xref: /openbmc/qemu/hw/arm/stellaris.c (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/arm.h"
15 #include "hw/devices.h"
16 #include "qemu/timer.h"
17 #include "hw/i2c/i2c.h"
18 #include "net/net.h"
19 #include "hw/boards.h"
20 #include "qemu/log.h"
21 #include "exec/address-spaces.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/char/pl011.h"
24 #include "hw/misc/unimp.h"
25 
26 #define GPIO_A 0
27 #define GPIO_B 1
28 #define GPIO_C 2
29 #define GPIO_D 3
30 #define GPIO_E 4
31 #define GPIO_F 5
32 #define GPIO_G 6
33 
34 #define BP_OLED_I2C  0x01
35 #define BP_OLED_SSI  0x02
36 #define BP_GAMEPAD   0x04
37 
38 #define NUM_IRQ_LINES 64
39 
40 typedef const struct {
41     const char *name;
42     uint32_t did0;
43     uint32_t did1;
44     uint32_t dc0;
45     uint32_t dc1;
46     uint32_t dc2;
47     uint32_t dc3;
48     uint32_t dc4;
49     uint32_t peripherals;
50 } stellaris_board_info;
51 
52 /* General purpose timer module.  */
53 
54 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
55 #define STELLARIS_GPTM(obj) \
56     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
57 
58 typedef struct gptm_state {
59     SysBusDevice parent_obj;
60 
61     MemoryRegion iomem;
62     uint32_t config;
63     uint32_t mode[2];
64     uint32_t control;
65     uint32_t state;
66     uint32_t mask;
67     uint32_t load[2];
68     uint32_t match[2];
69     uint32_t prescale[2];
70     uint32_t match_prescale[2];
71     uint32_t rtc;
72     int64_t tick[2];
73     struct gptm_state *opaque[2];
74     QEMUTimer *timer[2];
75     /* The timers have an alternate output used to trigger the ADC.  */
76     qemu_irq trigger;
77     qemu_irq irq;
78 } gptm_state;
79 
80 static void gptm_update_irq(gptm_state *s)
81 {
82     int level;
83     level = (s->state & s->mask) != 0;
84     qemu_set_irq(s->irq, level);
85 }
86 
87 static void gptm_stop(gptm_state *s, int n)
88 {
89     timer_del(s->timer[n]);
90 }
91 
92 static void gptm_reload(gptm_state *s, int n, int reset)
93 {
94     int64_t tick;
95     if (reset)
96         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
97     else
98         tick = s->tick[n];
99 
100     if (s->config == 0) {
101         /* 32-bit CountDown.  */
102         uint32_t count;
103         count = s->load[0] | (s->load[1] << 16);
104         tick += (int64_t)count * system_clock_scale;
105     } else if (s->config == 1) {
106         /* 32-bit RTC.  1Hz tick.  */
107         tick += NANOSECONDS_PER_SECOND;
108     } else if (s->mode[n] == 0xa) {
109         /* PWM mode.  Not implemented.  */
110     } else {
111         qemu_log_mask(LOG_UNIMP,
112                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
113                       s->mode[n]);
114         return;
115     }
116     s->tick[n] = tick;
117     timer_mod(s->timer[n], tick);
118 }
119 
120 static void gptm_tick(void *opaque)
121 {
122     gptm_state **p = (gptm_state **)opaque;
123     gptm_state *s;
124     int n;
125 
126     s = *p;
127     n = p - s->opaque;
128     if (s->config == 0) {
129         s->state |= 1;
130         if ((s->control & 0x20)) {
131             /* Output trigger.  */
132 	    qemu_irq_pulse(s->trigger);
133         }
134         if (s->mode[0] & 1) {
135             /* One-shot.  */
136             s->control &= ~1;
137         } else {
138             /* Periodic.  */
139             gptm_reload(s, 0, 0);
140         }
141     } else if (s->config == 1) {
142         /* RTC.  */
143         uint32_t match;
144         s->rtc++;
145         match = s->match[0] | (s->match[1] << 16);
146         if (s->rtc > match)
147             s->rtc = 0;
148         if (s->rtc == 0) {
149             s->state |= 8;
150         }
151         gptm_reload(s, 0, 0);
152     } else if (s->mode[n] == 0xa) {
153         /* PWM mode.  Not implemented.  */
154     } else {
155         qemu_log_mask(LOG_UNIMP,
156                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
157                       s->mode[n]);
158     }
159     gptm_update_irq(s);
160 }
161 
162 static uint64_t gptm_read(void *opaque, hwaddr offset,
163                           unsigned size)
164 {
165     gptm_state *s = (gptm_state *)opaque;
166 
167     switch (offset) {
168     case 0x00: /* CFG */
169         return s->config;
170     case 0x04: /* TAMR */
171         return s->mode[0];
172     case 0x08: /* TBMR */
173         return s->mode[1];
174     case 0x0c: /* CTL */
175         return s->control;
176     case 0x18: /* IMR */
177         return s->mask;
178     case 0x1c: /* RIS */
179         return s->state;
180     case 0x20: /* MIS */
181         return s->state & s->mask;
182     case 0x24: /* CR */
183         return 0;
184     case 0x28: /* TAILR */
185         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
186     case 0x2c: /* TBILR */
187         return s->load[1];
188     case 0x30: /* TAMARCHR */
189         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
190     case 0x34: /* TBMATCHR */
191         return s->match[1];
192     case 0x38: /* TAPR */
193         return s->prescale[0];
194     case 0x3c: /* TBPR */
195         return s->prescale[1];
196     case 0x40: /* TAPMR */
197         return s->match_prescale[0];
198     case 0x44: /* TBPMR */
199         return s->match_prescale[1];
200     case 0x48: /* TAR */
201         if (s->config == 1) {
202             return s->rtc;
203         }
204         qemu_log_mask(LOG_UNIMP,
205                       "GPTM: read of TAR but timer read not supported");
206         return 0;
207     case 0x4c: /* TBR */
208         qemu_log_mask(LOG_UNIMP,
209                       "GPTM: read of TBR but timer read not supported");
210         return 0;
211     default:
212         qemu_log_mask(LOG_GUEST_ERROR,
213                       "GPTM: read at bad offset 0x%x\n", (int)offset);
214         return 0;
215     }
216 }
217 
218 static void gptm_write(void *opaque, hwaddr offset,
219                        uint64_t value, unsigned size)
220 {
221     gptm_state *s = (gptm_state *)opaque;
222     uint32_t oldval;
223 
224     /* The timers should be disabled before changing the configuration.
225        We take advantage of this and defer everything until the timer
226        is enabled.  */
227     switch (offset) {
228     case 0x00: /* CFG */
229         s->config = value;
230         break;
231     case 0x04: /* TAMR */
232         s->mode[0] = value;
233         break;
234     case 0x08: /* TBMR */
235         s->mode[1] = value;
236         break;
237     case 0x0c: /* CTL */
238         oldval = s->control;
239         s->control = value;
240         /* TODO: Implement pause.  */
241         if ((oldval ^ value) & 1) {
242             if (value & 1) {
243                 gptm_reload(s, 0, 1);
244             } else {
245                 gptm_stop(s, 0);
246             }
247         }
248         if (((oldval ^ value) & 0x100) && s->config >= 4) {
249             if (value & 0x100) {
250                 gptm_reload(s, 1, 1);
251             } else {
252                 gptm_stop(s, 1);
253             }
254         }
255         break;
256     case 0x18: /* IMR */
257         s->mask = value & 0x77;
258         gptm_update_irq(s);
259         break;
260     case 0x24: /* CR */
261         s->state &= ~value;
262         break;
263     case 0x28: /* TAILR */
264         s->load[0] = value & 0xffff;
265         if (s->config < 4) {
266             s->load[1] = value >> 16;
267         }
268         break;
269     case 0x2c: /* TBILR */
270         s->load[1] = value & 0xffff;
271         break;
272     case 0x30: /* TAMARCHR */
273         s->match[0] = value & 0xffff;
274         if (s->config < 4) {
275             s->match[1] = value >> 16;
276         }
277         break;
278     case 0x34: /* TBMATCHR */
279         s->match[1] = value >> 16;
280         break;
281     case 0x38: /* TAPR */
282         s->prescale[0] = value;
283         break;
284     case 0x3c: /* TBPR */
285         s->prescale[1] = value;
286         break;
287     case 0x40: /* TAPMR */
288         s->match_prescale[0] = value;
289         break;
290     case 0x44: /* TBPMR */
291         s->match_prescale[0] = value;
292         break;
293     default:
294         qemu_log_mask(LOG_GUEST_ERROR,
295                       "GPTM: read at bad offset 0x%x\n", (int)offset);
296     }
297     gptm_update_irq(s);
298 }
299 
300 static const MemoryRegionOps gptm_ops = {
301     .read = gptm_read,
302     .write = gptm_write,
303     .endianness = DEVICE_NATIVE_ENDIAN,
304 };
305 
306 static const VMStateDescription vmstate_stellaris_gptm = {
307     .name = "stellaris_gptm",
308     .version_id = 1,
309     .minimum_version_id = 1,
310     .fields = (VMStateField[]) {
311         VMSTATE_UINT32(config, gptm_state),
312         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
313         VMSTATE_UINT32(control, gptm_state),
314         VMSTATE_UINT32(state, gptm_state),
315         VMSTATE_UINT32(mask, gptm_state),
316         VMSTATE_UNUSED(8),
317         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
318         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
319         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
320         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
321         VMSTATE_UINT32(rtc, gptm_state),
322         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
323         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
324         VMSTATE_END_OF_LIST()
325     }
326 };
327 
328 static void stellaris_gptm_init(Object *obj)
329 {
330     DeviceState *dev = DEVICE(obj);
331     gptm_state *s = STELLARIS_GPTM(obj);
332     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
333 
334     sysbus_init_irq(sbd, &s->irq);
335     qdev_init_gpio_out(dev, &s->trigger, 1);
336 
337     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
338                           "gptm", 0x1000);
339     sysbus_init_mmio(sbd, &s->iomem);
340 
341     s->opaque[0] = s->opaque[1] = s;
342     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
343     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
344 }
345 
346 
347 /* System controller.  */
348 
349 typedef struct {
350     MemoryRegion iomem;
351     uint32_t pborctl;
352     uint32_t ldopctl;
353     uint32_t int_status;
354     uint32_t int_mask;
355     uint32_t resc;
356     uint32_t rcc;
357     uint32_t rcc2;
358     uint32_t rcgc[3];
359     uint32_t scgc[3];
360     uint32_t dcgc[3];
361     uint32_t clkvclr;
362     uint32_t ldoarst;
363     uint32_t user0;
364     uint32_t user1;
365     qemu_irq irq;
366     stellaris_board_info *board;
367 } ssys_state;
368 
369 static void ssys_update(ssys_state *s)
370 {
371   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
372 }
373 
374 static uint32_t pllcfg_sandstorm[16] = {
375     0x31c0, /* 1 Mhz */
376     0x1ae0, /* 1.8432 Mhz */
377     0x18c0, /* 2 Mhz */
378     0xd573, /* 2.4576 Mhz */
379     0x37a6, /* 3.57954 Mhz */
380     0x1ae2, /* 3.6864 Mhz */
381     0x0c40, /* 4 Mhz */
382     0x98bc, /* 4.906 Mhz */
383     0x935b, /* 4.9152 Mhz */
384     0x09c0, /* 5 Mhz */
385     0x4dee, /* 5.12 Mhz */
386     0x0c41, /* 6 Mhz */
387     0x75db, /* 6.144 Mhz */
388     0x1ae6, /* 7.3728 Mhz */
389     0x0600, /* 8 Mhz */
390     0x585b /* 8.192 Mhz */
391 };
392 
393 static uint32_t pllcfg_fury[16] = {
394     0x3200, /* 1 Mhz */
395     0x1b20, /* 1.8432 Mhz */
396     0x1900, /* 2 Mhz */
397     0xf42b, /* 2.4576 Mhz */
398     0x37e3, /* 3.57954 Mhz */
399     0x1b21, /* 3.6864 Mhz */
400     0x0c80, /* 4 Mhz */
401     0x98ee, /* 4.906 Mhz */
402     0xd5b4, /* 4.9152 Mhz */
403     0x0a00, /* 5 Mhz */
404     0x4e27, /* 5.12 Mhz */
405     0x1902, /* 6 Mhz */
406     0xec1c, /* 6.144 Mhz */
407     0x1b23, /* 7.3728 Mhz */
408     0x0640, /* 8 Mhz */
409     0xb11c /* 8.192 Mhz */
410 };
411 
412 #define DID0_VER_MASK        0x70000000
413 #define DID0_VER_0           0x00000000
414 #define DID0_VER_1           0x10000000
415 
416 #define DID0_CLASS_MASK      0x00FF0000
417 #define DID0_CLASS_SANDSTORM 0x00000000
418 #define DID0_CLASS_FURY      0x00010000
419 
420 static int ssys_board_class(const ssys_state *s)
421 {
422     uint32_t did0 = s->board->did0;
423     switch (did0 & DID0_VER_MASK) {
424     case DID0_VER_0:
425         return DID0_CLASS_SANDSTORM;
426     case DID0_VER_1:
427         switch (did0 & DID0_CLASS_MASK) {
428         case DID0_CLASS_SANDSTORM:
429         case DID0_CLASS_FURY:
430             return did0 & DID0_CLASS_MASK;
431         }
432         /* for unknown classes, fall through */
433     default:
434         /* This can only happen if the hardwired constant did0 value
435          * in this board's stellaris_board_info struct is wrong.
436          */
437         g_assert_not_reached();
438     }
439 }
440 
441 static uint64_t ssys_read(void *opaque, hwaddr offset,
442                           unsigned size)
443 {
444     ssys_state *s = (ssys_state *)opaque;
445 
446     switch (offset) {
447     case 0x000: /* DID0 */
448         return s->board->did0;
449     case 0x004: /* DID1 */
450         return s->board->did1;
451     case 0x008: /* DC0 */
452         return s->board->dc0;
453     case 0x010: /* DC1 */
454         return s->board->dc1;
455     case 0x014: /* DC2 */
456         return s->board->dc2;
457     case 0x018: /* DC3 */
458         return s->board->dc3;
459     case 0x01c: /* DC4 */
460         return s->board->dc4;
461     case 0x030: /* PBORCTL */
462         return s->pborctl;
463     case 0x034: /* LDOPCTL */
464         return s->ldopctl;
465     case 0x040: /* SRCR0 */
466         return 0;
467     case 0x044: /* SRCR1 */
468         return 0;
469     case 0x048: /* SRCR2 */
470         return 0;
471     case 0x050: /* RIS */
472         return s->int_status;
473     case 0x054: /* IMC */
474         return s->int_mask;
475     case 0x058: /* MISC */
476         return s->int_status & s->int_mask;
477     case 0x05c: /* RESC */
478         return s->resc;
479     case 0x060: /* RCC */
480         return s->rcc;
481     case 0x064: /* PLLCFG */
482         {
483             int xtal;
484             xtal = (s->rcc >> 6) & 0xf;
485             switch (ssys_board_class(s)) {
486             case DID0_CLASS_FURY:
487                 return pllcfg_fury[xtal];
488             case DID0_CLASS_SANDSTORM:
489                 return pllcfg_sandstorm[xtal];
490             default:
491                 g_assert_not_reached();
492             }
493         }
494     case 0x070: /* RCC2 */
495         return s->rcc2;
496     case 0x100: /* RCGC0 */
497         return s->rcgc[0];
498     case 0x104: /* RCGC1 */
499         return s->rcgc[1];
500     case 0x108: /* RCGC2 */
501         return s->rcgc[2];
502     case 0x110: /* SCGC0 */
503         return s->scgc[0];
504     case 0x114: /* SCGC1 */
505         return s->scgc[1];
506     case 0x118: /* SCGC2 */
507         return s->scgc[2];
508     case 0x120: /* DCGC0 */
509         return s->dcgc[0];
510     case 0x124: /* DCGC1 */
511         return s->dcgc[1];
512     case 0x128: /* DCGC2 */
513         return s->dcgc[2];
514     case 0x150: /* CLKVCLR */
515         return s->clkvclr;
516     case 0x160: /* LDOARST */
517         return s->ldoarst;
518     case 0x1e0: /* USER0 */
519         return s->user0;
520     case 0x1e4: /* USER1 */
521         return s->user1;
522     default:
523         qemu_log_mask(LOG_GUEST_ERROR,
524                       "SSYS: read at bad offset 0x%x\n", (int)offset);
525         return 0;
526     }
527 }
528 
529 static bool ssys_use_rcc2(ssys_state *s)
530 {
531     return (s->rcc2 >> 31) & 0x1;
532 }
533 
534 /*
535  * Caculate the sys. clock period in ms.
536  */
537 static void ssys_calculate_system_clock(ssys_state *s)
538 {
539     if (ssys_use_rcc2(s)) {
540         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
541     } else {
542         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
543     }
544 }
545 
546 static void ssys_write(void *opaque, hwaddr offset,
547                        uint64_t value, unsigned size)
548 {
549     ssys_state *s = (ssys_state *)opaque;
550 
551     switch (offset) {
552     case 0x030: /* PBORCTL */
553         s->pborctl = value & 0xffff;
554         break;
555     case 0x034: /* LDOPCTL */
556         s->ldopctl = value & 0x1f;
557         break;
558     case 0x040: /* SRCR0 */
559     case 0x044: /* SRCR1 */
560     case 0x048: /* SRCR2 */
561         fprintf(stderr, "Peripheral reset not implemented\n");
562         break;
563     case 0x054: /* IMC */
564         s->int_mask = value & 0x7f;
565         break;
566     case 0x058: /* MISC */
567         s->int_status &= ~value;
568         break;
569     case 0x05c: /* RESC */
570         s->resc = value & 0x3f;
571         break;
572     case 0x060: /* RCC */
573         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
574             /* PLL enable.  */
575             s->int_status |= (1 << 6);
576         }
577         s->rcc = value;
578         ssys_calculate_system_clock(s);
579         break;
580     case 0x070: /* RCC2 */
581         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
582             break;
583         }
584 
585         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
586             /* PLL enable.  */
587             s->int_status |= (1 << 6);
588         }
589         s->rcc2 = value;
590         ssys_calculate_system_clock(s);
591         break;
592     case 0x100: /* RCGC0 */
593         s->rcgc[0] = value;
594         break;
595     case 0x104: /* RCGC1 */
596         s->rcgc[1] = value;
597         break;
598     case 0x108: /* RCGC2 */
599         s->rcgc[2] = value;
600         break;
601     case 0x110: /* SCGC0 */
602         s->scgc[0] = value;
603         break;
604     case 0x114: /* SCGC1 */
605         s->scgc[1] = value;
606         break;
607     case 0x118: /* SCGC2 */
608         s->scgc[2] = value;
609         break;
610     case 0x120: /* DCGC0 */
611         s->dcgc[0] = value;
612         break;
613     case 0x124: /* DCGC1 */
614         s->dcgc[1] = value;
615         break;
616     case 0x128: /* DCGC2 */
617         s->dcgc[2] = value;
618         break;
619     case 0x150: /* CLKVCLR */
620         s->clkvclr = value;
621         break;
622     case 0x160: /* LDOARST */
623         s->ldoarst = value;
624         break;
625     default:
626         qemu_log_mask(LOG_GUEST_ERROR,
627                       "SSYS: write at bad offset 0x%x\n", (int)offset);
628     }
629     ssys_update(s);
630 }
631 
632 static const MemoryRegionOps ssys_ops = {
633     .read = ssys_read,
634     .write = ssys_write,
635     .endianness = DEVICE_NATIVE_ENDIAN,
636 };
637 
638 static void ssys_reset(void *opaque)
639 {
640     ssys_state *s = (ssys_state *)opaque;
641 
642     s->pborctl = 0x7ffd;
643     s->rcc = 0x078e3ac0;
644 
645     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
646         s->rcc2 = 0;
647     } else {
648         s->rcc2 = 0x07802810;
649     }
650     s->rcgc[0] = 1;
651     s->scgc[0] = 1;
652     s->dcgc[0] = 1;
653     ssys_calculate_system_clock(s);
654 }
655 
656 static int stellaris_sys_post_load(void *opaque, int version_id)
657 {
658     ssys_state *s = opaque;
659 
660     ssys_calculate_system_clock(s);
661 
662     return 0;
663 }
664 
665 static const VMStateDescription vmstate_stellaris_sys = {
666     .name = "stellaris_sys",
667     .version_id = 2,
668     .minimum_version_id = 1,
669     .post_load = stellaris_sys_post_load,
670     .fields = (VMStateField[]) {
671         VMSTATE_UINT32(pborctl, ssys_state),
672         VMSTATE_UINT32(ldopctl, ssys_state),
673         VMSTATE_UINT32(int_mask, ssys_state),
674         VMSTATE_UINT32(int_status, ssys_state),
675         VMSTATE_UINT32(resc, ssys_state),
676         VMSTATE_UINT32(rcc, ssys_state),
677         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
678         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
679         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
680         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
681         VMSTATE_UINT32(clkvclr, ssys_state),
682         VMSTATE_UINT32(ldoarst, ssys_state),
683         VMSTATE_END_OF_LIST()
684     }
685 };
686 
687 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
688                               stellaris_board_info * board,
689                               uint8_t *macaddr)
690 {
691     ssys_state *s;
692 
693     s = g_new0(ssys_state, 1);
694     s->irq = irq;
695     s->board = board;
696     /* Most devices come preprogrammed with a MAC address in the user data. */
697     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
698     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
699 
700     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
701     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
702     ssys_reset(s);
703     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
704     return 0;
705 }
706 
707 
708 /* I2C controller.  */
709 
710 #define TYPE_STELLARIS_I2C "stellaris-i2c"
711 #define STELLARIS_I2C(obj) \
712     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
713 
714 typedef struct {
715     SysBusDevice parent_obj;
716 
717     I2CBus *bus;
718     qemu_irq irq;
719     MemoryRegion iomem;
720     uint32_t msa;
721     uint32_t mcs;
722     uint32_t mdr;
723     uint32_t mtpr;
724     uint32_t mimr;
725     uint32_t mris;
726     uint32_t mcr;
727 } stellaris_i2c_state;
728 
729 #define STELLARIS_I2C_MCS_BUSY    0x01
730 #define STELLARIS_I2C_MCS_ERROR   0x02
731 #define STELLARIS_I2C_MCS_ADRACK  0x04
732 #define STELLARIS_I2C_MCS_DATACK  0x08
733 #define STELLARIS_I2C_MCS_ARBLST  0x10
734 #define STELLARIS_I2C_MCS_IDLE    0x20
735 #define STELLARIS_I2C_MCS_BUSBSY  0x40
736 
737 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
738                                    unsigned size)
739 {
740     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
741 
742     switch (offset) {
743     case 0x00: /* MSA */
744         return s->msa;
745     case 0x04: /* MCS */
746         /* We don't emulate timing, so the controller is never busy.  */
747         return s->mcs | STELLARIS_I2C_MCS_IDLE;
748     case 0x08: /* MDR */
749         return s->mdr;
750     case 0x0c: /* MTPR */
751         return s->mtpr;
752     case 0x10: /* MIMR */
753         return s->mimr;
754     case 0x14: /* MRIS */
755         return s->mris;
756     case 0x18: /* MMIS */
757         return s->mris & s->mimr;
758     case 0x20: /* MCR */
759         return s->mcr;
760     default:
761         qemu_log_mask(LOG_GUEST_ERROR,
762                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
763         return 0;
764     }
765 }
766 
767 static void stellaris_i2c_update(stellaris_i2c_state *s)
768 {
769     int level;
770 
771     level = (s->mris & s->mimr) != 0;
772     qemu_set_irq(s->irq, level);
773 }
774 
775 static void stellaris_i2c_write(void *opaque, hwaddr offset,
776                                 uint64_t value, unsigned size)
777 {
778     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
779 
780     switch (offset) {
781     case 0x00: /* MSA */
782         s->msa = value & 0xff;
783         break;
784     case 0x04: /* MCS */
785         if ((s->mcr & 0x10) == 0) {
786             /* Disabled.  Do nothing.  */
787             break;
788         }
789         /* Grab the bus if this is starting a transfer.  */
790         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
791             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
792                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
793             } else {
794                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
795                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
796             }
797         }
798         /* If we don't have the bus then indicate an error.  */
799         if (!i2c_bus_busy(s->bus)
800                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
801             s->mcs |= STELLARIS_I2C_MCS_ERROR;
802             break;
803         }
804         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
805         if (value & 1) {
806             /* Transfer a byte.  */
807             /* TODO: Handle errors.  */
808             if (s->msa & 1) {
809                 /* Recv */
810                 s->mdr = i2c_recv(s->bus) & 0xff;
811             } else {
812                 /* Send */
813                 i2c_send(s->bus, s->mdr);
814             }
815             /* Raise an interrupt.  */
816             s->mris |= 1;
817         }
818         if (value & 4) {
819             /* Finish transfer.  */
820             i2c_end_transfer(s->bus);
821             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
822         }
823         break;
824     case 0x08: /* MDR */
825         s->mdr = value & 0xff;
826         break;
827     case 0x0c: /* MTPR */
828         s->mtpr = value & 0xff;
829         break;
830     case 0x10: /* MIMR */
831         s->mimr = 1;
832         break;
833     case 0x1c: /* MICR */
834         s->mris &= ~value;
835         break;
836     case 0x20: /* MCR */
837         if (value & 1) {
838             qemu_log_mask(LOG_UNIMP, "stellaris_i2c: Loopback not implemented");
839         }
840         if (value & 0x20) {
841             qemu_log_mask(LOG_UNIMP,
842                           "stellaris_i2c: Slave mode not implemented");
843         }
844         s->mcr = value & 0x31;
845         break;
846     default:
847         qemu_log_mask(LOG_GUEST_ERROR,
848                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
849     }
850     stellaris_i2c_update(s);
851 }
852 
853 static void stellaris_i2c_reset(stellaris_i2c_state *s)
854 {
855     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
856         i2c_end_transfer(s->bus);
857 
858     s->msa = 0;
859     s->mcs = 0;
860     s->mdr = 0;
861     s->mtpr = 1;
862     s->mimr = 0;
863     s->mris = 0;
864     s->mcr = 0;
865     stellaris_i2c_update(s);
866 }
867 
868 static const MemoryRegionOps stellaris_i2c_ops = {
869     .read = stellaris_i2c_read,
870     .write = stellaris_i2c_write,
871     .endianness = DEVICE_NATIVE_ENDIAN,
872 };
873 
874 static const VMStateDescription vmstate_stellaris_i2c = {
875     .name = "stellaris_i2c",
876     .version_id = 1,
877     .minimum_version_id = 1,
878     .fields = (VMStateField[]) {
879         VMSTATE_UINT32(msa, stellaris_i2c_state),
880         VMSTATE_UINT32(mcs, stellaris_i2c_state),
881         VMSTATE_UINT32(mdr, stellaris_i2c_state),
882         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
883         VMSTATE_UINT32(mimr, stellaris_i2c_state),
884         VMSTATE_UINT32(mris, stellaris_i2c_state),
885         VMSTATE_UINT32(mcr, stellaris_i2c_state),
886         VMSTATE_END_OF_LIST()
887     }
888 };
889 
890 static void stellaris_i2c_init(Object *obj)
891 {
892     DeviceState *dev = DEVICE(obj);
893     stellaris_i2c_state *s = STELLARIS_I2C(obj);
894     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
895     I2CBus *bus;
896 
897     sysbus_init_irq(sbd, &s->irq);
898     bus = i2c_init_bus(dev, "i2c");
899     s->bus = bus;
900 
901     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
902                           "i2c", 0x1000);
903     sysbus_init_mmio(sbd, &s->iomem);
904     /* ??? For now we only implement the master interface.  */
905     stellaris_i2c_reset(s);
906 }
907 
908 /* Analogue to Digital Converter.  This is only partially implemented,
909    enough for applications that use a combined ADC and timer tick.  */
910 
911 #define STELLARIS_ADC_EM_CONTROLLER 0
912 #define STELLARIS_ADC_EM_COMP       1
913 #define STELLARIS_ADC_EM_EXTERNAL   4
914 #define STELLARIS_ADC_EM_TIMER      5
915 #define STELLARIS_ADC_EM_PWM0       6
916 #define STELLARIS_ADC_EM_PWM1       7
917 #define STELLARIS_ADC_EM_PWM2       8
918 
919 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
920 #define STELLARIS_ADC_FIFO_FULL     0x1000
921 
922 #define TYPE_STELLARIS_ADC "stellaris-adc"
923 #define STELLARIS_ADC(obj) \
924     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
925 
926 typedef struct StellarisADCState {
927     SysBusDevice parent_obj;
928 
929     MemoryRegion iomem;
930     uint32_t actss;
931     uint32_t ris;
932     uint32_t im;
933     uint32_t emux;
934     uint32_t ostat;
935     uint32_t ustat;
936     uint32_t sspri;
937     uint32_t sac;
938     struct {
939         uint32_t state;
940         uint32_t data[16];
941     } fifo[4];
942     uint32_t ssmux[4];
943     uint32_t ssctl[4];
944     uint32_t noise;
945     qemu_irq irq[4];
946 } stellaris_adc_state;
947 
948 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
949 {
950     int tail;
951 
952     tail = s->fifo[n].state & 0xf;
953     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
954         s->ustat |= 1 << n;
955     } else {
956         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
957         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
958         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
959             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
960     }
961     return s->fifo[n].data[tail];
962 }
963 
964 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
965                                      uint32_t value)
966 {
967     int head;
968 
969     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
970        FIFO fir each sequencer.  */
971     head = (s->fifo[n].state >> 4) & 0xf;
972     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
973         s->ostat |= 1 << n;
974         return;
975     }
976     s->fifo[n].data[head] = value;
977     head = (head + 1) & 0xf;
978     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
979     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
980     if ((s->fifo[n].state & 0xf) == head)
981         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
982 }
983 
984 static void stellaris_adc_update(stellaris_adc_state *s)
985 {
986     int level;
987     int n;
988 
989     for (n = 0; n < 4; n++) {
990         level = (s->ris & s->im & (1 << n)) != 0;
991         qemu_set_irq(s->irq[n], level);
992     }
993 }
994 
995 static void stellaris_adc_trigger(void *opaque, int irq, int level)
996 {
997     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
998     int n;
999 
1000     for (n = 0; n < 4; n++) {
1001         if ((s->actss & (1 << n)) == 0) {
1002             continue;
1003         }
1004 
1005         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1006             continue;
1007         }
1008 
1009         /* Some applications use the ADC as a random number source, so introduce
1010            some variation into the signal.  */
1011         s->noise = s->noise * 314159 + 1;
1012         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1013         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1014         s->ris |= (1 << n);
1015         stellaris_adc_update(s);
1016     }
1017 }
1018 
1019 static void stellaris_adc_reset(stellaris_adc_state *s)
1020 {
1021     int n;
1022 
1023     for (n = 0; n < 4; n++) {
1024         s->ssmux[n] = 0;
1025         s->ssctl[n] = 0;
1026         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1027     }
1028 }
1029 
1030 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1031                                    unsigned size)
1032 {
1033     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1034 
1035     /* TODO: Implement this.  */
1036     if (offset >= 0x40 && offset < 0xc0) {
1037         int n;
1038         n = (offset - 0x40) >> 5;
1039         switch (offset & 0x1f) {
1040         case 0x00: /* SSMUX */
1041             return s->ssmux[n];
1042         case 0x04: /* SSCTL */
1043             return s->ssctl[n];
1044         case 0x08: /* SSFIFO */
1045             return stellaris_adc_fifo_read(s, n);
1046         case 0x0c: /* SSFSTAT */
1047             return s->fifo[n].state;
1048         default:
1049             break;
1050         }
1051     }
1052     switch (offset) {
1053     case 0x00: /* ACTSS */
1054         return s->actss;
1055     case 0x04: /* RIS */
1056         return s->ris;
1057     case 0x08: /* IM */
1058         return s->im;
1059     case 0x0c: /* ISC */
1060         return s->ris & s->im;
1061     case 0x10: /* OSTAT */
1062         return s->ostat;
1063     case 0x14: /* EMUX */
1064         return s->emux;
1065     case 0x18: /* USTAT */
1066         return s->ustat;
1067     case 0x20: /* SSPRI */
1068         return s->sspri;
1069     case 0x30: /* SAC */
1070         return s->sac;
1071     default:
1072         qemu_log_mask(LOG_GUEST_ERROR,
1073                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1074         return 0;
1075     }
1076 }
1077 
1078 static void stellaris_adc_write(void *opaque, hwaddr offset,
1079                                 uint64_t value, unsigned size)
1080 {
1081     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1082 
1083     /* TODO: Implement this.  */
1084     if (offset >= 0x40 && offset < 0xc0) {
1085         int n;
1086         n = (offset - 0x40) >> 5;
1087         switch (offset & 0x1f) {
1088         case 0x00: /* SSMUX */
1089             s->ssmux[n] = value & 0x33333333;
1090             return;
1091         case 0x04: /* SSCTL */
1092             if (value != 6) {
1093                 qemu_log_mask(LOG_UNIMP,
1094                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1095                               value);
1096             }
1097             s->ssctl[n] = value;
1098             return;
1099         default:
1100             break;
1101         }
1102     }
1103     switch (offset) {
1104     case 0x00: /* ACTSS */
1105         s->actss = value & 0xf;
1106         break;
1107     case 0x08: /* IM */
1108         s->im = value;
1109         break;
1110     case 0x0c: /* ISC */
1111         s->ris &= ~value;
1112         break;
1113     case 0x10: /* OSTAT */
1114         s->ostat &= ~value;
1115         break;
1116     case 0x14: /* EMUX */
1117         s->emux = value;
1118         break;
1119     case 0x18: /* USTAT */
1120         s->ustat &= ~value;
1121         break;
1122     case 0x20: /* SSPRI */
1123         s->sspri = value;
1124         break;
1125     case 0x28: /* PSSI */
1126         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented");
1127         break;
1128     case 0x30: /* SAC */
1129         s->sac = value;
1130         break;
1131     default:
1132         qemu_log_mask(LOG_GUEST_ERROR,
1133                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1134     }
1135     stellaris_adc_update(s);
1136 }
1137 
1138 static const MemoryRegionOps stellaris_adc_ops = {
1139     .read = stellaris_adc_read,
1140     .write = stellaris_adc_write,
1141     .endianness = DEVICE_NATIVE_ENDIAN,
1142 };
1143 
1144 static const VMStateDescription vmstate_stellaris_adc = {
1145     .name = "stellaris_adc",
1146     .version_id = 1,
1147     .minimum_version_id = 1,
1148     .fields = (VMStateField[]) {
1149         VMSTATE_UINT32(actss, stellaris_adc_state),
1150         VMSTATE_UINT32(ris, stellaris_adc_state),
1151         VMSTATE_UINT32(im, stellaris_adc_state),
1152         VMSTATE_UINT32(emux, stellaris_adc_state),
1153         VMSTATE_UINT32(ostat, stellaris_adc_state),
1154         VMSTATE_UINT32(ustat, stellaris_adc_state),
1155         VMSTATE_UINT32(sspri, stellaris_adc_state),
1156         VMSTATE_UINT32(sac, stellaris_adc_state),
1157         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1158         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1159         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1160         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1161         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1162         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1163         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1164         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1165         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1166         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1167         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1168         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1169         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1170         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1171         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1172         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1173         VMSTATE_UINT32(noise, stellaris_adc_state),
1174         VMSTATE_END_OF_LIST()
1175     }
1176 };
1177 
1178 static void stellaris_adc_init(Object *obj)
1179 {
1180     DeviceState *dev = DEVICE(obj);
1181     stellaris_adc_state *s = STELLARIS_ADC(obj);
1182     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1183     int n;
1184 
1185     for (n = 0; n < 4; n++) {
1186         sysbus_init_irq(sbd, &s->irq[n]);
1187     }
1188 
1189     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1190                           "adc", 0x1000);
1191     sysbus_init_mmio(sbd, &s->iomem);
1192     stellaris_adc_reset(s);
1193     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1194 }
1195 
1196 static
1197 void do_sys_reset(void *opaque, int n, int level)
1198 {
1199     if (level) {
1200         qemu_system_reset_request();
1201     }
1202 }
1203 
1204 /* Board init.  */
1205 static stellaris_board_info stellaris_boards[] = {
1206   { "LM3S811EVB",
1207     0,
1208     0x0032000e,
1209     0x001f001f, /* dc0 */
1210     0x001132bf,
1211     0x01071013,
1212     0x3f0f01ff,
1213     0x0000001f,
1214     BP_OLED_I2C
1215   },
1216   { "LM3S6965EVB",
1217     0x10010002,
1218     0x1073402e,
1219     0x00ff007f, /* dc0 */
1220     0x001133ff,
1221     0x030f5317,
1222     0x0f0f87ff,
1223     0x5000007f,
1224     BP_OLED_SSI | BP_GAMEPAD
1225   }
1226 };
1227 
1228 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1229                            stellaris_board_info *board)
1230 {
1231     static const int uart_irq[] = {5, 6, 33, 34};
1232     static const int timer_irq[] = {19, 21, 23, 35};
1233     static const uint32_t gpio_addr[7] =
1234       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1235         0x40024000, 0x40025000, 0x40026000};
1236     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1237 
1238     /* Memory map of SoC devices, from
1239      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1240      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1241      *
1242      * 40000000 wdtimer (unimplemented)
1243      * 40002000 i2c (unimplemented)
1244      * 40004000 GPIO
1245      * 40005000 GPIO
1246      * 40006000 GPIO
1247      * 40007000 GPIO
1248      * 40008000 SSI
1249      * 4000c000 UART
1250      * 4000d000 UART
1251      * 4000e000 UART
1252      * 40020000 i2c
1253      * 40021000 i2c (unimplemented)
1254      * 40024000 GPIO
1255      * 40025000 GPIO
1256      * 40026000 GPIO
1257      * 40028000 PWM (unimplemented)
1258      * 4002c000 QEI (unimplemented)
1259      * 4002d000 QEI (unimplemented)
1260      * 40030000 gptimer
1261      * 40031000 gptimer
1262      * 40032000 gptimer
1263      * 40033000 gptimer
1264      * 40038000 ADC
1265      * 4003c000 analogue comparator (unimplemented)
1266      * 40048000 ethernet
1267      * 400fc000 hibernation module (unimplemented)
1268      * 400fd000 flash memory control (unimplemented)
1269      * 400fe000 system control
1270      */
1271 
1272     DeviceState *gpio_dev[7], *nvic;
1273     qemu_irq gpio_in[7][8];
1274     qemu_irq gpio_out[7][8];
1275     qemu_irq adc;
1276     int sram_size;
1277     int flash_size;
1278     I2CBus *i2c;
1279     DeviceState *dev;
1280     int i;
1281     int j;
1282 
1283     MemoryRegion *sram = g_new(MemoryRegion, 1);
1284     MemoryRegion *flash = g_new(MemoryRegion, 1);
1285     MemoryRegion *system_memory = get_system_memory();
1286 
1287     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1288     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1289 
1290     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1291     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1292                            &error_fatal);
1293     vmstate_register_ram_global(flash);
1294     memory_region_set_readonly(flash, true);
1295     memory_region_add_subregion(system_memory, 0, flash);
1296 
1297     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1298                            &error_fatal);
1299     vmstate_register_ram_global(sram);
1300     memory_region_add_subregion(system_memory, 0x20000000, sram);
1301 
1302     nvic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES,
1303                       kernel_filename, cpu_model);
1304 
1305     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1306                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1307 
1308     if (board->dc1 & (1 << 16)) {
1309         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1310                                     qdev_get_gpio_in(nvic, 14),
1311                                     qdev_get_gpio_in(nvic, 15),
1312                                     qdev_get_gpio_in(nvic, 16),
1313                                     qdev_get_gpio_in(nvic, 17),
1314                                     NULL);
1315         adc = qdev_get_gpio_in(dev, 0);
1316     } else {
1317         adc = NULL;
1318     }
1319     for (i = 0; i < 4; i++) {
1320         if (board->dc2 & (0x10000 << i)) {
1321             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1322                                        0x40030000 + i * 0x1000,
1323                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1324             /* TODO: This is incorrect, but we get away with it because
1325                the ADC output is only ever pulsed.  */
1326             qdev_connect_gpio_out(dev, 0, adc);
1327         }
1328     }
1329 
1330     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1331                        board, nd_table[0].macaddr.a);
1332 
1333     for (i = 0; i < 7; i++) {
1334         if (board->dc4 & (1 << i)) {
1335             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1336                                                qdev_get_gpio_in(nvic,
1337                                                                 gpio_irq[i]));
1338             for (j = 0; j < 8; j++) {
1339                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1340                 gpio_out[i][j] = NULL;
1341             }
1342         }
1343     }
1344 
1345     if (board->dc2 & (1 << 12)) {
1346         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1347                                    qdev_get_gpio_in(nvic, 8));
1348         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1349         if (board->peripherals & BP_OLED_I2C) {
1350             i2c_create_slave(i2c, "ssd0303", 0x3d);
1351         }
1352     }
1353 
1354     for (i = 0; i < 4; i++) {
1355         if (board->dc2 & (1 << i)) {
1356             pl011_luminary_create(0x4000c000 + i * 0x1000,
1357                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1358                                   serial_hds[i]);
1359         }
1360     }
1361     if (board->dc2 & (1 << 4)) {
1362         dev = sysbus_create_simple("pl022", 0x40008000,
1363                                    qdev_get_gpio_in(nvic, 7));
1364         if (board->peripherals & BP_OLED_SSI) {
1365             void *bus;
1366             DeviceState *sddev;
1367             DeviceState *ssddev;
1368 
1369             /* Some boards have both an OLED controller and SD card connected to
1370              * the same SSI port, with the SD card chip select connected to a
1371              * GPIO pin.  Technically the OLED chip select is connected to the
1372              * SSI Fss pin.  We do not bother emulating that as both devices
1373              * should never be selected simultaneously, and our OLED controller
1374              * ignores stray 0xff commands that occur when deselecting the SD
1375              * card.
1376              */
1377             bus = qdev_get_child_bus(dev, "ssi");
1378 
1379             sddev = ssi_create_slave(bus, "ssi-sd");
1380             ssddev = ssi_create_slave(bus, "ssd0323");
1381             gpio_out[GPIO_D][0] = qemu_irq_split(
1382                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1383                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1384             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1385 
1386             /* Make sure the select pin is high.  */
1387             qemu_irq_raise(gpio_out[GPIO_D][0]);
1388         }
1389     }
1390     if (board->dc4 & (1 << 28)) {
1391         DeviceState *enet;
1392 
1393         qemu_check_nic_model(&nd_table[0], "stellaris");
1394 
1395         enet = qdev_create(NULL, "stellaris_enet");
1396         qdev_set_nic_properties(enet, &nd_table[0]);
1397         qdev_init_nofail(enet);
1398         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1399         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1400     }
1401     if (board->peripherals & BP_GAMEPAD) {
1402         qemu_irq gpad_irq[5];
1403         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1404 
1405         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1406         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1407         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1408         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1409         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1410 
1411         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1412     }
1413     for (i = 0; i < 7; i++) {
1414         if (board->dc4 & (1 << i)) {
1415             for (j = 0; j < 8; j++) {
1416                 if (gpio_out[i][j]) {
1417                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1418                 }
1419             }
1420         }
1421     }
1422 
1423     /* Add dummy regions for the devices we don't implement yet,
1424      * so guest accesses don't cause unlogged crashes.
1425      */
1426     create_unimplemented_device("wdtimer", 0x40000000, 0x1000);
1427     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1428     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1429     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1430     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1431     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1432     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1433     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1434     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1435 }
1436 
1437 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1438 static void lm3s811evb_init(MachineState *machine)
1439 {
1440     const char *cpu_model = machine->cpu_model;
1441     const char *kernel_filename = machine->kernel_filename;
1442     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1443 }
1444 
1445 static void lm3s6965evb_init(MachineState *machine)
1446 {
1447     const char *cpu_model = machine->cpu_model;
1448     const char *kernel_filename = machine->kernel_filename;
1449     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1450 }
1451 
1452 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1453 {
1454     MachineClass *mc = MACHINE_CLASS(oc);
1455 
1456     mc->desc = "Stellaris LM3S811EVB";
1457     mc->init = lm3s811evb_init;
1458 }
1459 
1460 static const TypeInfo lm3s811evb_type = {
1461     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1462     .parent = TYPE_MACHINE,
1463     .class_init = lm3s811evb_class_init,
1464 };
1465 
1466 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1467 {
1468     MachineClass *mc = MACHINE_CLASS(oc);
1469 
1470     mc->desc = "Stellaris LM3S6965EVB";
1471     mc->init = lm3s6965evb_init;
1472 }
1473 
1474 static const TypeInfo lm3s6965evb_type = {
1475     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1476     .parent = TYPE_MACHINE,
1477     .class_init = lm3s6965evb_class_init,
1478 };
1479 
1480 static void stellaris_machine_init(void)
1481 {
1482     type_register_static(&lm3s811evb_type);
1483     type_register_static(&lm3s6965evb_type);
1484 }
1485 
1486 type_init(stellaris_machine_init)
1487 
1488 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1489 {
1490     DeviceClass *dc = DEVICE_CLASS(klass);
1491 
1492     dc->vmsd = &vmstate_stellaris_i2c;
1493 }
1494 
1495 static const TypeInfo stellaris_i2c_info = {
1496     .name          = TYPE_STELLARIS_I2C,
1497     .parent        = TYPE_SYS_BUS_DEVICE,
1498     .instance_size = sizeof(stellaris_i2c_state),
1499     .instance_init = stellaris_i2c_init,
1500     .class_init    = stellaris_i2c_class_init,
1501 };
1502 
1503 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1504 {
1505     DeviceClass *dc = DEVICE_CLASS(klass);
1506 
1507     dc->vmsd = &vmstate_stellaris_gptm;
1508 }
1509 
1510 static const TypeInfo stellaris_gptm_info = {
1511     .name          = TYPE_STELLARIS_GPTM,
1512     .parent        = TYPE_SYS_BUS_DEVICE,
1513     .instance_size = sizeof(gptm_state),
1514     .instance_init = stellaris_gptm_init,
1515     .class_init    = stellaris_gptm_class_init,
1516 };
1517 
1518 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1519 {
1520     DeviceClass *dc = DEVICE_CLASS(klass);
1521 
1522     dc->vmsd = &vmstate_stellaris_adc;
1523 }
1524 
1525 static const TypeInfo stellaris_adc_info = {
1526     .name          = TYPE_STELLARIS_ADC,
1527     .parent        = TYPE_SYS_BUS_DEVICE,
1528     .instance_size = sizeof(stellaris_adc_state),
1529     .instance_init = stellaris_adc_init,
1530     .class_init    = stellaris_adc_class_init,
1531 };
1532 
1533 static void stellaris_register_types(void)
1534 {
1535     type_register_static(&stellaris_i2c_info);
1536     type_register_static(&stellaris_gptm_info);
1537     type_register_static(&stellaris_adc_info);
1538 }
1539 
1540 type_init(stellaris_register_types)
1541