xref: /openbmc/qemu/hw/arm/armv7m.c (revision 7a1dc45af581d2b643cdbf33c01fd96271616fbd)
1 /*
2  * ARMV7M System emulation.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/arm/armv7m.h"
12 #include "qapi/error.h"
13 #include "hw/sysbus.h"
14 #include "hw/arm/boot.h"
15 #include "hw/loader.h"
16 #include "hw/qdev-properties.h"
17 #include "hw/qdev-clock.h"
18 #include "elf.h"
19 #include "sysemu/reset.h"
20 #include "qemu/error-report.h"
21 #include "qemu/module.h"
22 #include "qemu/log.h"
23 #include "target/arm/idau.h"
24 #include "target/arm/cpu.h"
25 #include "target/arm/cpu-features.h"
26 #include "target/arm/cpu-qom.h"
27 #include "migration/vmstate.h"
28 
29 /* Bitbanded IO.  Each word corresponds to a single bit.  */
30 
31 /* Get the byte address of the real memory for a bitband access.  */
bitband_addr(BitBandState * s,hwaddr offset)32 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
33 {
34     return s->base | (offset & 0x1ffffff) >> 5;
35 }
36 
bitband_read(void * opaque,hwaddr offset,uint64_t * data,unsigned size,MemTxAttrs attrs)37 static MemTxResult bitband_read(void *opaque, hwaddr offset,
38                                 uint64_t *data, unsigned size, MemTxAttrs attrs)
39 {
40     BitBandState *s = opaque;
41     uint8_t buf[4];
42     MemTxResult res;
43     int bitpos, bit;
44     hwaddr addr;
45 
46     assert(size <= 4);
47 
48     /* Find address in underlying memory and round down to multiple of size */
49     addr = bitband_addr(s, offset) & (-size);
50     res = address_space_read(&s->source_as, addr, attrs, buf, size);
51     if (res) {
52         return res;
53     }
54     /* Bit position in the N bytes read... */
55     bitpos = (offset >> 2) & ((size * 8) - 1);
56     /* ...converted to byte in buffer and bit in byte */
57     bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
58     *data = bit;
59     return MEMTX_OK;
60 }
61 
bitband_write(void * opaque,hwaddr offset,uint64_t value,unsigned size,MemTxAttrs attrs)62 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
63                                  unsigned size, MemTxAttrs attrs)
64 {
65     BitBandState *s = opaque;
66     uint8_t buf[4];
67     MemTxResult res;
68     int bitpos, bit;
69     hwaddr addr;
70 
71     assert(size <= 4);
72 
73     /* Find address in underlying memory and round down to multiple of size */
74     addr = bitband_addr(s, offset) & (-size);
75     res = address_space_read(&s->source_as, addr, attrs, buf, size);
76     if (res) {
77         return res;
78     }
79     /* Bit position in the N bytes read... */
80     bitpos = (offset >> 2) & ((size * 8) - 1);
81     /* ...converted to byte in buffer and bit in byte */
82     bit = 1 << (bitpos & 7);
83     if (value & 1) {
84         buf[bitpos >> 3] |= bit;
85     } else {
86         buf[bitpos >> 3] &= ~bit;
87     }
88     return address_space_write(&s->source_as, addr, attrs, buf, size);
89 }
90 
91 static const MemoryRegionOps bitband_ops = {
92     .read_with_attrs = bitband_read,
93     .write_with_attrs = bitband_write,
94     .endianness = DEVICE_NATIVE_ENDIAN,
95     .impl.min_access_size = 1,
96     .impl.max_access_size = 4,
97     .valid.min_access_size = 1,
98     .valid.max_access_size = 4,
99 };
100 
bitband_init(Object * obj)101 static void bitband_init(Object *obj)
102 {
103     BitBandState *s = BITBAND(obj);
104     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
105 
106     memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
107                           "bitband", 0x02000000);
108     sysbus_init_mmio(dev, &s->iomem);
109 }
110 
bitband_realize(DeviceState * dev,Error ** errp)111 static void bitband_realize(DeviceState *dev, Error **errp)
112 {
113     BitBandState *s = BITBAND(dev);
114 
115     if (!s->source_memory) {
116         error_setg(errp, "source-memory property not set");
117         return;
118     }
119 
120     address_space_init(&s->source_as, s->source_memory, "bitband-source");
121 }
122 
123 /* Board init.  */
124 
125 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
126     0x20000000, 0x40000000
127 };
128 
129 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
130     0x22000000, 0x42000000
131 };
132 
v7m_sysreg_ns_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)133 static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
134                                        uint64_t value, unsigned size,
135                                        MemTxAttrs attrs)
136 {
137     MemoryRegion *mr = opaque;
138 
139     if (attrs.secure) {
140         /* S accesses to the alias act like NS accesses to the real region */
141         attrs.secure = 0;
142         return memory_region_dispatch_write(mr, addr, value,
143                                             size_memop(size) | MO_TE, attrs);
144     } else {
145         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
146         if (attrs.user) {
147             return MEMTX_ERROR;
148         }
149         return MEMTX_OK;
150     }
151 }
152 
v7m_sysreg_ns_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)153 static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
154                                       uint64_t *data, unsigned size,
155                                       MemTxAttrs attrs)
156 {
157     MemoryRegion *mr = opaque;
158 
159     if (attrs.secure) {
160         /* S accesses to the alias act like NS accesses to the real region */
161         attrs.secure = 0;
162         return memory_region_dispatch_read(mr, addr, data,
163                                            size_memop(size) | MO_TE, attrs);
164     } else {
165         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
166         if (attrs.user) {
167             return MEMTX_ERROR;
168         }
169         *data = 0;
170         return MEMTX_OK;
171     }
172 }
173 
174 static const MemoryRegionOps v7m_sysreg_ns_ops = {
175     .read_with_attrs = v7m_sysreg_ns_read,
176     .write_with_attrs = v7m_sysreg_ns_write,
177     .endianness = DEVICE_NATIVE_ENDIAN,
178 };
179 
v7m_systick_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)180 static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
181                                      uint64_t value, unsigned size,
182                                      MemTxAttrs attrs)
183 {
184     ARMv7MState *s = opaque;
185     MemoryRegion *mr;
186 
187     /* Direct the access to the correct systick */
188     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
189     return memory_region_dispatch_write(mr, addr, value,
190                                         size_memop(size) | MO_TE, attrs);
191 }
192 
v7m_systick_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)193 static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
194                                     uint64_t *data, unsigned size,
195                                     MemTxAttrs attrs)
196 {
197     ARMv7MState *s = opaque;
198     MemoryRegion *mr;
199 
200     /* Direct the access to the correct systick */
201     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
202     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
203                                        attrs);
204 }
205 
206 static const MemoryRegionOps v7m_systick_ops = {
207     .read_with_attrs = v7m_systick_read,
208     .write_with_attrs = v7m_systick_write,
209     .endianness = DEVICE_NATIVE_ENDIAN,
210 };
211 
212 /*
213  * Unassigned portions of the PPB space are RAZ/WI for privileged
214  * accesses, and fault for non-privileged accesses.
215  */
ppb_default_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)216 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
217                                     uint64_t *data, unsigned size,
218                                     MemTxAttrs attrs)
219 {
220     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
221                   (uint32_t)addr);
222     if (attrs.user) {
223         return MEMTX_ERROR;
224     }
225     *data = 0;
226     return MEMTX_OK;
227 }
228 
ppb_default_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)229 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
230                                      uint64_t value, unsigned size,
231                                      MemTxAttrs attrs)
232 {
233     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
234                   (uint32_t)addr);
235     if (attrs.user) {
236         return MEMTX_ERROR;
237     }
238     return MEMTX_OK;
239 }
240 
241 static const MemoryRegionOps ppb_default_ops = {
242     .read_with_attrs = ppb_default_read,
243     .write_with_attrs = ppb_default_write,
244     .endianness = DEVICE_NATIVE_ENDIAN,
245     .valid.min_access_size = 1,
246     .valid.max_access_size = 8,
247 };
248 
armv7m_instance_init(Object * obj)249 static void armv7m_instance_init(Object *obj)
250 {
251     ARMv7MState *s = ARMV7M(obj);
252     int i;
253 
254     /* Can't init the cpu here, we don't yet know which model to use */
255 
256     memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
257 
258     object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
259     object_property_add_alias(obj, "num-irq",
260                               OBJECT(&s->nvic), "num-irq");
261     object_property_add_alias(obj, "num-prio-bits",
262                               OBJECT(&s->nvic), "num-prio-bits");
263 
264     object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
265                             TYPE_SYSTICK);
266     /*
267      * We can't initialize the secure systick here, as we don't know
268      * yet if we need it.
269      */
270 
271     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
272         object_initialize_child(obj, "bitband[*]", &s->bitband[i],
273                                 TYPE_BITBAND);
274     }
275 
276     s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
277     s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
278 }
279 
armv7m_realize(DeviceState * dev,Error ** errp)280 static void armv7m_realize(DeviceState *dev, Error **errp)
281 {
282     ARMv7MState *s = ARMV7M(dev);
283     SysBusDevice *sbd;
284     Error *err = NULL;
285     int i;
286 
287     if (!s->board_memory) {
288         error_setg(errp, "memory property was not set");
289         return;
290     }
291 
292     /* cpuclk must be connected; refclk is optional */
293     if (!clock_has_source(s->cpuclk)) {
294         error_setg(errp, "armv7m: cpuclk must be connected");
295         return;
296     }
297 
298     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
299 
300     s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
301                                            &err, NULL));
302     if (err != NULL) {
303         error_propagate(errp, err);
304         return;
305     }
306 
307     object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
308                              &error_abort);
309     if (object_property_find(OBJECT(s->cpu), "idau")) {
310         object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
311                                  &error_abort);
312     }
313     if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
314         if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
315                                       s->init_svtor, errp)) {
316             return;
317         }
318     }
319     if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
320         if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
321                                       s->init_nsvtor, errp)) {
322             return;
323         }
324     }
325     if (object_property_find(OBJECT(s->cpu), "vfp")) {
326         if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
327             return;
328         }
329     }
330     if (object_property_find(OBJECT(s->cpu), "dsp")) {
331         if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
332             return;
333         }
334     }
335     object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
336                              s->start_powered_off, &error_abort);
337 
338     /*
339      * Real M-profile hardware can be configured with a different number of
340      * MPU regions for Secure vs NonSecure. QEMU's CPU implementation doesn't
341      * support that yet, so catch attempts to select that.
342      */
343     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
344         s->mpu_ns_regions != s->mpu_s_regions) {
345         error_setg(errp,
346                    "mpu-ns-regions and mpu-s-regions properties must have the same value");
347         return;
348     }
349     if (s->mpu_ns_regions != UINT_MAX &&
350         object_property_find(OBJECT(s->cpu), "pmsav7-dregion")) {
351         if (!object_property_set_uint(OBJECT(s->cpu), "pmsav7-dregion",
352                                       s->mpu_ns_regions, errp)) {
353             return;
354         }
355     }
356 
357     /*
358      * Tell the CPU where the NVIC is; it will fail realize if it doesn't
359      * have one. Similarly, tell the NVIC where its CPU is.
360      */
361     s->cpu->env.nvic = &s->nvic;
362     s->nvic.cpu = s->cpu;
363 
364     if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
365         return;
366     }
367 
368     /* Note that we must realize the NVIC after the CPU */
369     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
370         return;
371     }
372 
373     /* Alias the NVIC's input and output GPIOs as our own so the board
374      * code can wire them up. (We do this in realize because the
375      * NVIC doesn't create the input GPIO array until realize.)
376      */
377     qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
378     qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
379     qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
380 
381     /*
382      * We map various devices into the container MR at their architected
383      * addresses. In particular, we map everything corresponding to the
384      * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
385      * and includes the NVIC, the System Control Space (system registers),
386      * the systick timer, and for CPUs with the Security extension an NS
387      * banked version of all of these.
388      *
389      * The default behaviour for unimplemented registers/ranges
390      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
391      * is to RAZ/WI for privileged access and BusFault for non-privileged
392      * access.
393      *
394      * The NVIC and System Control Space (SCS) starts at 0xe000e000
395      * and looks like this:
396      *  0x004 - ICTR
397      *  0x010 - 0xff - systick
398      *  0x100..0x7ec - NVIC
399      *  0x7f0..0xcff - Reserved
400      *  0xd00..0xd3c - SCS registers
401      *  0xd40..0xeff - Reserved or Not implemented
402      *  0xf00 - STIR
403      *
404      * Some registers within this space are banked between security states.
405      * In v8M there is a second range 0xe002e000..0xe002efff which is the
406      * NonSecure alias SCS; secure accesses to this behave like NS accesses
407      * to the main SCS range, and non-secure accesses (including when
408      * the security extension is not implemented) are RAZ/WI.
409      * Note that both the main SCS range and the alias range are defined
410      * to be exempt from memory attribution (R_BLJT) and so the memory
411      * transaction attribute always matches the current CPU security
412      * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
413      * wrappers we change attrs.secure to indicate the NS access; so
414      * generally code determining which banked register to use should
415      * use attrs.secure; code determining actual behaviour of the system
416      * should use env->v7m.secure.
417      *
418      * Within the PPB space, some MRs overlap, and the priority
419      * of overlapping regions is:
420      *  - default region (for RAZ/WI and BusFault) : -1
421      *  - system register regions (provided by the NVIC) : 0
422      *  - systick : 1
423      * This is because the systick device is a small block of registers
424      * in the middle of the other system control registers.
425      */
426 
427     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
428                           "nvic-default", 0x100000);
429     memory_region_add_subregion_overlap(&s->container, 0xe0000000,
430                                         &s->defaultmem, -1);
431 
432     /* Wire the NVIC up to the CPU */
433     sbd = SYS_BUS_DEVICE(&s->nvic);
434     sysbus_connect_irq(sbd, 0,
435                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
436 
437     memory_region_add_subregion(&s->container, 0xe000e000,
438                                 sysbus_mmio_get_region(sbd, 0));
439     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
440         /* Create the NS alias region for the NVIC sysregs */
441         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
442                               &v7m_sysreg_ns_ops,
443                               sysbus_mmio_get_region(sbd, 0),
444                               "nvic_sysregs_ns", 0x1000);
445         memory_region_add_subregion(&s->container, 0xe002e000,
446                                     &s->sysreg_ns_mem);
447     }
448 
449     /*
450      * Create and map the systick devices. Note that we only connect
451      * refclk if it has been connected to us; otherwise the systick
452      * device gets the wrong answer for clock_has_source(refclk), because
453      * it has an immediate source (the ARMv7M's clock object) but not
454      * an ultimate source, and then it won't correctly auto-select the
455      * CPU clock as its only possible clock source.
456      */
457     if (clock_has_source(s->refclk)) {
458         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
459                               s->refclk);
460     }
461     qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
462     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
463         return;
464     }
465     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
466                        qdev_get_gpio_in_named(DEVICE(&s->nvic),
467                                               "systick-trigger", M_REG_NS));
468 
469     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
470         /*
471          * We couldn't init the secure systick device in instance_init
472          * as we didn't know then if the CPU had the security extensions;
473          * so we have to do it here.
474          */
475         object_initialize_child(OBJECT(dev), "systick-reg-s",
476                                 &s->systick[M_REG_S], TYPE_SYSTICK);
477         if (clock_has_source(s->refclk)) {
478             qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
479                                   s->refclk);
480         }
481         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
482                               s->cpuclk);
483 
484         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
485             return;
486         }
487         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
488                            qdev_get_gpio_in_named(DEVICE(&s->nvic),
489                                                   "systick-trigger", M_REG_S));
490     }
491 
492     memory_region_init_io(&s->systickmem, OBJECT(s),
493                           &v7m_systick_ops, s,
494                           "v7m_systick", 0xe0);
495 
496     memory_region_add_subregion_overlap(&s->container, 0xe000e010,
497                                         &s->systickmem, 1);
498     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
499         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
500                               &v7m_sysreg_ns_ops, &s->systickmem,
501                               "v7m_systick_ns", 0xe0);
502         memory_region_add_subregion_overlap(&s->container, 0xe002e010,
503                                             &s->systick_ns_mem, 1);
504     }
505 
506     /* If the CPU has RAS support, create the RAS register block */
507     if (cpu_isar_feature(aa32_ras, s->cpu)) {
508         object_initialize_child(OBJECT(dev), "armv7m-ras",
509                                 &s->ras, TYPE_ARMV7M_RAS);
510         sbd = SYS_BUS_DEVICE(&s->ras);
511         if (!sysbus_realize(sbd, errp)) {
512             return;
513         }
514         memory_region_add_subregion_overlap(&s->container, 0xe0005000,
515                                             sysbus_mmio_get_region(sbd, 0), 1);
516     }
517 
518     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
519         if (s->enable_bitband) {
520             Object *obj = OBJECT(&s->bitband[i]);
521             sbd = SYS_BUS_DEVICE(&s->bitband[i]);
522 
523             if (!object_property_set_int(obj, "base",
524                                          bitband_input_addr[i], errp)) {
525                 return;
526             }
527             object_property_set_link(obj, "source-memory",
528                                      OBJECT(s->board_memory), &error_abort);
529             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
530                 return;
531             }
532 
533             memory_region_add_subregion(&s->container, bitband_output_addr[i],
534                                         sysbus_mmio_get_region(sbd, 0));
535         } else {
536             object_unparent(OBJECT(&s->bitband[i]));
537         }
538     }
539 }
540 
541 static Property armv7m_properties[] = {
542     DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
543     DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
544                      MemoryRegion *),
545     DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
546     DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
547     DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
548     DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
549     DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
550                      false),
551     DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
552     DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
553     DEFINE_PROP_UINT32("mpu-ns-regions", ARMv7MState, mpu_ns_regions, UINT_MAX),
554     DEFINE_PROP_UINT32("mpu-s-regions", ARMv7MState, mpu_s_regions, UINT_MAX),
555     DEFINE_PROP_END_OF_LIST(),
556 };
557 
558 static const VMStateDescription vmstate_armv7m = {
559     .name = "armv7m",
560     .version_id = 1,
561     .minimum_version_id = 1,
562     .fields = (const VMStateField[]) {
563         VMSTATE_CLOCK(refclk, ARMv7MState),
564         VMSTATE_CLOCK(cpuclk, ARMv7MState),
565         VMSTATE_END_OF_LIST()
566     }
567 };
568 
armv7m_class_init(ObjectClass * klass,void * data)569 static void armv7m_class_init(ObjectClass *klass, void *data)
570 {
571     DeviceClass *dc = DEVICE_CLASS(klass);
572 
573     dc->realize = armv7m_realize;
574     dc->vmsd = &vmstate_armv7m;
575     device_class_set_props(dc, armv7m_properties);
576 }
577 
578 static const TypeInfo armv7m_info = {
579     .name = TYPE_ARMV7M,
580     .parent = TYPE_SYS_BUS_DEVICE,
581     .instance_size = sizeof(ARMv7MState),
582     .instance_init = armv7m_instance_init,
583     .class_init = armv7m_class_init,
584 };
585 
armv7m_reset(void * opaque)586 static void armv7m_reset(void *opaque)
587 {
588     ARMCPU *cpu = opaque;
589 
590     cpu_reset(CPU(cpu));
591 }
592 
armv7m_load_kernel(ARMCPU * cpu,const char * kernel_filename,hwaddr mem_base,int mem_size)593 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename,
594                         hwaddr mem_base, int mem_size)
595 {
596     ssize_t image_size;
597     uint64_t entry;
598     AddressSpace *as;
599     int asidx;
600     CPUState *cs = CPU(cpu);
601 
602     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
603         asidx = ARMASIdx_S;
604     } else {
605         asidx = ARMASIdx_NS;
606     }
607     as = cpu_get_address_space(cs, asidx);
608 
609     if (kernel_filename) {
610         image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
611                                  &entry, NULL, NULL,
612                                  NULL, 0, EM_ARM, 1, 0, as);
613         if (image_size < 0) {
614             image_size = load_image_targphys_as(kernel_filename, mem_base,
615                                                 mem_size, as);
616         }
617         if (image_size < 0) {
618             error_report("Could not load kernel '%s'", kernel_filename);
619             exit(1);
620         }
621     }
622 
623     /* CPU objects (unlike devices) are not automatically reset on system
624      * reset, so we must always register a handler to do so. Unlike
625      * A-profile CPUs, we don't need to do anything special in the
626      * handler to arrange that it starts correctly.
627      * This is arguably the wrong place to do this, but it matches the
628      * way A-profile does it. Note that this means that every M profile
629      * board must call this function!
630      */
631     qemu_register_reset(armv7m_reset, cpu);
632 }
633 
634 static Property bitband_properties[] = {
635     DEFINE_PROP_UINT32("base", BitBandState, base, 0),
636     DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
637                      TYPE_MEMORY_REGION, MemoryRegion *),
638     DEFINE_PROP_END_OF_LIST(),
639 };
640 
bitband_class_init(ObjectClass * klass,void * data)641 static void bitband_class_init(ObjectClass *klass, void *data)
642 {
643     DeviceClass *dc = DEVICE_CLASS(klass);
644 
645     dc->realize = bitband_realize;
646     device_class_set_props(dc, bitband_properties);
647 }
648 
649 static const TypeInfo bitband_info = {
650     .name          = TYPE_BITBAND,
651     .parent        = TYPE_SYS_BUS_DEVICE,
652     .instance_size = sizeof(BitBandState),
653     .instance_init = bitband_init,
654     .class_init    = bitband_class_init,
655 };
656 
armv7m_register_types(void)657 static void armv7m_register_types(void)
658 {
659     type_register_static(&bitband_info);
660     type_register_static(&armv7m_info);
661 }
662 
663 type_init(armv7m_register_types)
664