1 /* 2 * Arm SSE (Subsystems for Embedded): IoTKit 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/log.h" 14 #include "qemu/module.h" 15 #include "qemu/bitops.h" 16 #include "qemu/units.h" 17 #include "qapi/error.h" 18 #include "trace.h" 19 #include "hw/sysbus.h" 20 #include "migration/vmstate.h" 21 #include "hw/registerfields.h" 22 #include "hw/arm/armsse.h" 23 #include "hw/arm/armsse-version.h" 24 #include "hw/arm/boot.h" 25 #include "hw/irq.h" 26 #include "hw/qdev-clock.h" 27 28 /* 29 * The SSE-300 puts some devices in different places to the 30 * SSE-200 (and original IoTKit). We use an array of these structs 31 * to define how each variant lays out these devices. (Parts of the 32 * SoC that are the same for all variants aren't handled via these 33 * data structures.) 34 */ 35 36 #define NO_IRQ -1 37 #define NO_PPC -1 38 /* 39 * Special values for ARMSSEDeviceInfo::irq to indicate that this 40 * device uses one of the inputs to the OR gate that feeds into the 41 * CPU NMI input. 42 */ 43 #define NMI_0 10000 44 #define NMI_1 10001 45 46 typedef struct ARMSSEDeviceInfo { 47 const char *name; /* name to use for the QOM object; NULL terminates list */ 48 const char *type; /* QOM type name */ 49 unsigned int index; /* Which of the N devices of this type is this ? */ 50 hwaddr addr; 51 hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */ 52 int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */ 53 int ppc_port; /* Port number of this device on the PPC */ 54 int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */ 55 bool slowclk; /* true if device uses the slow 32KHz clock */ 56 } ARMSSEDeviceInfo; 57 58 struct ARMSSEInfo { 59 const char *name; 60 const char *cpu_type; 61 uint32_t sse_version; 62 int sram_banks; 63 uint32_t sram_bank_base; 64 int num_cpus; 65 uint32_t sys_version; 66 uint32_t iidr; 67 uint32_t cpuwait_rst; 68 bool has_mhus; 69 bool has_cachectrl; 70 bool has_cpusecctrl; 71 bool has_cpuid; 72 bool has_cpu_pwrctrl; 73 bool has_sse_counter; 74 bool has_tcms; 75 Property *props; 76 const ARMSSEDeviceInfo *devinfo; 77 const bool *irq_is_common; 78 }; 79 80 static Property iotkit_properties[] = { 81 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 82 MemoryRegion *), 83 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 84 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), 85 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 86 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), 87 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), 88 DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8), 89 DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8), 90 DEFINE_PROP_END_OF_LIST() 91 }; 92 93 static Property sse200_properties[] = { 94 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 95 MemoryRegion *), 96 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 97 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), 98 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 99 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false), 100 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false), 101 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true), 102 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true), 103 DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8), 104 DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8), 105 DEFINE_PROP_UINT32("CPU1_MPU_NS", ARMSSE, cpu_mpu_ns[1], 8), 106 DEFINE_PROP_UINT32("CPU1_MPU_S", ARMSSE, cpu_mpu_s[1], 8), 107 DEFINE_PROP_END_OF_LIST() 108 }; 109 110 static Property sse300_properties[] = { 111 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 112 MemoryRegion *), 113 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 114 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18), 115 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 116 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), 117 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), 118 DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8), 119 DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8), 120 DEFINE_PROP_END_OF_LIST() 121 }; 122 123 static const ARMSSEDeviceInfo iotkit_devices[] = { 124 { 125 .name = "timer0", 126 .type = TYPE_CMSDK_APB_TIMER, 127 .index = 0, 128 .addr = 0x40000000, 129 .ppc = 0, 130 .ppc_port = 0, 131 .irq = 3, 132 }, 133 { 134 .name = "timer1", 135 .type = TYPE_CMSDK_APB_TIMER, 136 .index = 1, 137 .addr = 0x40001000, 138 .ppc = 0, 139 .ppc_port = 1, 140 .irq = 4, 141 }, 142 { 143 .name = "s32ktimer", 144 .type = TYPE_CMSDK_APB_TIMER, 145 .index = 2, 146 .addr = 0x4002f000, 147 .ppc = 1, 148 .ppc_port = 0, 149 .irq = 2, 150 .slowclk = true, 151 }, 152 { 153 .name = "dualtimer", 154 .type = TYPE_CMSDK_APB_DUALTIMER, 155 .index = 0, 156 .addr = 0x40002000, 157 .ppc = 0, 158 .ppc_port = 2, 159 .irq = 5, 160 }, 161 { 162 .name = "s32kwatchdog", 163 .type = TYPE_CMSDK_APB_WATCHDOG, 164 .index = 0, 165 .addr = 0x5002e000, 166 .ppc = NO_PPC, 167 .irq = NMI_0, 168 .slowclk = true, 169 }, 170 { 171 .name = "nswatchdog", 172 .type = TYPE_CMSDK_APB_WATCHDOG, 173 .index = 1, 174 .addr = 0x40081000, 175 .ppc = NO_PPC, 176 .irq = 1, 177 }, 178 { 179 .name = "swatchdog", 180 .type = TYPE_CMSDK_APB_WATCHDOG, 181 .index = 2, 182 .addr = 0x50081000, 183 .ppc = NO_PPC, 184 .irq = NMI_1, 185 }, 186 { 187 .name = "armsse-sysinfo", 188 .type = TYPE_IOTKIT_SYSINFO, 189 .index = 0, 190 .addr = 0x40020000, 191 .ppc = NO_PPC, 192 .irq = NO_IRQ, 193 }, 194 { 195 .name = "armsse-sysctl", 196 .type = TYPE_IOTKIT_SYSCTL, 197 .index = 0, 198 .addr = 0x50021000, 199 .ppc = NO_PPC, 200 .irq = NO_IRQ, 201 }, 202 { 203 .name = NULL, 204 } 205 }; 206 207 static const ARMSSEDeviceInfo sse200_devices[] = { 208 { 209 .name = "timer0", 210 .type = TYPE_CMSDK_APB_TIMER, 211 .index = 0, 212 .addr = 0x40000000, 213 .ppc = 0, 214 .ppc_port = 0, 215 .irq = 3, 216 }, 217 { 218 .name = "timer1", 219 .type = TYPE_CMSDK_APB_TIMER, 220 .index = 1, 221 .addr = 0x40001000, 222 .ppc = 0, 223 .ppc_port = 1, 224 .irq = 4, 225 }, 226 { 227 .name = "s32ktimer", 228 .type = TYPE_CMSDK_APB_TIMER, 229 .index = 2, 230 .addr = 0x4002f000, 231 .ppc = 1, 232 .ppc_port = 0, 233 .irq = 2, 234 .slowclk = true, 235 }, 236 { 237 .name = "dualtimer", 238 .type = TYPE_CMSDK_APB_DUALTIMER, 239 .index = 0, 240 .addr = 0x40002000, 241 .ppc = 0, 242 .ppc_port = 2, 243 .irq = 5, 244 }, 245 { 246 .name = "s32kwatchdog", 247 .type = TYPE_CMSDK_APB_WATCHDOG, 248 .index = 0, 249 .addr = 0x5002e000, 250 .ppc = NO_PPC, 251 .irq = NMI_0, 252 .slowclk = true, 253 }, 254 { 255 .name = "nswatchdog", 256 .type = TYPE_CMSDK_APB_WATCHDOG, 257 .index = 1, 258 .addr = 0x40081000, 259 .ppc = NO_PPC, 260 .irq = 1, 261 }, 262 { 263 .name = "swatchdog", 264 .type = TYPE_CMSDK_APB_WATCHDOG, 265 .index = 2, 266 .addr = 0x50081000, 267 .ppc = NO_PPC, 268 .irq = NMI_1, 269 }, 270 { 271 .name = "armsse-sysinfo", 272 .type = TYPE_IOTKIT_SYSINFO, 273 .index = 0, 274 .addr = 0x40020000, 275 .ppc = NO_PPC, 276 .irq = NO_IRQ, 277 }, 278 { 279 .name = "armsse-sysctl", 280 .type = TYPE_IOTKIT_SYSCTL, 281 .index = 0, 282 .addr = 0x50021000, 283 .ppc = NO_PPC, 284 .irq = NO_IRQ, 285 }, 286 { 287 .name = "CPU0CORE_PPU", 288 .type = TYPE_UNIMPLEMENTED_DEVICE, 289 .index = 0, 290 .addr = 0x50023000, 291 .size = 0x1000, 292 .ppc = NO_PPC, 293 .irq = NO_IRQ, 294 }, 295 { 296 .name = "CPU1CORE_PPU", 297 .type = TYPE_UNIMPLEMENTED_DEVICE, 298 .index = 1, 299 .addr = 0x50025000, 300 .size = 0x1000, 301 .ppc = NO_PPC, 302 .irq = NO_IRQ, 303 }, 304 { 305 .name = "DBG_PPU", 306 .type = TYPE_UNIMPLEMENTED_DEVICE, 307 .index = 2, 308 .addr = 0x50029000, 309 .size = 0x1000, 310 .ppc = NO_PPC, 311 .irq = NO_IRQ, 312 }, 313 { 314 .name = "RAM0_PPU", 315 .type = TYPE_UNIMPLEMENTED_DEVICE, 316 .index = 3, 317 .addr = 0x5002a000, 318 .size = 0x1000, 319 .ppc = NO_PPC, 320 .irq = NO_IRQ, 321 }, 322 { 323 .name = "RAM1_PPU", 324 .type = TYPE_UNIMPLEMENTED_DEVICE, 325 .index = 4, 326 .addr = 0x5002b000, 327 .size = 0x1000, 328 .ppc = NO_PPC, 329 .irq = NO_IRQ, 330 }, 331 { 332 .name = "RAM2_PPU", 333 .type = TYPE_UNIMPLEMENTED_DEVICE, 334 .index = 5, 335 .addr = 0x5002c000, 336 .size = 0x1000, 337 .ppc = NO_PPC, 338 .irq = NO_IRQ, 339 }, 340 { 341 .name = "RAM3_PPU", 342 .type = TYPE_UNIMPLEMENTED_DEVICE, 343 .index = 6, 344 .addr = 0x5002d000, 345 .size = 0x1000, 346 .ppc = NO_PPC, 347 .irq = NO_IRQ, 348 }, 349 { 350 .name = "SYS_PPU", 351 .type = TYPE_UNIMPLEMENTED_DEVICE, 352 .index = 7, 353 .addr = 0x50022000, 354 .size = 0x1000, 355 .ppc = NO_PPC, 356 .irq = NO_IRQ, 357 }, 358 { 359 .name = NULL, 360 } 361 }; 362 363 static const ARMSSEDeviceInfo sse300_devices[] = { 364 { 365 .name = "timer0", 366 .type = TYPE_SSE_TIMER, 367 .index = 0, 368 .addr = 0x48000000, 369 .ppc = 0, 370 .ppc_port = 0, 371 .irq = 3, 372 }, 373 { 374 .name = "timer1", 375 .type = TYPE_SSE_TIMER, 376 .index = 1, 377 .addr = 0x48001000, 378 .ppc = 0, 379 .ppc_port = 1, 380 .irq = 4, 381 }, 382 { 383 .name = "timer2", 384 .type = TYPE_SSE_TIMER, 385 .index = 2, 386 .addr = 0x48002000, 387 .ppc = 0, 388 .ppc_port = 2, 389 .irq = 5, 390 }, 391 { 392 .name = "timer3", 393 .type = TYPE_SSE_TIMER, 394 .index = 3, 395 .addr = 0x48003000, 396 .ppc = 0, 397 .ppc_port = 5, 398 .irq = 27, 399 }, 400 { 401 .name = "s32ktimer", 402 .type = TYPE_CMSDK_APB_TIMER, 403 .index = 0, 404 .addr = 0x4802f000, 405 .ppc = 1, 406 .ppc_port = 0, 407 .irq = 2, 408 .slowclk = true, 409 }, 410 { 411 .name = "s32kwatchdog", 412 .type = TYPE_CMSDK_APB_WATCHDOG, 413 .index = 0, 414 .addr = 0x4802e000, 415 .ppc = NO_PPC, 416 .irq = NMI_0, 417 .slowclk = true, 418 }, 419 { 420 .name = "watchdog", 421 .type = TYPE_UNIMPLEMENTED_DEVICE, 422 .index = 0, 423 .addr = 0x48040000, 424 .size = 0x2000, 425 .ppc = NO_PPC, 426 .irq = NO_IRQ, 427 }, 428 { 429 .name = "armsse-sysinfo", 430 .type = TYPE_IOTKIT_SYSINFO, 431 .index = 0, 432 .addr = 0x48020000, 433 .ppc = NO_PPC, 434 .irq = NO_IRQ, 435 }, 436 { 437 .name = "armsse-sysctl", 438 .type = TYPE_IOTKIT_SYSCTL, 439 .index = 0, 440 .addr = 0x58021000, 441 .ppc = NO_PPC, 442 .irq = NO_IRQ, 443 }, 444 { 445 .name = "SYS_PPU", 446 .type = TYPE_UNIMPLEMENTED_DEVICE, 447 .index = 1, 448 .addr = 0x58022000, 449 .size = 0x1000, 450 .ppc = NO_PPC, 451 .irq = NO_IRQ, 452 }, 453 { 454 .name = "CPU0CORE_PPU", 455 .type = TYPE_UNIMPLEMENTED_DEVICE, 456 .index = 2, 457 .addr = 0x50023000, 458 .size = 0x1000, 459 .ppc = NO_PPC, 460 .irq = NO_IRQ, 461 }, 462 { 463 .name = "MGMT_PPU", 464 .type = TYPE_UNIMPLEMENTED_DEVICE, 465 .index = 3, 466 .addr = 0x50028000, 467 .size = 0x1000, 468 .ppc = NO_PPC, 469 .irq = NO_IRQ, 470 }, 471 { 472 .name = "DEBUG_PPU", 473 .type = TYPE_UNIMPLEMENTED_DEVICE, 474 .index = 4, 475 .addr = 0x50029000, 476 .size = 0x1000, 477 .ppc = NO_PPC, 478 .irq = NO_IRQ, 479 }, 480 { 481 .name = NULL, 482 } 483 }; 484 485 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ 486 static const bool sse200_irq_is_common[32] = { 487 [0 ... 5] = true, 488 /* 6, 7: per-CPU MHU interrupts */ 489 [8 ... 12] = true, 490 /* 13: per-CPU icache interrupt */ 491 /* 14: reserved */ 492 [15 ... 20] = true, 493 /* 21: reserved */ 494 [22 ... 26] = true, 495 /* 27: reserved */ 496 /* 28, 29: per-CPU CTI interrupts */ 497 /* 30, 31: reserved */ 498 }; 499 500 static const bool sse300_irq_is_common[32] = { 501 [0 ... 5] = true, 502 /* 6, 7: per-CPU MHU interrupts */ 503 [8 ... 12] = true, 504 /* 13: reserved */ 505 [14 ... 16] = true, 506 /* 17-25: reserved */ 507 [26 ... 27] = true, 508 /* 28, 29: per-CPU CTI interrupts */ 509 /* 30, 31: reserved */ 510 }; 511 512 static const ARMSSEInfo armsse_variants[] = { 513 { 514 .name = TYPE_IOTKIT, 515 .sse_version = ARMSSE_IOTKIT, 516 .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"), 517 .sram_banks = 1, 518 .sram_bank_base = 0x20000000, 519 .num_cpus = 1, 520 .sys_version = 0x41743, 521 .iidr = 0, 522 .cpuwait_rst = 0, 523 .has_mhus = false, 524 .has_cachectrl = false, 525 .has_cpusecctrl = false, 526 .has_cpuid = false, 527 .has_cpu_pwrctrl = false, 528 .has_sse_counter = false, 529 .has_tcms = false, 530 .props = iotkit_properties, 531 .devinfo = iotkit_devices, 532 .irq_is_common = sse200_irq_is_common, 533 }, 534 { 535 .name = TYPE_SSE200, 536 .sse_version = ARMSSE_SSE200, 537 .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"), 538 .sram_banks = 4, 539 .sram_bank_base = 0x20000000, 540 .num_cpus = 2, 541 .sys_version = 0x22041743, 542 .iidr = 0, 543 .cpuwait_rst = 2, 544 .has_mhus = true, 545 .has_cachectrl = true, 546 .has_cpusecctrl = true, 547 .has_cpuid = true, 548 .has_cpu_pwrctrl = false, 549 .has_sse_counter = false, 550 .has_tcms = false, 551 .props = sse200_properties, 552 .devinfo = sse200_devices, 553 .irq_is_common = sse200_irq_is_common, 554 }, 555 { 556 .name = TYPE_SSE300, 557 .sse_version = ARMSSE_SSE300, 558 .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"), 559 .sram_banks = 2, 560 .sram_bank_base = 0x21000000, 561 .num_cpus = 1, 562 .sys_version = 0x7e00043b, 563 .iidr = 0x74a0043b, 564 .cpuwait_rst = 0, 565 .has_mhus = false, 566 .has_cachectrl = false, 567 .has_cpusecctrl = true, 568 .has_cpuid = true, 569 .has_cpu_pwrctrl = true, 570 .has_sse_counter = true, 571 .has_tcms = true, 572 .props = sse300_properties, 573 .devinfo = sse300_devices, 574 .irq_is_common = sse300_irq_is_common, 575 }, 576 }; 577 578 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) 579 { 580 /* Return the SYS_CONFIG value for this SSE */ 581 uint32_t sys_config; 582 583 switch (info->sse_version) { 584 case ARMSSE_IOTKIT: 585 sys_config = 0; 586 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 587 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); 588 break; 589 case ARMSSE_SSE200: 590 sys_config = 0; 591 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 592 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); 593 sys_config = deposit32(sys_config, 24, 4, 2); 594 if (info->num_cpus > 1) { 595 sys_config = deposit32(sys_config, 10, 1, 1); 596 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); 597 sys_config = deposit32(sys_config, 28, 4, 2); 598 } 599 break; 600 case ARMSSE_SSE300: 601 sys_config = 0; 602 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 603 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); 604 sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */ 605 break; 606 default: 607 g_assert_not_reached(); 608 } 609 return sys_config; 610 } 611 612 /* Clock frequency in HZ of the 32KHz "slow clock" */ 613 #define S32KCLK (32 * 1000) 614 615 /* 616 * Create an alias region in @container of @size bytes starting at @base 617 * which mirrors the memory starting at @orig. 618 */ 619 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, 620 const char *name, hwaddr base, hwaddr size, hwaddr orig) 621 { 622 memory_region_init_alias(mr, NULL, name, container, orig, size); 623 /* The alias is even lower priority than unimplemented_device regions */ 624 memory_region_add_subregion_overlap(container, base, mr, -1500); 625 } 626 627 static void irq_status_forwarder(void *opaque, int n, int level) 628 { 629 qemu_irq destirq = opaque; 630 631 qemu_set_irq(destirq, level); 632 } 633 634 static void nsccfg_handler(void *opaque, int n, int level) 635 { 636 ARMSSE *s = ARM_SSE(opaque); 637 638 s->nsccfg = level; 639 } 640 641 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) 642 { 643 /* Each of the 4 AHB and 4 APB PPCs that might be present in a 644 * system using the ARMSSE has a collection of control lines which 645 * are provided by the security controller and which we want to 646 * expose as control lines on the ARMSSE device itself, so the 647 * code using the ARMSSE can wire them up to the PPCs. 648 */ 649 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; 650 DeviceState *armssedev = DEVICE(s); 651 DeviceState *dev_secctl = DEVICE(&s->secctl); 652 DeviceState *dev_splitter = DEVICE(splitter); 653 char *name; 654 655 name = g_strdup_printf("%s_nonsec", ppcname); 656 qdev_pass_gpios(dev_secctl, armssedev, name); 657 g_free(name); 658 name = g_strdup_printf("%s_ap", ppcname); 659 qdev_pass_gpios(dev_secctl, armssedev, name); 660 g_free(name); 661 name = g_strdup_printf("%s_irq_enable", ppcname); 662 qdev_pass_gpios(dev_secctl, armssedev, name); 663 g_free(name); 664 name = g_strdup_printf("%s_irq_clear", ppcname); 665 qdev_pass_gpios(dev_secctl, armssedev, name); 666 g_free(name); 667 668 /* irq_status is a little more tricky, because we need to 669 * split it so we can send it both to the security controller 670 * and to our OR gate for the NVIC interrupt line. 671 * Connect up the splitter's outputs, and create a GPIO input 672 * which will pass the line state to the input splitter. 673 */ 674 name = g_strdup_printf("%s_irq_status", ppcname); 675 qdev_connect_gpio_out(dev_splitter, 0, 676 qdev_get_gpio_in_named(dev_secctl, 677 name, 0)); 678 qdev_connect_gpio_out(dev_splitter, 1, 679 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); 680 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); 681 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, 682 s->irq_status_in[ppcnum], name, 1); 683 g_free(name); 684 } 685 686 static void armsse_forward_sec_resp_cfg(ARMSSE *s) 687 { 688 /* Forward the 3rd output from the splitter device as a 689 * named GPIO output of the armsse object. 690 */ 691 DeviceState *dev = DEVICE(s); 692 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); 693 694 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); 695 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, 696 s->sec_resp_cfg, 1); 697 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); 698 } 699 700 static void armsse_init(Object *obj) 701 { 702 ARMSSE *s = ARM_SSE(obj); 703 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj); 704 const ARMSSEInfo *info = asc->info; 705 const ARMSSEDeviceInfo *devinfo; 706 int i; 707 708 assert(info->sram_banks <= MAX_SRAM_BANKS); 709 assert(info->num_cpus <= SSE_MAX_CPUS); 710 711 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0); 712 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0); 713 714 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); 715 716 for (i = 0; i < info->num_cpus; i++) { 717 /* 718 * We put each CPU in its own cluster as they are logically 719 * distinct and may be configured differently. 720 */ 721 char *name; 722 723 name = g_strdup_printf("cluster%d", i); 724 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER); 725 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); 726 g_free(name); 727 728 name = g_strdup_printf("armv7m%d", i); 729 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i], 730 TYPE_ARMV7M); 731 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type); 732 g_free(name); 733 name = g_strdup_printf("arm-sse-cpu-container%d", i); 734 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); 735 g_free(name); 736 if (i > 0) { 737 name = g_strdup_printf("arm-sse-container-alias%d", i); 738 memory_region_init_alias(&s->container_alias[i - 1], obj, 739 name, &s->container, 0, UINT64_MAX); 740 g_free(name); 741 } 742 } 743 744 for (devinfo = info->devinfo; devinfo->name; devinfo++) { 745 assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc)); 746 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) { 747 assert(devinfo->index < ARRAY_SIZE(s->timer)); 748 object_initialize_child(obj, devinfo->name, 749 &s->timer[devinfo->index], 750 TYPE_CMSDK_APB_TIMER); 751 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) { 752 assert(devinfo->index == 0); 753 object_initialize_child(obj, devinfo->name, &s->dualtimer, 754 TYPE_CMSDK_APB_DUALTIMER); 755 } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) { 756 assert(devinfo->index < ARRAY_SIZE(s->sse_timer)); 757 object_initialize_child(obj, devinfo->name, 758 &s->sse_timer[devinfo->index], 759 TYPE_SSE_TIMER); 760 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) { 761 assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog)); 762 object_initialize_child(obj, devinfo->name, 763 &s->cmsdk_watchdog[devinfo->index], 764 TYPE_CMSDK_APB_WATCHDOG); 765 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) { 766 assert(devinfo->index == 0); 767 object_initialize_child(obj, devinfo->name, &s->sysinfo, 768 TYPE_IOTKIT_SYSINFO); 769 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) { 770 assert(devinfo->index == 0); 771 object_initialize_child(obj, devinfo->name, &s->sysctl, 772 TYPE_IOTKIT_SYSCTL); 773 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) { 774 assert(devinfo->index < ARRAY_SIZE(s->unimp)); 775 object_initialize_child(obj, devinfo->name, 776 &s->unimp[devinfo->index], 777 TYPE_UNIMPLEMENTED_DEVICE); 778 } else { 779 g_assert_not_reached(); 780 } 781 } 782 783 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL); 784 785 for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) { 786 g_autofree char *name = g_strdup_printf("apb-ppc%d", i); 787 object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC); 788 } 789 790 for (i = 0; i < info->sram_banks; i++) { 791 char *name = g_strdup_printf("mpc%d", i); 792 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC); 793 g_free(name); 794 } 795 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, 796 TYPE_OR_IRQ); 797 798 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { 799 char *name = g_strdup_printf("mpc-irq-splitter-%d", i); 800 SplitIRQ *splitter = &s->mpc_irq_splitter[i]; 801 802 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); 803 g_free(name); 804 } 805 806 if (info->has_mhus) { 807 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU); 808 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU); 809 } 810 if (info->has_cachectrl) { 811 for (i = 0; i < info->num_cpus; i++) { 812 char *name = g_strdup_printf("cachectrl%d", i); 813 814 object_initialize_child(obj, name, &s->cachectrl[i], 815 TYPE_UNIMPLEMENTED_DEVICE); 816 g_free(name); 817 } 818 } 819 if (info->has_cpusecctrl) { 820 for (i = 0; i < info->num_cpus; i++) { 821 char *name = g_strdup_printf("cpusecctrl%d", i); 822 823 object_initialize_child(obj, name, &s->cpusecctrl[i], 824 TYPE_UNIMPLEMENTED_DEVICE); 825 g_free(name); 826 } 827 } 828 if (info->has_cpuid) { 829 for (i = 0; i < info->num_cpus; i++) { 830 char *name = g_strdup_printf("cpuid%d", i); 831 832 object_initialize_child(obj, name, &s->cpuid[i], 833 TYPE_ARMSSE_CPUID); 834 g_free(name); 835 } 836 } 837 if (info->has_cpu_pwrctrl) { 838 for (i = 0; i < info->num_cpus; i++) { 839 char *name = g_strdup_printf("cpu_pwrctrl%d", i); 840 841 object_initialize_child(obj, name, &s->cpu_pwrctrl[i], 842 TYPE_ARMSSE_CPU_PWRCTRL); 843 g_free(name); 844 } 845 } 846 if (info->has_sse_counter) { 847 object_initialize_child(obj, "sse-counter", &s->sse_counter, 848 TYPE_SSE_COUNTER); 849 } 850 851 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ); 852 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, 853 TYPE_OR_IRQ); 854 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, 855 TYPE_SPLIT_IRQ); 856 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { 857 char *name = g_strdup_printf("ppc-irq-splitter-%d", i); 858 SplitIRQ *splitter = &s->ppc_irq_splitter[i]; 859 860 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); 861 g_free(name); 862 } 863 if (info->num_cpus > 1) { 864 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { 865 if (info->irq_is_common[i]) { 866 char *name = g_strdup_printf("cpu-irq-splitter%d", i); 867 SplitIRQ *splitter = &s->cpu_irq_splitter[i]; 868 869 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); 870 g_free(name); 871 } 872 } 873 } 874 } 875 876 static void armsse_exp_irq(void *opaque, int n, int level) 877 { 878 qemu_irq *irqarray = opaque; 879 880 qemu_set_irq(irqarray[n], level); 881 } 882 883 static void armsse_mpcexp_status(void *opaque, int n, int level) 884 { 885 ARMSSE *s = ARM_SSE(opaque); 886 qemu_set_irq(s->mpcexp_status_in[n], level); 887 } 888 889 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) 890 { 891 /* 892 * Return a qemu_irq which can be used to signal IRQ n to 893 * all CPUs in the SSE. 894 */ 895 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s); 896 const ARMSSEInfo *info = asc->info; 897 898 assert(info->irq_is_common[irqno]); 899 900 if (info->num_cpus == 1) { 901 /* Only one CPU -- just connect directly to it */ 902 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); 903 } else { 904 /* Connect to the splitter which feeds all CPUs */ 905 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); 906 } 907 } 908 909 static void armsse_realize(DeviceState *dev, Error **errp) 910 { 911 ERRP_GUARD(); 912 ARMSSE *s = ARM_SSE(dev); 913 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev); 914 const ARMSSEInfo *info = asc->info; 915 const ARMSSEDeviceInfo *devinfo; 916 int i; 917 MemoryRegion *mr; 918 SysBusDevice *sbd_apb_ppc0; 919 SysBusDevice *sbd_secctl; 920 DeviceState *dev_apb_ppc0; 921 DeviceState *dev_apb_ppc1; 922 DeviceState *dev_secctl; 923 DeviceState *dev_splitter; 924 uint32_t addr_width_max; 925 926 if (!s->board_memory) { 927 error_setg(errp, "memory property was not set"); 928 return; 929 } 930 931 if (!clock_has_source(s->mainclk)) { 932 error_setg(errp, "MAINCLK clock was not connected"); 933 } 934 if (!clock_has_source(s->s32kclk)) { 935 error_setg(errp, "S32KCLK clock was not connected"); 936 } 937 938 assert(info->num_cpus <= SSE_MAX_CPUS); 939 940 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ 941 assert(is_power_of_2(info->sram_banks)); 942 addr_width_max = 24 - ctz32(info->sram_banks); 943 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { 944 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", 945 addr_width_max); 946 return; 947 } 948 949 /* Handling of which devices should be available only to secure 950 * code is usually done differently for M profile than for A profile. 951 * Instead of putting some devices only into the secure address space, 952 * devices exist in both address spaces but with hard-wired security 953 * permissions that will cause the CPU to fault for non-secure accesses. 954 * 955 * The ARMSSE has an IDAU (Implementation Defined Access Unit), 956 * which specifies hard-wired security permissions for different 957 * areas of the physical address space. For the ARMSSE IDAU, the 958 * top 4 bits of the physical address are the IDAU region ID, and 959 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS 960 * region, otherwise it is an S region. 961 * 962 * The various devices and RAMs are generally all mapped twice, 963 * once into a region that the IDAU defines as secure and once 964 * into a non-secure region. They sit behind either a Memory 965 * Protection Controller (for RAM) or a Peripheral Protection 966 * Controller (for devices), which allow a more fine grained 967 * configuration of whether non-secure accesses are permitted. 968 * 969 * (The other place that guest software can configure security 970 * permissions is in the architected SAU (Security Attribution 971 * Unit), which is entirely inside the CPU. The IDAU can upgrade 972 * the security attributes for a region to more restrictive than 973 * the SAU specifies, but cannot downgrade them.) 974 * 975 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff 976 * 0x20000000..0x2007ffff 32KB FPGA block RAM 977 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff 978 * 0x40000000..0x4000ffff base peripheral region 1 979 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) 980 * 0x40020000..0x4002ffff system control element peripherals 981 * 0x40080000..0x400fffff base peripheral region 2 982 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff 983 */ 984 985 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); 986 987 for (i = 0; i < info->num_cpus; i++) { 988 DeviceState *cpudev = DEVICE(&s->armv7m[i]); 989 Object *cpuobj = OBJECT(&s->armv7m[i]); 990 int j; 991 char *gpioname; 992 993 qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk); 994 /* The SSE subsystems do not wire up a systick refclk */ 995 996 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS); 997 /* 998 * In real hardware the initial Secure VTOR is set from the INITSVTOR* 999 * registers in the IoT Kit System Control Register block. In QEMU 1000 * we set the initial value here, and also the reset value of the 1001 * sysctl register, from this object's QOM init-svtor property. 1002 * If the guest changes the INITSVTOR* registers at runtime then the 1003 * code in iotkit-sysctl.c will update the CPU init-svtor property 1004 * (which will then take effect on the next CPU warm-reset). 1005 * 1006 * Note that typically a board using the SSE-200 will have a system 1007 * control processor whose boot firmware initializes the INITSVTOR* 1008 * registers before powering up the CPUs. QEMU doesn't emulate 1009 * the control processor, so instead we behave in the way that the 1010 * firmware does: the initial value should be set by the board code 1011 * (using the init-svtor property on the ARMSSE object) to match 1012 * whatever its firmware does. 1013 */ 1014 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); 1015 /* 1016 * CPUs start powered down if the corresponding bit in the CPUWAIT 1017 * register is 1. In real hardware the CPUWAIT register reset value is 1018 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and 1019 * CPUWAIT1_RST parameters), but since all the boards we care about 1020 * start CPU0 and leave CPU1 powered off, we hard-code that in 1021 * info->cpuwait_rst for now. We can add QOM properties for this 1022 * later if necessary. 1023 */ 1024 if (extract32(info->cpuwait_rst, i, 1)) { 1025 if (!object_property_set_bool(cpuobj, "start-powered-off", true, 1026 errp)) { 1027 return; 1028 } 1029 } 1030 if (!s->cpu_fpu[i]) { 1031 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) { 1032 return; 1033 } 1034 } 1035 if (!s->cpu_dsp[i]) { 1036 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) { 1037 return; 1038 } 1039 } 1040 if (!object_property_set_uint(cpuobj, "mpu-ns-regions", 1041 s->cpu_mpu_ns[i], errp)) { 1042 return; 1043 } 1044 if (!object_property_set_uint(cpuobj, "mpu-s-regions", 1045 s->cpu_mpu_s[i], errp)) { 1046 return; 1047 } 1048 1049 if (i > 0) { 1050 memory_region_add_subregion_overlap(&s->cpu_container[i], 0, 1051 &s->container_alias[i - 1], -1); 1052 } else { 1053 memory_region_add_subregion_overlap(&s->cpu_container[i], 0, 1054 &s->container, -1); 1055 } 1056 object_property_set_link(cpuobj, "memory", 1057 OBJECT(&s->cpu_container[i]), &error_abort); 1058 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort); 1059 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) { 1060 return; 1061 } 1062 /* 1063 * The cluster must be realized after the armv7m container, as 1064 * the container's CPU object is only created on realize, and the 1065 * CPU must exist and have been parented into the cluster before 1066 * the cluster is realized. 1067 */ 1068 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) { 1069 return; 1070 } 1071 1072 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ 1073 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); 1074 for (j = 0; j < s->exp_numirq; j++) { 1075 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS); 1076 } 1077 if (i == 0) { 1078 gpioname = g_strdup("EXP_IRQ"); 1079 } else { 1080 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); 1081 } 1082 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, 1083 s->exp_irqs[i], 1084 gpioname, s->exp_numirq); 1085 g_free(gpioname); 1086 } 1087 1088 /* Wire up the splitters that connect common IRQs to all CPUs */ 1089 if (info->num_cpus > 1) { 1090 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { 1091 if (info->irq_is_common[i]) { 1092 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); 1093 DeviceState *devs = DEVICE(splitter); 1094 int cpunum; 1095 1096 if (!object_property_set_int(splitter, "num-lines", 1097 info->num_cpus, errp)) { 1098 return; 1099 } 1100 if (!qdev_realize(DEVICE(splitter), NULL, errp)) { 1101 return; 1102 } 1103 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { 1104 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); 1105 1106 qdev_connect_gpio_out(devs, cpunum, 1107 qdev_get_gpio_in(cpudev, i)); 1108 } 1109 } 1110 } 1111 } 1112 1113 /* Set up the big aliases first */ 1114 make_alias(s, &s->alias1, &s->container, "alias 1", 1115 0x10000000, 0x10000000, 0x00000000); 1116 make_alias(s, &s->alias2, &s->container, 1117 "alias 2", 0x30000000, 0x10000000, 0x20000000); 1118 /* The 0x50000000..0x5fffffff region is not a pure alias: it has 1119 * a few extra devices that only appear there (generally the 1120 * control interfaces for the protection controllers). 1121 * We implement this by mapping those devices over the top of this 1122 * alias MR at a higher priority. Some of the devices in this range 1123 * are per-CPU, so we must put this alias in the per-cpu containers. 1124 */ 1125 for (i = 0; i < info->num_cpus; i++) { 1126 make_alias(s, &s->alias3[i], &s->cpu_container[i], 1127 "alias 3", 0x50000000, 0x10000000, 0x40000000); 1128 } 1129 1130 /* Security controller */ 1131 object_property_set_int(OBJECT(&s->secctl), "sse-version", 1132 info->sse_version, &error_abort); 1133 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) { 1134 return; 1135 } 1136 sbd_secctl = SYS_BUS_DEVICE(&s->secctl); 1137 dev_secctl = DEVICE(&s->secctl); 1138 sysbus_mmio_map(sbd_secctl, 0, 0x50080000); 1139 sysbus_mmio_map(sbd_secctl, 1, 0x40080000); 1140 1141 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); 1142 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); 1143 1144 /* The sec_resp_cfg output from the security controller must be split into 1145 * multiple lines, one for each of the PPCs within the ARMSSE and one 1146 * that will be an output from the ARMSSE to the system. 1147 */ 1148 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter), 1149 "num-lines", 3, errp)) { 1150 return; 1151 } 1152 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) { 1153 return; 1154 } 1155 dev_splitter = DEVICE(&s->sec_resp_splitter); 1156 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, 1157 qdev_get_gpio_in(dev_splitter, 0)); 1158 1159 /* Each SRAM bank lives behind its own Memory Protection Controller */ 1160 for (i = 0; i < info->sram_banks; i++) { 1161 char *ramname = g_strdup_printf("armsse.sram%d", i); 1162 SysBusDevice *sbd_mpc; 1163 uint32_t sram_bank_size = 1 << s->sram_addr_width; 1164 1165 memory_region_init_ram(&s->sram[i], NULL, ramname, 1166 sram_bank_size, errp); 1167 g_free(ramname); 1168 if (*errp) { 1169 return; 1170 } 1171 object_property_set_link(OBJECT(&s->mpc[i]), "downstream", 1172 OBJECT(&s->sram[i]), &error_abort); 1173 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) { 1174 return; 1175 } 1176 /* Map the upstream end of the MPC into the right place... */ 1177 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); 1178 memory_region_add_subregion(&s->container, 1179 info->sram_bank_base + i * sram_bank_size, 1180 sysbus_mmio_get_region(sbd_mpc, 1)); 1181 /* ...and its register interface */ 1182 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, 1183 sysbus_mmio_get_region(sbd_mpc, 0)); 1184 } 1185 1186 /* We must OR together lines from the MPC splitters to go to the NVIC */ 1187 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines", 1188 IOTS_NUM_EXP_MPC + info->sram_banks, 1189 errp)) { 1190 return; 1191 } 1192 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) { 1193 return; 1194 } 1195 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, 1196 armsse_get_common_irq_in(s, 9)); 1197 1198 /* This OR gate wires together outputs from the secure watchdogs to NMI */ 1199 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2, 1200 errp)) { 1201 return; 1202 } 1203 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) { 1204 return; 1205 } 1206 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, 1207 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); 1208 1209 /* The SSE-300 has a System Counter / System Timestamp Generator */ 1210 if (info->has_sse_counter) { 1211 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter); 1212 1213 qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk); 1214 if (!sysbus_realize(sbd, errp)) { 1215 return; 1216 } 1217 /* 1218 * The control frame is only in the Secure region; 1219 * the status frame is in the NS region (and visible in the 1220 * S region via the alias mapping). 1221 */ 1222 memory_region_add_subregion(&s->container, 0x58100000, 1223 sysbus_mmio_get_region(sbd, 0)); 1224 memory_region_add_subregion(&s->container, 0x48101000, 1225 sysbus_mmio_get_region(sbd, 1)); 1226 } 1227 1228 if (info->has_tcms) { 1229 /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */ 1230 memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp); 1231 if (*errp) { 1232 return; 1233 } 1234 memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp); 1235 if (*errp) { 1236 return; 1237 } 1238 memory_region_add_subregion(&s->container, 0x00000000, &s->itcm); 1239 memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm); 1240 } 1241 1242 /* Devices behind APB PPC0: 1243 * 0x40000000: timer0 1244 * 0x40001000: timer1 1245 * 0x40002000: dual timer 1246 * 0x40003000: MHU0 (SSE-200 only) 1247 * 0x40004000: MHU1 (SSE-200 only) 1248 * We must configure and realize each downstream device and connect 1249 * it to the appropriate PPC port; then we can realize the PPC and 1250 * map its upstream ends to the right place in the container. 1251 */ 1252 for (devinfo = info->devinfo; devinfo->name; devinfo++) { 1253 SysBusDevice *sbd; 1254 qemu_irq irq; 1255 1256 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) { 1257 sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]); 1258 1259 qdev_connect_clock_in(DEVICE(sbd), "pclk", 1260 devinfo->slowclk ? s->s32kclk : s->mainclk); 1261 if (!sysbus_realize(sbd, errp)) { 1262 return; 1263 } 1264 mr = sysbus_mmio_get_region(sbd, 0); 1265 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) { 1266 sbd = SYS_BUS_DEVICE(&s->dualtimer); 1267 1268 qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk); 1269 if (!sysbus_realize(sbd, errp)) { 1270 return; 1271 } 1272 mr = sysbus_mmio_get_region(sbd, 0); 1273 } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) { 1274 sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]); 1275 1276 assert(info->has_sse_counter); 1277 object_property_set_link(OBJECT(sbd), "counter", 1278 OBJECT(&s->sse_counter), &error_abort); 1279 if (!sysbus_realize(sbd, errp)) { 1280 return; 1281 } 1282 mr = sysbus_mmio_get_region(sbd, 0); 1283 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) { 1284 sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]); 1285 1286 qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK", 1287 devinfo->slowclk ? s->s32kclk : s->mainclk); 1288 if (!sysbus_realize(sbd, errp)) { 1289 return; 1290 } 1291 mr = sysbus_mmio_get_region(sbd, 0); 1292 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) { 1293 sbd = SYS_BUS_DEVICE(&s->sysinfo); 1294 1295 object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION", 1296 info->sys_version, &error_abort); 1297 object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG", 1298 armsse_sys_config_value(s, info), 1299 &error_abort); 1300 object_property_set_int(OBJECT(&s->sysinfo), "sse-version", 1301 info->sse_version, &error_abort); 1302 object_property_set_int(OBJECT(&s->sysinfo), "IIDR", 1303 info->iidr, &error_abort); 1304 if (!sysbus_realize(sbd, errp)) { 1305 return; 1306 } 1307 mr = sysbus_mmio_get_region(sbd, 0); 1308 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) { 1309 /* System control registers */ 1310 sbd = SYS_BUS_DEVICE(&s->sysctl); 1311 1312 object_property_set_int(OBJECT(&s->sysctl), "sse-version", 1313 info->sse_version, &error_abort); 1314 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST", 1315 info->cpuwait_rst, &error_abort); 1316 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST", 1317 s->init_svtor, &error_abort); 1318 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST", 1319 s->init_svtor, &error_abort); 1320 if (!sysbus_realize(sbd, errp)) { 1321 return; 1322 } 1323 mr = sysbus_mmio_get_region(sbd, 0); 1324 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) { 1325 sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]); 1326 1327 qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name); 1328 qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size); 1329 if (!sysbus_realize(sbd, errp)) { 1330 return; 1331 } 1332 mr = sysbus_mmio_get_region(sbd, 0); 1333 } else { 1334 g_assert_not_reached(); 1335 } 1336 1337 switch (devinfo->irq) { 1338 case NO_IRQ: 1339 irq = NULL; 1340 break; 1341 case 0 ... NUM_SSE_IRQS - 1: 1342 irq = armsse_get_common_irq_in(s, devinfo->irq); 1343 break; 1344 case NMI_0: 1345 case NMI_1: 1346 irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1347 devinfo->irq - NMI_0); 1348 break; 1349 default: 1350 g_assert_not_reached(); 1351 } 1352 1353 if (irq) { 1354 sysbus_connect_irq(sbd, 0, irq); 1355 } 1356 1357 /* 1358 * Devices connected to a PPC are connected to the port here; 1359 * we will map the upstream end of that port to the right address 1360 * in the container later after the PPC has been realized. 1361 * Devices not connected to a PPC can be mapped immediately. 1362 */ 1363 if (devinfo->ppc != NO_PPC) { 1364 TZPPC *ppc = &s->apb_ppc[devinfo->ppc]; 1365 g_autofree char *portname = g_strdup_printf("port[%d]", 1366 devinfo->ppc_port); 1367 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), 1368 &error_abort); 1369 } else { 1370 memory_region_add_subregion(&s->container, devinfo->addr, mr); 1371 } 1372 } 1373 1374 if (info->has_mhus) { 1375 /* 1376 * An SSE-200 with only one CPU should have only one MHU created, 1377 * with the region where the second MHU usually is being RAZ/WI. 1378 * We don't implement that SSE-200 config; if we want to support 1379 * it then this code needs to be enhanced to handle creating the 1380 * RAZ/WI region instead of the second MHU. 1381 */ 1382 assert(info->num_cpus == ARRAY_SIZE(s->mhu)); 1383 1384 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { 1385 char *port; 1386 int cpunum; 1387 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); 1388 1389 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) { 1390 return; 1391 } 1392 port = g_strdup_printf("port[%d]", i + 3); 1393 mr = sysbus_mmio_get_region(mhu_sbd, 0); 1394 object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr), 1395 &error_abort); 1396 g_free(port); 1397 1398 /* 1399 * Each MHU has an irq line for each CPU: 1400 * MHU 0 irq line 0 -> CPU 0 IRQ 6 1401 * MHU 0 irq line 1 -> CPU 1 IRQ 6 1402 * MHU 1 irq line 0 -> CPU 0 IRQ 7 1403 * MHU 1 irq line 1 -> CPU 1 IRQ 7 1404 */ 1405 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { 1406 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); 1407 1408 sysbus_connect_irq(mhu_sbd, cpunum, 1409 qdev_get_gpio_in(cpudev, 6 + i)); 1410 } 1411 } 1412 } 1413 1414 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) { 1415 return; 1416 } 1417 1418 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]); 1419 dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]); 1420 1421 if (info->has_mhus) { 1422 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); 1423 memory_region_add_subregion(&s->container, 0x40003000, mr); 1424 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); 1425 memory_region_add_subregion(&s->container, 0x40004000, mr); 1426 } 1427 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { 1428 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, 1429 qdev_get_gpio_in_named(dev_apb_ppc0, 1430 "cfg_nonsec", i)); 1431 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, 1432 qdev_get_gpio_in_named(dev_apb_ppc0, 1433 "cfg_ap", i)); 1434 } 1435 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, 1436 qdev_get_gpio_in_named(dev_apb_ppc0, 1437 "irq_enable", 0)); 1438 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, 1439 qdev_get_gpio_in_named(dev_apb_ppc0, 1440 "irq_clear", 0)); 1441 qdev_connect_gpio_out(dev_splitter, 0, 1442 qdev_get_gpio_in_named(dev_apb_ppc0, 1443 "cfg_sec_resp", 0)); 1444 1445 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external 1446 * ones) are sent individually to the security controller, and also 1447 * ORed together to give a single combined PPC interrupt to the NVIC. 1448 */ 1449 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate), 1450 "num-lines", NUM_PPCS, errp)) { 1451 return; 1452 } 1453 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) { 1454 return; 1455 } 1456 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, 1457 armsse_get_common_irq_in(s, 10)); 1458 1459 /* 1460 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): 1461 * private per-CPU region (all these devices are SSE-200 only): 1462 * 0x50010000: L1 icache control registers 1463 * 0x50011000: CPUSECCTRL (CPU local security control registers) 1464 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block 1465 * The SSE-300 has an extra: 1466 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block 1467 */ 1468 if (info->has_cachectrl) { 1469 for (i = 0; i < info->num_cpus; i++) { 1470 char *name = g_strdup_printf("cachectrl%d", i); 1471 1472 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); 1473 g_free(name); 1474 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); 1475 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) { 1476 return; 1477 } 1478 1479 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); 1480 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); 1481 } 1482 } 1483 if (info->has_cpusecctrl) { 1484 for (i = 0; i < info->num_cpus; i++) { 1485 char *name = g_strdup_printf("CPUSECCTRL%d", i); 1486 1487 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); 1488 g_free(name); 1489 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); 1490 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) { 1491 return; 1492 } 1493 1494 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); 1495 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); 1496 } 1497 } 1498 if (info->has_cpuid) { 1499 for (i = 0; i < info->num_cpus; i++) { 1500 1501 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); 1502 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) { 1503 return; 1504 } 1505 1506 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); 1507 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); 1508 } 1509 } 1510 if (info->has_cpu_pwrctrl) { 1511 for (i = 0; i < info->num_cpus; i++) { 1512 1513 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) { 1514 return; 1515 } 1516 1517 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0); 1518 memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr); 1519 } 1520 } 1521 1522 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) { 1523 return; 1524 } 1525 1526 dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]); 1527 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, 1528 qdev_get_gpio_in_named(dev_apb_ppc1, 1529 "cfg_nonsec", 0)); 1530 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, 1531 qdev_get_gpio_in_named(dev_apb_ppc1, 1532 "cfg_ap", 0)); 1533 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, 1534 qdev_get_gpio_in_named(dev_apb_ppc1, 1535 "irq_enable", 0)); 1536 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, 1537 qdev_get_gpio_in_named(dev_apb_ppc1, 1538 "irq_clear", 0)); 1539 qdev_connect_gpio_out(dev_splitter, 1, 1540 qdev_get_gpio_in_named(dev_apb_ppc1, 1541 "cfg_sec_resp", 0)); 1542 1543 /* 1544 * Now both PPCs are realized we can map the upstream ends of 1545 * ports which correspond to entries in the devinfo array. 1546 * The ports which are connected to non-devinfo devices have 1547 * already been mapped. 1548 */ 1549 for (devinfo = info->devinfo; devinfo->name; devinfo++) { 1550 SysBusDevice *ppc_sbd; 1551 1552 if (devinfo->ppc == NO_PPC) { 1553 continue; 1554 } 1555 ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]); 1556 mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port); 1557 memory_region_add_subregion(&s->container, devinfo->addr, mr); 1558 } 1559 1560 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { 1561 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); 1562 1563 if (!object_property_set_int(splitter, "num-lines", 2, errp)) { 1564 return; 1565 } 1566 if (!qdev_realize(DEVICE(splitter), NULL, errp)) { 1567 return; 1568 } 1569 } 1570 1571 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { 1572 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); 1573 1574 armsse_forward_ppc(s, ppcname, i); 1575 g_free(ppcname); 1576 } 1577 1578 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { 1579 char *ppcname = g_strdup_printf("apb_ppcexp%d", i); 1580 1581 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); 1582 g_free(ppcname); 1583 } 1584 1585 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { 1586 /* Wire up IRQ splitter for internal PPCs */ 1587 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); 1588 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", 1589 i - NUM_EXTERNAL_PPCS); 1590 TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS]; 1591 1592 qdev_connect_gpio_out(devs, 0, 1593 qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); 1594 qdev_connect_gpio_out(devs, 1, 1595 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); 1596 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, 1597 qdev_get_gpio_in(devs, 0)); 1598 g_free(gpioname); 1599 } 1600 1601 /* Wire up the splitters for the MPC IRQs */ 1602 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { 1603 SplitIRQ *splitter = &s->mpc_irq_splitter[i]; 1604 DeviceState *devs = DEVICE(splitter); 1605 1606 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2, 1607 errp)) { 1608 return; 1609 } 1610 if (!qdev_realize(DEVICE(splitter), NULL, errp)) { 1611 return; 1612 } 1613 1614 if (i < IOTS_NUM_EXP_MPC) { 1615 /* Splitter input is from GPIO input line */ 1616 s->mpcexp_status_in[i] = qdev_get_gpio_in(devs, 0); 1617 qdev_connect_gpio_out(devs, 0, 1618 qdev_get_gpio_in_named(dev_secctl, 1619 "mpcexp_status", i)); 1620 } else { 1621 /* Splitter input is from our own MPC */ 1622 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), 1623 "irq", 0, 1624 qdev_get_gpio_in(devs, 0)); 1625 qdev_connect_gpio_out(devs, 0, 1626 qdev_get_gpio_in_named(dev_secctl, 1627 "mpc_status", 1628 i - IOTS_NUM_EXP_MPC)); 1629 } 1630 1631 qdev_connect_gpio_out(devs, 1, 1632 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); 1633 } 1634 /* Create GPIO inputs which will pass the line state for our 1635 * mpcexp_irq inputs to the correct splitter devices. 1636 */ 1637 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", 1638 IOTS_NUM_EXP_MPC); 1639 1640 armsse_forward_sec_resp_cfg(s); 1641 1642 /* Forward the MSC related signals */ 1643 qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); 1644 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); 1645 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); 1646 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, 1647 armsse_get_common_irq_in(s, 11)); 1648 1649 /* 1650 * Expose our container region to the board model; this corresponds 1651 * to the AHB Slave Expansion ports which allow bus master devices 1652 * (eg DMA controllers) in the board model to make transactions into 1653 * devices in the ARMSSE. 1654 */ 1655 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); 1656 } 1657 1658 static void armsse_idau_check(IDAUInterface *ii, uint32_t address, 1659 int *iregion, bool *exempt, bool *ns, bool *nsc) 1660 { 1661 /* 1662 * For ARMSSE systems the IDAU responses are simple logical functions 1663 * of the address bits. The NSC attribute is guest-adjustable via the 1664 * NSCCFG register in the security controller. 1665 */ 1666 ARMSSE *s = ARM_SSE(ii); 1667 int region = extract32(address, 28, 4); 1668 1669 *ns = !(region & 1); 1670 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); 1671 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ 1672 *exempt = (address & 0xeff00000) == 0xe0000000; 1673 *iregion = region; 1674 } 1675 1676 static const VMStateDescription armsse_vmstate = { 1677 .name = "iotkit", 1678 .version_id = 2, 1679 .minimum_version_id = 2, 1680 .fields = (const VMStateField[]) { 1681 VMSTATE_CLOCK(mainclk, ARMSSE), 1682 VMSTATE_CLOCK(s32kclk, ARMSSE), 1683 VMSTATE_UINT32(nsccfg, ARMSSE), 1684 VMSTATE_END_OF_LIST() 1685 } 1686 }; 1687 1688 static void armsse_reset(DeviceState *dev) 1689 { 1690 ARMSSE *s = ARM_SSE(dev); 1691 1692 s->nsccfg = 0; 1693 } 1694 1695 static void armsse_class_init(ObjectClass *klass, void *data) 1696 { 1697 DeviceClass *dc = DEVICE_CLASS(klass); 1698 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); 1699 ARMSSEClass *asc = ARM_SSE_CLASS(klass); 1700 const ARMSSEInfo *info = data; 1701 1702 dc->realize = armsse_realize; 1703 dc->vmsd = &armsse_vmstate; 1704 device_class_set_props(dc, info->props); 1705 dc->reset = armsse_reset; 1706 iic->check = armsse_idau_check; 1707 asc->info = info; 1708 } 1709 1710 static const TypeInfo armsse_info = { 1711 .name = TYPE_ARM_SSE, 1712 .parent = TYPE_SYS_BUS_DEVICE, 1713 .instance_size = sizeof(ARMSSE), 1714 .class_size = sizeof(ARMSSEClass), 1715 .instance_init = armsse_init, 1716 .abstract = true, 1717 .interfaces = (InterfaceInfo[]) { 1718 { TYPE_IDAU_INTERFACE }, 1719 { } 1720 } 1721 }; 1722 1723 static void armsse_register_types(void) 1724 { 1725 int i; 1726 1727 type_register_static(&armsse_info); 1728 1729 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { 1730 TypeInfo ti = { 1731 .name = armsse_variants[i].name, 1732 .parent = TYPE_ARM_SSE, 1733 .class_init = armsse_class_init, 1734 .class_data = (void *)&armsse_variants[i], 1735 }; 1736 type_register(&ti); 1737 } 1738 } 1739 1740 type_init(armsse_register_types); 1741