xref: /openbmc/qemu/hw/arm/musca.c (revision 812b31d3f91507160c367440c17715b62d5e0869)
1 /*
2  * Arm Musca-B1 test chip board emulation
3  *
4  * Copyright (c) 2019 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /*
13  * The Musca boards are a reference implementation of a system using
14  * the SSE-200 subsystem for embedded:
15  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17  * We model the A and B1 variants of this board, as described in the TRMs:
18  * https://developer.arm.com/documentation/101107/latest/
19  * https://developer.arm.com/documentation/101312/latest/
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 #include "hw/qdev-clock.h"
37 #include "qom/object.h"
38 
39 #define MUSCA_NUMIRQ_MAX 96
40 #define MUSCA_PPC_MAX 3
41 #define MUSCA_MPC_MAX 5
42 
43 typedef struct MPCInfo MPCInfo;
44 
45 typedef enum MuscaType {
46     MUSCA_A,
47     MUSCA_B1,
48 } MuscaType;
49 
50 struct MuscaMachineClass {
51     MachineClass parent;
52     MuscaType type;
53     uint32_t init_svtor;
54     int sram_addr_width;
55     int num_irqs;
56     const MPCInfo *mpc_info;
57     int num_mpcs;
58 };
59 
60 struct MuscaMachineState {
61     MachineState parent;
62 
63     ARMSSE sse;
64     /* RAM and flash */
65     MemoryRegion ram[MUSCA_MPC_MAX];
66     SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
67     SplitIRQ sec_resp_splitter;
68     TZPPC ppc[MUSCA_PPC_MAX];
69     MemoryRegion container;
70     UnimplementedDeviceState eflash[2];
71     UnimplementedDeviceState qspi;
72     TZMPC mpc[MUSCA_MPC_MAX];
73     UnimplementedDeviceState mhu[2];
74     UnimplementedDeviceState pwm[3];
75     UnimplementedDeviceState i2s;
76     PL011State uart[2];
77     UnimplementedDeviceState i2c[2];
78     UnimplementedDeviceState spi;
79     UnimplementedDeviceState scc;
80     UnimplementedDeviceState timer;
81     PL031State rtc;
82     UnimplementedDeviceState pvt;
83     UnimplementedDeviceState sdio;
84     UnimplementedDeviceState gpio;
85     UnimplementedDeviceState cryptoisland;
86     Clock *sysclk;
87     Clock *s32kclk;
88 };
89 
90 #define TYPE_MUSCA_MACHINE "musca"
91 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
92 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
93 
94 OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE)
95 
96 /*
97  * Main SYSCLK frequency in Hz
98  * TODO this should really be different for the two cores, but we
99  * don't model that in our SSE-200 model yet.
100  */
101 #define SYSCLK_FRQ 40000000
102 /* Slow 32Khz S32KCLK frequency in Hz */
103 #define S32KCLK_FRQ (32 * 1000)
104 
105 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
106 {
107     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
108     assert(irqno < MUSCA_NUMIRQ_MAX);
109 
110     return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
111 }
112 
113 /*
114  * Most of the devices in the Musca board sit behind Peripheral Protection
115  * Controllers. These data structures define the layout of which devices
116  * sit behind which PPCs.
117  * The devfn for each port is a function which creates, configures
118  * and initializes the device, returning the MemoryRegion which
119  * needs to be plugged into the downstream end of the PPC port.
120  */
121 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
122                                 const char *name, hwaddr size);
123 
124 typedef struct PPCPortInfo {
125     const char *name;
126     MakeDevFn *devfn;
127     void *opaque;
128     hwaddr addr;
129     hwaddr size;
130 } PPCPortInfo;
131 
132 typedef struct PPCInfo {
133     const char *name;
134     PPCPortInfo ports[TZ_NUM_PORTS];
135 } PPCInfo;
136 
137 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
138                                     void *opaque, const char *name, hwaddr size)
139 {
140     /*
141      * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
142      * and return a pointer to its MemoryRegion.
143      */
144     UnimplementedDeviceState *uds = opaque;
145 
146     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
147     qdev_prop_set_string(DEVICE(uds), "name", name);
148     qdev_prop_set_uint64(DEVICE(uds), "size", size);
149     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
150     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
151 }
152 
153 typedef enum MPCInfoType {
154     MPC_RAM,
155     MPC_ROM,
156     MPC_CRYPTOISLAND,
157 } MPCInfoType;
158 
159 struct MPCInfo {
160     const char *name;
161     hwaddr addr;
162     hwaddr size;
163     MPCInfoType type;
164 };
165 
166 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
167 static const MPCInfo a_mpc_info[] = { {
168         .name = "qspi",
169         .type = MPC_ROM,
170         .addr = 0x00200000,
171         .size = 0x00800000,
172     }, {
173         .name = "sram",
174         .type = MPC_RAM,
175         .addr = 0x00000000,
176         .size = 0x00200000,
177     }
178 };
179 
180 static const MPCInfo b1_mpc_info[] = { {
181         .name = "qspi",
182         .type = MPC_ROM,
183         .addr = 0x00000000,
184         .size = 0x02000000,
185     }, {
186         .name = "sram",
187         .type = MPC_RAM,
188         .addr = 0x0a400000,
189         .size = 0x00080000,
190     }, {
191         .name = "eflash0",
192         .type = MPC_ROM,
193         .addr = 0x0a000000,
194         .size = 0x00200000,
195     }, {
196         .name = "eflash1",
197         .type = MPC_ROM,
198         .addr = 0x0a200000,
199         .size = 0x00200000,
200     }, {
201         .name = "cryptoisland",
202         .type = MPC_CRYPTOISLAND,
203         .addr = 0x0a000000,
204         .size = 0x00200000,
205     }
206 };
207 
208 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
209                               const char *name, hwaddr size)
210 {
211     /*
212      * Create an MPC and the RAM or flash behind it.
213      * MPC 0: eFlash 0
214      * MPC 1: eFlash 1
215      * MPC 2: SRAM
216      * MPC 3: QSPI flash
217      * MPC 4: CryptoIsland
218      * For now we implement the flash regions as ROM (ie not programmable)
219      * (with their control interface memory regions being unimplemented
220      * stubs behind the PPCs).
221      * The whole CryptoIsland region behind its MPC is an unimplemented stub.
222      */
223     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
224     TZMPC *mpc = opaque;
225     int i = mpc - &mms->mpc[0];
226     MemoryRegion *downstream;
227     MemoryRegion *upstream;
228     UnimplementedDeviceState *uds;
229     char *mpcname;
230     const MPCInfo *mpcinfo = mmc->mpc_info;
231 
232     mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
233 
234     switch (mpcinfo[i].type) {
235     case MPC_ROM:
236         downstream = &mms->ram[i];
237         memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
238                                mpcinfo[i].size, &error_fatal);
239         break;
240     case MPC_RAM:
241         downstream = &mms->ram[i];
242         memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
243                                mpcinfo[i].size, &error_fatal);
244         break;
245     case MPC_CRYPTOISLAND:
246         /* We don't implement the CryptoIsland yet */
247         uds = &mms->cryptoisland;
248         object_initialize_child(OBJECT(mms), name, uds,
249                                 TYPE_UNIMPLEMENTED_DEVICE);
250         qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
251         qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
252         sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
253         downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
254         break;
255     default:
256         g_assert_not_reached();
257     }
258 
259     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
260     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
261                              &error_fatal);
262     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
263     /* Map the upstream end of the MPC into system memory */
264     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
265     memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
266     /* and connect its interrupt to the SSE-200 */
267     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
268                                 qdev_get_gpio_in_named(DEVICE(&mms->sse),
269                                                        "mpcexp_status", i));
270 
271     g_free(mpcname);
272     /* Return the register interface MR for our caller to map behind the PPC */
273     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
274 }
275 
276 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
277                               const char *name, hwaddr size)
278 {
279     PL031State *rtc = opaque;
280 
281     object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
282     sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
283     sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
284     return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
285 }
286 
287 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
288                                const char *name, hwaddr size)
289 {
290     PL011State *uart = opaque;
291     int i = uart - &mms->uart[0];
292     int irqbase = 7 + i * 6;
293     SysBusDevice *s;
294 
295     object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
296     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
297     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
298     s = SYS_BUS_DEVICE(uart);
299     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
300     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
301     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
302     sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
303     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
304     sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
305     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
306 }
307 
308 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
309                                        const char *name, hwaddr size)
310 {
311     /*
312      * Create the container MemoryRegion for all the devices that live
313      * behind the Musca-A PPC's single port. These devices don't have a PPC
314      * port each, but we use the PPCPortInfo struct as a convenient way
315      * to describe them. Note that addresses here are relative to the base
316      * address of the PPC port region: 0x40100000, and devices appear both
317      * at the 0x4... NS region and the 0x5... S region.
318      */
319     int i;
320     MemoryRegion *container = &mms->container;
321 
322     const PPCPortInfo devices[] = {
323         { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
324         { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
325         { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
326         { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
327         { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
328         { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
329         { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
330         { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
331         { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
332         { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
333         { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
334         { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
335         { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
336         { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
337         { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
338         { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
339     };
340 
341     memory_region_init(container, OBJECT(mms), "musca-device-container", size);
342 
343     for (i = 0; i < ARRAY_SIZE(devices); i++) {
344         const PPCPortInfo *pinfo = &devices[i];
345         MemoryRegion *mr;
346 
347         mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
348         memory_region_add_subregion(container, pinfo->addr, mr);
349     }
350 
351     return &mms->container;
352 }
353 
354 static void musca_init(MachineState *machine)
355 {
356     MuscaMachineState *mms = MUSCA_MACHINE(machine);
357     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
358     MachineClass *mc = MACHINE_GET_CLASS(machine);
359     MemoryRegion *system_memory = get_system_memory();
360     DeviceState *ssedev;
361     DeviceState *dev_splitter;
362     const PPCInfo *ppcs;
363     int num_ppcs;
364     int i;
365 
366     assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
367     assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
368 
369     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
370         error_report("This board can only be used with CPU %s",
371                      mc->default_cpu_type);
372         exit(1);
373     }
374 
375     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
376     clock_set_hz(mms->sysclk, SYSCLK_FRQ);
377     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
378     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
379 
380     object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
381                             TYPE_SSE200);
382     ssedev = DEVICE(&mms->sse);
383     object_property_set_link(OBJECT(&mms->sse), "memory",
384                              OBJECT(system_memory), &error_fatal);
385     qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
386     qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
387     qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
388     qdev_connect_clock_in(ssedev, "MAINCLK", mms->sysclk);
389     qdev_connect_clock_in(ssedev, "S32KCLK", mms->s32kclk);
390     /*
391      * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
392      * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
393      */
394     if (mmc->type == MUSCA_B1) {
395         qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
396         qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
397     }
398     sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
399 
400     /*
401      * We need to create splitters to feed the IRQ inputs
402      * for each CPU in the SSE-200 from each device in the board.
403      */
404     for (i = 0; i < mmc->num_irqs; i++) {
405         char *name = g_strdup_printf("musca-irq-splitter%d", i);
406         SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
407 
408         object_initialize_child_with_props(OBJECT(machine), name, splitter,
409                                            sizeof(*splitter), TYPE_SPLIT_IRQ,
410                                            &error_fatal, NULL);
411         g_free(name);
412 
413         object_property_set_int(OBJECT(splitter), "num-lines", 2,
414                                 &error_fatal);
415         qdev_realize(DEVICE(splitter), NULL, &error_fatal);
416         qdev_connect_gpio_out(DEVICE(splitter), 0,
417                               qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
418         qdev_connect_gpio_out(DEVICE(splitter), 1,
419                               qdev_get_gpio_in_named(ssedev,
420                                                      "EXP_CPU1_IRQ", i));
421     }
422 
423     /*
424      * The sec_resp_cfg output from the SSE-200 must be split into multiple
425      * lines, one for each of the PPCs we create here.
426      */
427     object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
428                                        &mms->sec_resp_splitter,
429                                        sizeof(mms->sec_resp_splitter),
430                                        TYPE_SPLIT_IRQ, &error_fatal, NULL);
431 
432     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
433                             ARRAY_SIZE(mms->ppc), &error_fatal);
434     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
435     dev_splitter = DEVICE(&mms->sec_resp_splitter);
436     qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
437                                 qdev_get_gpio_in(dev_splitter, 0));
438 
439     /*
440      * Most of the devices in the board are behind Peripheral Protection
441      * Controllers. The required order for initializing things is:
442      *  + initialize the PPC
443      *  + initialize, configure and realize downstream devices
444      *  + connect downstream device MemoryRegions to the PPC
445      *  + realize the PPC
446      *  + map the PPC's MemoryRegions to the places in the address map
447      *    where the downstream devices should appear
448      *  + wire up the PPC's control lines to the SSE object
449      *
450      * The PPC mapping differs for the -A and -B1 variants; the -A version
451      * is much simpler, using only a single port of a single PPC and putting
452      * all the devices behind that.
453      */
454     const PPCInfo a_ppcs[] = { {
455             .name = "ahb_ppcexp0",
456             .ports = {
457                 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
458             },
459         },
460     };
461 
462     /*
463      * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
464      * and the 0x5.. S region. Devices listed with an 0x5.. address appear
465      * only in the S region.
466      */
467     const PPCInfo b1_ppcs[] = { {
468             .name = "apb_ppcexp0",
469             .ports = {
470                 { "eflash0", make_unimp_dev, &mms->eflash[0],
471                   0x52400000, 0x1000 },
472                 { "eflash1", make_unimp_dev, &mms->eflash[1],
473                   0x52500000, 0x1000 },
474                 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
475                 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
476                 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
477                 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
478                 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
479                 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
480                 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
481                 { }, /* port 9: unused */
482                 { }, /* port 10: unused */
483                 { }, /* port 11: unused */
484                 { }, /* port 12: unused */
485                 { }, /* port 13: unused */
486                 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
487             },
488         }, {
489             .name = "apb_ppcexp1",
490             .ports = {
491                 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
492                 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
493                 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
494                 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
495                 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
496                 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
497                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
498                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
499                 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
500                 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
501                 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
502                 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
503                 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
504                 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
505             },
506         }, {
507             .name = "ahb_ppcexp0",
508             .ports = {
509                 { }, /* port 0: unused */
510                 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
511             },
512         },
513     };
514 
515     switch (mmc->type) {
516     case MUSCA_A:
517         ppcs = a_ppcs;
518         num_ppcs = ARRAY_SIZE(a_ppcs);
519         break;
520     case MUSCA_B1:
521         ppcs = b1_ppcs;
522         num_ppcs = ARRAY_SIZE(b1_ppcs);
523         break;
524     default:
525         g_assert_not_reached();
526     }
527     assert(num_ppcs <= MUSCA_PPC_MAX);
528 
529     for (i = 0; i < num_ppcs; i++) {
530         const PPCInfo *ppcinfo = &ppcs[i];
531         TZPPC *ppc = &mms->ppc[i];
532         DeviceState *ppcdev;
533         int port;
534         char *gpioname;
535 
536         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
537                                 TYPE_TZ_PPC);
538         ppcdev = DEVICE(ppc);
539 
540         for (port = 0; port < TZ_NUM_PORTS; port++) {
541             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
542             MemoryRegion *mr;
543             char *portname;
544 
545             if (!pinfo->devfn) {
546                 continue;
547             }
548 
549             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
550             portname = g_strdup_printf("port[%d]", port);
551             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
552                                      &error_fatal);
553             g_free(portname);
554         }
555 
556         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
557 
558         for (port = 0; port < TZ_NUM_PORTS; port++) {
559             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
560 
561             if (!pinfo->devfn) {
562                 continue;
563             }
564             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
565 
566             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
567             qdev_connect_gpio_out_named(ssedev, gpioname, port,
568                                         qdev_get_gpio_in_named(ppcdev,
569                                                                "cfg_nonsec",
570                                                                port));
571             g_free(gpioname);
572             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
573             qdev_connect_gpio_out_named(ssedev, gpioname, port,
574                                         qdev_get_gpio_in_named(ppcdev,
575                                                                "cfg_ap", port));
576             g_free(gpioname);
577         }
578 
579         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
580         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
581                                     qdev_get_gpio_in_named(ppcdev,
582                                                            "irq_enable", 0));
583         g_free(gpioname);
584         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
585         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
586                                     qdev_get_gpio_in_named(ppcdev,
587                                                            "irq_clear", 0));
588         g_free(gpioname);
589         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
590         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
591                                     qdev_get_gpio_in_named(ssedev,
592                                                            gpioname, 0));
593         g_free(gpioname);
594 
595         qdev_connect_gpio_out(dev_splitter, i,
596                               qdev_get_gpio_in_named(ppcdev,
597                                                      "cfg_sec_resp", 0));
598     }
599 
600     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
601 }
602 
603 static void musca_class_init(ObjectClass *oc, void *data)
604 {
605     MachineClass *mc = MACHINE_CLASS(oc);
606 
607     mc->default_cpus = 2;
608     mc->min_cpus = mc->default_cpus;
609     mc->max_cpus = mc->default_cpus;
610     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
611     mc->init = musca_init;
612 }
613 
614 static void musca_a_class_init(ObjectClass *oc, void *data)
615 {
616     MachineClass *mc = MACHINE_CLASS(oc);
617     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
618 
619     mc->desc = "ARM Musca-A board (dual Cortex-M33)";
620     mmc->type = MUSCA_A;
621     mmc->init_svtor = 0x10200000;
622     mmc->sram_addr_width = 15;
623     mmc->num_irqs = 64;
624     mmc->mpc_info = a_mpc_info;
625     mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
626 }
627 
628 static void musca_b1_class_init(ObjectClass *oc, void *data)
629 {
630     MachineClass *mc = MACHINE_CLASS(oc);
631     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
632 
633     mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
634     mmc->type = MUSCA_B1;
635     /*
636      * This matches the DAPlink firmware which boots from QSPI. There
637      * is also a firmware blob which boots from the eFlash, which
638      * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
639      * though we could in theory expose a machine property on the command
640      * line to allow the user to request eFlash boot.
641      */
642     mmc->init_svtor = 0x10000000;
643     mmc->sram_addr_width = 17;
644     mmc->num_irqs = 96;
645     mmc->mpc_info = b1_mpc_info;
646     mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
647 }
648 
649 static const TypeInfo musca_info = {
650     .name = TYPE_MUSCA_MACHINE,
651     .parent = TYPE_MACHINE,
652     .abstract = true,
653     .instance_size = sizeof(MuscaMachineState),
654     .class_size = sizeof(MuscaMachineClass),
655     .class_init = musca_class_init,
656 };
657 
658 static const TypeInfo musca_a_info = {
659     .name = TYPE_MUSCA_A_MACHINE,
660     .parent = TYPE_MUSCA_MACHINE,
661     .class_init = musca_a_class_init,
662 };
663 
664 static const TypeInfo musca_b1_info = {
665     .name = TYPE_MUSCA_B1_MACHINE,
666     .parent = TYPE_MUSCA_MACHINE,
667     .class_init = musca_b1_class_init,
668 };
669 
670 static void musca_machine_init(void)
671 {
672     type_register_static(&musca_info);
673     type_register_static(&musca_a_info);
674     type_register_static(&musca_b1_info);
675 }
676 
677 type_init(musca_machine_init);
678