xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 812b31d3f91507160c367440c17715b62d5e0869)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20  *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
21  *
22  * Links to the TRM for the board itself and to the various Application
23  * Notes which document the FPGA images can be found here:
24  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25  *
26  * Board TRM:
27  * https://developer.arm.com/documentation/100112/latest/
28  * Application Note AN505:
29  * https://developer.arm.com/documentation/dai0505/latest/
30  * Application Note AN521:
31  * https://developer.arm.com/documentation/dai0521/latest/
32  * Application Note AN524:
33  * https://developer.arm.com/documentation/dai0524/latest/
34  * Application Note AN547:
35  * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
36  *
37  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38  * (ARM ECM0601256) for the details of some of the device layout:
39  *  https://developer.arm.com/documentation/ecm0601256/latest
40  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41  * most of the device layout:
42  *  https://developer.arm.com/documentation/101104/latest/
43  * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44  *  https://developer.arm.com/documentation/101773/latest/
45  */
46 
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
77 
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
80 
81 typedef enum MPS2TZFPGAType {
82     FPGA_AN505,
83     FPGA_AN521,
84     FPGA_AN524,
85     FPGA_AN547,
86 } MPS2TZFPGAType;
87 
88 /*
89  * Define the layout of RAM in a board, including which parts are
90  * behind which MPCs.
91  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92  * -1 means "use the system RAM".
93  */
94 typedef struct RAMInfo {
95     const char *name;
96     uint32_t base;
97     uint32_t size;
98     int mpc; /* MPC number, -1 for "not behind an MPC" */
99     int mrindex;
100     int flags;
101 } RAMInfo;
102 
103 /*
104  * Flag values:
105  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
106  *    MPC specified by its .mpc value
107  *  IS_ROM: this RAM area is read-only
108  */
109 #define IS_ALIAS 1
110 #define IS_ROM 2
111 
112 struct MPS2TZMachineClass {
113     MachineClass parent;
114     MPS2TZFPGAType fpga_type;
115     uint32_t scc_id;
116     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117     uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118     uint32_t len_oscclk;
119     const uint32_t *oscclk;
120     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122     bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123     int numirq; /* Number of external interrupts */
124     int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125     uint32_t init_svtor; /* init-svtor setting for SSE */
126     uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
127     const RAMInfo *raminfo;
128     const char *armsse_type;
129     uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
130 };
131 
132 struct MPS2TZMachineState {
133     MachineState parent;
134 
135     ARMSSE iotkit;
136     MemoryRegion ram[MPS2TZ_RAM_MAX];
137     MemoryRegion eth_usb_container;
138 
139     MPS2SCC scc;
140     MPS2FPGAIO fpgaio;
141     TZPPC ppc[5];
142     TZMPC mpc[3];
143     PL022State spi[5];
144     ArmSbconI2CState i2c[5];
145     UnimplementedDeviceState i2s_audio;
146     UnimplementedDeviceState gpio[4];
147     UnimplementedDeviceState gfx;
148     UnimplementedDeviceState cldc;
149     UnimplementedDeviceState usb;
150     PL031State rtc;
151     PL080State dma[4];
152     TZMSC msc[4];
153     CMSDKAPBUART uart[6];
154     SplitIRQ sec_resp_splitter;
155     qemu_or_irq uart_irq_orgate;
156     DeviceState *lan9118;
157     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
158     Clock *sysclk;
159     Clock *s32kclk;
160 
161     bool remap;
162     qemu_irq remap_irq;
163 };
164 
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
170 
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
172 
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
175 
176 /*
177  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178  * emulation of that much guest RAM, so artificially make it smaller.
179  */
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
182 #else
183 #define MPS3_DDR_SIZE (2 * GiB)
184 #endif
185 
186 static const uint32_t an505_oscclk[] = {
187     40000000,
188     24580000,
189     25000000,
190 };
191 
192 static const uint32_t an524_oscclk[] = {
193     24000000,
194     32000000,
195     50000000,
196     50000000,
197     24576000,
198     23750000,
199 };
200 
201 static const RAMInfo an505_raminfo[] = { {
202         .name = "ssram-0",
203         .base = 0x00000000,
204         .size = 0x00400000,
205         .mpc = 0,
206         .mrindex = 0,
207     }, {
208         .name = "ssram-1",
209         .base = 0x28000000,
210         .size = 0x00200000,
211         .mpc = 1,
212         .mrindex = 1,
213     }, {
214         .name = "ssram-2",
215         .base = 0x28200000,
216         .size = 0x00200000,
217         .mpc = 2,
218         .mrindex = 2,
219     }, {
220         .name = "ssram-0-alias",
221         .base = 0x00400000,
222         .size = 0x00400000,
223         .mpc = 0,
224         .mrindex = 3,
225         .flags = IS_ALIAS,
226     }, {
227         /* Use the largest bit of contiguous RAM as our "system memory" */
228         .name = "mps.ram",
229         .base = 0x80000000,
230         .size = 16 * MiB,
231         .mpc = -1,
232         .mrindex = -1,
233     }, {
234         .name = NULL,
235     },
236 };
237 
238 /*
239  * Note that the addresses and MPC numbering here should match up
240  * with those used in remap_memory(), which can swap the BRAM and QSPI.
241  */
242 static const RAMInfo an524_raminfo[] = { {
243         .name = "bram",
244         .base = 0x00000000,
245         .size = 512 * KiB,
246         .mpc = 0,
247         .mrindex = 0,
248     }, {
249         /* We don't model QSPI flash yet; for now expose it as simple ROM */
250         .name = "QSPI",
251         .base = 0x28000000,
252         .size = 8 * MiB,
253         .mpc = 1,
254         .mrindex = 1,
255         .flags = IS_ROM,
256     }, {
257         .name = "DDR",
258         .base = 0x60000000,
259         .size = MPS3_DDR_SIZE,
260         .mpc = 2,
261         .mrindex = -1,
262     }, {
263         .name = NULL,
264     },
265 };
266 
267 static const RAMInfo an547_raminfo[] = { {
268         .name = "sram",
269         .base = 0x01000000,
270         .size = 2 * MiB,
271         .mpc = 0,
272         .mrindex = 1,
273     }, {
274         .name = "sram 2",
275         .base = 0x21000000,
276         .size = 4 * MiB,
277         .mpc = -1,
278         .mrindex = 3,
279     }, {
280         /* We don't model QSPI flash yet; for now expose it as simple ROM */
281         .name = "QSPI",
282         .base = 0x28000000,
283         .size = 8 * MiB,
284         .mpc = 1,
285         .mrindex = 4,
286         .flags = IS_ROM,
287     }, {
288         .name = "DDR",
289         .base = 0x60000000,
290         .size = MPS3_DDR_SIZE,
291         .mpc = 2,
292         .mrindex = -1,
293     }, {
294         .name = NULL,
295     },
296 };
297 
298 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
299 {
300     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
301     const RAMInfo *p;
302     const RAMInfo *found = NULL;
303 
304     for (p = mmc->raminfo; p->name; p++) {
305         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
306             /* There should only be one entry in the array for this MPC */
307             g_assert(!found);
308             found = p;
309         }
310     }
311     /* if raminfo array doesn't have an entry for each MPC this is a bug */
312     assert(found);
313     return found;
314 }
315 
316 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
317                                     const RAMInfo *raminfo)
318 {
319     /* Return an initialized MemoryRegion for the RAMInfo. */
320     MemoryRegion *ram;
321 
322     if (raminfo->mrindex < 0) {
323         /* Means this RAMInfo is for QEMU's "system memory" */
324         MachineState *machine = MACHINE(mms);
325         assert(!(raminfo->flags & IS_ROM));
326         return machine->ram;
327     }
328 
329     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
330     ram = &mms->ram[raminfo->mrindex];
331 
332     memory_region_init_ram(ram, NULL, raminfo->name,
333                            raminfo->size, &error_fatal);
334     if (raminfo->flags & IS_ROM) {
335         memory_region_set_readonly(ram, true);
336     }
337     return ram;
338 }
339 
340 /* Create an alias of an entire original MemoryRegion @orig
341  * located at @base in the memory map.
342  */
343 static void make_ram_alias(MemoryRegion *mr, const char *name,
344                            MemoryRegion *orig, hwaddr base)
345 {
346     memory_region_init_alias(mr, NULL, name, orig, 0,
347                              memory_region_size(orig));
348     memory_region_add_subregion(get_system_memory(), base, mr);
349 }
350 
351 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
352 {
353     /*
354      * Return a qemu_irq which will signal IRQ n to all CPUs in the
355      * SSE.  The irqno should be as the CPU sees it, so the first
356      * external-to-the-SSE interrupt is 32.
357      */
358     MachineClass *mc = MACHINE_GET_CLASS(mms);
359     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
360 
361     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
362 
363     /*
364      * Convert from "CPU irq number" (as listed in the FPGA image
365      * documentation) to the SSE external-interrupt number.
366      */
367     irqno -= 32;
368 
369     if (mc->max_cpus > 1) {
370         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
371     } else {
372         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
373     }
374 }
375 
376 /* Most of the devices in the AN505 FPGA image sit behind
377  * Peripheral Protection Controllers. These data structures
378  * define the layout of which devices sit behind which PPCs.
379  * The devfn for each port is a function which creates, configures
380  * and initializes the device, returning the MemoryRegion which
381  * needs to be plugged into the downstream end of the PPC port.
382  */
383 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
384                                 const char *name, hwaddr size,
385                                 const int *irqs);
386 
387 typedef struct PPCPortInfo {
388     const char *name;
389     MakeDevFn *devfn;
390     void *opaque;
391     hwaddr addr;
392     hwaddr size;
393     int irqs[3]; /* currently no device needs more IRQ lines than this */
394 } PPCPortInfo;
395 
396 typedef struct PPCInfo {
397     const char *name;
398     PPCPortInfo ports[TZ_NUM_PORTS];
399 } PPCInfo;
400 
401 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
402                                     void *opaque,
403                                     const char *name, hwaddr size,
404                                     const int *irqs)
405 {
406     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
407      * and return a pointer to its MemoryRegion.
408      */
409     UnimplementedDeviceState *uds = opaque;
410 
411     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
412     qdev_prop_set_string(DEVICE(uds), "name", name);
413     qdev_prop_set_uint64(DEVICE(uds), "size", size);
414     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
415     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
416 }
417 
418 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
419                                const char *name, hwaddr size,
420                                const int *irqs)
421 {
422     /* The irq[] array is tx, rx, combined, in that order */
423     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
424     CMSDKAPBUART *uart = opaque;
425     int i = uart - &mms->uart[0];
426     SysBusDevice *s;
427     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
428 
429     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
430     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
431     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
432     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
433     s = SYS_BUS_DEVICE(uart);
434     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
435     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
436     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
437     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
438     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
439     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
440 }
441 
442 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
443                               const char *name, hwaddr size,
444                               const int *irqs)
445 {
446     MPS2SCC *scc = opaque;
447     DeviceState *sccdev;
448     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
449     uint32_t i;
450 
451     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
452     sccdev = DEVICE(scc);
453     qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
454     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
455     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
456     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
457     qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
458     for (i = 0; i < mmc->len_oscclk; i++) {
459         g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
460         qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
461     }
462     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
463     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
464 }
465 
466 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
467                                  const char *name, hwaddr size,
468                                  const int *irqs)
469 {
470     MPS2FPGAIO *fpgaio = opaque;
471     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
472 
473     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
474     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
475     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
476     qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
477     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
478     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
479 }
480 
481 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
482                                   const char *name, hwaddr size,
483                                   const int *irqs)
484 {
485     SysBusDevice *s;
486     NICInfo *nd = &nd_table[0];
487 
488     /* In hardware this is a LAN9220; the LAN9118 is software compatible
489      * except that it doesn't support the checksum-offload feature.
490      */
491     qemu_check_nic_model(nd, "lan9118");
492     mms->lan9118 = qdev_new(TYPE_LAN9118);
493     qdev_set_nic_properties(mms->lan9118, nd);
494 
495     s = SYS_BUS_DEVICE(mms->lan9118);
496     sysbus_realize_and_unref(s, &error_fatal);
497     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
498     return sysbus_mmio_get_region(s, 0);
499 }
500 
501 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
502                                   const char *name, hwaddr size,
503                                   const int *irqs)
504 {
505     /*
506      * The AN524 makes the ethernet and USB share a PPC port.
507      * irqs[] is the ethernet IRQ.
508      */
509     SysBusDevice *s;
510     NICInfo *nd = &nd_table[0];
511 
512     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
513                        "mps2-tz-eth-usb-container", 0x200000);
514 
515     /*
516      * In hardware this is a LAN9220; the LAN9118 is software compatible
517      * except that it doesn't support the checksum-offload feature.
518      */
519     qemu_check_nic_model(nd, "lan9118");
520     mms->lan9118 = qdev_new(TYPE_LAN9118);
521     qdev_set_nic_properties(mms->lan9118, nd);
522 
523     s = SYS_BUS_DEVICE(mms->lan9118);
524     sysbus_realize_and_unref(s, &error_fatal);
525     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
526 
527     memory_region_add_subregion(&mms->eth_usb_container,
528                                 0, sysbus_mmio_get_region(s, 0));
529 
530     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
531     object_initialize_child(OBJECT(mms), "usb-otg",
532                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
533     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
534     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
535     s = SYS_BUS_DEVICE(&mms->usb);
536     sysbus_realize(s, &error_fatal);
537 
538     memory_region_add_subregion(&mms->eth_usb_container,
539                                 0x100000, sysbus_mmio_get_region(s, 0));
540 
541     return &mms->eth_usb_container;
542 }
543 
544 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
545                               const char *name, hwaddr size,
546                               const int *irqs)
547 {
548     TZMPC *mpc = opaque;
549     int i = mpc - &mms->mpc[0];
550     MemoryRegion *upstream;
551     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
552     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
553 
554     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
555     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
556                              &error_fatal);
557     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
558     /* Map the upstream end of the MPC into system memory */
559     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
560     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
561     /* and connect its interrupt to the IoTKit */
562     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
563                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
564                                                        "mpcexp_status", i));
565 
566     /* Return the register interface MR for our caller to map behind the PPC */
567     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
568 }
569 
570 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
571 {
572     /*
573      * Return the canonical address of the block which will be mapped
574      * at address 0x0 (i.e. where the vector table is).
575      * This is usually 0, but if the AN524 alternate memory map is
576      * enabled it will be the base address of the QSPI block.
577      */
578     return mms->remap ? 0x28000000 : 0;
579 }
580 
581 static void remap_memory(MPS2TZMachineState *mms, int map)
582 {
583     /*
584      * Remap the memory for the AN524. 'map' is the value of
585      * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
586      * for the "option 1" mapping where QSPI is at address 0.
587      *
588      * Effectively we need to swap around the "upstream" ends of
589      * MPC 0 and MPC 1.
590      */
591     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
592     int i;
593 
594     if (mmc->fpga_type != FPGA_AN524) {
595         return;
596     }
597 
598     memory_region_transaction_begin();
599     for (i = 0; i < 2; i++) {
600         TZMPC *mpc = &mms->mpc[i];
601         MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
602         hwaddr addr = (i ^ map) ? 0x28000000 : 0;
603 
604         memory_region_set_address(upstream, addr);
605     }
606     memory_region_transaction_commit();
607 }
608 
609 static void remap_irq_fn(void *opaque, int n, int level)
610 {
611     MPS2TZMachineState *mms = opaque;
612 
613     remap_memory(mms, level);
614 }
615 
616 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
617                               const char *name, hwaddr size,
618                               const int *irqs)
619 {
620     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
621     PL080State *dma = opaque;
622     int i = dma - &mms->dma[0];
623     SysBusDevice *s;
624     char *mscname = g_strdup_printf("%s-msc", name);
625     TZMSC *msc = &mms->msc[i];
626     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
627     MemoryRegion *msc_upstream;
628     MemoryRegion *msc_downstream;
629 
630     /*
631      * Each DMA device is a PL081 whose transaction master interface
632      * is guarded by a Master Security Controller. The downstream end of
633      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
634      * DMA devices can see all devices and memory that the CPU does.
635      */
636     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
637     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
638     object_property_set_link(OBJECT(msc), "downstream",
639                              OBJECT(msc_downstream), &error_fatal);
640     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
641     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
642 
643     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
644                                 qdev_get_gpio_in_named(iotkitdev,
645                                                        "mscexp_status", i));
646     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
647                                 qdev_get_gpio_in_named(DEVICE(msc),
648                                                        "irq_clear", 0));
649     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
650                                 qdev_get_gpio_in_named(DEVICE(msc),
651                                                        "cfg_nonsec", 0));
652     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
653                           ARRAY_SIZE(mms->ppc) + i,
654                           qdev_get_gpio_in_named(DEVICE(msc),
655                                                  "cfg_sec_resp", 0));
656     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
657 
658     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
659     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
660                              &error_fatal);
661     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
662 
663     s = SYS_BUS_DEVICE(dma);
664     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
665     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
666     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
667     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
668 
669     g_free(mscname);
670     return sysbus_mmio_get_region(s, 0);
671 }
672 
673 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
674                               const char *name, hwaddr size,
675                               const int *irqs)
676 {
677     /*
678      * The AN505 has five PL022 SPI controllers.
679      * One of these should have the LCD controller behind it; the others
680      * are connected only to the FPGA's "general purpose SPI connector"
681      * or "shield" expansion connectors.
682      * Note that if we do implement devices behind SPI, the chip select
683      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
684      */
685     PL022State *spi = opaque;
686     SysBusDevice *s;
687 
688     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
689     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
690     s = SYS_BUS_DEVICE(spi);
691     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
692     return sysbus_mmio_get_region(s, 0);
693 }
694 
695 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
696                               const char *name, hwaddr size,
697                               const int *irqs)
698 {
699     ArmSbconI2CState *i2c = opaque;
700     SysBusDevice *s;
701 
702     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
703     s = SYS_BUS_DEVICE(i2c);
704     sysbus_realize(s, &error_fatal);
705     return sysbus_mmio_get_region(s, 0);
706 }
707 
708 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
709                               const char *name, hwaddr size,
710                               const int *irqs)
711 {
712     PL031State *pl031 = opaque;
713     SysBusDevice *s;
714 
715     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
716     s = SYS_BUS_DEVICE(pl031);
717     sysbus_realize(s, &error_fatal);
718     /*
719      * The board docs don't give an IRQ number for the PL031, so
720      * presumably it is not connected.
721      */
722     return sysbus_mmio_get_region(s, 0);
723 }
724 
725 static void create_non_mpc_ram(MPS2TZMachineState *mms)
726 {
727     /*
728      * Handle the RAMs which are either not behind MPCs or which are
729      * aliases to another MPC.
730      */
731     const RAMInfo *p;
732     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
733 
734     for (p = mmc->raminfo; p->name; p++) {
735         if (p->flags & IS_ALIAS) {
736             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
737             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
738             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
739         } else if (p->mpc == -1) {
740             /* RAM not behind an MPC */
741             MemoryRegion *mr = mr_for_raminfo(mms, p);
742             memory_region_add_subregion(get_system_memory(), p->base, mr);
743         }
744     }
745 }
746 
747 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
748 {
749     /* Return the size of the RAM block at guest address zero */
750     const RAMInfo *p;
751     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
752 
753     /*
754      * Use a per-board specification (for when the boot RAM is in
755      * the SSE and so doesn't have a RAMInfo list entry)
756      */
757     if (mmc->boot_ram_size) {
758         return mmc->boot_ram_size;
759     }
760 
761     for (p = mmc->raminfo; p->name; p++) {
762         if (p->base == boot_mem_base(mms)) {
763             return p->size;
764         }
765     }
766     g_assert_not_reached();
767 }
768 
769 static void mps2tz_common_init(MachineState *machine)
770 {
771     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
772     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
773     MachineClass *mc = MACHINE_GET_CLASS(machine);
774     MemoryRegion *system_memory = get_system_memory();
775     DeviceState *iotkitdev;
776     DeviceState *dev_splitter;
777     const PPCInfo *ppcs;
778     int num_ppcs;
779     int i;
780 
781     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
782         error_report("This board can only be used with CPU %s",
783                      mc->default_cpu_type);
784         exit(1);
785     }
786 
787     if (machine->ram_size != mc->default_ram_size) {
788         char *sz = size_to_str(mc->default_ram_size);
789         error_report("Invalid RAM size, should be %s", sz);
790         g_free(sz);
791         exit(EXIT_FAILURE);
792     }
793 
794     /* These clocks don't need migration because they are fixed-frequency */
795     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
796     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
797     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
798     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
799 
800     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
801                             mmc->armsse_type);
802     iotkitdev = DEVICE(&mms->iotkit);
803     object_property_set_link(OBJECT(&mms->iotkit), "memory",
804                              OBJECT(system_memory), &error_abort);
805     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
806     qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
807     qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
808     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
809     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
810     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
811 
812     /*
813      * If this board has more than one CPU, then we need to create splitters
814      * to feed the IRQ inputs for each CPU in the SSE from each device in the
815      * board. If there is only one CPU, we can just wire the device IRQ
816      * directly to the SSE's IRQ input.
817      */
818     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
819     if (mc->max_cpus > 1) {
820         for (i = 0; i < mmc->numirq; i++) {
821             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
822             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
823 
824             object_initialize_child_with_props(OBJECT(machine), name,
825                                                splitter, sizeof(*splitter),
826                                                TYPE_SPLIT_IRQ, &error_fatal,
827                                                NULL);
828             g_free(name);
829 
830             object_property_set_int(OBJECT(splitter), "num-lines", 2,
831                                     &error_fatal);
832             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
833             qdev_connect_gpio_out(DEVICE(splitter), 0,
834                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
835                                                          "EXP_IRQ", i));
836             qdev_connect_gpio_out(DEVICE(splitter), 1,
837                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
838                                                          "EXP_CPU1_IRQ", i));
839         }
840     }
841 
842     /* The sec_resp_cfg output from the IoTKit must be split into multiple
843      * lines, one for each of the PPCs we create here, plus one per MSC.
844      */
845     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
846                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
847     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
848                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
849                             &error_fatal);
850     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
851     dev_splitter = DEVICE(&mms->sec_resp_splitter);
852     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
853                                 qdev_get_gpio_in(dev_splitter, 0));
854 
855     /*
856      * The IoTKit sets up much of the memory layout, including
857      * the aliases between secure and non-secure regions in the
858      * address space, and also most of the devices in the system.
859      * The FPGA itself contains various RAMs and some additional devices.
860      * The FPGA images have an odd combination of different RAMs,
861      * because in hardware they are different implementations and
862      * connected to different buses, giving varying performance/size
863      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
864      * call the largest lump our "system memory".
865      */
866 
867     /*
868      * The overflow IRQs for all UARTs are ORed together.
869      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
870      * Create the OR gate for this: it has one input for the TX overflow
871      * and one for the RX overflow for each UART we might have.
872      * (If the board has fewer than the maximum possible number of UARTs
873      * those inputs are never wired up and are treated as always-zero.)
874      */
875     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
876                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
877     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
878                             2 * ARRAY_SIZE(mms->uart),
879                             &error_fatal);
880     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
881     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
882                           get_sse_irq_in(mms, mmc->uart_overflow_irq));
883 
884     /* Most of the devices in the FPGA are behind Peripheral Protection
885      * Controllers. The required order for initializing things is:
886      *  + initialize the PPC
887      *  + initialize, configure and realize downstream devices
888      *  + connect downstream device MemoryRegions to the PPC
889      *  + realize the PPC
890      *  + map the PPC's MemoryRegions to the places in the address map
891      *    where the downstream devices should appear
892      *  + wire up the PPC's control lines to the IoTKit object
893      */
894 
895     const PPCInfo an505_ppcs[] = { {
896             .name = "apb_ppcexp0",
897             .ports = {
898                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
899                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
900                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
901             },
902         }, {
903             .name = "apb_ppcexp1",
904             .ports = {
905                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
906                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
907                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
908                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
909                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
910                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
911                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
912                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
913                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
914                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
915                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
916                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
917                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
918                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
919             },
920         }, {
921             .name = "apb_ppcexp2",
922             .ports = {
923                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
924                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
925                   0x40301000, 0x1000 },
926                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
927             },
928         }, {
929             .name = "ahb_ppcexp0",
930             .ports = {
931                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
932                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
933                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
934                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
935                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
936                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
937             },
938         }, {
939             .name = "ahb_ppcexp1",
940             .ports = {
941                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
942                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
943                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
944                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
945             },
946         },
947     };
948 
949     const PPCInfo an524_ppcs[] = { {
950             .name = "apb_ppcexp0",
951             .ports = {
952                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
953                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
954                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
955             },
956         }, {
957             .name = "apb_ppcexp1",
958             .ports = {
959                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
960                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
961                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
962                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
963                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
964                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
965                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
966                 { /* port 7 reserved */ },
967                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
968             },
969         }, {
970             .name = "apb_ppcexp2",
971             .ports = {
972                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
973                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
974                   0x41301000, 0x1000 },
975                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
976                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
977                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
978                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
979                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
980                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
981                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
982 
983                 { /* port 9 reserved */ },
984                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
985                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
986             },
987         }, {
988             .name = "ahb_ppcexp0",
989             .ports = {
990                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
991                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
992                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
993                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
994                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
995             },
996         },
997     };
998 
999     const PPCInfo an547_ppcs[] = { {
1000             .name = "apb_ppcexp0",
1001             .ports = {
1002                 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1003                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1004                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1005             },
1006         }, {
1007             .name = "apb_ppcexp1",
1008             .ports = {
1009                 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
1010                 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
1011                 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1012                 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1013                 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1014                 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
1015                 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
1016                 { /* port 7 reserved */ },
1017                 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
1018             },
1019         }, {
1020             .name = "apb_ppcexp2",
1021             .ports = {
1022                 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1023                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1024                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1025                 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1026                 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1027                 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1028                 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1029                 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1030                 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1031 
1032                 { /* port 9 reserved */ },
1033                 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1034                 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1035             },
1036         }, {
1037             .name = "ahb_ppcexp0",
1038             .ports = {
1039                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1040                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1041                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1042                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1043                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1044             },
1045         },
1046     };
1047 
1048     switch (mmc->fpga_type) {
1049     case FPGA_AN505:
1050     case FPGA_AN521:
1051         ppcs = an505_ppcs;
1052         num_ppcs = ARRAY_SIZE(an505_ppcs);
1053         break;
1054     case FPGA_AN524:
1055         ppcs = an524_ppcs;
1056         num_ppcs = ARRAY_SIZE(an524_ppcs);
1057         break;
1058     case FPGA_AN547:
1059         ppcs = an547_ppcs;
1060         num_ppcs = ARRAY_SIZE(an547_ppcs);
1061         break;
1062     default:
1063         g_assert_not_reached();
1064     }
1065 
1066     for (i = 0; i < num_ppcs; i++) {
1067         const PPCInfo *ppcinfo = &ppcs[i];
1068         TZPPC *ppc = &mms->ppc[i];
1069         DeviceState *ppcdev;
1070         int port;
1071         char *gpioname;
1072 
1073         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1074                                 TYPE_TZ_PPC);
1075         ppcdev = DEVICE(ppc);
1076 
1077         for (port = 0; port < TZ_NUM_PORTS; port++) {
1078             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1079             MemoryRegion *mr;
1080             char *portname;
1081 
1082             if (!pinfo->devfn) {
1083                 continue;
1084             }
1085 
1086             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1087                               pinfo->irqs);
1088             portname = g_strdup_printf("port[%d]", port);
1089             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1090                                      &error_fatal);
1091             g_free(portname);
1092         }
1093 
1094         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1095 
1096         for (port = 0; port < TZ_NUM_PORTS; port++) {
1097             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1098 
1099             if (!pinfo->devfn) {
1100                 continue;
1101             }
1102             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1103 
1104             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1105             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1106                                         qdev_get_gpio_in_named(ppcdev,
1107                                                                "cfg_nonsec",
1108                                                                port));
1109             g_free(gpioname);
1110             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1111             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1112                                         qdev_get_gpio_in_named(ppcdev,
1113                                                                "cfg_ap", port));
1114             g_free(gpioname);
1115         }
1116 
1117         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1118         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1119                                     qdev_get_gpio_in_named(ppcdev,
1120                                                            "irq_enable", 0));
1121         g_free(gpioname);
1122         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1123         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1124                                     qdev_get_gpio_in_named(ppcdev,
1125                                                            "irq_clear", 0));
1126         g_free(gpioname);
1127         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1128         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1129                                     qdev_get_gpio_in_named(iotkitdev,
1130                                                            gpioname, 0));
1131         g_free(gpioname);
1132 
1133         qdev_connect_gpio_out(dev_splitter, i,
1134                               qdev_get_gpio_in_named(ppcdev,
1135                                                      "cfg_sec_resp", 0));
1136     }
1137 
1138     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1139 
1140     if (mmc->fpga_type == FPGA_AN547) {
1141         create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1142         create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1143     }
1144 
1145     create_non_mpc_ram(mms);
1146 
1147     if (mmc->fpga_type == FPGA_AN524) {
1148         /*
1149          * Connect the line from the SCC so that we can remap when the
1150          * guest updates that register.
1151          */
1152         mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1153         qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1154                                     mms->remap_irq);
1155     }
1156 
1157     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1158                        boot_ram_size(mms));
1159 }
1160 
1161 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1162                                int *iregion, bool *exempt, bool *ns, bool *nsc)
1163 {
1164     /*
1165      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1166      * the Master Security Controllers. Thes have the same logic as
1167      * is used by the IoTKit for the IDAU connected to the CPU, except
1168      * that MSCs don't care about the NSC attribute.
1169      */
1170     int region = extract32(address, 28, 4);
1171 
1172     *ns = !(region & 1);
1173     *nsc = false;
1174     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1175     *exempt = (address & 0xeff00000) == 0xe0000000;
1176     *iregion = region;
1177 }
1178 
1179 static char *mps2_get_remap(Object *obj, Error **errp)
1180 {
1181     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1182     const char *val = mms->remap ? "QSPI" : "BRAM";
1183     return g_strdup(val);
1184 }
1185 
1186 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1187 {
1188     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1189 
1190     if (!strcmp(value, "BRAM")) {
1191         mms->remap = false;
1192     } else if (!strcmp(value, "QSPI")) {
1193         mms->remap = true;
1194     } else {
1195         error_setg(errp, "Invalid remap value");
1196         error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1197     }
1198 }
1199 
1200 static void mps2_machine_reset(MachineState *machine)
1201 {
1202     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1203 
1204     /*
1205      * Set the initial memory mapping before triggering the reset of
1206      * the rest of the system, so that the guest image loader and CPU
1207      * reset see the correct mapping.
1208      */
1209     remap_memory(mms, mms->remap);
1210     qemu_devices_reset();
1211 }
1212 
1213 static void mps2tz_class_init(ObjectClass *oc, void *data)
1214 {
1215     MachineClass *mc = MACHINE_CLASS(oc);
1216     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1217 
1218     mc->init = mps2tz_common_init;
1219     mc->reset = mps2_machine_reset;
1220     iic->check = mps2_tz_idau_check;
1221 }
1222 
1223 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1224 {
1225     /*
1226      * Set mc->default_ram_size and default_ram_id from the
1227      * information in mmc->raminfo.
1228      */
1229     MachineClass *mc = MACHINE_CLASS(mmc);
1230     const RAMInfo *p;
1231 
1232     for (p = mmc->raminfo; p->name; p++) {
1233         if (p->mrindex < 0) {
1234             /* Found the entry for "system memory" */
1235             mc->default_ram_size = p->size;
1236             mc->default_ram_id = p->name;
1237             return;
1238         }
1239     }
1240     g_assert_not_reached();
1241 }
1242 
1243 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1244 {
1245     MachineClass *mc = MACHINE_CLASS(oc);
1246     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1247 
1248     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1249     mc->default_cpus = 1;
1250     mc->min_cpus = mc->default_cpus;
1251     mc->max_cpus = mc->default_cpus;
1252     mmc->fpga_type = FPGA_AN505;
1253     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1254     mmc->scc_id = 0x41045050;
1255     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1256     mmc->apb_periph_frq = mmc->sysclk_frq;
1257     mmc->oscclk = an505_oscclk;
1258     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1259     mmc->fpgaio_num_leds = 2;
1260     mmc->fpgaio_has_switches = false;
1261     mmc->fpgaio_has_dbgctrl = false;
1262     mmc->numirq = 92;
1263     mmc->uart_overflow_irq = 47;
1264     mmc->init_svtor = 0x10000000;
1265     mmc->sram_addr_width = 15;
1266     mmc->raminfo = an505_raminfo;
1267     mmc->armsse_type = TYPE_IOTKIT;
1268     mmc->boot_ram_size = 0;
1269     mps2tz_set_default_ram_info(mmc);
1270 }
1271 
1272 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1273 {
1274     MachineClass *mc = MACHINE_CLASS(oc);
1275     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1276 
1277     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1278     mc->default_cpus = 2;
1279     mc->min_cpus = mc->default_cpus;
1280     mc->max_cpus = mc->default_cpus;
1281     mmc->fpga_type = FPGA_AN521;
1282     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1283     mmc->scc_id = 0x41045210;
1284     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1285     mmc->apb_periph_frq = mmc->sysclk_frq;
1286     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1287     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1288     mmc->fpgaio_num_leds = 2;
1289     mmc->fpgaio_has_switches = false;
1290     mmc->fpgaio_has_dbgctrl = false;
1291     mmc->numirq = 92;
1292     mmc->uart_overflow_irq = 47;
1293     mmc->init_svtor = 0x10000000;
1294     mmc->sram_addr_width = 15;
1295     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1296     mmc->armsse_type = TYPE_SSE200;
1297     mmc->boot_ram_size = 0;
1298     mps2tz_set_default_ram_info(mmc);
1299 }
1300 
1301 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1302 {
1303     MachineClass *mc = MACHINE_CLASS(oc);
1304     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1305 
1306     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1307     mc->default_cpus = 2;
1308     mc->min_cpus = mc->default_cpus;
1309     mc->max_cpus = mc->default_cpus;
1310     mmc->fpga_type = FPGA_AN524;
1311     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1312     mmc->scc_id = 0x41045240;
1313     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1314     mmc->apb_periph_frq = mmc->sysclk_frq;
1315     mmc->oscclk = an524_oscclk;
1316     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1317     mmc->fpgaio_num_leds = 10;
1318     mmc->fpgaio_has_switches = true;
1319     mmc->fpgaio_has_dbgctrl = false;
1320     mmc->numirq = 95;
1321     mmc->uart_overflow_irq = 47;
1322     mmc->init_svtor = 0x10000000;
1323     mmc->sram_addr_width = 15;
1324     mmc->raminfo = an524_raminfo;
1325     mmc->armsse_type = TYPE_SSE200;
1326     mmc->boot_ram_size = 0;
1327     mps2tz_set_default_ram_info(mmc);
1328 
1329     object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1330     object_class_property_set_description(oc, "remap",
1331                                           "Set memory mapping. Valid values "
1332                                           "are BRAM (default) and QSPI.");
1333 }
1334 
1335 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1336 {
1337     MachineClass *mc = MACHINE_CLASS(oc);
1338     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1339 
1340     mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1341     mc->default_cpus = 1;
1342     mc->min_cpus = mc->default_cpus;
1343     mc->max_cpus = mc->default_cpus;
1344     mmc->fpga_type = FPGA_AN547;
1345     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1346     mmc->scc_id = 0x41055470;
1347     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1348     mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1349     mmc->oscclk = an524_oscclk; /* same as AN524 */
1350     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1351     mmc->fpgaio_num_leds = 10;
1352     mmc->fpgaio_has_switches = true;
1353     mmc->fpgaio_has_dbgctrl = true;
1354     mmc->numirq = 96;
1355     mmc->uart_overflow_irq = 48;
1356     mmc->init_svtor = 0x00000000;
1357     mmc->sram_addr_width = 21;
1358     mmc->raminfo = an547_raminfo;
1359     mmc->armsse_type = TYPE_SSE300;
1360     mmc->boot_ram_size = 512 * KiB;
1361     mps2tz_set_default_ram_info(mmc);
1362 }
1363 
1364 static const TypeInfo mps2tz_info = {
1365     .name = TYPE_MPS2TZ_MACHINE,
1366     .parent = TYPE_MACHINE,
1367     .abstract = true,
1368     .instance_size = sizeof(MPS2TZMachineState),
1369     .class_size = sizeof(MPS2TZMachineClass),
1370     .class_init = mps2tz_class_init,
1371     .interfaces = (InterfaceInfo[]) {
1372         { TYPE_IDAU_INTERFACE },
1373         { }
1374     },
1375 };
1376 
1377 static const TypeInfo mps2tz_an505_info = {
1378     .name = TYPE_MPS2TZ_AN505_MACHINE,
1379     .parent = TYPE_MPS2TZ_MACHINE,
1380     .class_init = mps2tz_an505_class_init,
1381 };
1382 
1383 static const TypeInfo mps2tz_an521_info = {
1384     .name = TYPE_MPS2TZ_AN521_MACHINE,
1385     .parent = TYPE_MPS2TZ_MACHINE,
1386     .class_init = mps2tz_an521_class_init,
1387 };
1388 
1389 static const TypeInfo mps3tz_an524_info = {
1390     .name = TYPE_MPS3TZ_AN524_MACHINE,
1391     .parent = TYPE_MPS2TZ_MACHINE,
1392     .class_init = mps3tz_an524_class_init,
1393 };
1394 
1395 static const TypeInfo mps3tz_an547_info = {
1396     .name = TYPE_MPS3TZ_AN547_MACHINE,
1397     .parent = TYPE_MPS2TZ_MACHINE,
1398     .class_init = mps3tz_an547_class_init,
1399 };
1400 
1401 static void mps2tz_machine_init(void)
1402 {
1403     type_register_static(&mps2tz_info);
1404     type_register_static(&mps2tz_an505_info);
1405     type_register_static(&mps2tz_an521_info);
1406     type_register_static(&mps3tz_an524_info);
1407     type_register_static(&mps3tz_an547_info);
1408 }
1409 
1410 type_init(mps2tz_machine_init);
1411