xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 34aee9c94691f529cd952f9483a6b357ca098042)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/internal.h"
40 #include "hw/ide/ahci_internal.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 
54 #define RAMLIMIT_GB 8192
55 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
56 
57 #define NUM_IRQS        256
58 #define NUM_SMMU_IRQS   4
59 #define NUM_SATA_PORTS  6
60 
61 enum {
62     SBSA_FLASH,
63     SBSA_MEM,
64     SBSA_CPUPERIPHS,
65     SBSA_GIC_DIST,
66     SBSA_GIC_REDIST,
67     SBSA_GIC_ITS,
68     SBSA_SECURE_EC,
69     SBSA_GWDT_WS0,
70     SBSA_GWDT_REFRESH,
71     SBSA_GWDT_CONTROL,
72     SBSA_SMMU,
73     SBSA_UART,
74     SBSA_RTC,
75     SBSA_PCIE,
76     SBSA_PCIE_MMIO,
77     SBSA_PCIE_MMIO_HIGH,
78     SBSA_PCIE_PIO,
79     SBSA_PCIE_ECAM,
80     SBSA_GPIO,
81     SBSA_SECURE_UART,
82     SBSA_SECURE_UART_MM,
83     SBSA_SECURE_MEM,
84     SBSA_AHCI,
85     SBSA_XHCI,
86 };
87 
88 struct SBSAMachineState {
89     MachineState parent;
90     struct arm_boot_info bootinfo;
91     int smp_cpus;
92     void *fdt;
93     int fdt_size;
94     int psci_conduit;
95     DeviceState *gic;
96     PFlashCFI01 *flash[2];
97 };
98 
99 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
100 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
101 
102 static const MemMapEntry sbsa_ref_memmap[] = {
103     /* 512M boot ROM */
104     [SBSA_FLASH] =              {          0, 0x20000000 },
105     /* 512M secure memory */
106     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
107     /* Space reserved for CPU peripheral devices */
108     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
109     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
110     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
111     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
112     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
113     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
114     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
115     [SBSA_UART] =               { 0x60000000, 0x00001000 },
116     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
117     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
118     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
119     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
120     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
121     /* Space here reserved for more SMMUs */
122     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
123     [SBSA_XHCI] =               { 0x60110000, 0x00010000 },
124     /* Space here reserved for other devices */
125     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
126     /* 32-bit address PCIE MMIO space */
127     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
128     /* 256M PCIE ECAM space */
129     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
130     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
131     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
132     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
133 };
134 
135 static const int sbsa_ref_irqmap[] = {
136     [SBSA_UART] = 1,
137     [SBSA_RTC] = 2,
138     [SBSA_PCIE] = 3, /* ... to 6 */
139     [SBSA_GPIO] = 7,
140     [SBSA_SECURE_UART] = 8,
141     [SBSA_SECURE_UART_MM] = 9,
142     [SBSA_AHCI] = 10,
143     [SBSA_XHCI] = 11,
144     [SBSA_SMMU] = 12, /* ... to 15 */
145     [SBSA_GWDT_WS0] = 16,
146 };
147 
148 static const char * const valid_cpus[] = {
149     ARM_CPU_TYPE_NAME("cortex-a57"),
150     ARM_CPU_TYPE_NAME("cortex-a72"),
151     ARM_CPU_TYPE_NAME("neoverse-n1"),
152     ARM_CPU_TYPE_NAME("neoverse-v1"),
153     ARM_CPU_TYPE_NAME("neoverse-n2"),
154     ARM_CPU_TYPE_NAME("max"),
155 };
156 
157 static bool cpu_type_valid(const char *cpu)
158 {
159     int i;
160 
161     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
162         if (strcmp(cpu, valid_cpus[i]) == 0) {
163             return true;
164         }
165     }
166     return false;
167 }
168 
169 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
170 {
171     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
172     return arm_cpu_mp_affinity(idx, clustersz);
173 }
174 
175 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
176 {
177     char *nodename;
178 
179     nodename = g_strdup_printf("/intc");
180     qemu_fdt_add_subnode(sms->fdt, nodename);
181     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
182                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
183                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
184                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
185                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
186 
187     nodename = g_strdup_printf("/intc/its");
188     qemu_fdt_add_subnode(sms->fdt, nodename);
189     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
190                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
191                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
192 
193     g_free(nodename);
194 }
195 
196 /*
197  * Firmware on this machine only uses ACPI table to load OS, these limited
198  * device tree nodes are just to let firmware know the info which varies from
199  * command line parameters, so it is not necessary to be fully compatible
200  * with the kernel CPU and NUMA binding rules.
201  */
202 static void create_fdt(SBSAMachineState *sms)
203 {
204     void *fdt = create_device_tree(&sms->fdt_size);
205     const MachineState *ms = MACHINE(sms);
206     int nb_numa_nodes = ms->numa_state->num_nodes;
207     int cpu;
208 
209     if (!fdt) {
210         error_report("create_device_tree() failed");
211         exit(1);
212     }
213 
214     sms->fdt = fdt;
215 
216     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
217     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
218     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
219 
220     /*
221      * This versioning scheme is for informing platform fw only. It is neither:
222      * - A QEMU versioned machine type; a given version of QEMU will emulate
223      *   a given version of the platform.
224      * - A reflection of level of SBSA (now SystemReady SR) support provided.
225      *
226      * machine-version-major: updated when changes breaking fw compatibility
227      *                        are introduced.
228      * machine-version-minor: updated when features are added that don't break
229      *                        fw compatibility.
230      */
231     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
232     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
233 
234     if (ms->numa_state->have_numa_distance) {
235         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
236         uint32_t *matrix = g_malloc0(size);
237         int idx, i, j;
238 
239         for (i = 0; i < nb_numa_nodes; i++) {
240             for (j = 0; j < nb_numa_nodes; j++) {
241                 idx = (i * nb_numa_nodes + j) * 3;
242                 matrix[idx + 0] = cpu_to_be32(i);
243                 matrix[idx + 1] = cpu_to_be32(j);
244                 matrix[idx + 2] =
245                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
246             }
247         }
248 
249         qemu_fdt_add_subnode(fdt, "/distance-map");
250         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
251                          matrix, size);
252         g_free(matrix);
253     }
254 
255     /*
256      * From Documentation/devicetree/bindings/arm/cpus.yaml
257      *  On ARM v8 64-bit systems this property is required
258      *    and matches the MPIDR_EL1 register affinity bits.
259      *
260      *    * If cpus node's #address-cells property is set to 2
261      *
262      *      The first reg cell bits [7:0] must be set to
263      *      bits [39:32] of MPIDR_EL1.
264      *
265      *      The second reg cell bits [23:0] must be set to
266      *      bits [23:0] of MPIDR_EL1.
267      */
268     qemu_fdt_add_subnode(sms->fdt, "/cpus");
269     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
270     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
271 
272     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
273         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
274         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
275         CPUState *cs = CPU(armcpu);
276         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
277 
278         qemu_fdt_add_subnode(sms->fdt, nodename);
279         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
280 
281         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
282             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
283                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
284         }
285 
286         g_free(nodename);
287     }
288 
289     sbsa_fdt_add_gic_node(sms);
290 }
291 
292 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
293 
294 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
295                                         const char *name,
296                                         const char *alias_prop_name)
297 {
298     /*
299      * Create a single flash device.  We use the same parameters as
300      * the flash devices on the Versatile Express board.
301      */
302     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
303 
304     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
305     qdev_prop_set_uint8(dev, "width", 4);
306     qdev_prop_set_uint8(dev, "device-width", 2);
307     qdev_prop_set_bit(dev, "big-endian", false);
308     qdev_prop_set_uint16(dev, "id0", 0x89);
309     qdev_prop_set_uint16(dev, "id1", 0x18);
310     qdev_prop_set_uint16(dev, "id2", 0x00);
311     qdev_prop_set_uint16(dev, "id3", 0x00);
312     qdev_prop_set_string(dev, "name", name);
313     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
314     object_property_add_alias(OBJECT(sms), alias_prop_name,
315                               OBJECT(dev), "drive");
316     return PFLASH_CFI01(dev);
317 }
318 
319 static void sbsa_flash_create(SBSAMachineState *sms)
320 {
321     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
322     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
323 }
324 
325 static void sbsa_flash_map1(PFlashCFI01 *flash,
326                             hwaddr base, hwaddr size,
327                             MemoryRegion *sysmem)
328 {
329     DeviceState *dev = DEVICE(flash);
330 
331     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
332     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
333     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
334     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
335 
336     memory_region_add_subregion(sysmem, base,
337                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
338                                                        0));
339 }
340 
341 static void sbsa_flash_map(SBSAMachineState *sms,
342                            MemoryRegion *sysmem,
343                            MemoryRegion *secure_sysmem)
344 {
345     /*
346      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
347      * sysmem is the system memory space. secure_sysmem is the secure view
348      * of the system, and the first flash device should be made visible only
349      * there. The second flash device is visible to both secure and nonsecure.
350      */
351     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
352     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
353 
354     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
355                     secure_sysmem);
356     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
357                     sysmem);
358 }
359 
360 static bool sbsa_firmware_init(SBSAMachineState *sms,
361                                MemoryRegion *sysmem,
362                                MemoryRegion *secure_sysmem)
363 {
364     const char *bios_name;
365     int i;
366     BlockBackend *pflash_blk0;
367 
368     /* Map legacy -drive if=pflash to machine properties */
369     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
370         pflash_cfi01_legacy_drive(sms->flash[i],
371                                   drive_get(IF_PFLASH, 0, i));
372     }
373 
374     sbsa_flash_map(sms, sysmem, secure_sysmem);
375 
376     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
377 
378     bios_name = MACHINE(sms)->firmware;
379     if (bios_name) {
380         char *fname;
381         MemoryRegion *mr;
382         int image_size;
383 
384         if (pflash_blk0) {
385             error_report("The contents of the first flash device may be "
386                          "specified with -bios or with -drive if=pflash... "
387                          "but you cannot use both options at once");
388             exit(1);
389         }
390 
391         /* Fall back to -bios */
392 
393         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
394         if (!fname) {
395             error_report("Could not find ROM image '%s'", bios_name);
396             exit(1);
397         }
398         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
399         image_size = load_image_mr(fname, mr);
400         g_free(fname);
401         if (image_size < 0) {
402             error_report("Could not load ROM image '%s'", bios_name);
403             exit(1);
404         }
405     }
406 
407     return pflash_blk0 || bios_name;
408 }
409 
410 static void create_secure_ram(SBSAMachineState *sms,
411                               MemoryRegion *secure_sysmem)
412 {
413     MemoryRegion *secram = g_new(MemoryRegion, 1);
414     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
415     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
416 
417     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
418                            &error_fatal);
419     memory_region_add_subregion(secure_sysmem, base, secram);
420 }
421 
422 static void create_its(SBSAMachineState *sms)
423 {
424     const char *itsclass = its_class_name();
425     DeviceState *dev;
426 
427     dev = qdev_new(itsclass);
428 
429     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
430                              &error_abort);
431     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
432     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
433 }
434 
435 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
436 {
437     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
438     SysBusDevice *gicbusdev;
439     const char *gictype;
440     uint32_t redist0_capacity, redist0_count;
441     QList *redist_region_count;
442     int i;
443 
444     gictype = gicv3_class_name();
445 
446     sms->gic = qdev_new(gictype);
447     qdev_prop_set_uint32(sms->gic, "revision", 3);
448     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
449     /*
450      * Note that the num-irq property counts both internal and external
451      * interrupts; there are always 32 of the former (mandated by GIC spec).
452      */
453     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
454     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
455 
456     redist0_capacity =
457                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
458     redist0_count = MIN(smp_cpus, redist0_capacity);
459 
460     redist_region_count = qlist_new();
461     qlist_append_int(redist_region_count, redist0_count);
462     qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
463 
464     object_property_set_link(OBJECT(sms->gic), "sysmem",
465                              OBJECT(mem), &error_fatal);
466     qdev_prop_set_bit(sms->gic, "has-lpi", true);
467 
468     gicbusdev = SYS_BUS_DEVICE(sms->gic);
469     sysbus_realize_and_unref(gicbusdev, &error_fatal);
470     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
471     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
472 
473     /*
474      * Wire the outputs from each CPU's generic timer and the GICv3
475      * maintenance interrupt signal to the appropriate GIC PPI inputs,
476      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
477      */
478     for (i = 0; i < smp_cpus; i++) {
479         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
480         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
481         int irq;
482         /*
483          * Mapping from the output timer irq lines from the CPU to the
484          * GIC PPI inputs used for this board.
485          */
486         const int timer_irq[] = {
487             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
488             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
489             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
490             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
491             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
492         };
493 
494         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
495             qdev_connect_gpio_out(cpudev, irq,
496                                   qdev_get_gpio_in(sms->gic,
497                                                    intidbase + timer_irq[irq]));
498         }
499 
500         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
501                                     qdev_get_gpio_in(sms->gic,
502                                                      intidbase
503                                                      + ARCH_GIC_MAINT_IRQ));
504 
505         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
506                                     qdev_get_gpio_in(sms->gic,
507                                                      intidbase
508                                                      + VIRTUAL_PMU_IRQ));
509 
510         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
511         sysbus_connect_irq(gicbusdev, i + smp_cpus,
512                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
513         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
514                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
515         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
516                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
517     }
518     create_its(sms);
519 }
520 
521 static void create_uart(const SBSAMachineState *sms, int uart,
522                         MemoryRegion *mem, Chardev *chr)
523 {
524     hwaddr base = sbsa_ref_memmap[uart].base;
525     int irq = sbsa_ref_irqmap[uart];
526     DeviceState *dev = qdev_new(TYPE_PL011);
527     SysBusDevice *s = SYS_BUS_DEVICE(dev);
528 
529     qdev_prop_set_chr(dev, "chardev", chr);
530     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
531     memory_region_add_subregion(mem, base,
532                                 sysbus_mmio_get_region(s, 0));
533     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
534 }
535 
536 static void create_rtc(const SBSAMachineState *sms)
537 {
538     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
539     int irq = sbsa_ref_irqmap[SBSA_RTC];
540 
541     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
542 }
543 
544 static void create_wdt(const SBSAMachineState *sms)
545 {
546     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
547     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
548     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
549     SysBusDevice *s = SYS_BUS_DEVICE(dev);
550     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
551 
552     sysbus_realize_and_unref(s, &error_fatal);
553     sysbus_mmio_map(s, 0, rbase);
554     sysbus_mmio_map(s, 1, cbase);
555     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
556 }
557 
558 static DeviceState *gpio_key_dev;
559 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
560 {
561     /* use gpio Pin 3 for power button event */
562     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
563 }
564 
565 static Notifier sbsa_ref_powerdown_notifier = {
566     .notify = sbsa_ref_powerdown_req
567 };
568 
569 static void create_gpio(const SBSAMachineState *sms)
570 {
571     DeviceState *pl061_dev;
572     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
573     int irq = sbsa_ref_irqmap[SBSA_GPIO];
574 
575     pl061_dev = sysbus_create_simple("pl061", base,
576                                      qdev_get_gpio_in(sms->gic, irq));
577 
578     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
579                                         qdev_get_gpio_in(pl061_dev, 3));
580 
581     /* connect powerdown request */
582     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
583 }
584 
585 static void create_ahci(const SBSAMachineState *sms)
586 {
587     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
588     int irq = sbsa_ref_irqmap[SBSA_AHCI];
589     DeviceState *dev;
590     DriveInfo *hd[NUM_SATA_PORTS];
591     SysbusAHCIState *sysahci;
592     AHCIState *ahci;
593     int i;
594 
595     dev = qdev_new("sysbus-ahci");
596     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
597     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
598     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
599     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
600 
601     sysahci = SYSBUS_AHCI(dev);
602     ahci = &sysahci->ahci;
603     ide_drive_get(hd, ARRAY_SIZE(hd));
604     for (i = 0; i < ahci->ports; i++) {
605         if (hd[i] == NULL) {
606             continue;
607         }
608         ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
609     }
610 }
611 
612 static void create_xhci(const SBSAMachineState *sms)
613 {
614     hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
615     int irq = sbsa_ref_irqmap[SBSA_XHCI];
616     DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
617     qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
618 
619     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
620     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
621     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
622 }
623 
624 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
625 {
626     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
627     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
628     DeviceState *dev;
629     int i;
630 
631     dev = qdev_new(TYPE_ARM_SMMUV3);
632 
633     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
634                              &error_abort);
635     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
636     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
637     for (i = 0; i < NUM_SMMU_IRQS; i++) {
638         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
639                            qdev_get_gpio_in(sms->gic, irq + i));
640     }
641 }
642 
643 static void create_pcie(SBSAMachineState *sms)
644 {
645     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
646     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
647     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
648     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
649     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
650     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
651     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
652     int irq = sbsa_ref_irqmap[SBSA_PCIE];
653     MachineClass *mc = MACHINE_GET_CLASS(sms);
654     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
655     MemoryRegion *ecam_alias, *ecam_reg;
656     DeviceState *dev;
657     PCIHostState *pci;
658     int i;
659 
660     dev = qdev_new(TYPE_GPEX_HOST);
661     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
662 
663     /* Map ECAM space */
664     ecam_alias = g_new0(MemoryRegion, 1);
665     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
666     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
667                              ecam_reg, 0, size_ecam);
668     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
669 
670     /* Map the MMIO space */
671     mmio_alias = g_new0(MemoryRegion, 1);
672     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
673     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
674                              mmio_reg, base_mmio, size_mmio);
675     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
676 
677     /* Map the MMIO_HIGH space */
678     mmio_alias_high = g_new0(MemoryRegion, 1);
679     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
680                              mmio_reg, base_mmio_high, size_mmio_high);
681     memory_region_add_subregion(get_system_memory(), base_mmio_high,
682                                 mmio_alias_high);
683 
684     /* Map IO port space */
685     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
686 
687     for (i = 0; i < GPEX_NUM_IRQS; i++) {
688         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
689                            qdev_get_gpio_in(sms->gic, irq + i));
690         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
691     }
692 
693     pci = PCI_HOST_BRIDGE(dev);
694     if (pci->bus) {
695         for (i = 0; i < nb_nics; i++) {
696             pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
697         }
698     }
699 
700     pci_create_simple(pci->bus, -1, "bochs-display");
701 
702     create_smmu(sms, pci->bus);
703 }
704 
705 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
706 {
707     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
708                                                  bootinfo);
709 
710     *fdt_size = board->fdt_size;
711     return board->fdt;
712 }
713 
714 static void create_secure_ec(MemoryRegion *mem)
715 {
716     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
717     DeviceState *dev = qdev_new("sbsa-ec");
718     SysBusDevice *s = SYS_BUS_DEVICE(dev);
719 
720     memory_region_add_subregion(mem, base,
721                                 sysbus_mmio_get_region(s, 0));
722 }
723 
724 static void sbsa_ref_init(MachineState *machine)
725 {
726     unsigned int smp_cpus = machine->smp.cpus;
727     unsigned int max_cpus = machine->smp.max_cpus;
728     SBSAMachineState *sms = SBSA_MACHINE(machine);
729     MachineClass *mc = MACHINE_GET_CLASS(machine);
730     MemoryRegion *sysmem = get_system_memory();
731     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
732     bool firmware_loaded;
733     const CPUArchIdList *possible_cpus;
734     int n, sbsa_max_cpus;
735 
736     if (!cpu_type_valid(machine->cpu_type)) {
737         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
738         exit(1);
739     }
740 
741     if (kvm_enabled()) {
742         error_report("sbsa-ref: KVM is not supported for this machine");
743         exit(1);
744     }
745 
746     /*
747      * The Secure view of the world is the same as the NonSecure,
748      * but with a few extra devices. Create it as a container region
749      * containing the system memory at low priority; any secure-only
750      * devices go in at higher priority and take precedence.
751      */
752     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
753                        UINT64_MAX);
754     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
755 
756     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
757 
758     /*
759      * This machine has EL3 enabled, external firmware should supply PSCI
760      * implementation, so the QEMU's internal PSCI is disabled.
761      */
762     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
763 
764     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
765 
766     if (max_cpus > sbsa_max_cpus) {
767         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
768                      "supported by machine 'sbsa-ref' (%d)",
769                      max_cpus, sbsa_max_cpus);
770         exit(1);
771     }
772 
773     sms->smp_cpus = smp_cpus;
774 
775     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
776         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
777         exit(1);
778     }
779 
780     possible_cpus = mc->possible_cpu_arch_ids(machine);
781     for (n = 0; n < possible_cpus->len; n++) {
782         Object *cpuobj;
783         CPUState *cs;
784 
785         if (n >= smp_cpus) {
786             break;
787         }
788 
789         cpuobj = object_new(possible_cpus->cpus[n].type);
790         object_property_set_int(cpuobj, "mp-affinity",
791                                 possible_cpus->cpus[n].arch_id, NULL);
792 
793         cs = CPU(cpuobj);
794         cs->cpu_index = n;
795 
796         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
797                           &error_fatal);
798 
799         if (object_property_find(cpuobj, "reset-cbar")) {
800             object_property_set_int(cpuobj, "reset-cbar",
801                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
802                                     &error_abort);
803         }
804 
805         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
806                                  &error_abort);
807 
808         object_property_set_link(cpuobj, "secure-memory",
809                                  OBJECT(secure_sysmem), &error_abort);
810 
811         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
812         object_unref(cpuobj);
813     }
814 
815     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
816                                 machine->ram);
817 
818     create_fdt(sms);
819 
820     create_secure_ram(sms, secure_sysmem);
821 
822     create_gic(sms, sysmem);
823 
824     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
825     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
826     /* Second secure UART for RAS and MM from EL0 */
827     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
828 
829     create_rtc(sms);
830 
831     create_wdt(sms);
832 
833     create_gpio(sms);
834 
835     create_ahci(sms);
836 
837     create_xhci(sms);
838 
839     create_pcie(sms);
840 
841     create_secure_ec(secure_sysmem);
842 
843     sms->bootinfo.ram_size = machine->ram_size;
844     sms->bootinfo.board_id = -1;
845     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
846     sms->bootinfo.get_dtb = sbsa_ref_dtb;
847     sms->bootinfo.firmware_loaded = firmware_loaded;
848     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
849 }
850 
851 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
852 {
853     unsigned int max_cpus = ms->smp.max_cpus;
854     SBSAMachineState *sms = SBSA_MACHINE(ms);
855     int n;
856 
857     if (ms->possible_cpus) {
858         assert(ms->possible_cpus->len == max_cpus);
859         return ms->possible_cpus;
860     }
861 
862     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
863                                   sizeof(CPUArchId) * max_cpus);
864     ms->possible_cpus->len = max_cpus;
865     for (n = 0; n < ms->possible_cpus->len; n++) {
866         ms->possible_cpus->cpus[n].type = ms->cpu_type;
867         ms->possible_cpus->cpus[n].arch_id =
868             sbsa_ref_cpu_mp_affinity(sms, n);
869         ms->possible_cpus->cpus[n].props.has_thread_id = true;
870         ms->possible_cpus->cpus[n].props.thread_id = n;
871     }
872     return ms->possible_cpus;
873 }
874 
875 static CpuInstanceProperties
876 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
877 {
878     MachineClass *mc = MACHINE_GET_CLASS(ms);
879     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
880 
881     assert(cpu_index < possible_cpus->len);
882     return possible_cpus->cpus[cpu_index].props;
883 }
884 
885 static int64_t
886 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
887 {
888     return idx % ms->numa_state->num_nodes;
889 }
890 
891 static void sbsa_ref_instance_init(Object *obj)
892 {
893     SBSAMachineState *sms = SBSA_MACHINE(obj);
894 
895     sbsa_flash_create(sms);
896 }
897 
898 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
899 {
900     MachineClass *mc = MACHINE_CLASS(oc);
901 
902     mc->init = sbsa_ref_init;
903     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
904     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
905     mc->max_cpus = 512;
906     mc->pci_allow_0_address = true;
907     mc->minimum_page_bits = 12;
908     mc->block_default_type = IF_IDE;
909     mc->no_cdrom = 1;
910     mc->default_nic = "e1000e";
911     mc->default_ram_size = 1 * GiB;
912     mc->default_ram_id = "sbsa-ref.ram";
913     mc->default_cpus = 4;
914     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
915     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
916     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
917     /* platform instead of architectural choice */
918     mc->cpu_cluster_has_numa_boundary = true;
919 }
920 
921 static const TypeInfo sbsa_ref_info = {
922     .name          = TYPE_SBSA_MACHINE,
923     .parent        = TYPE_MACHINE,
924     .instance_init = sbsa_ref_instance_init,
925     .class_init    = sbsa_ref_class_init,
926     .instance_size = sizeof(SBSAMachineState),
927 };
928 
929 static void sbsa_ref_machine_init(void)
930 {
931     type_register_static(&sbsa_ref_info);
932 }
933 
934 type_init(sbsa_ref_machine_init);
935