xref: /openbmc/qemu/hw/arm/musca.c (revision 1f42e246995a99890f6af4e42329f184ee14b0e7)
1 /*
2  * Arm Musca-B1 test chip board emulation
3  *
4  * Copyright (c) 2019 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /*
13  * The Musca boards are a reference implementation of a system using
14  * the SSE-200 subsystem for embedded:
15  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17  * We model the A and B1 variants of this board, as described in the TRMs:
18  * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19  * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 
37 #define MUSCA_NUMIRQ_MAX 96
38 #define MUSCA_PPC_MAX 3
39 #define MUSCA_MPC_MAX 5
40 
41 typedef struct MPCInfo MPCInfo;
42 
43 typedef enum MuscaType {
44     MUSCA_A,
45     MUSCA_B1,
46 } MuscaType;
47 
48 typedef struct {
49     MachineClass parent;
50     MuscaType type;
51     uint32_t init_svtor;
52     int sram_addr_width;
53     int num_irqs;
54     const MPCInfo *mpc_info;
55     int num_mpcs;
56 } MuscaMachineClass;
57 
58 typedef struct {
59     MachineState parent;
60 
61     ARMSSE sse;
62     /* RAM and flash */
63     MemoryRegion ram[MUSCA_MPC_MAX];
64     SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
65     SplitIRQ sec_resp_splitter;
66     TZPPC ppc[MUSCA_PPC_MAX];
67     MemoryRegion container;
68     UnimplementedDeviceState eflash[2];
69     UnimplementedDeviceState qspi;
70     TZMPC mpc[MUSCA_MPC_MAX];
71     UnimplementedDeviceState mhu[2];
72     UnimplementedDeviceState pwm[3];
73     UnimplementedDeviceState i2s;
74     PL011State uart[2];
75     UnimplementedDeviceState i2c[2];
76     UnimplementedDeviceState spi;
77     UnimplementedDeviceState scc;
78     UnimplementedDeviceState timer;
79     PL031State rtc;
80     UnimplementedDeviceState pvt;
81     UnimplementedDeviceState sdio;
82     UnimplementedDeviceState gpio;
83     UnimplementedDeviceState cryptoisland;
84 } MuscaMachineState;
85 
86 #define TYPE_MUSCA_MACHINE "musca"
87 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
88 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
89 
90 #define MUSCA_MACHINE(obj) \
91     OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE)
92 #define MUSCA_MACHINE_GET_CLASS(obj) \
93     OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE)
94 #define MUSCA_MACHINE_CLASS(klass) \
95     OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE)
96 
97 /*
98  * Main SYSCLK frequency in Hz
99  * TODO this should really be different for the two cores, but we
100  * don't model that in our SSE-200 model yet.
101  */
102 #define SYSCLK_FRQ 40000000
103 
104 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
105 {
106     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
107     assert(irqno < MUSCA_NUMIRQ_MAX);
108 
109     return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
110 }
111 
112 /*
113  * Most of the devices in the Musca board sit behind Peripheral Protection
114  * Controllers. These data structures define the layout of which devices
115  * sit behind which PPCs.
116  * The devfn for each port is a function which creates, configures
117  * and initializes the device, returning the MemoryRegion which
118  * needs to be plugged into the downstream end of the PPC port.
119  */
120 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
121                                 const char *name, hwaddr size);
122 
123 typedef struct PPCPortInfo {
124     const char *name;
125     MakeDevFn *devfn;
126     void *opaque;
127     hwaddr addr;
128     hwaddr size;
129 } PPCPortInfo;
130 
131 typedef struct PPCInfo {
132     const char *name;
133     PPCPortInfo ports[TZ_NUM_PORTS];
134 } PPCInfo;
135 
136 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
137                                     void *opaque, const char *name, hwaddr size)
138 {
139     /*
140      * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
141      * and return a pointer to its MemoryRegion.
142      */
143     UnimplementedDeviceState *uds = opaque;
144 
145     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
146     qdev_prop_set_string(DEVICE(uds), "name", name);
147     qdev_prop_set_uint64(DEVICE(uds), "size", size);
148     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
149     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
150 }
151 
152 typedef enum MPCInfoType {
153     MPC_RAM,
154     MPC_ROM,
155     MPC_CRYPTOISLAND,
156 } MPCInfoType;
157 
158 struct MPCInfo {
159     const char *name;
160     hwaddr addr;
161     hwaddr size;
162     MPCInfoType type;
163 };
164 
165 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
166 static const MPCInfo a_mpc_info[] = { {
167         .name = "qspi",
168         .type = MPC_ROM,
169         .addr = 0x00200000,
170         .size = 0x00800000,
171     }, {
172         .name = "sram",
173         .type = MPC_RAM,
174         .addr = 0x00000000,
175         .size = 0x00200000,
176     }
177 };
178 
179 static const MPCInfo b1_mpc_info[] = { {
180         .name = "qspi",
181         .type = MPC_ROM,
182         .addr = 0x00000000,
183         .size = 0x02000000,
184     }, {
185         .name = "sram",
186         .type = MPC_RAM,
187         .addr = 0x0a400000,
188         .size = 0x00080000,
189     }, {
190         .name = "eflash0",
191         .type = MPC_ROM,
192         .addr = 0x0a000000,
193         .size = 0x00200000,
194     }, {
195         .name = "eflash1",
196         .type = MPC_ROM,
197         .addr = 0x0a200000,
198         .size = 0x00200000,
199     }, {
200         .name = "cryptoisland",
201         .type = MPC_CRYPTOISLAND,
202         .addr = 0x0a000000,
203         .size = 0x00200000,
204     }
205 };
206 
207 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
208                               const char *name, hwaddr size)
209 {
210     /*
211      * Create an MPC and the RAM or flash behind it.
212      * MPC 0: eFlash 0
213      * MPC 1: eFlash 1
214      * MPC 2: SRAM
215      * MPC 3: QSPI flash
216      * MPC 4: CryptoIsland
217      * For now we implement the flash regions as ROM (ie not programmable)
218      * (with their control interface memory regions being unimplemented
219      * stubs behind the PPCs).
220      * The whole CryptoIsland region behind its MPC is an unimplemented stub.
221      */
222     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
223     TZMPC *mpc = opaque;
224     int i = mpc - &mms->mpc[0];
225     MemoryRegion *downstream;
226     MemoryRegion *upstream;
227     UnimplementedDeviceState *uds;
228     char *mpcname;
229     const MPCInfo *mpcinfo = mmc->mpc_info;
230 
231     mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
232 
233     switch (mpcinfo[i].type) {
234     case MPC_ROM:
235         downstream = &mms->ram[i];
236         memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
237                                mpcinfo[i].size, &error_fatal);
238         break;
239     case MPC_RAM:
240         downstream = &mms->ram[i];
241         memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
242                                mpcinfo[i].size, &error_fatal);
243         break;
244     case MPC_CRYPTOISLAND:
245         /* We don't implement the CryptoIsland yet */
246         uds = &mms->cryptoisland;
247         object_initialize_child(OBJECT(mms), name, uds,
248                                 TYPE_UNIMPLEMENTED_DEVICE);
249         qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
250         qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
251         sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
252         downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
253         break;
254     default:
255         g_assert_not_reached();
256     }
257 
258     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
259     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
260                              &error_fatal);
261     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
262     /* Map the upstream end of the MPC into system memory */
263     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
264     memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
265     /* and connect its interrupt to the SSE-200 */
266     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
267                                 qdev_get_gpio_in_named(DEVICE(&mms->sse),
268                                                        "mpcexp_status", i));
269 
270     g_free(mpcname);
271     /* Return the register interface MR for our caller to map behind the PPC */
272     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
273 }
274 
275 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
276                               const char *name, hwaddr size)
277 {
278     PL031State *rtc = opaque;
279 
280     object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
281     sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
282     sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
283     return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
284 }
285 
286 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
287                                const char *name, hwaddr size)
288 {
289     PL011State *uart = opaque;
290     int i = uart - &mms->uart[0];
291     int irqbase = 7 + i * 6;
292     SysBusDevice *s;
293 
294     object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
295     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
296     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
297     s = SYS_BUS_DEVICE(uart);
298     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
299     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
300     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
301     sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
302     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
303     sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
304     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
305 }
306 
307 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
308                                        const char *name, hwaddr size)
309 {
310     /*
311      * Create the container MemoryRegion for all the devices that live
312      * behind the Musca-A PPC's single port. These devices don't have a PPC
313      * port each, but we use the PPCPortInfo struct as a convenient way
314      * to describe them. Note that addresses here are relative to the base
315      * address of the PPC port region: 0x40100000, and devices appear both
316      * at the 0x4... NS region and the 0x5... S region.
317      */
318     int i;
319     MemoryRegion *container = &mms->container;
320 
321     const PPCPortInfo devices[] = {
322         { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
323         { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
324         { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
325         { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
326         { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
327         { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
328         { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
329         { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
330         { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
331         { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
332         { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
333         { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
334         { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
335         { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
336         { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
337         { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
338     };
339 
340     memory_region_init(container, OBJECT(mms), "musca-device-container", size);
341 
342     for (i = 0; i < ARRAY_SIZE(devices); i++) {
343         const PPCPortInfo *pinfo = &devices[i];
344         MemoryRegion *mr;
345 
346         mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
347         memory_region_add_subregion(container, pinfo->addr, mr);
348     }
349 
350     return &mms->container;
351 }
352 
353 static void musca_init(MachineState *machine)
354 {
355     MuscaMachineState *mms = MUSCA_MACHINE(machine);
356     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
357     MachineClass *mc = MACHINE_GET_CLASS(machine);
358     MemoryRegion *system_memory = get_system_memory();
359     DeviceState *ssedev;
360     DeviceState *dev_splitter;
361     const PPCInfo *ppcs;
362     int num_ppcs;
363     int i;
364 
365     assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
366     assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
367 
368     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
369         error_report("This board can only be used with CPU %s",
370                      mc->default_cpu_type);
371         exit(1);
372     }
373 
374     object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
375                             TYPE_SSE200);
376     ssedev = DEVICE(&mms->sse);
377     object_property_set_link(OBJECT(&mms->sse), "memory",
378                              OBJECT(system_memory), &error_fatal);
379     qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
380     qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
381     qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
382     qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
383     /*
384      * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
385      * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
386      */
387     if (mmc->type == MUSCA_B1) {
388         qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
389         qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
390     }
391     sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
392 
393     /*
394      * We need to create splitters to feed the IRQ inputs
395      * for each CPU in the SSE-200 from each device in the board.
396      */
397     for (i = 0; i < mmc->num_irqs; i++) {
398         char *name = g_strdup_printf("musca-irq-splitter%d", i);
399         SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
400 
401         object_initialize_child_with_props(OBJECT(machine), name, splitter,
402                                            sizeof(*splitter), TYPE_SPLIT_IRQ,
403                                            &error_fatal, NULL);
404         g_free(name);
405 
406         object_property_set_int(OBJECT(splitter), "num-lines", 2,
407                                 &error_fatal);
408         qdev_realize(DEVICE(splitter), NULL, &error_fatal);
409         qdev_connect_gpio_out(DEVICE(splitter), 0,
410                               qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
411         qdev_connect_gpio_out(DEVICE(splitter), 1,
412                               qdev_get_gpio_in_named(ssedev,
413                                                      "EXP_CPU1_IRQ", i));
414     }
415 
416     /*
417      * The sec_resp_cfg output from the SSE-200 must be split into multiple
418      * lines, one for each of the PPCs we create here.
419      */
420     object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
421                                        &mms->sec_resp_splitter,
422                                        sizeof(mms->sec_resp_splitter),
423                                        TYPE_SPLIT_IRQ, &error_fatal, NULL);
424 
425     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
426                             ARRAY_SIZE(mms->ppc), &error_fatal);
427     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
428     dev_splitter = DEVICE(&mms->sec_resp_splitter);
429     qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
430                                 qdev_get_gpio_in(dev_splitter, 0));
431 
432     /*
433      * Most of the devices in the board are behind Peripheral Protection
434      * Controllers. The required order for initializing things is:
435      *  + initialize the PPC
436      *  + initialize, configure and realize downstream devices
437      *  + connect downstream device MemoryRegions to the PPC
438      *  + realize the PPC
439      *  + map the PPC's MemoryRegions to the places in the address map
440      *    where the downstream devices should appear
441      *  + wire up the PPC's control lines to the SSE object
442      *
443      * The PPC mapping differs for the -A and -B1 variants; the -A version
444      * is much simpler, using only a single port of a single PPC and putting
445      * all the devices behind that.
446      */
447     const PPCInfo a_ppcs[] = { {
448             .name = "ahb_ppcexp0",
449             .ports = {
450                 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
451             },
452         },
453     };
454 
455     /*
456      * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
457      * and the 0x5.. S region. Devices listed with an 0x5.. address appear
458      * only in the S region.
459      */
460     const PPCInfo b1_ppcs[] = { {
461             .name = "apb_ppcexp0",
462             .ports = {
463                 { "eflash0", make_unimp_dev, &mms->eflash[0],
464                   0x52400000, 0x1000 },
465                 { "eflash1", make_unimp_dev, &mms->eflash[1],
466                   0x52500000, 0x1000 },
467                 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
468                 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
469                 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
470                 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
471                 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
472                 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
473                 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
474                 { }, /* port 9: unused */
475                 { }, /* port 10: unused */
476                 { }, /* port 11: unused */
477                 { }, /* port 12: unused */
478                 { }, /* port 13: unused */
479                 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
480             },
481         }, {
482             .name = "apb_ppcexp1",
483             .ports = {
484                 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
485                 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
486                 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
487                 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
488                 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
489                 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
490                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
491                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
492                 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
493                 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
494                 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
495                 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
496                 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
497                 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
498             },
499         }, {
500             .name = "ahb_ppcexp0",
501             .ports = {
502                 { }, /* port 0: unused */
503                 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
504             },
505         },
506     };
507 
508     switch (mmc->type) {
509     case MUSCA_A:
510         ppcs = a_ppcs;
511         num_ppcs = ARRAY_SIZE(a_ppcs);
512         break;
513     case MUSCA_B1:
514         ppcs = b1_ppcs;
515         num_ppcs = ARRAY_SIZE(b1_ppcs);
516         break;
517     default:
518         g_assert_not_reached();
519     }
520     assert(num_ppcs <= MUSCA_PPC_MAX);
521 
522     for (i = 0; i < num_ppcs; i++) {
523         const PPCInfo *ppcinfo = &ppcs[i];
524         TZPPC *ppc = &mms->ppc[i];
525         DeviceState *ppcdev;
526         int port;
527         char *gpioname;
528 
529         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
530                                 TYPE_TZ_PPC);
531         ppcdev = DEVICE(ppc);
532 
533         for (port = 0; port < TZ_NUM_PORTS; port++) {
534             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
535             MemoryRegion *mr;
536             char *portname;
537 
538             if (!pinfo->devfn) {
539                 continue;
540             }
541 
542             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
543             portname = g_strdup_printf("port[%d]", port);
544             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
545                                      &error_fatal);
546             g_free(portname);
547         }
548 
549         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
550 
551         for (port = 0; port < TZ_NUM_PORTS; port++) {
552             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
553 
554             if (!pinfo->devfn) {
555                 continue;
556             }
557             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
558 
559             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
560             qdev_connect_gpio_out_named(ssedev, gpioname, port,
561                                         qdev_get_gpio_in_named(ppcdev,
562                                                                "cfg_nonsec",
563                                                                port));
564             g_free(gpioname);
565             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
566             qdev_connect_gpio_out_named(ssedev, gpioname, port,
567                                         qdev_get_gpio_in_named(ppcdev,
568                                                                "cfg_ap", port));
569             g_free(gpioname);
570         }
571 
572         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
573         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
574                                     qdev_get_gpio_in_named(ppcdev,
575                                                            "irq_enable", 0));
576         g_free(gpioname);
577         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
578         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
579                                     qdev_get_gpio_in_named(ppcdev,
580                                                            "irq_clear", 0));
581         g_free(gpioname);
582         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
583         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
584                                     qdev_get_gpio_in_named(ssedev,
585                                                            gpioname, 0));
586         g_free(gpioname);
587 
588         qdev_connect_gpio_out(dev_splitter, i,
589                               qdev_get_gpio_in_named(ppcdev,
590                                                      "cfg_sec_resp", 0));
591     }
592 
593     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
594 }
595 
596 static void musca_class_init(ObjectClass *oc, void *data)
597 {
598     MachineClass *mc = MACHINE_CLASS(oc);
599 
600     mc->default_cpus = 2;
601     mc->min_cpus = mc->default_cpus;
602     mc->max_cpus = mc->default_cpus;
603     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
604     mc->init = musca_init;
605 }
606 
607 static void musca_a_class_init(ObjectClass *oc, void *data)
608 {
609     MachineClass *mc = MACHINE_CLASS(oc);
610     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
611 
612     mc->desc = "ARM Musca-A board (dual Cortex-M33)";
613     mmc->type = MUSCA_A;
614     mmc->init_svtor = 0x10200000;
615     mmc->sram_addr_width = 15;
616     mmc->num_irqs = 64;
617     mmc->mpc_info = a_mpc_info;
618     mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
619 }
620 
621 static void musca_b1_class_init(ObjectClass *oc, void *data)
622 {
623     MachineClass *mc = MACHINE_CLASS(oc);
624     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
625 
626     mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
627     mmc->type = MUSCA_B1;
628     /*
629      * This matches the DAPlink firmware which boots from QSPI. There
630      * is also a firmware blob which boots from the eFlash, which
631      * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
632      * though we could in theory expose a machine property on the command
633      * line to allow the user to request eFlash boot.
634      */
635     mmc->init_svtor = 0x10000000;
636     mmc->sram_addr_width = 17;
637     mmc->num_irqs = 96;
638     mmc->mpc_info = b1_mpc_info;
639     mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
640 }
641 
642 static const TypeInfo musca_info = {
643     .name = TYPE_MUSCA_MACHINE,
644     .parent = TYPE_MACHINE,
645     .abstract = true,
646     .instance_size = sizeof(MuscaMachineState),
647     .class_size = sizeof(MuscaMachineClass),
648     .class_init = musca_class_init,
649 };
650 
651 static const TypeInfo musca_a_info = {
652     .name = TYPE_MUSCA_A_MACHINE,
653     .parent = TYPE_MUSCA_MACHINE,
654     .class_init = musca_a_class_init,
655 };
656 
657 static const TypeInfo musca_b1_info = {
658     .name = TYPE_MUSCA_B1_MACHINE,
659     .parent = TYPE_MUSCA_MACHINE,
660     .class_init = musca_b1_class_init,
661 };
662 
663 static void musca_machine_init(void)
664 {
665     type_register_static(&musca_info);
666     type_register_static(&musca_a_info);
667     type_register_static(&musca_b1_info);
668 }
669 
670 type_init(musca_machine_init);
671