xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision f7230e09b1ccfb7055b79dfee981e18d444a118a)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/ide-bus.h"
40 #include "hw/ide/ahci-sysbus.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 #include "target/arm/cpu-qom.h"
54 #include "target/arm/gtimer.h"
55 
56 #define RAMLIMIT_GB 8192
57 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
58 
59 #define NUM_IRQS        256
60 #define NUM_SMMU_IRQS   4
61 #define NUM_SATA_PORTS  6
62 
63 /*
64  * Generic timer frequency in Hz (which drives both the CPU generic timers
65  * and the SBSA watchdog-timer). Older (<2.11) versions of the TF-A firmware
66  * assumed 62.5MHz here.
67  *
68  * Starting with Armv8.6 CPU 1GHz timer frequency is mandated.
69  */
70 #define SBSA_GTIMER_HZ 1000000000
71 
72 enum {
73     SBSA_FLASH,
74     SBSA_MEM,
75     SBSA_CPUPERIPHS,
76     SBSA_GIC_DIST,
77     SBSA_GIC_REDIST,
78     SBSA_GIC_ITS,
79     SBSA_SECURE_EC,
80     SBSA_GWDT_WS0,
81     SBSA_GWDT_REFRESH,
82     SBSA_GWDT_CONTROL,
83     SBSA_SMMU,
84     SBSA_UART,
85     SBSA_RTC,
86     SBSA_PCIE,
87     SBSA_PCIE_MMIO,
88     SBSA_PCIE_MMIO_HIGH,
89     SBSA_PCIE_PIO,
90     SBSA_PCIE_ECAM,
91     SBSA_GPIO,
92     SBSA_SECURE_UART,
93     SBSA_SECURE_UART_MM,
94     SBSA_SECURE_MEM,
95     SBSA_AHCI,
96     SBSA_XHCI,
97 };
98 
99 struct SBSAMachineState {
100     MachineState parent;
101     struct arm_boot_info bootinfo;
102     int smp_cpus;
103     void *fdt;
104     int fdt_size;
105     int psci_conduit;
106     DeviceState *gic;
107     PFlashCFI01 *flash[2];
108 };
109 
110 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
111 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
112 
113 static const MemMapEntry sbsa_ref_memmap[] = {
114     /* 512M boot ROM */
115     [SBSA_FLASH] =              {          0, 0x20000000 },
116     /* 512M secure memory */
117     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
118     /* Space reserved for CPU peripheral devices */
119     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
120     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
121     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
122     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
123     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
124     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
125     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
126     [SBSA_UART] =               { 0x60000000, 0x00001000 },
127     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
128     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
129     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
130     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
131     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
132     /* Space here reserved for more SMMUs */
133     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
134     [SBSA_XHCI] =               { 0x60110000, 0x00010000 },
135     /* Space here reserved for other devices */
136     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
137     /* 32-bit address PCIE MMIO space */
138     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
139     /* 256M PCIE ECAM space */
140     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
141     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
142     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
143     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
144 };
145 
146 static const int sbsa_ref_irqmap[] = {
147     [SBSA_UART] = 1,
148     [SBSA_RTC] = 2,
149     [SBSA_PCIE] = 3, /* ... to 6 */
150     [SBSA_GPIO] = 7,
151     [SBSA_SECURE_UART] = 8,
152     [SBSA_SECURE_UART_MM] = 9,
153     [SBSA_AHCI] = 10,
154     [SBSA_XHCI] = 11,
155     [SBSA_SMMU] = 12, /* ... to 15 */
156     [SBSA_GWDT_WS0] = 16,
157 };
158 
159 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
160 {
161     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
162     return arm_build_mp_affinity(idx, clustersz);
163 }
164 
165 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
166 {
167     const char *intc_nodename = "/intc";
168     const char *its_nodename = "/intc/its";
169 
170     qemu_fdt_add_subnode(sms->fdt, intc_nodename);
171     qemu_fdt_setprop_sized_cells(sms->fdt, intc_nodename, "reg",
172                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
173                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
174                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
175                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
176 
177     qemu_fdt_add_subnode(sms->fdt, its_nodename);
178     qemu_fdt_setprop_sized_cells(sms->fdt, its_nodename, "reg",
179                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
180                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
181 }
182 
183 /*
184  * Firmware on this machine only uses ACPI table to load OS, these limited
185  * device tree nodes are just to let firmware know the info which varies from
186  * command line parameters, so it is not necessary to be fully compatible
187  * with the kernel CPU and NUMA binding rules.
188  */
189 static void create_fdt(SBSAMachineState *sms)
190 {
191     void *fdt = create_device_tree(&sms->fdt_size);
192     const MachineState *ms = MACHINE(sms);
193     int nb_numa_nodes = ms->numa_state->num_nodes;
194     int cpu;
195 
196     if (!fdt) {
197         error_report("create_device_tree() failed");
198         exit(1);
199     }
200 
201     sms->fdt = fdt;
202 
203     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
204     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
205     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
206 
207     /*
208      * This versioning scheme is for informing platform fw only. It is neither:
209      * - A QEMU versioned machine type; a given version of QEMU will emulate
210      *   a given version of the platform.
211      * - A reflection of level of SBSA (now SystemReady SR) support provided.
212      *
213      * machine-version-major: updated when changes breaking fw compatibility
214      *                        are introduced.
215      * machine-version-minor: updated when features are added that don't break
216      *                        fw compatibility.
217      */
218     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
219     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 4);
220 
221     if (ms->numa_state->have_numa_distance) {
222         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
223         uint32_t *matrix = g_malloc0(size);
224         int idx, i, j;
225 
226         for (i = 0; i < nb_numa_nodes; i++) {
227             for (j = 0; j < nb_numa_nodes; j++) {
228                 idx = (i * nb_numa_nodes + j) * 3;
229                 matrix[idx + 0] = cpu_to_be32(i);
230                 matrix[idx + 1] = cpu_to_be32(j);
231                 matrix[idx + 2] =
232                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
233             }
234         }
235 
236         qemu_fdt_add_subnode(fdt, "/distance-map");
237         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
238                          matrix, size);
239         g_free(matrix);
240     }
241 
242     /*
243      * From Documentation/devicetree/bindings/arm/cpus.yaml
244      *  On ARM v8 64-bit systems this property is required
245      *    and matches the MPIDR_EL1 register affinity bits.
246      *
247      *    * If cpus node's #address-cells property is set to 2
248      *
249      *      The first reg cell bits [7:0] must be set to
250      *      bits [39:32] of MPIDR_EL1.
251      *
252      *      The second reg cell bits [23:0] must be set to
253      *      bits [23:0] of MPIDR_EL1.
254      */
255     qemu_fdt_add_subnode(sms->fdt, "/cpus");
256     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
257     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
258 
259     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
260         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
261         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
262         CPUState *cs = CPU(armcpu);
263         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
264 
265         qemu_fdt_add_subnode(sms->fdt, nodename);
266         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
267 
268         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
269             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
270                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
271         }
272 
273         g_free(nodename);
274     }
275 
276     /* Add CPU topology description through fdt node topology. */
277     qemu_fdt_add_subnode(sms->fdt, "/cpus/topology");
278 
279     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "sockets", ms->smp.sockets);
280     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "clusters", ms->smp.clusters);
281     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "cores", ms->smp.cores);
282     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "threads", ms->smp.threads);
283 
284     sbsa_fdt_add_gic_node(sms);
285 }
286 
287 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
288 
289 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
290                                         const char *name,
291                                         const char *alias_prop_name)
292 {
293     /*
294      * Create a single flash device.  We use the same parameters as
295      * the flash devices on the Versatile Express board.
296      */
297     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
298 
299     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
300     qdev_prop_set_uint8(dev, "width", 4);
301     qdev_prop_set_uint8(dev, "device-width", 2);
302     qdev_prop_set_bit(dev, "big-endian", false);
303     qdev_prop_set_uint16(dev, "id0", 0x89);
304     qdev_prop_set_uint16(dev, "id1", 0x18);
305     qdev_prop_set_uint16(dev, "id2", 0x00);
306     qdev_prop_set_uint16(dev, "id3", 0x00);
307     qdev_prop_set_string(dev, "name", name);
308     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
309     object_property_add_alias(OBJECT(sms), alias_prop_name,
310                               OBJECT(dev), "drive");
311     return PFLASH_CFI01(dev);
312 }
313 
314 static void sbsa_flash_create(SBSAMachineState *sms)
315 {
316     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
317     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
318 }
319 
320 static void sbsa_flash_map1(PFlashCFI01 *flash,
321                             hwaddr base, hwaddr size,
322                             MemoryRegion *sysmem)
323 {
324     DeviceState *dev = DEVICE(flash);
325 
326     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
327     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
328     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
329     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
330 
331     memory_region_add_subregion(sysmem, base,
332                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
333                                                        0));
334 }
335 
336 static void sbsa_flash_map(SBSAMachineState *sms,
337                            MemoryRegion *sysmem,
338                            MemoryRegion *secure_sysmem)
339 {
340     /*
341      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
342      * sysmem is the system memory space. secure_sysmem is the secure view
343      * of the system, and the first flash device should be made visible only
344      * there. The second flash device is visible to both secure and nonsecure.
345      */
346     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
347     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
348 
349     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
350                     secure_sysmem);
351     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
352                     sysmem);
353 }
354 
355 static bool sbsa_firmware_init(SBSAMachineState *sms,
356                                MemoryRegion *sysmem,
357                                MemoryRegion *secure_sysmem)
358 {
359     const char *bios_name;
360     int i;
361     BlockBackend *pflash_blk0;
362 
363     /* Map legacy -drive if=pflash to machine properties */
364     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
365         pflash_cfi01_legacy_drive(sms->flash[i],
366                                   drive_get(IF_PFLASH, 0, i));
367     }
368 
369     sbsa_flash_map(sms, sysmem, secure_sysmem);
370 
371     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
372 
373     bios_name = MACHINE(sms)->firmware;
374     if (bios_name) {
375         char *fname;
376         MemoryRegion *mr;
377         int image_size;
378 
379         if (pflash_blk0) {
380             error_report("The contents of the first flash device may be "
381                          "specified with -bios or with -drive if=pflash... "
382                          "but you cannot use both options at once");
383             exit(1);
384         }
385 
386         /* Fall back to -bios */
387 
388         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
389         if (!fname) {
390             error_report("Could not find ROM image '%s'", bios_name);
391             exit(1);
392         }
393         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
394         image_size = load_image_mr(fname, mr);
395         g_free(fname);
396         if (image_size < 0) {
397             error_report("Could not load ROM image '%s'", bios_name);
398             exit(1);
399         }
400     }
401 
402     return pflash_blk0 || bios_name;
403 }
404 
405 static void create_secure_ram(SBSAMachineState *sms,
406                               MemoryRegion *secure_sysmem)
407 {
408     MemoryRegion *secram = g_new(MemoryRegion, 1);
409     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
410     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
411 
412     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
413                            &error_fatal);
414     memory_region_add_subregion(secure_sysmem, base, secram);
415 }
416 
417 static void create_its(SBSAMachineState *sms)
418 {
419     const char *itsclass = its_class_name();
420     DeviceState *dev;
421 
422     dev = qdev_new(itsclass);
423 
424     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
425                              &error_abort);
426     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
427     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
428 }
429 
430 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
431 {
432     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
433     SysBusDevice *gicbusdev;
434     const char *gictype;
435     uint32_t redist0_capacity, redist0_count;
436     QList *redist_region_count;
437     int i;
438 
439     gictype = gicv3_class_name();
440 
441     sms->gic = qdev_new(gictype);
442     qdev_prop_set_uint32(sms->gic, "revision", 3);
443     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
444     /*
445      * Note that the num-irq property counts both internal and external
446      * interrupts; there are always 32 of the former (mandated by GIC spec).
447      */
448     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
449     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
450 
451     redist0_capacity =
452                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
453     redist0_count = MIN(smp_cpus, redist0_capacity);
454 
455     redist_region_count = qlist_new();
456     qlist_append_int(redist_region_count, redist0_count);
457     qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
458 
459     object_property_set_link(OBJECT(sms->gic), "sysmem",
460                              OBJECT(mem), &error_fatal);
461     qdev_prop_set_bit(sms->gic, "has-lpi", true);
462 
463     gicbusdev = SYS_BUS_DEVICE(sms->gic);
464     sysbus_realize_and_unref(gicbusdev, &error_fatal);
465     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
466     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
467 
468     /*
469      * Wire the outputs from each CPU's generic timer and the GICv3
470      * maintenance interrupt signal to the appropriate GIC PPI inputs,
471      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
472      */
473     for (i = 0; i < smp_cpus; i++) {
474         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
475         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
476         int irq;
477         /*
478          * Mapping from the output timer irq lines from the CPU to the
479          * GIC PPI inputs used for this board.
480          */
481         const int timer_irq[] = {
482             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
483             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
484             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
485             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
486             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
487         };
488 
489         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
490             qdev_connect_gpio_out(cpudev, irq,
491                                   qdev_get_gpio_in(sms->gic,
492                                                    intidbase + timer_irq[irq]));
493         }
494 
495         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
496                                     qdev_get_gpio_in(sms->gic,
497                                                      intidbase
498                                                      + ARCH_GIC_MAINT_IRQ));
499 
500         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
501                                     qdev_get_gpio_in(sms->gic,
502                                                      intidbase
503                                                      + VIRTUAL_PMU_IRQ));
504 
505         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
506         sysbus_connect_irq(gicbusdev, i + smp_cpus,
507                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
508         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
509                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
510         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
511                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
512     }
513     create_its(sms);
514 }
515 
516 static void create_uart(const SBSAMachineState *sms, int uart,
517                         MemoryRegion *mem, Chardev *chr)
518 {
519     hwaddr base = sbsa_ref_memmap[uart].base;
520     int irq = sbsa_ref_irqmap[uart];
521     DeviceState *dev = qdev_new(TYPE_PL011);
522     SysBusDevice *s = SYS_BUS_DEVICE(dev);
523 
524     qdev_prop_set_chr(dev, "chardev", chr);
525     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
526     memory_region_add_subregion(mem, base,
527                                 sysbus_mmio_get_region(s, 0));
528     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
529 }
530 
531 static void create_rtc(const SBSAMachineState *sms)
532 {
533     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
534     int irq = sbsa_ref_irqmap[SBSA_RTC];
535 
536     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
537 }
538 
539 static void create_wdt(const SBSAMachineState *sms)
540 {
541     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
542     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
543     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
544     SysBusDevice *s = SYS_BUS_DEVICE(dev);
545     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
546 
547     qdev_prop_set_uint64(dev, "clock-frequency", SBSA_GTIMER_HZ);
548     sysbus_realize_and_unref(s, &error_fatal);
549     sysbus_mmio_map(s, 0, rbase);
550     sysbus_mmio_map(s, 1, cbase);
551     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
552 }
553 
554 static DeviceState *gpio_key_dev;
555 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
556 {
557     /* use gpio Pin 3 for power button event */
558     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
559 }
560 
561 static Notifier sbsa_ref_powerdown_notifier = {
562     .notify = sbsa_ref_powerdown_req
563 };
564 
565 static void create_gpio(const SBSAMachineState *sms)
566 {
567     DeviceState *pl061_dev;
568     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
569     int irq = sbsa_ref_irqmap[SBSA_GPIO];
570 
571     pl061_dev = sysbus_create_simple("pl061", base,
572                                      qdev_get_gpio_in(sms->gic, irq));
573 
574     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
575                                         qdev_get_gpio_in(pl061_dev, 3));
576 
577     /* connect powerdown request */
578     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
579 }
580 
581 static void create_ahci(const SBSAMachineState *sms)
582 {
583     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
584     int irq = sbsa_ref_irqmap[SBSA_AHCI];
585     DeviceState *dev;
586     DriveInfo *hd[NUM_SATA_PORTS];
587     SysbusAHCIState *sysahci;
588 
589     dev = qdev_new("sysbus-ahci");
590     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
591     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
592     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
593     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
594 
595     sysahci = SYSBUS_AHCI(dev);
596     ide_drive_get(hd, ARRAY_SIZE(hd));
597     ahci_ide_create_devs(&sysahci->ahci, hd);
598 }
599 
600 static void create_xhci(const SBSAMachineState *sms)
601 {
602     hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
603     int irq = sbsa_ref_irqmap[SBSA_XHCI];
604     DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
605     qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
606 
607     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
608     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
609     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
610 }
611 
612 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
613 {
614     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
615     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
616     DeviceState *dev;
617     int i;
618 
619     dev = qdev_new(TYPE_ARM_SMMUV3);
620 
621     object_property_set_str(OBJECT(dev), "stage", "nested", &error_abort);
622     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
623                              &error_abort);
624     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
625     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
626     for (i = 0; i < NUM_SMMU_IRQS; i++) {
627         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
628                            qdev_get_gpio_in(sms->gic, irq + i));
629     }
630 }
631 
632 static void create_pcie(SBSAMachineState *sms)
633 {
634     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
635     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
636     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
637     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
638     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
639     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
640     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
641     int irq = sbsa_ref_irqmap[SBSA_PCIE];
642     MachineClass *mc = MACHINE_GET_CLASS(sms);
643     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
644     MemoryRegion *ecam_alias, *ecam_reg;
645     DeviceState *dev;
646     PCIHostState *pci;
647     int i;
648 
649     dev = qdev_new(TYPE_GPEX_HOST);
650     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
651 
652     /* Map ECAM space */
653     ecam_alias = g_new0(MemoryRegion, 1);
654     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
655     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
656                              ecam_reg, 0, size_ecam);
657     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
658 
659     /* Map the MMIO space */
660     mmio_alias = g_new0(MemoryRegion, 1);
661     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
662     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
663                              mmio_reg, base_mmio, size_mmio);
664     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
665 
666     /* Map the MMIO_HIGH space */
667     mmio_alias_high = g_new0(MemoryRegion, 1);
668     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
669                              mmio_reg, base_mmio_high, size_mmio_high);
670     memory_region_add_subregion(get_system_memory(), base_mmio_high,
671                                 mmio_alias_high);
672 
673     /* Map IO port space */
674     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
675 
676     for (i = 0; i < GPEX_NUM_IRQS; i++) {
677         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
678                            qdev_get_gpio_in(sms->gic, irq + i));
679         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
680     }
681 
682     pci = PCI_HOST_BRIDGE(dev);
683 
684     pci_init_nic_devices(pci->bus, mc->default_nic);
685 
686     pci_create_simple(pci->bus, -1, "bochs-display");
687 
688     create_smmu(sms, pci->bus);
689 }
690 
691 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
692 {
693     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
694                                                  bootinfo);
695 
696     *fdt_size = board->fdt_size;
697     return board->fdt;
698 }
699 
700 static void create_secure_ec(MemoryRegion *mem)
701 {
702     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
703     DeviceState *dev = qdev_new("sbsa-ec");
704     SysBusDevice *s = SYS_BUS_DEVICE(dev);
705 
706     memory_region_add_subregion(mem, base,
707                                 sysbus_mmio_get_region(s, 0));
708 }
709 
710 static void sbsa_ref_init(MachineState *machine)
711 {
712     unsigned int smp_cpus = machine->smp.cpus;
713     unsigned int max_cpus = machine->smp.max_cpus;
714     SBSAMachineState *sms = SBSA_MACHINE(machine);
715     MachineClass *mc = MACHINE_GET_CLASS(machine);
716     MemoryRegion *sysmem = get_system_memory();
717     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
718     bool firmware_loaded;
719     const CPUArchIdList *possible_cpus;
720     int n, sbsa_max_cpus;
721 
722     if (kvm_enabled()) {
723         error_report("sbsa-ref: KVM is not supported for this machine");
724         exit(1);
725     }
726 
727     /*
728      * The Secure view of the world is the same as the NonSecure,
729      * but with a few extra devices. Create it as a container region
730      * containing the system memory at low priority; any secure-only
731      * devices go in at higher priority and take precedence.
732      */
733     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
734                        UINT64_MAX);
735     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
736 
737     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
738 
739     /*
740      * This machine has EL3 enabled, external firmware should supply PSCI
741      * implementation, so the QEMU's internal PSCI is disabled.
742      */
743     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
744 
745     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
746 
747     if (max_cpus > sbsa_max_cpus) {
748         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
749                      "supported by machine 'sbsa-ref' (%d)",
750                      max_cpus, sbsa_max_cpus);
751         exit(1);
752     }
753 
754     sms->smp_cpus = smp_cpus;
755 
756     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
757         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
758         exit(1);
759     }
760 
761     possible_cpus = mc->possible_cpu_arch_ids(machine);
762     for (n = 0; n < possible_cpus->len; n++) {
763         Object *cpuobj;
764         CPUState *cs;
765 
766         if (n >= smp_cpus) {
767             break;
768         }
769 
770         cpuobj = object_new(possible_cpus->cpus[n].type);
771         object_property_set_int(cpuobj, "mp-affinity",
772                                 possible_cpus->cpus[n].arch_id, NULL);
773 
774         cs = CPU(cpuobj);
775         cs->cpu_index = n;
776 
777         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
778                           &error_fatal);
779 
780         if (object_property_find(cpuobj, "reset-cbar")) {
781             object_property_set_int(cpuobj, "reset-cbar",
782                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
783                                     &error_abort);
784         }
785 
786         object_property_set_int(cpuobj, "cntfrq", SBSA_GTIMER_HZ, &error_abort);
787 
788         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
789                                  &error_abort);
790 
791         object_property_set_link(cpuobj, "secure-memory",
792                                  OBJECT(secure_sysmem), &error_abort);
793 
794         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
795         object_unref(cpuobj);
796     }
797 
798     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
799                                 machine->ram);
800 
801     create_fdt(sms);
802 
803     create_secure_ram(sms, secure_sysmem);
804 
805     create_gic(sms, sysmem);
806 
807     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
808     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
809     /* Second secure UART for RAS and MM from EL0 */
810     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
811 
812     create_rtc(sms);
813 
814     create_wdt(sms);
815 
816     create_gpio(sms);
817 
818     create_ahci(sms);
819 
820     create_xhci(sms);
821 
822     create_pcie(sms);
823 
824     create_secure_ec(secure_sysmem);
825 
826     sms->bootinfo.ram_size = machine->ram_size;
827     sms->bootinfo.board_id = -1;
828     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
829     sms->bootinfo.get_dtb = sbsa_ref_dtb;
830     sms->bootinfo.firmware_loaded = firmware_loaded;
831     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
832 }
833 
834 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
835 {
836     unsigned int max_cpus = ms->smp.max_cpus;
837     SBSAMachineState *sms = SBSA_MACHINE(ms);
838     int n;
839 
840     if (ms->possible_cpus) {
841         assert(ms->possible_cpus->len == max_cpus);
842         return ms->possible_cpus;
843     }
844 
845     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
846                                   sizeof(CPUArchId) * max_cpus);
847     ms->possible_cpus->len = max_cpus;
848     for (n = 0; n < ms->possible_cpus->len; n++) {
849         ms->possible_cpus->cpus[n].type = ms->cpu_type;
850         ms->possible_cpus->cpus[n].arch_id =
851             sbsa_ref_cpu_mp_affinity(sms, n);
852         ms->possible_cpus->cpus[n].props.has_thread_id = true;
853         ms->possible_cpus->cpus[n].props.thread_id = n;
854     }
855     return ms->possible_cpus;
856 }
857 
858 static CpuInstanceProperties
859 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
860 {
861     MachineClass *mc = MACHINE_GET_CLASS(ms);
862     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
863 
864     assert(cpu_index < possible_cpus->len);
865     return possible_cpus->cpus[cpu_index].props;
866 }
867 
868 static int64_t
869 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
870 {
871     return idx % ms->numa_state->num_nodes;
872 }
873 
874 static void sbsa_ref_instance_init(Object *obj)
875 {
876     SBSAMachineState *sms = SBSA_MACHINE(obj);
877 
878     sbsa_flash_create(sms);
879 }
880 
881 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
882 {
883     MachineClass *mc = MACHINE_CLASS(oc);
884     static const char * const valid_cpu_types[] = {
885         ARM_CPU_TYPE_NAME("cortex-a57"),
886         ARM_CPU_TYPE_NAME("cortex-a72"),
887         ARM_CPU_TYPE_NAME("neoverse-n1"),
888         ARM_CPU_TYPE_NAME("neoverse-v1"),
889         ARM_CPU_TYPE_NAME("neoverse-n2"),
890         ARM_CPU_TYPE_NAME("max"),
891         NULL,
892     };
893 
894     mc->init = sbsa_ref_init;
895     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
896     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n2");
897     mc->valid_cpu_types = valid_cpu_types;
898     mc->max_cpus = 512;
899     mc->pci_allow_0_address = true;
900     mc->minimum_page_bits = 12;
901     mc->block_default_type = IF_IDE;
902     mc->no_cdrom = 1;
903     mc->default_nic = "e1000e";
904     mc->default_ram_size = 1 * GiB;
905     mc->default_ram_id = "sbsa-ref.ram";
906     mc->default_cpus = 4;
907     mc->smp_props.clusters_supported = true;
908     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
909     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
910     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
911     /* platform instead of architectural choice */
912     mc->cpu_cluster_has_numa_boundary = true;
913 }
914 
915 static const TypeInfo sbsa_ref_info = {
916     .name          = TYPE_SBSA_MACHINE,
917     .parent        = TYPE_MACHINE,
918     .instance_init = sbsa_ref_instance_init,
919     .class_init    = sbsa_ref_class_init,
920     .instance_size = sizeof(SBSAMachineState),
921 };
922 
923 static void sbsa_ref_machine_init(void)
924 {
925     type_register_static(&sbsa_ref_info);
926 }
927 
928 type_init(sbsa_ref_machine_init);
929