xref: /openbmc/qemu/hw/arm/armsse.c (revision db873cc5d1a4aaa67eea87768d504b2f89d88738)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
260                               &s->armv7m[i], sizeof(s->armv7m[i]),
261                               TYPE_ARMV7M);
262         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
263                              ARM_CPU_TYPE_NAME("cortex-m33"));
264         g_free(name);
265         name = g_strdup_printf("arm-sse-cpu-container%d", i);
266         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
267         g_free(name);
268         if (i > 0) {
269             name = g_strdup_printf("arm-sse-container-alias%d", i);
270             memory_region_init_alias(&s->container_alias[i - 1], obj,
271                                      name, &s->container, 0, UINT64_MAX);
272             g_free(name);
273         }
274     }
275 
276     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
277     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
278     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
279     for (i = 0; i < info->sram_banks; i++) {
280         char *name = g_strdup_printf("mpc%d", i);
281         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
282         g_free(name);
283     }
284     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
285                             TYPE_OR_IRQ);
286 
287     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
288         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
289         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
290 
291         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
292         g_free(name);
293     }
294     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
295     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
296     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
297                             TYPE_CMSDK_APB_TIMER);
298     object_initialize_child(obj, "dualtimer", &s->dualtimer,
299                             TYPE_CMSDK_APB_DUALTIMER);
300     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
301                             TYPE_CMSDK_APB_WATCHDOG);
302     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
303                             TYPE_CMSDK_APB_WATCHDOG);
304     object_initialize_child(obj, "swatchdog", &s->swatchdog,
305                             TYPE_CMSDK_APB_WATCHDOG);
306     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
307                             TYPE_IOTKIT_SYSCTL);
308     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
309                             TYPE_IOTKIT_SYSINFO);
310     if (info->has_mhus) {
311         sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
312                               TYPE_ARMSSE_MHU);
313         sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
314                               TYPE_ARMSSE_MHU);
315     }
316     if (info->has_ppus) {
317         for (i = 0; i < info->num_cpus; i++) {
318             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
319             int ppuidx = CPU0CORE_PPU + i;
320 
321             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
322                                   sizeof(s->ppu[ppuidx]),
323                                   TYPE_UNIMPLEMENTED_DEVICE);
324             g_free(name);
325         }
326         sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
327                               sizeof(s->ppu[DBG_PPU]),
328                               TYPE_UNIMPLEMENTED_DEVICE);
329         for (i = 0; i < info->sram_banks; i++) {
330             char *name = g_strdup_printf("RAM%d_PPU", i);
331             int ppuidx = RAM0_PPU + i;
332 
333             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
334                                   sizeof(s->ppu[ppuidx]),
335                                   TYPE_UNIMPLEMENTED_DEVICE);
336             g_free(name);
337         }
338     }
339     if (info->has_cachectrl) {
340         for (i = 0; i < info->num_cpus; i++) {
341             char *name = g_strdup_printf("cachectrl%d", i);
342 
343             object_initialize_child(obj, name, &s->cachectrl[i],
344                                     TYPE_UNIMPLEMENTED_DEVICE);
345             g_free(name);
346         }
347     }
348     if (info->has_cpusecctrl) {
349         for (i = 0; i < info->num_cpus; i++) {
350             char *name = g_strdup_printf("cpusecctrl%d", i);
351 
352             object_initialize_child(obj, name, &s->cpusecctrl[i],
353                                     TYPE_UNIMPLEMENTED_DEVICE);
354             g_free(name);
355         }
356     }
357     if (info->has_cpuid) {
358         for (i = 0; i < info->num_cpus; i++) {
359             char *name = g_strdup_printf("cpuid%d", i);
360 
361             object_initialize_child(obj, name, &s->cpuid[i],
362                                     TYPE_ARMSSE_CPUID);
363             g_free(name);
364         }
365     }
366     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
367     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
368                             TYPE_OR_IRQ);
369     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
370                             TYPE_SPLIT_IRQ);
371     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
372         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
373         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
374 
375         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
376         g_free(name);
377     }
378     if (info->num_cpus > 1) {
379         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
380             if (irq_is_common[i]) {
381                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
382                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
383 
384                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
385                 g_free(name);
386             }
387         }
388     }
389 }
390 
391 static void armsse_exp_irq(void *opaque, int n, int level)
392 {
393     qemu_irq *irqarray = opaque;
394 
395     qemu_set_irq(irqarray[n], level);
396 }
397 
398 static void armsse_mpcexp_status(void *opaque, int n, int level)
399 {
400     ARMSSE *s = ARMSSE(opaque);
401     qemu_set_irq(s->mpcexp_status_in[n], level);
402 }
403 
404 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
405 {
406     /*
407      * Return a qemu_irq which can be used to signal IRQ n to
408      * all CPUs in the SSE.
409      */
410     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
411     const ARMSSEInfo *info = asc->info;
412 
413     assert(irq_is_common[irqno]);
414 
415     if (info->num_cpus == 1) {
416         /* Only one CPU -- just connect directly to it */
417         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
418     } else {
419         /* Connect to the splitter which feeds all CPUs */
420         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
421     }
422 }
423 
424 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
425 {
426     /* Map a PPU unimplemented device stub */
427     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
428 
429     qdev_prop_set_string(dev, "name", name);
430     qdev_prop_set_uint64(dev, "size", 0x1000);
431     qdev_init_nofail(dev);
432     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
433 }
434 
435 static void armsse_realize(DeviceState *dev, Error **errp)
436 {
437     ARMSSE *s = ARMSSE(dev);
438     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
439     const ARMSSEInfo *info = asc->info;
440     int i;
441     MemoryRegion *mr;
442     Error *err = NULL;
443     SysBusDevice *sbd_apb_ppc0;
444     SysBusDevice *sbd_secctl;
445     DeviceState *dev_apb_ppc0;
446     DeviceState *dev_apb_ppc1;
447     DeviceState *dev_secctl;
448     DeviceState *dev_splitter;
449     uint32_t addr_width_max;
450 
451     if (!s->board_memory) {
452         error_setg(errp, "memory property was not set");
453         return;
454     }
455 
456     if (!s->mainclk_frq) {
457         error_setg(errp, "MAINCLK property was not set");
458         return;
459     }
460 
461     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
462     assert(is_power_of_2(info->sram_banks));
463     addr_width_max = 24 - ctz32(info->sram_banks);
464     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
465         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
466                    addr_width_max);
467         return;
468     }
469 
470     /* Handling of which devices should be available only to secure
471      * code is usually done differently for M profile than for A profile.
472      * Instead of putting some devices only into the secure address space,
473      * devices exist in both address spaces but with hard-wired security
474      * permissions that will cause the CPU to fault for non-secure accesses.
475      *
476      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
477      * which specifies hard-wired security permissions for different
478      * areas of the physical address space. For the ARMSSE IDAU, the
479      * top 4 bits of the physical address are the IDAU region ID, and
480      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
481      * region, otherwise it is an S region.
482      *
483      * The various devices and RAMs are generally all mapped twice,
484      * once into a region that the IDAU defines as secure and once
485      * into a non-secure region. They sit behind either a Memory
486      * Protection Controller (for RAM) or a Peripheral Protection
487      * Controller (for devices), which allow a more fine grained
488      * configuration of whether non-secure accesses are permitted.
489      *
490      * (The other place that guest software can configure security
491      * permissions is in the architected SAU (Security Attribution
492      * Unit), which is entirely inside the CPU. The IDAU can upgrade
493      * the security attributes for a region to more restrictive than
494      * the SAU specifies, but cannot downgrade them.)
495      *
496      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
497      * 0x20000000..0x2007ffff  32KB FPGA block RAM
498      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
499      * 0x40000000..0x4000ffff  base peripheral region 1
500      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
501      * 0x40020000..0x4002ffff  system control element peripherals
502      * 0x40080000..0x400fffff  base peripheral region 2
503      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
504      */
505 
506     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
507 
508     for (i = 0; i < info->num_cpus; i++) {
509         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
510         Object *cpuobj = OBJECT(&s->armv7m[i]);
511         int j;
512         char *gpioname;
513 
514         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
515         /*
516          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
517          * registers in the IoT Kit System Control Register block. In QEMU
518          * we set the initial value here, and also the reset value of the
519          * sysctl register, from this object's QOM init-svtor property.
520          * If the guest changes the INITSVTOR* registers at runtime then the
521          * code in iotkit-sysctl.c will update the CPU init-svtor property
522          * (which will then take effect on the next CPU warm-reset).
523          *
524          * Note that typically a board using the SSE-200 will have a system
525          * control processor whose boot firmware initializes the INITSVTOR*
526          * registers before powering up the CPUs. QEMU doesn't emulate
527          * the control processor, so instead we behave in the way that the
528          * firmware does: the initial value should be set by the board code
529          * (using the init-svtor property on the ARMSSE object) to match
530          * whatever its firmware does.
531          */
532         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
533         /*
534          * CPUs start powered down if the corresponding bit in the CPUWAIT
535          * register is 1. In real hardware the CPUWAIT register reset value is
536          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
537          * CPUWAIT1_RST parameters), but since all the boards we care about
538          * start CPU0 and leave CPU1 powered off, we hard-code that in
539          * info->cpuwait_rst for now. We can add QOM properties for this
540          * later if necessary.
541          */
542         if (extract32(info->cpuwait_rst, i, 1)) {
543             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
544             if (err) {
545                 error_propagate(errp, err);
546                 return;
547             }
548         }
549         if (!s->cpu_fpu[i]) {
550             object_property_set_bool(cpuobj, false, "vfp", &err);
551             if (err) {
552                 error_propagate(errp, err);
553                 return;
554             }
555         }
556         if (!s->cpu_dsp[i]) {
557             object_property_set_bool(cpuobj, false, "dsp", &err);
558             if (err) {
559                 error_propagate(errp, err);
560                 return;
561             }
562         }
563 
564         if (i > 0) {
565             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
566                                                 &s->container_alias[i - 1], -1);
567         } else {
568             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
569                                                 &s->container, -1);
570         }
571         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
572                                  "memory", &err);
573         if (err) {
574             error_propagate(errp, err);
575             return;
576         }
577         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
578         if (err) {
579             error_propagate(errp, err);
580             return;
581         }
582         object_property_set_bool(cpuobj, true, "realized", &err);
583         if (err) {
584             error_propagate(errp, err);
585             return;
586         }
587         /*
588          * The cluster must be realized after the armv7m container, as
589          * the container's CPU object is only created on realize, and the
590          * CPU must exist and have been parented into the cluster before
591          * the cluster is realized.
592          */
593         object_property_set_bool(OBJECT(&s->cluster[i]),
594                                  true, "realized", &err);
595         if (err) {
596             error_propagate(errp, err);
597             return;
598         }
599 
600         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
601         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
602         for (j = 0; j < s->exp_numirq; j++) {
603             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
604         }
605         if (i == 0) {
606             gpioname = g_strdup("EXP_IRQ");
607         } else {
608             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
609         }
610         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
611                                             s->exp_irqs[i],
612                                             gpioname, s->exp_numirq);
613         g_free(gpioname);
614     }
615 
616     /* Wire up the splitters that connect common IRQs to all CPUs */
617     if (info->num_cpus > 1) {
618         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
619             if (irq_is_common[i]) {
620                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
621                 DeviceState *devs = DEVICE(splitter);
622                 int cpunum;
623 
624                 object_property_set_int(splitter, info->num_cpus,
625                                         "num-lines", &err);
626                 if (err) {
627                     error_propagate(errp, err);
628                     return;
629                 }
630                 object_property_set_bool(splitter, true, "realized", &err);
631                 if (err) {
632                     error_propagate(errp, err);
633                     return;
634                 }
635                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
636                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
637 
638                     qdev_connect_gpio_out(devs, cpunum,
639                                           qdev_get_gpio_in(cpudev, i));
640                 }
641             }
642         }
643     }
644 
645     /* Set up the big aliases first */
646     make_alias(s, &s->alias1, &s->container, "alias 1",
647                0x10000000, 0x10000000, 0x00000000);
648     make_alias(s, &s->alias2, &s->container,
649                "alias 2", 0x30000000, 0x10000000, 0x20000000);
650     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
651      * a few extra devices that only appear there (generally the
652      * control interfaces for the protection controllers).
653      * We implement this by mapping those devices over the top of this
654      * alias MR at a higher priority. Some of the devices in this range
655      * are per-CPU, so we must put this alias in the per-cpu containers.
656      */
657     for (i = 0; i < info->num_cpus; i++) {
658         make_alias(s, &s->alias3[i], &s->cpu_container[i],
659                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
660     }
661 
662     /* Security controller */
663     sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err);
664     if (err) {
665         error_propagate(errp, err);
666         return;
667     }
668     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
669     dev_secctl = DEVICE(&s->secctl);
670     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
671     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
672 
673     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
674     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
675 
676     /* The sec_resp_cfg output from the security controller must be split into
677      * multiple lines, one for each of the PPCs within the ARMSSE and one
678      * that will be an output from the ARMSSE to the system.
679      */
680     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
681                             "num-lines", &err);
682     if (err) {
683         error_propagate(errp, err);
684         return;
685     }
686     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
687                              "realized", &err);
688     if (err) {
689         error_propagate(errp, err);
690         return;
691     }
692     dev_splitter = DEVICE(&s->sec_resp_splitter);
693     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
694                                 qdev_get_gpio_in(dev_splitter, 0));
695 
696     /* Each SRAM bank lives behind its own Memory Protection Controller */
697     for (i = 0; i < info->sram_banks; i++) {
698         char *ramname = g_strdup_printf("armsse.sram%d", i);
699         SysBusDevice *sbd_mpc;
700         uint32_t sram_bank_size = 1 << s->sram_addr_width;
701 
702         memory_region_init_ram(&s->sram[i], NULL, ramname,
703                                sram_bank_size, &err);
704         g_free(ramname);
705         if (err) {
706             error_propagate(errp, err);
707             return;
708         }
709         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
710                                  "downstream", &err);
711         if (err) {
712             error_propagate(errp, err);
713             return;
714         }
715         sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err);
716         if (err) {
717             error_propagate(errp, err);
718             return;
719         }
720         /* Map the upstream end of the MPC into the right place... */
721         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
722         memory_region_add_subregion(&s->container,
723                                     0x20000000 + i * sram_bank_size,
724                                     sysbus_mmio_get_region(sbd_mpc, 1));
725         /* ...and its register interface */
726         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
727                                     sysbus_mmio_get_region(sbd_mpc, 0));
728     }
729 
730     /* We must OR together lines from the MPC splitters to go to the NVIC */
731     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
732                             IOTS_NUM_EXP_MPC + info->sram_banks,
733                             "num-lines", &err);
734     if (err) {
735         error_propagate(errp, err);
736         return;
737     }
738     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
739                              "realized", &err);
740     if (err) {
741         error_propagate(errp, err);
742         return;
743     }
744     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
745                           armsse_get_common_irq_in(s, 9));
746 
747     /* Devices behind APB PPC0:
748      *   0x40000000: timer0
749      *   0x40001000: timer1
750      *   0x40002000: dual timer
751      *   0x40003000: MHU0 (SSE-200 only)
752      *   0x40004000: MHU1 (SSE-200 only)
753      * We must configure and realize each downstream device and connect
754      * it to the appropriate PPC port; then we can realize the PPC and
755      * map its upstream ends to the right place in the container.
756      */
757     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
758     sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err);
759     if (err) {
760         error_propagate(errp, err);
761         return;
762     }
763     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
764                        armsse_get_common_irq_in(s, 3));
765     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
766     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
767     if (err) {
768         error_propagate(errp, err);
769         return;
770     }
771 
772     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
773     sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err);
774     if (err) {
775         error_propagate(errp, err);
776         return;
777     }
778     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
779                        armsse_get_common_irq_in(s, 4));
780     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
781     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
782     if (err) {
783         error_propagate(errp, err);
784         return;
785     }
786 
787 
788     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
789     sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err);
790     if (err) {
791         error_propagate(errp, err);
792         return;
793     }
794     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
795                        armsse_get_common_irq_in(s, 5));
796     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
797     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
798     if (err) {
799         error_propagate(errp, err);
800         return;
801     }
802 
803     if (info->has_mhus) {
804         /*
805          * An SSE-200 with only one CPU should have only one MHU created,
806          * with the region where the second MHU usually is being RAZ/WI.
807          * We don't implement that SSE-200 config; if we want to support
808          * it then this code needs to be enhanced to handle creating the
809          * RAZ/WI region instead of the second MHU.
810          */
811         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
812 
813         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
814             char *port;
815             int cpunum;
816             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
817 
818             object_property_set_bool(OBJECT(&s->mhu[i]), true,
819                                      "realized", &err);
820             if (err) {
821                 error_propagate(errp, err);
822                 return;
823             }
824             port = g_strdup_printf("port[%d]", i + 3);
825             mr = sysbus_mmio_get_region(mhu_sbd, 0);
826             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
827                                      port, &err);
828             g_free(port);
829             if (err) {
830                 error_propagate(errp, err);
831                 return;
832             }
833 
834             /*
835              * Each MHU has an irq line for each CPU:
836              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
837              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
838              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
839              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
840              */
841             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
842                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
843 
844                 sysbus_connect_irq(mhu_sbd, cpunum,
845                                    qdev_get_gpio_in(cpudev, 6 + i));
846             }
847         }
848     }
849 
850     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err);
851     if (err) {
852         error_propagate(errp, err);
853         return;
854     }
855 
856     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
857     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
858 
859     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
860     memory_region_add_subregion(&s->container, 0x40000000, mr);
861     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
862     memory_region_add_subregion(&s->container, 0x40001000, mr);
863     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
864     memory_region_add_subregion(&s->container, 0x40002000, mr);
865     if (info->has_mhus) {
866         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
867         memory_region_add_subregion(&s->container, 0x40003000, mr);
868         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
869         memory_region_add_subregion(&s->container, 0x40004000, mr);
870     }
871     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
872         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
873                                     qdev_get_gpio_in_named(dev_apb_ppc0,
874                                                            "cfg_nonsec", i));
875         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
876                                     qdev_get_gpio_in_named(dev_apb_ppc0,
877                                                            "cfg_ap", i));
878     }
879     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
880                                 qdev_get_gpio_in_named(dev_apb_ppc0,
881                                                        "irq_enable", 0));
882     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
883                                 qdev_get_gpio_in_named(dev_apb_ppc0,
884                                                        "irq_clear", 0));
885     qdev_connect_gpio_out(dev_splitter, 0,
886                           qdev_get_gpio_in_named(dev_apb_ppc0,
887                                                  "cfg_sec_resp", 0));
888 
889     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
890      * ones) are sent individually to the security controller, and also
891      * ORed together to give a single combined PPC interrupt to the NVIC.
892      */
893     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
894                             NUM_PPCS, "num-lines", &err);
895     if (err) {
896         error_propagate(errp, err);
897         return;
898     }
899     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
900                              "realized", &err);
901     if (err) {
902         error_propagate(errp, err);
903         return;
904     }
905     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
906                           armsse_get_common_irq_in(s, 10));
907 
908     /*
909      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
910      * private per-CPU region (all these devices are SSE-200 only):
911      *  0x50010000: L1 icache control registers
912      *  0x50011000: CPUSECCTRL (CPU local security control registers)
913      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
914      */
915     if (info->has_cachectrl) {
916         for (i = 0; i < info->num_cpus; i++) {
917             char *name = g_strdup_printf("cachectrl%d", i);
918             MemoryRegion *mr;
919 
920             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
921             g_free(name);
922             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
923             sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err);
924             if (err) {
925                 error_propagate(errp, err);
926                 return;
927             }
928 
929             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
930             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
931         }
932     }
933     if (info->has_cpusecctrl) {
934         for (i = 0; i < info->num_cpus; i++) {
935             char *name = g_strdup_printf("CPUSECCTRL%d", i);
936             MemoryRegion *mr;
937 
938             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
939             g_free(name);
940             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
941             sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err);
942             if (err) {
943                 error_propagate(errp, err);
944                 return;
945             }
946 
947             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
948             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
949         }
950     }
951     if (info->has_cpuid) {
952         for (i = 0; i < info->num_cpus; i++) {
953             MemoryRegion *mr;
954 
955             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
956             sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err);
957             if (err) {
958                 error_propagate(errp, err);
959                 return;
960             }
961 
962             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
963             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
964         }
965     }
966 
967     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
968     /* Devices behind APB PPC1:
969      *   0x4002f000: S32K timer
970      */
971     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
972     sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err);
973     if (err) {
974         error_propagate(errp, err);
975         return;
976     }
977     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
978                        armsse_get_common_irq_in(s, 2));
979     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
980     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
981     if (err) {
982         error_propagate(errp, err);
983         return;
984     }
985 
986     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err);
987     if (err) {
988         error_propagate(errp, err);
989         return;
990     }
991     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
992     memory_region_add_subregion(&s->container, 0x4002f000, mr);
993 
994     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
995     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
996                                 qdev_get_gpio_in_named(dev_apb_ppc1,
997                                                        "cfg_nonsec", 0));
998     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
999                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1000                                                        "cfg_ap", 0));
1001     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1002                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1003                                                        "irq_enable", 0));
1004     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1005                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1006                                                        "irq_clear", 0));
1007     qdev_connect_gpio_out(dev_splitter, 1,
1008                           qdev_get_gpio_in_named(dev_apb_ppc1,
1009                                                  "cfg_sec_resp", 0));
1010 
1011     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1012                             "SYS_VERSION", &err);
1013     if (err) {
1014         error_propagate(errp, err);
1015         return;
1016     }
1017     object_property_set_int(OBJECT(&s->sysinfo),
1018                             armsse_sys_config_value(s, info),
1019                             "SYS_CONFIG", &err);
1020     if (err) {
1021         error_propagate(errp, err);
1022         return;
1023     }
1024     sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err);
1025     if (err) {
1026         error_propagate(errp, err);
1027         return;
1028     }
1029     /* System information registers */
1030     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1031     /* System control registers */
1032     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1033                             "SYS_VERSION", &err);
1034     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1035                             "CPUWAIT_RST", &err);
1036     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1037                             "INITSVTOR0_RST", &err);
1038     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1039                             "INITSVTOR1_RST", &err);
1040     sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err);
1041     if (err) {
1042         error_propagate(errp, err);
1043         return;
1044     }
1045     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1046 
1047     if (info->has_ppus) {
1048         /* CPUnCORE_PPU for each CPU */
1049         for (i = 0; i < info->num_cpus; i++) {
1050             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1051 
1052             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1053             /*
1054              * We don't support CPU debug so don't create the
1055              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1056              */
1057             g_free(name);
1058         }
1059         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1060 
1061         for (i = 0; i < info->sram_banks; i++) {
1062             char *name = g_strdup_printf("RAM%d_PPU", i);
1063 
1064             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1065             g_free(name);
1066         }
1067     }
1068 
1069     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1070     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1071     if (err) {
1072         error_propagate(errp, err);
1073         return;
1074     }
1075     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1076     if (err) {
1077         error_propagate(errp, err);
1078         return;
1079     }
1080     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1081                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1082 
1083     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1084     sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err);
1085     if (err) {
1086         error_propagate(errp, err);
1087         return;
1088     }
1089     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1090                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1091     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1092 
1093     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1094 
1095     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1096     sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err);
1097     if (err) {
1098         error_propagate(errp, err);
1099         return;
1100     }
1101     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1102                        armsse_get_common_irq_in(s, 1));
1103     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1104 
1105     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1106     sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err);
1107     if (err) {
1108         error_propagate(errp, err);
1109         return;
1110     }
1111     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1112                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1113     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1114 
1115     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1116         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1117 
1118         object_property_set_int(splitter, 2, "num-lines", &err);
1119         if (err) {
1120             error_propagate(errp, err);
1121             return;
1122         }
1123         object_property_set_bool(splitter, true, "realized", &err);
1124         if (err) {
1125             error_propagate(errp, err);
1126             return;
1127         }
1128     }
1129 
1130     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1131         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1132 
1133         armsse_forward_ppc(s, ppcname, i);
1134         g_free(ppcname);
1135     }
1136 
1137     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1138         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1139 
1140         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1141         g_free(ppcname);
1142     }
1143 
1144     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1145         /* Wire up IRQ splitter for internal PPCs */
1146         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1147         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1148                                          i - NUM_EXTERNAL_PPCS);
1149         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1150 
1151         qdev_connect_gpio_out(devs, 0,
1152                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1153         qdev_connect_gpio_out(devs, 1,
1154                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1155         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1156                                     qdev_get_gpio_in(devs, 0));
1157         g_free(gpioname);
1158     }
1159 
1160     /* Wire up the splitters for the MPC IRQs */
1161     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1162         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1163         DeviceState *dev_splitter = DEVICE(splitter);
1164 
1165         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1166         if (err) {
1167             error_propagate(errp, err);
1168             return;
1169         }
1170         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1171         if (err) {
1172             error_propagate(errp, err);
1173             return;
1174         }
1175 
1176         if (i < IOTS_NUM_EXP_MPC) {
1177             /* Splitter input is from GPIO input line */
1178             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1179             qdev_connect_gpio_out(dev_splitter, 0,
1180                                   qdev_get_gpio_in_named(dev_secctl,
1181                                                          "mpcexp_status", i));
1182         } else {
1183             /* Splitter input is from our own MPC */
1184             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1185                                         "irq", 0,
1186                                         qdev_get_gpio_in(dev_splitter, 0));
1187             qdev_connect_gpio_out(dev_splitter, 0,
1188                                   qdev_get_gpio_in_named(dev_secctl,
1189                                                          "mpc_status", 0));
1190         }
1191 
1192         qdev_connect_gpio_out(dev_splitter, 1,
1193                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1194     }
1195     /* Create GPIO inputs which will pass the line state for our
1196      * mpcexp_irq inputs to the correct splitter devices.
1197      */
1198     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1199                             IOTS_NUM_EXP_MPC);
1200 
1201     armsse_forward_sec_resp_cfg(s);
1202 
1203     /* Forward the MSC related signals */
1204     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1205     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1206     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1207     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1208                                 armsse_get_common_irq_in(s, 11));
1209 
1210     /*
1211      * Expose our container region to the board model; this corresponds
1212      * to the AHB Slave Expansion ports which allow bus master devices
1213      * (eg DMA controllers) in the board model to make transactions into
1214      * devices in the ARMSSE.
1215      */
1216     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1217 
1218     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1219 }
1220 
1221 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1222                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1223 {
1224     /*
1225      * For ARMSSE systems the IDAU responses are simple logical functions
1226      * of the address bits. The NSC attribute is guest-adjustable via the
1227      * NSCCFG register in the security controller.
1228      */
1229     ARMSSE *s = ARMSSE(ii);
1230     int region = extract32(address, 28, 4);
1231 
1232     *ns = !(region & 1);
1233     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1234     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1235     *exempt = (address & 0xeff00000) == 0xe0000000;
1236     *iregion = region;
1237 }
1238 
1239 static const VMStateDescription armsse_vmstate = {
1240     .name = "iotkit",
1241     .version_id = 1,
1242     .minimum_version_id = 1,
1243     .fields = (VMStateField[]) {
1244         VMSTATE_UINT32(nsccfg, ARMSSE),
1245         VMSTATE_END_OF_LIST()
1246     }
1247 };
1248 
1249 static void armsse_reset(DeviceState *dev)
1250 {
1251     ARMSSE *s = ARMSSE(dev);
1252 
1253     s->nsccfg = 0;
1254 }
1255 
1256 static void armsse_class_init(ObjectClass *klass, void *data)
1257 {
1258     DeviceClass *dc = DEVICE_CLASS(klass);
1259     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1260     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1261     const ARMSSEInfo *info = data;
1262 
1263     dc->realize = armsse_realize;
1264     dc->vmsd = &armsse_vmstate;
1265     device_class_set_props(dc, info->props);
1266     dc->reset = armsse_reset;
1267     iic->check = armsse_idau_check;
1268     asc->info = info;
1269 }
1270 
1271 static const TypeInfo armsse_info = {
1272     .name = TYPE_ARMSSE,
1273     .parent = TYPE_SYS_BUS_DEVICE,
1274     .instance_size = sizeof(ARMSSE),
1275     .instance_init = armsse_init,
1276     .abstract = true,
1277     .interfaces = (InterfaceInfo[]) {
1278         { TYPE_IDAU_INTERFACE },
1279         { }
1280     }
1281 };
1282 
1283 static void armsse_register_types(void)
1284 {
1285     int i;
1286 
1287     type_register_static(&armsse_info);
1288 
1289     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1290         TypeInfo ti = {
1291             .name = armsse_variants[i].name,
1292             .parent = TYPE_ARMSSE,
1293             .class_init = armsse_class_init,
1294             .class_data = (void *)&armsse_variants[i],
1295         };
1296         type_register(&ti);
1297     }
1298 }
1299 
1300 type_init(armsse_register_types);
1301