xref: /openbmc/qemu/hw/arm/armsse.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
260                                 TYPE_ARMV7M);
261         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262                              ARM_CPU_TYPE_NAME("cortex-m33"));
263         g_free(name);
264         name = g_strdup_printf("arm-sse-cpu-container%d", i);
265         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266         g_free(name);
267         if (i > 0) {
268             name = g_strdup_printf("arm-sse-container-alias%d", i);
269             memory_region_init_alias(&s->container_alias[i - 1], obj,
270                                      name, &s->container, 0, UINT64_MAX);
271             g_free(name);
272         }
273     }
274 
275     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
276     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
277     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
278     for (i = 0; i < info->sram_banks; i++) {
279         char *name = g_strdup_printf("mpc%d", i);
280         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
281         g_free(name);
282     }
283     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
284                             TYPE_OR_IRQ);
285 
286     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
287         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
288         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
289 
290         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
291         g_free(name);
292     }
293     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
294     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
295     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
296                             TYPE_CMSDK_APB_TIMER);
297     object_initialize_child(obj, "dualtimer", &s->dualtimer,
298                             TYPE_CMSDK_APB_DUALTIMER);
299     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
300                             TYPE_CMSDK_APB_WATCHDOG);
301     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
302                             TYPE_CMSDK_APB_WATCHDOG);
303     object_initialize_child(obj, "swatchdog", &s->swatchdog,
304                             TYPE_CMSDK_APB_WATCHDOG);
305     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
306                             TYPE_IOTKIT_SYSCTL);
307     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
308                             TYPE_IOTKIT_SYSINFO);
309     if (info->has_mhus) {
310         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
311         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
312     }
313     if (info->has_ppus) {
314         for (i = 0; i < info->num_cpus; i++) {
315             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
316             int ppuidx = CPU0CORE_PPU + i;
317 
318             object_initialize_child(obj, name, &s->ppu[ppuidx],
319                                     TYPE_UNIMPLEMENTED_DEVICE);
320             g_free(name);
321         }
322         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
323                                 TYPE_UNIMPLEMENTED_DEVICE);
324         for (i = 0; i < info->sram_banks; i++) {
325             char *name = g_strdup_printf("RAM%d_PPU", i);
326             int ppuidx = RAM0_PPU + i;
327 
328             object_initialize_child(obj, name, &s->ppu[ppuidx],
329                                     TYPE_UNIMPLEMENTED_DEVICE);
330             g_free(name);
331         }
332     }
333     if (info->has_cachectrl) {
334         for (i = 0; i < info->num_cpus; i++) {
335             char *name = g_strdup_printf("cachectrl%d", i);
336 
337             object_initialize_child(obj, name, &s->cachectrl[i],
338                                     TYPE_UNIMPLEMENTED_DEVICE);
339             g_free(name);
340         }
341     }
342     if (info->has_cpusecctrl) {
343         for (i = 0; i < info->num_cpus; i++) {
344             char *name = g_strdup_printf("cpusecctrl%d", i);
345 
346             object_initialize_child(obj, name, &s->cpusecctrl[i],
347                                     TYPE_UNIMPLEMENTED_DEVICE);
348             g_free(name);
349         }
350     }
351     if (info->has_cpuid) {
352         for (i = 0; i < info->num_cpus; i++) {
353             char *name = g_strdup_printf("cpuid%d", i);
354 
355             object_initialize_child(obj, name, &s->cpuid[i],
356                                     TYPE_ARMSSE_CPUID);
357             g_free(name);
358         }
359     }
360     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
361     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
362                             TYPE_OR_IRQ);
363     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
364                             TYPE_SPLIT_IRQ);
365     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
366         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
367         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
368 
369         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
370         g_free(name);
371     }
372     if (info->num_cpus > 1) {
373         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
374             if (irq_is_common[i]) {
375                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
376                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
377 
378                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
379                 g_free(name);
380             }
381         }
382     }
383 }
384 
385 static void armsse_exp_irq(void *opaque, int n, int level)
386 {
387     qemu_irq *irqarray = opaque;
388 
389     qemu_set_irq(irqarray[n], level);
390 }
391 
392 static void armsse_mpcexp_status(void *opaque, int n, int level)
393 {
394     ARMSSE *s = ARMSSE(opaque);
395     qemu_set_irq(s->mpcexp_status_in[n], level);
396 }
397 
398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
399 {
400     /*
401      * Return a qemu_irq which can be used to signal IRQ n to
402      * all CPUs in the SSE.
403      */
404     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
405     const ARMSSEInfo *info = asc->info;
406 
407     assert(irq_is_common[irqno]);
408 
409     if (info->num_cpus == 1) {
410         /* Only one CPU -- just connect directly to it */
411         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
412     } else {
413         /* Connect to the splitter which feeds all CPUs */
414         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
415     }
416 }
417 
418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
419 {
420     /* Map a PPU unimplemented device stub */
421     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
422 
423     qdev_prop_set_string(dev, "name", name);
424     qdev_prop_set_uint64(dev, "size", 0x1000);
425     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
426     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
427 }
428 
429 static void armsse_realize(DeviceState *dev, Error **errp)
430 {
431     ARMSSE *s = ARMSSE(dev);
432     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
433     const ARMSSEInfo *info = asc->info;
434     int i;
435     MemoryRegion *mr;
436     Error *err = NULL;
437     SysBusDevice *sbd_apb_ppc0;
438     SysBusDevice *sbd_secctl;
439     DeviceState *dev_apb_ppc0;
440     DeviceState *dev_apb_ppc1;
441     DeviceState *dev_secctl;
442     DeviceState *dev_splitter;
443     uint32_t addr_width_max;
444 
445     if (!s->board_memory) {
446         error_setg(errp, "memory property was not set");
447         return;
448     }
449 
450     if (!s->mainclk_frq) {
451         error_setg(errp, "MAINCLK property was not set");
452         return;
453     }
454 
455     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
456     assert(is_power_of_2(info->sram_banks));
457     addr_width_max = 24 - ctz32(info->sram_banks);
458     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
459         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
460                    addr_width_max);
461         return;
462     }
463 
464     /* Handling of which devices should be available only to secure
465      * code is usually done differently for M profile than for A profile.
466      * Instead of putting some devices only into the secure address space,
467      * devices exist in both address spaces but with hard-wired security
468      * permissions that will cause the CPU to fault for non-secure accesses.
469      *
470      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
471      * which specifies hard-wired security permissions for different
472      * areas of the physical address space. For the ARMSSE IDAU, the
473      * top 4 bits of the physical address are the IDAU region ID, and
474      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
475      * region, otherwise it is an S region.
476      *
477      * The various devices and RAMs are generally all mapped twice,
478      * once into a region that the IDAU defines as secure and once
479      * into a non-secure region. They sit behind either a Memory
480      * Protection Controller (for RAM) or a Peripheral Protection
481      * Controller (for devices), which allow a more fine grained
482      * configuration of whether non-secure accesses are permitted.
483      *
484      * (The other place that guest software can configure security
485      * permissions is in the architected SAU (Security Attribution
486      * Unit), which is entirely inside the CPU. The IDAU can upgrade
487      * the security attributes for a region to more restrictive than
488      * the SAU specifies, but cannot downgrade them.)
489      *
490      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
491      * 0x20000000..0x2007ffff  32KB FPGA block RAM
492      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
493      * 0x40000000..0x4000ffff  base peripheral region 1
494      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
495      * 0x40020000..0x4002ffff  system control element peripherals
496      * 0x40080000..0x400fffff  base peripheral region 2
497      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
498      */
499 
500     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
501 
502     for (i = 0; i < info->num_cpus; i++) {
503         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
504         Object *cpuobj = OBJECT(&s->armv7m[i]);
505         int j;
506         char *gpioname;
507 
508         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
509         /*
510          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
511          * registers in the IoT Kit System Control Register block. In QEMU
512          * we set the initial value here, and also the reset value of the
513          * sysctl register, from this object's QOM init-svtor property.
514          * If the guest changes the INITSVTOR* registers at runtime then the
515          * code in iotkit-sysctl.c will update the CPU init-svtor property
516          * (which will then take effect on the next CPU warm-reset).
517          *
518          * Note that typically a board using the SSE-200 will have a system
519          * control processor whose boot firmware initializes the INITSVTOR*
520          * registers before powering up the CPUs. QEMU doesn't emulate
521          * the control processor, so instead we behave in the way that the
522          * firmware does: the initial value should be set by the board code
523          * (using the init-svtor property on the ARMSSE object) to match
524          * whatever its firmware does.
525          */
526         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
527         /*
528          * CPUs start powered down if the corresponding bit in the CPUWAIT
529          * register is 1. In real hardware the CPUWAIT register reset value is
530          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
531          * CPUWAIT1_RST parameters), but since all the boards we care about
532          * start CPU0 and leave CPU1 powered off, we hard-code that in
533          * info->cpuwait_rst for now. We can add QOM properties for this
534          * later if necessary.
535          */
536         if (extract32(info->cpuwait_rst, i, 1)) {
537             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
538             if (err) {
539                 error_propagate(errp, err);
540                 return;
541             }
542         }
543         if (!s->cpu_fpu[i]) {
544             object_property_set_bool(cpuobj, false, "vfp", &err);
545             if (err) {
546                 error_propagate(errp, err);
547                 return;
548             }
549         }
550         if (!s->cpu_dsp[i]) {
551             object_property_set_bool(cpuobj, false, "dsp", &err);
552             if (err) {
553                 error_propagate(errp, err);
554                 return;
555             }
556         }
557 
558         if (i > 0) {
559             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
560                                                 &s->container_alias[i - 1], -1);
561         } else {
562             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
563                                                 &s->container, -1);
564         }
565         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
566                                  "memory", &err);
567         if (err) {
568             error_propagate(errp, err);
569             return;
570         }
571         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
572         if (err) {
573             error_propagate(errp, err);
574             return;
575         }
576         sysbus_realize(SYS_BUS_DEVICE(cpuobj), &err);
577         if (err) {
578             error_propagate(errp, err);
579             return;
580         }
581         /*
582          * The cluster must be realized after the armv7m container, as
583          * the container's CPU object is only created on realize, and the
584          * CPU must exist and have been parented into the cluster before
585          * the cluster is realized.
586          */
587         qdev_realize(DEVICE(&s->cluster[i]), NULL, &err);
588         if (err) {
589             error_propagate(errp, err);
590             return;
591         }
592 
593         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
594         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
595         for (j = 0; j < s->exp_numirq; j++) {
596             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
597         }
598         if (i == 0) {
599             gpioname = g_strdup("EXP_IRQ");
600         } else {
601             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
602         }
603         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
604                                             s->exp_irqs[i],
605                                             gpioname, s->exp_numirq);
606         g_free(gpioname);
607     }
608 
609     /* Wire up the splitters that connect common IRQs to all CPUs */
610     if (info->num_cpus > 1) {
611         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
612             if (irq_is_common[i]) {
613                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
614                 DeviceState *devs = DEVICE(splitter);
615                 int cpunum;
616 
617                 object_property_set_int(splitter, info->num_cpus,
618                                         "num-lines", &err);
619                 if (err) {
620                     error_propagate(errp, err);
621                     return;
622                 }
623                 qdev_realize(DEVICE(splitter), NULL, &err);
624                 if (err) {
625                     error_propagate(errp, err);
626                     return;
627                 }
628                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
629                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
630 
631                     qdev_connect_gpio_out(devs, cpunum,
632                                           qdev_get_gpio_in(cpudev, i));
633                 }
634             }
635         }
636     }
637 
638     /* Set up the big aliases first */
639     make_alias(s, &s->alias1, &s->container, "alias 1",
640                0x10000000, 0x10000000, 0x00000000);
641     make_alias(s, &s->alias2, &s->container,
642                "alias 2", 0x30000000, 0x10000000, 0x20000000);
643     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
644      * a few extra devices that only appear there (generally the
645      * control interfaces for the protection controllers).
646      * We implement this by mapping those devices over the top of this
647      * alias MR at a higher priority. Some of the devices in this range
648      * are per-CPU, so we must put this alias in the per-cpu containers.
649      */
650     for (i = 0; i < info->num_cpus; i++) {
651         make_alias(s, &s->alias3[i], &s->cpu_container[i],
652                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
653     }
654 
655     /* Security controller */
656     sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err);
657     if (err) {
658         error_propagate(errp, err);
659         return;
660     }
661     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
662     dev_secctl = DEVICE(&s->secctl);
663     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
664     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
665 
666     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
667     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
668 
669     /* The sec_resp_cfg output from the security controller must be split into
670      * multiple lines, one for each of the PPCs within the ARMSSE and one
671      * that will be an output from the ARMSSE to the system.
672      */
673     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
674                             "num-lines", &err);
675     if (err) {
676         error_propagate(errp, err);
677         return;
678     }
679     qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, &err);
680     if (err) {
681         error_propagate(errp, err);
682         return;
683     }
684     dev_splitter = DEVICE(&s->sec_resp_splitter);
685     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
686                                 qdev_get_gpio_in(dev_splitter, 0));
687 
688     /* Each SRAM bank lives behind its own Memory Protection Controller */
689     for (i = 0; i < info->sram_banks; i++) {
690         char *ramname = g_strdup_printf("armsse.sram%d", i);
691         SysBusDevice *sbd_mpc;
692         uint32_t sram_bank_size = 1 << s->sram_addr_width;
693 
694         memory_region_init_ram(&s->sram[i], NULL, ramname,
695                                sram_bank_size, &err);
696         g_free(ramname);
697         if (err) {
698             error_propagate(errp, err);
699             return;
700         }
701         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
702                                  "downstream", &err);
703         if (err) {
704             error_propagate(errp, err);
705             return;
706         }
707         sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err);
708         if (err) {
709             error_propagate(errp, err);
710             return;
711         }
712         /* Map the upstream end of the MPC into the right place... */
713         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
714         memory_region_add_subregion(&s->container,
715                                     0x20000000 + i * sram_bank_size,
716                                     sysbus_mmio_get_region(sbd_mpc, 1));
717         /* ...and its register interface */
718         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
719                                     sysbus_mmio_get_region(sbd_mpc, 0));
720     }
721 
722     /* We must OR together lines from the MPC splitters to go to the NVIC */
723     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
724                             IOTS_NUM_EXP_MPC + info->sram_banks,
725                             "num-lines", &err);
726     if (err) {
727         error_propagate(errp, err);
728         return;
729     }
730     qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, &err);
731     if (err) {
732         error_propagate(errp, err);
733         return;
734     }
735     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
736                           armsse_get_common_irq_in(s, 9));
737 
738     /* Devices behind APB PPC0:
739      *   0x40000000: timer0
740      *   0x40001000: timer1
741      *   0x40002000: dual timer
742      *   0x40003000: MHU0 (SSE-200 only)
743      *   0x40004000: MHU1 (SSE-200 only)
744      * We must configure and realize each downstream device and connect
745      * it to the appropriate PPC port; then we can realize the PPC and
746      * map its upstream ends to the right place in the container.
747      */
748     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
749     sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err);
750     if (err) {
751         error_propagate(errp, err);
752         return;
753     }
754     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
755                        armsse_get_common_irq_in(s, 3));
756     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
757     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
758     if (err) {
759         error_propagate(errp, err);
760         return;
761     }
762 
763     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
764     sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err);
765     if (err) {
766         error_propagate(errp, err);
767         return;
768     }
769     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
770                        armsse_get_common_irq_in(s, 4));
771     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
772     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
773     if (err) {
774         error_propagate(errp, err);
775         return;
776     }
777 
778 
779     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
780     sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err);
781     if (err) {
782         error_propagate(errp, err);
783         return;
784     }
785     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
786                        armsse_get_common_irq_in(s, 5));
787     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
788     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
789     if (err) {
790         error_propagate(errp, err);
791         return;
792     }
793 
794     if (info->has_mhus) {
795         /*
796          * An SSE-200 with only one CPU should have only one MHU created,
797          * with the region where the second MHU usually is being RAZ/WI.
798          * We don't implement that SSE-200 config; if we want to support
799          * it then this code needs to be enhanced to handle creating the
800          * RAZ/WI region instead of the second MHU.
801          */
802         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
803 
804         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
805             char *port;
806             int cpunum;
807             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
808 
809             sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), &err);
810             if (err) {
811                 error_propagate(errp, err);
812                 return;
813             }
814             port = g_strdup_printf("port[%d]", i + 3);
815             mr = sysbus_mmio_get_region(mhu_sbd, 0);
816             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
817                                      port, &err);
818             g_free(port);
819             if (err) {
820                 error_propagate(errp, err);
821                 return;
822             }
823 
824             /*
825              * Each MHU has an irq line for each CPU:
826              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
827              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
828              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
829              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
830              */
831             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
832                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
833 
834                 sysbus_connect_irq(mhu_sbd, cpunum,
835                                    qdev_get_gpio_in(cpudev, 6 + i));
836             }
837         }
838     }
839 
840     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err);
841     if (err) {
842         error_propagate(errp, err);
843         return;
844     }
845 
846     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
847     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
848 
849     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
850     memory_region_add_subregion(&s->container, 0x40000000, mr);
851     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
852     memory_region_add_subregion(&s->container, 0x40001000, mr);
853     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
854     memory_region_add_subregion(&s->container, 0x40002000, mr);
855     if (info->has_mhus) {
856         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
857         memory_region_add_subregion(&s->container, 0x40003000, mr);
858         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
859         memory_region_add_subregion(&s->container, 0x40004000, mr);
860     }
861     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
862         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
863                                     qdev_get_gpio_in_named(dev_apb_ppc0,
864                                                            "cfg_nonsec", i));
865         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
866                                     qdev_get_gpio_in_named(dev_apb_ppc0,
867                                                            "cfg_ap", i));
868     }
869     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
870                                 qdev_get_gpio_in_named(dev_apb_ppc0,
871                                                        "irq_enable", 0));
872     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
873                                 qdev_get_gpio_in_named(dev_apb_ppc0,
874                                                        "irq_clear", 0));
875     qdev_connect_gpio_out(dev_splitter, 0,
876                           qdev_get_gpio_in_named(dev_apb_ppc0,
877                                                  "cfg_sec_resp", 0));
878 
879     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
880      * ones) are sent individually to the security controller, and also
881      * ORed together to give a single combined PPC interrupt to the NVIC.
882      */
883     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
884                             NUM_PPCS, "num-lines", &err);
885     if (err) {
886         error_propagate(errp, err);
887         return;
888     }
889     qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, &err);
890     if (err) {
891         error_propagate(errp, err);
892         return;
893     }
894     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
895                           armsse_get_common_irq_in(s, 10));
896 
897     /*
898      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
899      * private per-CPU region (all these devices are SSE-200 only):
900      *  0x50010000: L1 icache control registers
901      *  0x50011000: CPUSECCTRL (CPU local security control registers)
902      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
903      */
904     if (info->has_cachectrl) {
905         for (i = 0; i < info->num_cpus; i++) {
906             char *name = g_strdup_printf("cachectrl%d", i);
907             MemoryRegion *mr;
908 
909             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
910             g_free(name);
911             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
912             sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err);
913             if (err) {
914                 error_propagate(errp, err);
915                 return;
916             }
917 
918             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
919             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
920         }
921     }
922     if (info->has_cpusecctrl) {
923         for (i = 0; i < info->num_cpus; i++) {
924             char *name = g_strdup_printf("CPUSECCTRL%d", i);
925             MemoryRegion *mr;
926 
927             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
928             g_free(name);
929             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
930             sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err);
931             if (err) {
932                 error_propagate(errp, err);
933                 return;
934             }
935 
936             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
937             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
938         }
939     }
940     if (info->has_cpuid) {
941         for (i = 0; i < info->num_cpus; i++) {
942             MemoryRegion *mr;
943 
944             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
945             sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err);
946             if (err) {
947                 error_propagate(errp, err);
948                 return;
949             }
950 
951             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
952             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
953         }
954     }
955 
956     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
957     /* Devices behind APB PPC1:
958      *   0x4002f000: S32K timer
959      */
960     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
961     sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err);
962     if (err) {
963         error_propagate(errp, err);
964         return;
965     }
966     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
967                        armsse_get_common_irq_in(s, 2));
968     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
969     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
970     if (err) {
971         error_propagate(errp, err);
972         return;
973     }
974 
975     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err);
976     if (err) {
977         error_propagate(errp, err);
978         return;
979     }
980     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
981     memory_region_add_subregion(&s->container, 0x4002f000, mr);
982 
983     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
984     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
985                                 qdev_get_gpio_in_named(dev_apb_ppc1,
986                                                        "cfg_nonsec", 0));
987     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
988                                 qdev_get_gpio_in_named(dev_apb_ppc1,
989                                                        "cfg_ap", 0));
990     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
991                                 qdev_get_gpio_in_named(dev_apb_ppc1,
992                                                        "irq_enable", 0));
993     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
994                                 qdev_get_gpio_in_named(dev_apb_ppc1,
995                                                        "irq_clear", 0));
996     qdev_connect_gpio_out(dev_splitter, 1,
997                           qdev_get_gpio_in_named(dev_apb_ppc1,
998                                                  "cfg_sec_resp", 0));
999 
1000     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1001                             "SYS_VERSION", &err);
1002     if (err) {
1003         error_propagate(errp, err);
1004         return;
1005     }
1006     object_property_set_int(OBJECT(&s->sysinfo),
1007                             armsse_sys_config_value(s, info),
1008                             "SYS_CONFIG", &err);
1009     if (err) {
1010         error_propagate(errp, err);
1011         return;
1012     }
1013     sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err);
1014     if (err) {
1015         error_propagate(errp, err);
1016         return;
1017     }
1018     /* System information registers */
1019     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1020     /* System control registers */
1021     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1022                             "SYS_VERSION", &err);
1023     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1024                             "CPUWAIT_RST", &err);
1025     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1026                             "INITSVTOR0_RST", &err);
1027     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1028                             "INITSVTOR1_RST", &err);
1029     sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err);
1030     if (err) {
1031         error_propagate(errp, err);
1032         return;
1033     }
1034     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1035 
1036     if (info->has_ppus) {
1037         /* CPUnCORE_PPU for each CPU */
1038         for (i = 0; i < info->num_cpus; i++) {
1039             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1040 
1041             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1042             /*
1043              * We don't support CPU debug so don't create the
1044              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1045              */
1046             g_free(name);
1047         }
1048         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1049 
1050         for (i = 0; i < info->sram_banks; i++) {
1051             char *name = g_strdup_printf("RAM%d_PPU", i);
1052 
1053             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1054             g_free(name);
1055         }
1056     }
1057 
1058     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1059     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1060     if (err) {
1061         error_propagate(errp, err);
1062         return;
1063     }
1064     qdev_realize(DEVICE(&s->nmi_orgate), NULL, &err);
1065     if (err) {
1066         error_propagate(errp, err);
1067         return;
1068     }
1069     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1070                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1071 
1072     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1073     sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err);
1074     if (err) {
1075         error_propagate(errp, err);
1076         return;
1077     }
1078     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1079                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1080     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1081 
1082     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1083 
1084     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1085     sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err);
1086     if (err) {
1087         error_propagate(errp, err);
1088         return;
1089     }
1090     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1091                        armsse_get_common_irq_in(s, 1));
1092     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1093 
1094     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1095     sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err);
1096     if (err) {
1097         error_propagate(errp, err);
1098         return;
1099     }
1100     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1101                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1102     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1103 
1104     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1105         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1106 
1107         object_property_set_int(splitter, 2, "num-lines", &err);
1108         if (err) {
1109             error_propagate(errp, err);
1110             return;
1111         }
1112         qdev_realize(DEVICE(splitter), NULL, &err);
1113         if (err) {
1114             error_propagate(errp, err);
1115             return;
1116         }
1117     }
1118 
1119     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1120         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1121 
1122         armsse_forward_ppc(s, ppcname, i);
1123         g_free(ppcname);
1124     }
1125 
1126     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1127         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1128 
1129         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1130         g_free(ppcname);
1131     }
1132 
1133     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1134         /* Wire up IRQ splitter for internal PPCs */
1135         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1136         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1137                                          i - NUM_EXTERNAL_PPCS);
1138         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1139 
1140         qdev_connect_gpio_out(devs, 0,
1141                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1142         qdev_connect_gpio_out(devs, 1,
1143                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1144         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1145                                     qdev_get_gpio_in(devs, 0));
1146         g_free(gpioname);
1147     }
1148 
1149     /* Wire up the splitters for the MPC IRQs */
1150     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1151         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1152         DeviceState *dev_splitter = DEVICE(splitter);
1153 
1154         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1155         if (err) {
1156             error_propagate(errp, err);
1157             return;
1158         }
1159         qdev_realize(DEVICE(splitter), NULL, &err);
1160         if (err) {
1161             error_propagate(errp, err);
1162             return;
1163         }
1164 
1165         if (i < IOTS_NUM_EXP_MPC) {
1166             /* Splitter input is from GPIO input line */
1167             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1168             qdev_connect_gpio_out(dev_splitter, 0,
1169                                   qdev_get_gpio_in_named(dev_secctl,
1170                                                          "mpcexp_status", i));
1171         } else {
1172             /* Splitter input is from our own MPC */
1173             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1174                                         "irq", 0,
1175                                         qdev_get_gpio_in(dev_splitter, 0));
1176             qdev_connect_gpio_out(dev_splitter, 0,
1177                                   qdev_get_gpio_in_named(dev_secctl,
1178                                                          "mpc_status", 0));
1179         }
1180 
1181         qdev_connect_gpio_out(dev_splitter, 1,
1182                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1183     }
1184     /* Create GPIO inputs which will pass the line state for our
1185      * mpcexp_irq inputs to the correct splitter devices.
1186      */
1187     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1188                             IOTS_NUM_EXP_MPC);
1189 
1190     armsse_forward_sec_resp_cfg(s);
1191 
1192     /* Forward the MSC related signals */
1193     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1194     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1195     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1196     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1197                                 armsse_get_common_irq_in(s, 11));
1198 
1199     /*
1200      * Expose our container region to the board model; this corresponds
1201      * to the AHB Slave Expansion ports which allow bus master devices
1202      * (eg DMA controllers) in the board model to make transactions into
1203      * devices in the ARMSSE.
1204      */
1205     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1206 
1207     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1208 }
1209 
1210 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1211                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1212 {
1213     /*
1214      * For ARMSSE systems the IDAU responses are simple logical functions
1215      * of the address bits. The NSC attribute is guest-adjustable via the
1216      * NSCCFG register in the security controller.
1217      */
1218     ARMSSE *s = ARMSSE(ii);
1219     int region = extract32(address, 28, 4);
1220 
1221     *ns = !(region & 1);
1222     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1223     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1224     *exempt = (address & 0xeff00000) == 0xe0000000;
1225     *iregion = region;
1226 }
1227 
1228 static const VMStateDescription armsse_vmstate = {
1229     .name = "iotkit",
1230     .version_id = 1,
1231     .minimum_version_id = 1,
1232     .fields = (VMStateField[]) {
1233         VMSTATE_UINT32(nsccfg, ARMSSE),
1234         VMSTATE_END_OF_LIST()
1235     }
1236 };
1237 
1238 static void armsse_reset(DeviceState *dev)
1239 {
1240     ARMSSE *s = ARMSSE(dev);
1241 
1242     s->nsccfg = 0;
1243 }
1244 
1245 static void armsse_class_init(ObjectClass *klass, void *data)
1246 {
1247     DeviceClass *dc = DEVICE_CLASS(klass);
1248     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1249     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1250     const ARMSSEInfo *info = data;
1251 
1252     dc->realize = armsse_realize;
1253     dc->vmsd = &armsse_vmstate;
1254     device_class_set_props(dc, info->props);
1255     dc->reset = armsse_reset;
1256     iic->check = armsse_idau_check;
1257     asc->info = info;
1258 }
1259 
1260 static const TypeInfo armsse_info = {
1261     .name = TYPE_ARMSSE,
1262     .parent = TYPE_SYS_BUS_DEVICE,
1263     .instance_size = sizeof(ARMSSE),
1264     .instance_init = armsse_init,
1265     .abstract = true,
1266     .interfaces = (InterfaceInfo[]) {
1267         { TYPE_IDAU_INTERFACE },
1268         { }
1269     }
1270 };
1271 
1272 static void armsse_register_types(void)
1273 {
1274     int i;
1275 
1276     type_register_static(&armsse_info);
1277 
1278     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1279         TypeInfo ti = {
1280             .name = armsse_variants[i].name,
1281             .parent = TYPE_ARMSSE,
1282             .class_init = armsse_class_init,
1283             .class_data = (void *)&armsse_variants[i],
1284         };
1285         type_register(&ti);
1286     }
1287 }
1288 
1289 type_init(armsse_register_types);
1290