state, StellarisADCState),
916         VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
917         VMSTATE_UINT32(ssmux[1], StellarisADCState),
918         VMSTATE_UINT32(ssctl[1], StellarisADCState),
919         VMSTATE_UINT32(fifo[2].state, StellarisADCState),
920         VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
921         VMSTATE_UINT32(ssmux[2], StellarisADCState),
922         VMSTATE_UINT32(ssctl[2], StellarisADCState),
923         VMSTATE_UINT32(fifo[3].state, StellarisADCState),
924         VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
925         VMSTATE_UINT32(ssmux[3], StellarisADCState),
926         VMSTATE_UINT32(ssctl[3], StellarisADCState),
927         VMSTATE_UINT32(noise, StellarisADCState),
928         VMSTATE_END_OF_LIST()
929     }
930 };
931 
932 static void stellaris_adc_init(Object *obj)
933 {
934     DeviceState *dev = DEVICE(obj);
935     StellarisADCState *s = STELLARIS_ADC(obj);
936     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
937     int n;
938 
939     for (n = 0; n < 4; n++) {
940         sysbus_init_irq(sbd, &s->irq[n]);
941     }
942 
943     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
944                           "adc", 0x1000);
945     sysbus_init_mmio(sbd, &s->iomem);
946     stellaris_adc_reset(s);
947     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
948 }
949 
950 /* Board init.  */
951 static stellaris_board_info stellaris_boards[] = {
952   { "LM3S811EVB",
953     0,
954     0x0032000e,
955     0x001f001f, /* dc0 */
956     0x001132bf,
957     0x01071013,
958     0x3f0f01ff,
959     0x0000001f,
960     BP_OLED_I2C
961   },
962   { "LM3S6965EVB",
963     0x10010002,
964     0x1073402e,
965     0x00ff007f, /* dc0 */
966     0x001133ff,
967     0x030f5317,
968     0x0f0f87ff,
969     0x5000007f,
970     BP_OLED_SSI | BP_GAMEPAD
971   }
972 };
973 
974 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
975 {
976     static const int uart_irq[] = {5, 6, 33, 34};
977     static const int timer_irq[] = {19, 21, 23, 35};
978     static const uint32_t gpio_addr[7] =
979       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
980         0x40024000, 0x40025000, 0x40026000};
981     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
982 
983     /* Memory map of SoC devices, from
984      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
985      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
986      *
987      * 40000000 wdtimer
988      * 40002000 i2c (unimplemented)
989      * 40004000 GPIO
990      * 40005000 GPIO
991      * 40006000 GPIO
992      * 40007000 GPIO
993      * 40008000 SSI
994      * 4000c000 UART
995      * 4000d000 UART
996      * 4000e000 UART
997      * 40020000 i2c
998      * 40021000 i2c (unimplemented)
999      * 40024000 GPIO
1000      * 40025000 GPIO
1001      * 40026000 GPIO
1002      * 40028000 PWM (unimplemented)
1003      * 4002c000 QEI (unimplemented)
1004      * 4002d000 QEI (unimplemented)
1005      * 40030000 gptimer
1006      * 40031000 gptimer
1007      * 40032000 gptimer
1008      * 40033000 gptimer
1009      * 40038000 ADC
1010      * 4003c000 analogue comparator (unimplemented)
1011      * 40048000 ethernet
1012      * 400fc000 hibernation module (unimplemented)
1013      * 400fd000 flash memory control (unimplemented)
1014      * 400fe000 system control
1015      */
1016 
1017     DeviceState *gpio_dev[7], *nvic;
1018     qemu_irq gpio_in[7][8];
1019     qemu_irq gpio_out[7][8];
1020     qemu_irq adc;
1021     int sram_size;
1022     int flash_size;
1023     I2CBus *i2c;
1024     DeviceState *dev;
1025     DeviceState *ssys_dev;
1026     int i;
1027     int j;
1028     const uint8_t *macaddr;
1029 
1030     MemoryRegion *sram = g_new(MemoryRegion, 1);
1031     MemoryRegion *flash = g_new(MemoryRegion, 1);
1032     MemoryRegion *system_memory = get_system_memory();
1033 
1034     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1035     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1036 
1037     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1038     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1039                            &error_fatal);
1040     memory_region_add_subregion(system_memory, 0, flash);
1041 
1042     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1043                            &error_fatal);
1044     memory_region_add_subregion(system_memory, 0x20000000, sram);
1045 
1046     /*
1047      * Create the system-registers object early, because we will
1048      * need its sysclk output.
1049      */
1050     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1051     /* Most devices come preprogrammed with a MAC address in the user data. */
1052     macaddr = nd_table[0].macaddr.a;
1053     qdev_prop_set_uint32(ssys_dev, "user0",
1054                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1055     qdev_prop_set_uint32(ssys_dev, "user1",
1056                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1057     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1058     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1059     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1060     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1061     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1062     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1063     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1064     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1065 
1066     nvic = qdev_new(TYPE_ARMV7M);
1067     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1068     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1069     qdev_prop_set_bit(nvic, "enable-bitband", true);
1070     qdev_connect_clock_in(nvic, "cpuclk",
1071                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1072     /* This SoC does not connect the systick reference clock */
1073     object_property_set_link(OBJECT(nvic), "memory",
1074                              OBJECT(get_system_memory()), &error_abort);
1075     /* This will exit with an error if the user passed us a bad cpu_type */
1076     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1077 
1078     /* Now we can wire up the IRQ and MMIO of the system registers */
1079     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1080     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1081 
1082     if (board->dc1 & (1 << 16)) {
1083         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1084                                     qdev_get_gpio_in(nvic, 14),
1085                                     qdev_get_gpio_in(nvic, 15),
1086                                     qdev_get_gpio_in(nvic, 16),
1087                                     qdev_get_gpio_in(nvic, 17),
1088                                     NULL);
1089         adc = qdev_get_gpio_in(dev, 0);
1090     } else {
1091         adc = NULL;
1092     }
1093     for (i = 0; i < 4; i++) {
1094         if (board->dc2 & (0x10000 << i)) {
1095             SysBusDevice *sbd;
1096 
1097             dev = qdev_new(TYPE_STELLARIS_GPTM);
1098             sbd = SYS_BUS_DEVICE(dev);
1099             qdev_connect_clock_in(dev, "clk",
1100                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1101             sysbus_realize_and_unref(sbd, &error_fatal);
1102             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1103             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1104             /* TODO: This is incorrect, but we get away with it because
1105                the ADC output is only ever pulsed.  */
1106             qdev_connect_gpio_out(dev, 0, adc);
1107         }
1108     }
1109 
1110     if (board->dc1 & (1 << 3)) { /* watchdog present */
1111         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1112 
1113         qdev_connect_clock_in(dev, "WDOGCLK",
1114                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1115 
1116         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1117         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1118                         0,
1119                         0x40000000u);
1120         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1121                            0,
1122                            qdev_get_gpio_in(nvic, 18));
1123     }
1124 
1125 
1126     for (i = 0; i < 7; i++) {
1127         if (board->dc4 & (1 << i)) {
1128             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1129                                                qdev_get_gpio_in(nvic,
1130                                                                 gpio_irq[i]));
1131             for (j = 0; j < 8; j++) {
1132                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1133                 gpio_out[i][j] = NULL;
1134             }
1135         }
1136     }
1137 
1138     if (board->dc2 & (1 << 12)) {
1139         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1140                                    qdev_get_gpio_in(nvic, 8));
1141         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1142         if (board->peripherals & BP_OLED_I2C) {
1143             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1144         }
1145     }
1146 
1147     for (i = 0; i < 4; i++) {
1148         if (board->dc2 & (1 << i)) {
1149             SysBusDevice *sbd;
1150 
1151             dev = qdev_new("pl011_luminary");
1152             sbd = SYS_BUS_DEVICE(dev);
1153             qdev_prop_set_chr(dev, "chardev", serial_hd(i));
1154             sysbus_realize_and_unref(sbd, &error_fatal);
1155             sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
1156             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
1157         }
1158     }
1159     if (board->dc2 & (1 << 4)) {
1160         dev = sysbus_create_simple("pl022", 0x40008000,
1161                                    qdev_get_gpio_in(nvic, 7));
1162         if (board->peripherals & BP_OLED_SSI) {
1163             void *bus;
1164             DeviceState *sddev;
1165             DeviceState *ssddev;
1166             DriveInfo *dinfo;
1167             DeviceState *carddev;
1168             DeviceState *gpio_d_splitter;
1169             BlockBackend *blk;
1170 
1171             /*
1172              * Some boards have both an OLED controller and SD card connected to
1173              * the same SSI port, with the SD card chip select connected to a
1174              * GPIO pin.  Technically the OLED chip select is connected to the
1175              * SSI Fss pin.  We do not bother emulating that as both devices
1176              * should never be selected simultaneously, and our OLED controller
1177              * ignores stray 0xff commands that occur when deselecting the SD
1178              * card.
1179              *
1180              * The h/w wiring is:
1181              *  - GPIO pin D0 is wired to the active-low SD card chip select
1182              *  - GPIO pin A3 is wired to the active-low OLED chip select
1183              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1184              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1185              *    SSI controller. The SSI controller takes SSI0Fss low when it
1186              *    transmits a frame, so it can work as a chip-select signal.
1187              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1188              *    (the OLED never sends data to the CPU, so no wiring needed)
1189              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1190              *    and the OLED display-data-in
1191              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1192              *    serial-clock input
1193              * So a guest that wants to use the OLED can configure the PL061
1194              * to make pins A2, A3, A5 aux-function, so they are connected
1195              * directly to the SSI controller. When the SSI controller sends
1196              * data it asserts SSI0Fss which selects the OLED.
1197              * A guest that wants to use the SD card configures A2, A4 and A5
1198              * as aux-function, but leaves A3 as a software-controlled GPIO
1199              * line. It asserts the SD card chip-select by using the PL061
1200              * to control pin D0, and lets the SSI controller handle Clk, Tx
1201              * and Rx. (The SSI controller asserts Fss during tx cycles as
1202              * usual, but because A3 is not set to aux-function this is not
1203              * forwarded to the OLED, and so the OLED stays unselected.)
1204              *
1205              * The QEMU implementation instead is:
1206              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1207              *    and also to the OLED chip-select which is implemented
1208              *    as *active-high*
1209              *  - SSI controller signals go to the devices regardless of
1210              *    whether the guest programs A2, A4, A5 as aux-function or not
1211              *
1212              * The problem with this implementation is if the guest doesn't
1213              * care about the SD card and only uses the OLED. In that case it
1214              * may choose never to do anything with D0 (leaving it in its
1215              * default floating state, which reliably leaves the card disabled
1216              * because an SD card has a pullup on CS within the card itself),
1217              * and only set up A2, A3, A5. This for us would mean the OLED
1218              * never gets the chip-select assert it needs. We work around
1219              * this with a manual raise of D0 here (despite board creation
1220              * code being the wrong place to raise IRQ lines) to put the OLED
1221              * into an initially selected state.
1222              *
1223              * In theory the right way to model this would be:
1224              *  - Implement aux-function support in the PL061, with an
1225              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1226              *    if a GPIO line is in auxfn mode the main GPIO in and out
1227              *    track the AFIN and AFOUT lines)
1228              *  - Wire the AFOUT for D0 up to either a line from the
1229              *    SSI controller that's pulled low around every transmit,
1230              *    or at least to an always-0 line here on the board
1231              *  - Make the ssd0323 OLED controller chipselect active-low
1232              */
1233             bus = qdev_get_child_bus(dev, "ssi");
1234             sddev = ssi_create_peripheral(bus, "ssi-sd");
1235 
1236             dinfo = drive_get(IF_SD, 0, 0);
1237             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1238             carddev = qdev_new(TYPE_SD_CARD);
1239             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1240             qdev_prop_set_bit(carddev, "spi", true);
1241             qdev_realize_and_unref(carddev,
1242                                    qdev_get_child_bus(sddev, "sd-bus"),
1243                                    &error_fatal);
1244 
1245             ssddev = ssi_create_peripheral(bus, "ssd0323");
1246 
1247             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1248             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1249             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1250             qdev_connect_gpio_out(
1251                     gpio_d_splitter, 0,
1252                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1253             qdev_connect_gpio_out(
1254                     gpio_d_splitter, 1,
1255                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1256             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1257 
1258             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1259 
1260             /* Make sure the select pin is high.  */
1261             qemu_irq_raise(gpio_out[GPIO_D][0]);
1262         }
1263     }
1264     if (board->dc4 & (1 << 28)) {
1265         DeviceState *enet;
1266 
1267         qemu_check_nic_model(&nd_table[0], "stellaris");
1268 
1269         enet = qdev_new("stellaris_enet");
1270         qdev_set_nic_properties(enet, &nd_table[0]);
1271         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1272         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1273         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1274     }
1275     if (board->peripherals & BP_GAMEPAD) {
1276         qemu_irq gpad_irq[5];
1277         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1278 
1279         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1280         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1281         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1282         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1283         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1284 
1285         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1286     }
1287     for (i = 0; i < 7; i++) {
1288         if (board->dc4 & (1 << i)) {
1289             for (j = 0; j < 8; j++) {
1290                 if (gpio_out[i][j]) {
1291                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1292                 }
1293             }
1294         }
1295     }
1296 
1297     /* Add dummy regions for the devices we don't implement yet,
1298      * so guest accesses don't cause unlogged crashes.
1299      */
1300     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1301     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1302     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1303     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1304     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1305     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1306     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1307     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1308 
1309     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
1310 }
1311 
1312 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1313 static void lm3s811evb_init(MachineState *machine)
1314 {
1315     stellaris_init(machine, &stellaris_boards[0]);
1316 }
1317 
1318 static void lm3s6965evb_init(MachineState *machine)
1319 {
1320     stellaris_init(machine, &stellaris_boards[1]);
1321 }
1322 
1323 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1324 {
1325     MachineClass *mc = MACHINE_CLASS(oc);
1326 
1327     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1328     mc->init = lm3s811evb_init;
1329     mc->ignore_memory_transaction_failures = true;
1330     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1331 }
1332 
1333 static const TypeInfo lm3s811evb_type = {
1334     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1335     .parent = TYPE_MACHINE,
1336     .class_init = lm3s811evb_class_init,
1337 };
1338 
1339 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1340 {
1341     MachineClass *mc = MACHINE_CLASS(oc);
1342 
1343     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1344     mc->init = lm3s6965evb_init;
1345     mc->ignore_memory_transaction_failures = true;
1346     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1347 }
1348 
1349 static const TypeInfo lm3s6965evb_type = {
1350     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1351     .parent = TYPE_MACHINE,
1352     .class_init = lm3s6965evb_class_init,
1353 };
1354 
1355 static void stellaris_machine_init(void)
1356 {
1357     type_register_static(&lm3s811evb_type);
1358     type_register_static(&lm3s6965evb_type);
1359 }
1360 
1361 type_init(stellaris_machine_init)
1362 
1363 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1364 {
1365     DeviceClass *dc = DEVICE_CLASS(klass);
1366 
1367     dc->vmsd = &vmstate_stellaris_i2c;
1368 }
1369 
1370 static const TypeInfo stellaris_i2c_info = {
1371     .name          = TYPE_STELLARIS_I2C,
1372     .parent        = TYPE_SYS_BUS_DEVICE,
1373     .instance_size = sizeof(stellaris_i2c_state),
1374     .instance_init = stellaris_i2c_init,
1375     .class_init    = stellaris_i2c_class_init,
1376 };
1377 
1378 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1379 {
1380     DeviceClass *dc = DEVICE_CLASS(klass);
1381 
1382     dc->vmsd = &vmstate_stellaris_adc;
1383 }
1384 
1385 static const TypeInfo stellaris_adc_info = {
1386     .name          = TYPE_STELLARIS_ADC,
1387     .parent        = TYPE_SYS_BUS_DEVICE,
1388     .instance_size = sizeof(StellarisADCState),
1389     .instance_init = stellaris_adc_init,
1390     .class_init    = stellaris_adc_class_init,
1391 };
1392 
1393 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1394 {
1395     DeviceClass *dc = DEVICE_CLASS(klass);
1396     ResettableClass *rc = RESETTABLE_CLASS(klass);
1397 
1398     dc->vmsd = &vmstate_stellaris_sys;
1399     rc->phases.enter = stellaris_sys_reset_enter;
1400     rc->phases.hold = stellaris_sys_reset_hold;
1401     rc->phases.exit = stellaris_sys_reset_exit;
1402     device_class_set_props(dc, stellaris_sys_properties);
1403 }
1404 
1405 static const TypeInfo stellaris_sys_info = {
1406     .name = TYPE_STELLARIS_SYS,
1407     .parent = TYPE_SYS_BUS_DEVICE,
1408     .instance_size = sizeof(ssys_state),
1409     .instance_init = stellaris_sys_instance_init,
1410     .class_init = stellaris_sys_class_init,
1411 };
1412 
1413 static void stellaris_register_types(void)
1414 {
1415     type_register_static(&stellaris_i2c_info);
1416     type_register_static(&stellaris_adc_info);
1417     type_register_static(&stellaris_sys_info);
1418 }
1419 
1420 type_init(stellaris_register_types)
1421