xref: /openbmc/qemu/hw/arm/armsse.c (revision c16de0d9fdaf83d38f2f5141b35c9b3fbfcece78)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
18 #include "trace.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-clock.h"
27 
28 /*
29  * The SSE-300 puts some devices in different places to the
30  * SSE-200 (and original IoTKit). We use an array of these structs
31  * to define how each variant lays out these devices. (Parts of the
32  * SoC that are the same for all variants aren't handled via these
33  * data structures.)
34  */
35 
36 #define NO_IRQ -1
37 #define NO_PPC -1
38 /*
39  * Special values for ARMSSEDeviceInfo::irq to indicate that this
40  * device uses one of the inputs to the OR gate that feeds into the
41  * CPU NMI input.
42  */
43 #define NMI_0 10000
44 #define NMI_1 10001
45 
46 typedef struct ARMSSEDeviceInfo {
47     const char *name; /* name to use for the QOM object; NULL terminates list */
48     const char *type; /* QOM type name */
49     unsigned int index; /* Which of the N devices of this type is this ? */
50     hwaddr addr;
51     hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52     int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
53     int ppc_port; /* Port number of this device on the PPC */
54     int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55     bool slowclk; /* true if device uses the slow 32KHz clock */
56 } ARMSSEDeviceInfo;
57 
58 struct ARMSSEInfo {
59     const char *name;
60     const char *cpu_type;
61     uint32_t sse_version;
62     int sram_banks;
63     uint32_t sram_bank_base;
64     int num_cpus;
65     uint32_t sys_version;
66     uint32_t iidr;
67     uint32_t cpuwait_rst;
68     bool has_mhus;
69     bool has_cachectrl;
70     bool has_cpusecctrl;
71     bool has_cpuid;
72     bool has_cpu_pwrctrl;
73     bool has_sse_counter;
74     bool has_tcms;
75     Property *props;
76     const ARMSSEDeviceInfo *devinfo;
77     const bool *irq_is_common;
78 };
79 
80 static Property iotkit_properties[] = {
81     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
82                      MemoryRegion *),
83     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
84     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
85     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
86     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
87     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
88     DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
89     DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
90     DEFINE_PROP_END_OF_LIST()
91 };
92 
93 static Property sse200_properties[] = {
94     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
95                      MemoryRegion *),
96     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
97     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
98     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
99     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
100     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
101     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
102     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
103     DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
104     DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
105     DEFINE_PROP_UINT32("CPU1_MPU_NS", ARMSSE, cpu_mpu_ns[1], 8),
106     DEFINE_PROP_UINT32("CPU1_MPU_S", ARMSSE, cpu_mpu_s[1], 8),
107     DEFINE_PROP_END_OF_LIST()
108 };
109 
110 static Property sse300_properties[] = {
111     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
112                      MemoryRegion *),
113     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
114     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
115     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
116     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
117     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
118     DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
119     DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
120     DEFINE_PROP_END_OF_LIST()
121 };
122 
123 static const ARMSSEDeviceInfo iotkit_devices[] = {
124     {
125         .name = "timer0",
126         .type = TYPE_CMSDK_APB_TIMER,
127         .index = 0,
128         .addr = 0x40000000,
129         .ppc = 0,
130         .ppc_port = 0,
131         .irq = 3,
132     },
133     {
134         .name = "timer1",
135         .type = TYPE_CMSDK_APB_TIMER,
136         .index = 1,
137         .addr = 0x40001000,
138         .ppc = 0,
139         .ppc_port = 1,
140         .irq = 4,
141     },
142     {
143         .name = "s32ktimer",
144         .type = TYPE_CMSDK_APB_TIMER,
145         .index = 2,
146         .addr = 0x4002f000,
147         .ppc = 1,
148         .ppc_port = 0,
149         .irq = 2,
150         .slowclk = true,
151     },
152     {
153         .name = "dualtimer",
154         .type = TYPE_CMSDK_APB_DUALTIMER,
155         .index = 0,
156         .addr = 0x40002000,
157         .ppc = 0,
158         .ppc_port = 2,
159         .irq = 5,
160     },
161     {
162         .name = "s32kwatchdog",
163         .type = TYPE_CMSDK_APB_WATCHDOG,
164         .index = 0,
165         .addr = 0x5002e000,
166         .ppc = NO_PPC,
167         .irq = NMI_0,
168         .slowclk = true,
169     },
170     {
171         .name = "nswatchdog",
172         .type = TYPE_CMSDK_APB_WATCHDOG,
173         .index = 1,
174         .addr = 0x40081000,
175         .ppc = NO_PPC,
176         .irq = 1,
177     },
178     {
179         .name = "swatchdog",
180         .type = TYPE_CMSDK_APB_WATCHDOG,
181         .index = 2,
182         .addr = 0x50081000,
183         .ppc = NO_PPC,
184         .irq = NMI_1,
185     },
186     {
187         .name = "armsse-sysinfo",
188         .type = TYPE_IOTKIT_SYSINFO,
189         .index = 0,
190         .addr = 0x40020000,
191         .ppc = NO_PPC,
192         .irq = NO_IRQ,
193     },
194     {
195         .name = "armsse-sysctl",
196         .type = TYPE_IOTKIT_SYSCTL,
197         .index = 0,
198         .addr = 0x50021000,
199         .ppc = NO_PPC,
200         .irq = NO_IRQ,
201     },
202     {
203         .name = NULL,
204     }
205 };
206 
207 static const ARMSSEDeviceInfo sse200_devices[] = {
208     {
209         .name = "timer0",
210         .type = TYPE_CMSDK_APB_TIMER,
211         .index = 0,
212         .addr = 0x40000000,
213         .ppc = 0,
214         .ppc_port = 0,
215         .irq = 3,
216     },
217     {
218         .name = "timer1",
219         .type = TYPE_CMSDK_APB_TIMER,
220         .index = 1,
221         .addr = 0x40001000,
222         .ppc = 0,
223         .ppc_port = 1,
224         .irq = 4,
225     },
226     {
227         .name = "s32ktimer",
228         .type = TYPE_CMSDK_APB_TIMER,
229         .index = 2,
230         .addr = 0x4002f000,
231         .ppc = 1,
232         .ppc_port = 0,
233         .irq = 2,
234         .slowclk = true,
235     },
236     {
237         .name = "dualtimer",
238         .type = TYPE_CMSDK_APB_DUALTIMER,
239         .index = 0,
240         .addr = 0x40002000,
241         .ppc = 0,
242         .ppc_port = 2,
243         .irq = 5,
244     },
245     {
246         .name = "s32kwatchdog",
247         .type = TYPE_CMSDK_APB_WATCHDOG,
248         .index = 0,
249         .addr = 0x5002e000,
250         .ppc = NO_PPC,
251         .irq = NMI_0,
252         .slowclk = true,
253     },
254     {
255         .name = "nswatchdog",
256         .type = TYPE_CMSDK_APB_WATCHDOG,
257         .index = 1,
258         .addr = 0x40081000,
259         .ppc = NO_PPC,
260         .irq = 1,
261     },
262     {
263         .name = "swatchdog",
264         .type = TYPE_CMSDK_APB_WATCHDOG,
265         .index = 2,
266         .addr = 0x50081000,
267         .ppc = NO_PPC,
268         .irq = NMI_1,
269     },
270     {
271         .name = "armsse-sysinfo",
272         .type = TYPE_IOTKIT_SYSINFO,
273         .index = 0,
274         .addr = 0x40020000,
275         .ppc = NO_PPC,
276         .irq = NO_IRQ,
277     },
278     {
279         .name = "armsse-sysctl",
280         .type = TYPE_IOTKIT_SYSCTL,
281         .index = 0,
282         .addr = 0x50021000,
283         .ppc = NO_PPC,
284         .irq = NO_IRQ,
285     },
286     {
287         .name = "CPU0CORE_PPU",
288         .type = TYPE_UNIMPLEMENTED_DEVICE,
289         .index = 0,
290         .addr = 0x50023000,
291         .size = 0x1000,
292         .ppc = NO_PPC,
293         .irq = NO_IRQ,
294     },
295     {
296         .name = "CPU1CORE_PPU",
297         .type = TYPE_UNIMPLEMENTED_DEVICE,
298         .index = 1,
299         .addr = 0x50025000,
300         .size = 0x1000,
301         .ppc = NO_PPC,
302         .irq = NO_IRQ,
303     },
304     {
305         .name = "DBG_PPU",
306         .type = TYPE_UNIMPLEMENTED_DEVICE,
307         .index = 2,
308         .addr = 0x50029000,
309         .size = 0x1000,
310         .ppc = NO_PPC,
311         .irq = NO_IRQ,
312     },
313     {
314         .name = "RAM0_PPU",
315         .type = TYPE_UNIMPLEMENTED_DEVICE,
316         .index = 3,
317         .addr = 0x5002a000,
318         .size = 0x1000,
319         .ppc = NO_PPC,
320         .irq = NO_IRQ,
321     },
322     {
323         .name = "RAM1_PPU",
324         .type = TYPE_UNIMPLEMENTED_DEVICE,
325         .index = 4,
326         .addr = 0x5002b000,
327         .size = 0x1000,
328         .ppc = NO_PPC,
329         .irq = NO_IRQ,
330     },
331     {
332         .name = "RAM2_PPU",
333         .type = TYPE_UNIMPLEMENTED_DEVICE,
334         .index = 5,
335         .addr = 0x5002c000,
336         .size = 0x1000,
337         .ppc = NO_PPC,
338         .irq = NO_IRQ,
339     },
340     {
341         .name = "RAM3_PPU",
342         .type = TYPE_UNIMPLEMENTED_DEVICE,
343         .index = 6,
344         .addr = 0x5002d000,
345         .size = 0x1000,
346         .ppc = NO_PPC,
347         .irq = NO_IRQ,
348     },
349     {
350         .name = "SYS_PPU",
351         .type = TYPE_UNIMPLEMENTED_DEVICE,
352         .index = 7,
353         .addr = 0x50022000,
354         .size = 0x1000,
355         .ppc = NO_PPC,
356         .irq = NO_IRQ,
357     },
358     {
359         .name = NULL,
360     }
361 };
362 
363 static const ARMSSEDeviceInfo sse300_devices[] = {
364     {
365         .name = "timer0",
366         .type = TYPE_SSE_TIMER,
367         .index = 0,
368         .addr = 0x48000000,
369         .ppc = 0,
370         .ppc_port = 0,
371         .irq = 3,
372     },
373     {
374         .name = "timer1",
375         .type = TYPE_SSE_TIMER,
376         .index = 1,
377         .addr = 0x48001000,
378         .ppc = 0,
379         .ppc_port = 1,
380         .irq = 4,
381     },
382     {
383         .name = "timer2",
384         .type = TYPE_SSE_TIMER,
385         .index = 2,
386         .addr = 0x48002000,
387         .ppc = 0,
388         .ppc_port = 2,
389         .irq = 5,
390     },
391     {
392         .name = "timer3",
393         .type = TYPE_SSE_TIMER,
394         .index = 3,
395         .addr = 0x48003000,
396         .ppc = 0,
397         .ppc_port = 5,
398         .irq = 27,
399     },
400     {
401         .name = "s32ktimer",
402         .type = TYPE_CMSDK_APB_TIMER,
403         .index = 0,
404         .addr = 0x4802f000,
405         .ppc = 1,
406         .ppc_port = 0,
407         .irq = 2,
408         .slowclk = true,
409     },
410     {
411         .name = "s32kwatchdog",
412         .type = TYPE_CMSDK_APB_WATCHDOG,
413         .index = 0,
414         .addr = 0x4802e000,
415         .ppc = NO_PPC,
416         .irq = NMI_0,
417         .slowclk = true,
418     },
419     {
420         .name = "watchdog",
421         .type = TYPE_UNIMPLEMENTED_DEVICE,
422         .index = 0,
423         .addr = 0x48040000,
424         .size = 0x2000,
425         .ppc = NO_PPC,
426         .irq = NO_IRQ,
427     },
428     {
429         .name = "armsse-sysinfo",
430         .type = TYPE_IOTKIT_SYSINFO,
431         .index = 0,
432         .addr = 0x48020000,
433         .ppc = NO_PPC,
434         .irq = NO_IRQ,
435     },
436     {
437         .name = "armsse-sysctl",
438         .type = TYPE_IOTKIT_SYSCTL,
439         .index = 0,
440         .addr = 0x58021000,
441         .ppc = NO_PPC,
442         .irq = NO_IRQ,
443     },
444     {
445         .name = "SYS_PPU",
446         .type = TYPE_UNIMPLEMENTED_DEVICE,
447         .index = 1,
448         .addr = 0x58022000,
449         .size = 0x1000,
450         .ppc = NO_PPC,
451         .irq = NO_IRQ,
452     },
453     {
454         .name = "CPU0CORE_PPU",
455         .type = TYPE_UNIMPLEMENTED_DEVICE,
456         .index = 2,
457         .addr = 0x50023000,
458         .size = 0x1000,
459         .ppc = NO_PPC,
460         .irq = NO_IRQ,
461     },
462     {
463         .name = "MGMT_PPU",
464         .type = TYPE_UNIMPLEMENTED_DEVICE,
465         .index = 3,
466         .addr = 0x50028000,
467         .size = 0x1000,
468         .ppc = NO_PPC,
469         .irq = NO_IRQ,
470     },
471     {
472         .name = "DEBUG_PPU",
473         .type = TYPE_UNIMPLEMENTED_DEVICE,
474         .index = 4,
475         .addr = 0x50029000,
476         .size = 0x1000,
477         .ppc = NO_PPC,
478         .irq = NO_IRQ,
479     },
480     {
481         .name = NULL,
482     }
483 };
484 
485 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
486 static const bool sse200_irq_is_common[32] = {
487     [0 ... 5] = true,
488     /* 6, 7: per-CPU MHU interrupts */
489     [8 ... 12] = true,
490     /* 13: per-CPU icache interrupt */
491     /* 14: reserved */
492     [15 ... 20] = true,
493     /* 21: reserved */
494     [22 ... 26] = true,
495     /* 27: reserved */
496     /* 28, 29: per-CPU CTI interrupts */
497     /* 30, 31: reserved */
498 };
499 
500 static const bool sse300_irq_is_common[32] = {
501     [0 ... 5] = true,
502     /* 6, 7: per-CPU MHU interrupts */
503     [8 ... 12] = true,
504     /* 13: reserved */
505     [14 ... 16] = true,
506     /* 17-25: reserved */
507     [26 ... 27] = true,
508     /* 28, 29: per-CPU CTI interrupts */
509     /* 30, 31: reserved */
510 };
511 
512 static const ARMSSEInfo armsse_variants[] = {
513     {
514         .name = TYPE_IOTKIT,
515         .sse_version = ARMSSE_IOTKIT,
516         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
517         .sram_banks = 1,
518         .sram_bank_base = 0x20000000,
519         .num_cpus = 1,
520         .sys_version = 0x41743,
521         .iidr = 0,
522         .cpuwait_rst = 0,
523         .has_mhus = false,
524         .has_cachectrl = false,
525         .has_cpusecctrl = false,
526         .has_cpuid = false,
527         .has_cpu_pwrctrl = false,
528         .has_sse_counter = false,
529         .has_tcms = false,
530         .props = iotkit_properties,
531         .devinfo = iotkit_devices,
532         .irq_is_common = sse200_irq_is_common,
533     },
534     {
535         .name = TYPE_SSE200,
536         .sse_version = ARMSSE_SSE200,
537         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
538         .sram_banks = 4,
539         .sram_bank_base = 0x20000000,
540         .num_cpus = 2,
541         .sys_version = 0x22041743,
542         .iidr = 0,
543         .cpuwait_rst = 2,
544         .has_mhus = true,
545         .has_cachectrl = true,
546         .has_cpusecctrl = true,
547         .has_cpuid = true,
548         .has_cpu_pwrctrl = false,
549         .has_sse_counter = false,
550         .has_tcms = false,
551         .props = sse200_properties,
552         .devinfo = sse200_devices,
553         .irq_is_common = sse200_irq_is_common,
554     },
555     {
556         .name = TYPE_SSE300,
557         .sse_version = ARMSSE_SSE300,
558         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
559         .sram_banks = 2,
560         .sram_bank_base = 0x21000000,
561         .num_cpus = 1,
562         .sys_version = 0x7e00043b,
563         .iidr = 0x74a0043b,
564         .cpuwait_rst = 0,
565         .has_mhus = false,
566         .has_cachectrl = false,
567         .has_cpusecctrl = true,
568         .has_cpuid = true,
569         .has_cpu_pwrctrl = true,
570         .has_sse_counter = true,
571         .has_tcms = true,
572         .props = sse300_properties,
573         .devinfo = sse300_devices,
574         .irq_is_common = sse300_irq_is_common,
575     },
576 };
577 
578 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
579 {
580     /* Return the SYS_CONFIG value for this SSE */
581     uint32_t sys_config;
582 
583     switch (info->sse_version) {
584     case ARMSSE_IOTKIT:
585         sys_config = 0;
586         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
587         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
588         break;
589     case ARMSSE_SSE200:
590         sys_config = 0;
591         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
592         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
593         sys_config = deposit32(sys_config, 24, 4, 2);
594         if (info->num_cpus > 1) {
595             sys_config = deposit32(sys_config, 10, 1, 1);
596             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
597             sys_config = deposit32(sys_config, 28, 4, 2);
598         }
599         break;
600     case ARMSSE_SSE300:
601         sys_config = 0;
602         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
603         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
604         sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
605         break;
606     default:
607         g_assert_not_reached();
608     }
609     return sys_config;
610 }
611 
612 /* Clock frequency in HZ of the 32KHz "slow clock" */
613 #define S32KCLK (32 * 1000)
614 
615 /*
616  * Create an alias region in @container of @size bytes starting at @base
617  * which mirrors the memory starting at @orig.
618  */
619 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
620                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
621 {
622     memory_region_init_alias(mr, NULL, name, container, orig, size);
623     /* The alias is even lower priority than unimplemented_device regions */
624     memory_region_add_subregion_overlap(container, base, mr, -1500);
625 }
626 
627 static void irq_status_forwarder(void *opaque, int n, int level)
628 {
629     qemu_irq destirq = opaque;
630 
631     qemu_set_irq(destirq, level);
632 }
633 
634 static void nsccfg_handler(void *opaque, int n, int level)
635 {
636     ARMSSE *s = ARM_SSE(opaque);
637 
638     s->nsccfg = level;
639 }
640 
641 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
642 {
643     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
644      * system using the ARMSSE has a collection of control lines which
645      * are provided by the security controller and which we want to
646      * expose as control lines on the ARMSSE device itself, so the
647      * code using the ARMSSE can wire them up to the PPCs.
648      */
649     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
650     DeviceState *armssedev = DEVICE(s);
651     DeviceState *dev_secctl = DEVICE(&s->secctl);
652     DeviceState *dev_splitter = DEVICE(splitter);
653     char *name;
654 
655     name = g_strdup_printf("%s_nonsec", ppcname);
656     qdev_pass_gpios(dev_secctl, armssedev, name);
657     g_free(name);
658     name = g_strdup_printf("%s_ap", ppcname);
659     qdev_pass_gpios(dev_secctl, armssedev, name);
660     g_free(name);
661     name = g_strdup_printf("%s_irq_enable", ppcname);
662     qdev_pass_gpios(dev_secctl, armssedev, name);
663     g_free(name);
664     name = g_strdup_printf("%s_irq_clear", ppcname);
665     qdev_pass_gpios(dev_secctl, armssedev, name);
666     g_free(name);
667 
668     /* irq_status is a little more tricky, because we need to
669      * split it so we can send it both to the security controller
670      * and to our OR gate for the NVIC interrupt line.
671      * Connect up the splitter's outputs, and create a GPIO input
672      * which will pass the line state to the input splitter.
673      */
674     name = g_strdup_printf("%s_irq_status", ppcname);
675     qdev_connect_gpio_out(dev_splitter, 0,
676                           qdev_get_gpio_in_named(dev_secctl,
677                                                  name, 0));
678     qdev_connect_gpio_out(dev_splitter, 1,
679                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
680     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
681     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
682                                         s->irq_status_in[ppcnum], name, 1);
683     g_free(name);
684 }
685 
686 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
687 {
688     /* Forward the 3rd output from the splitter device as a
689      * named GPIO output of the armsse object.
690      */
691     DeviceState *dev = DEVICE(s);
692     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
693 
694     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
695     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
696                                            s->sec_resp_cfg, 1);
697     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
698 }
699 
700 static void armsse_init(Object *obj)
701 {
702     ARMSSE *s = ARM_SSE(obj);
703     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
704     const ARMSSEInfo *info = asc->info;
705     const ARMSSEDeviceInfo *devinfo;
706     int i;
707 
708     assert(info->sram_banks <= MAX_SRAM_BANKS);
709     assert(info->num_cpus <= SSE_MAX_CPUS);
710 
711     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0);
712     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
713 
714     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
715 
716     for (i = 0; i < info->num_cpus; i++) {
717         /*
718          * We put each CPU in its own cluster as they are logically
719          * distinct and may be configured differently.
720          */
721         char *name;
722 
723         name = g_strdup_printf("cluster%d", i);
724         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
725         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
726         g_free(name);
727 
728         name = g_strdup_printf("armv7m%d", i);
729         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
730                                 TYPE_ARMV7M);
731         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
732         g_free(name);
733         name = g_strdup_printf("arm-sse-cpu-container%d", i);
734         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
735         g_free(name);
736         if (i > 0) {
737             name = g_strdup_printf("arm-sse-container-alias%d", i);
738             memory_region_init_alias(&s->container_alias[i - 1], obj,
739                                      name, &s->container, 0, UINT64_MAX);
740             g_free(name);
741         }
742     }
743 
744     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
745         assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
746         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
747             assert(devinfo->index < ARRAY_SIZE(s->timer));
748             object_initialize_child(obj, devinfo->name,
749                                     &s->timer[devinfo->index],
750                                     TYPE_CMSDK_APB_TIMER);
751         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
752             assert(devinfo->index == 0);
753             object_initialize_child(obj, devinfo->name, &s->dualtimer,
754                                     TYPE_CMSDK_APB_DUALTIMER);
755         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
756             assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
757             object_initialize_child(obj, devinfo->name,
758                                     &s->sse_timer[devinfo->index],
759                                     TYPE_SSE_TIMER);
760         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
761             assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
762             object_initialize_child(obj, devinfo->name,
763                                     &s->cmsdk_watchdog[devinfo->index],
764                                     TYPE_CMSDK_APB_WATCHDOG);
765         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
766             assert(devinfo->index == 0);
767             object_initialize_child(obj, devinfo->name, &s->sysinfo,
768                                     TYPE_IOTKIT_SYSINFO);
769         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
770             assert(devinfo->index == 0);
771             object_initialize_child(obj, devinfo->name, &s->sysctl,
772                                     TYPE_IOTKIT_SYSCTL);
773         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
774             assert(devinfo->index < ARRAY_SIZE(s->unimp));
775             object_initialize_child(obj, devinfo->name,
776                                     &s->unimp[devinfo->index],
777                                     TYPE_UNIMPLEMENTED_DEVICE);
778         } else {
779             g_assert_not_reached();
780         }
781     }
782 
783     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
784 
785     for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
786         g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
787         object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
788     }
789 
790     for (i = 0; i < info->sram_banks; i++) {
791         char *name = g_strdup_printf("mpc%d", i);
792         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
793         g_free(name);
794     }
795     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
796                             TYPE_OR_IRQ);
797 
798     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
799         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
800         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
801 
802         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
803         g_free(name);
804     }
805 
806     if (info->has_mhus) {
807         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
808         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
809     }
810     if (info->has_cachectrl) {
811         for (i = 0; i < info->num_cpus; i++) {
812             char *name = g_strdup_printf("cachectrl%d", i);
813 
814             object_initialize_child(obj, name, &s->cachectrl[i],
815                                     TYPE_UNIMPLEMENTED_DEVICE);
816             g_free(name);
817         }
818     }
819     if (info->has_cpusecctrl) {
820         for (i = 0; i < info->num_cpus; i++) {
821             char *name = g_strdup_printf("cpusecctrl%d", i);
822 
823             object_initialize_child(obj, name, &s->cpusecctrl[i],
824                                     TYPE_UNIMPLEMENTED_DEVICE);
825             g_free(name);
826         }
827     }
828     if (info->has_cpuid) {
829         for (i = 0; i < info->num_cpus; i++) {
830             char *name = g_strdup_printf("cpuid%d", i);
831 
832             object_initialize_child(obj, name, &s->cpuid[i],
833                                     TYPE_ARMSSE_CPUID);
834             g_free(name);
835         }
836     }
837     if (info->has_cpu_pwrctrl) {
838         for (i = 0; i < info->num_cpus; i++) {
839             char *name = g_strdup_printf("cpu_pwrctrl%d", i);
840 
841             object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
842                                     TYPE_ARMSSE_CPU_PWRCTRL);
843             g_free(name);
844         }
845     }
846     if (info->has_sse_counter) {
847         object_initialize_child(obj, "sse-counter", &s->sse_counter,
848                                 TYPE_SSE_COUNTER);
849     }
850 
851     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
852     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
853                             TYPE_OR_IRQ);
854     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
855                             TYPE_SPLIT_IRQ);
856     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
857         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
858         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
859 
860         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
861         g_free(name);
862     }
863     if (info->num_cpus > 1) {
864         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
865             if (info->irq_is_common[i]) {
866                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
867                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
868 
869                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
870                 g_free(name);
871             }
872         }
873     }
874 }
875 
876 static void armsse_exp_irq(void *opaque, int n, int level)
877 {
878     qemu_irq *irqarray = opaque;
879 
880     qemu_set_irq(irqarray[n], level);
881 }
882 
883 static void armsse_mpcexp_status(void *opaque, int n, int level)
884 {
885     ARMSSE *s = ARM_SSE(opaque);
886     qemu_set_irq(s->mpcexp_status_in[n], level);
887 }
888 
889 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
890 {
891     /*
892      * Return a qemu_irq which can be used to signal IRQ n to
893      * all CPUs in the SSE.
894      */
895     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
896     const ARMSSEInfo *info = asc->info;
897 
898     assert(info->irq_is_common[irqno]);
899 
900     if (info->num_cpus == 1) {
901         /* Only one CPU -- just connect directly to it */
902         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
903     } else {
904         /* Connect to the splitter which feeds all CPUs */
905         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
906     }
907 }
908 
909 static void armsse_realize(DeviceState *dev, Error **errp)
910 {
911     ERRP_GUARD();
912     ARMSSE *s = ARM_SSE(dev);
913     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
914     const ARMSSEInfo *info = asc->info;
915     const ARMSSEDeviceInfo *devinfo;
916     int i;
917     MemoryRegion *mr;
918     SysBusDevice *sbd_apb_ppc0;
919     SysBusDevice *sbd_secctl;
920     DeviceState *dev_apb_ppc0;
921     DeviceState *dev_apb_ppc1;
922     DeviceState *dev_secctl;
923     DeviceState *dev_splitter;
924     uint32_t addr_width_max;
925 
926     if (!s->board_memory) {
927         error_setg(errp, "memory property was not set");
928         return;
929     }
930 
931     if (!clock_has_source(s->mainclk)) {
932         error_setg(errp, "MAINCLK clock was not connected");
933     }
934     if (!clock_has_source(s->s32kclk)) {
935         error_setg(errp, "S32KCLK clock was not connected");
936     }
937 
938     assert(info->num_cpus <= SSE_MAX_CPUS);
939 
940     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
941     assert(is_power_of_2(info->sram_banks));
942     addr_width_max = 24 - ctz32(info->sram_banks);
943     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
944         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
945                    addr_width_max);
946         return;
947     }
948 
949     /* Handling of which devices should be available only to secure
950      * code is usually done differently for M profile than for A profile.
951      * Instead of putting some devices only into the secure address space,
952      * devices exist in both address spaces but with hard-wired security
953      * permissions that will cause the CPU to fault for non-secure accesses.
954      *
955      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
956      * which specifies hard-wired security permissions for different
957      * areas of the physical address space. For the ARMSSE IDAU, the
958      * top 4 bits of the physical address are the IDAU region ID, and
959      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
960      * region, otherwise it is an S region.
961      *
962      * The various devices and RAMs are generally all mapped twice,
963      * once into a region that the IDAU defines as secure and once
964      * into a non-secure region. They sit behind either a Memory
965      * Protection Controller (for RAM) or a Peripheral Protection
966      * Controller (for devices), which allow a more fine grained
967      * configuration of whether non-secure accesses are permitted.
968      *
969      * (The other place that guest software can configure security
970      * permissions is in the architected SAU (Security Attribution
971      * Unit), which is entirely inside the CPU. The IDAU can upgrade
972      * the security attributes for a region to more restrictive than
973      * the SAU specifies, but cannot downgrade them.)
974      *
975      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
976      * 0x20000000..0x2007ffff  32KB FPGA block RAM
977      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
978      * 0x40000000..0x4000ffff  base peripheral region 1
979      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
980      * 0x40020000..0x4002ffff  system control element peripherals
981      * 0x40080000..0x400fffff  base peripheral region 2
982      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
983      */
984 
985     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
986 
987     for (i = 0; i < info->num_cpus; i++) {
988         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
989         Object *cpuobj = OBJECT(&s->armv7m[i]);
990         int j;
991         char *gpioname;
992 
993         qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk);
994         /* The SSE subsystems do not wire up a systick refclk */
995 
996         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
997         /*
998          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
999          * registers in the IoT Kit System Control Register block. In QEMU
1000          * we set the initial value here, and also the reset value of the
1001          * sysctl register, from this object's QOM init-svtor property.
1002          * If the guest changes the INITSVTOR* registers at runtime then the
1003          * code in iotkit-sysctl.c will update the CPU init-svtor property
1004          * (which will then take effect on the next CPU warm-reset).
1005          *
1006          * Note that typically a board using the SSE-200 will have a system
1007          * control processor whose boot firmware initializes the INITSVTOR*
1008          * registers before powering up the CPUs. QEMU doesn't emulate
1009          * the control processor, so instead we behave in the way that the
1010          * firmware does: the initial value should be set by the board code
1011          * (using the init-svtor property on the ARMSSE object) to match
1012          * whatever its firmware does.
1013          */
1014         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1015         /*
1016          * CPUs start powered down if the corresponding bit in the CPUWAIT
1017          * register is 1. In real hardware the CPUWAIT register reset value is
1018          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1019          * CPUWAIT1_RST parameters), but since all the boards we care about
1020          * start CPU0 and leave CPU1 powered off, we hard-code that in
1021          * info->cpuwait_rst for now. We can add QOM properties for this
1022          * later if necessary.
1023          */
1024         if (extract32(info->cpuwait_rst, i, 1)) {
1025             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1026                                           errp)) {
1027                 return;
1028             }
1029         }
1030         if (!s->cpu_fpu[i]) {
1031             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1032                 return;
1033             }
1034         }
1035         if (!s->cpu_dsp[i]) {
1036             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1037                 return;
1038             }
1039         }
1040         if (!object_property_set_uint(cpuobj, "mpu-ns-regions",
1041                                       s->cpu_mpu_ns[i], errp)) {
1042             return;
1043         }
1044         if (!object_property_set_uint(cpuobj, "mpu-s-regions",
1045                                       s->cpu_mpu_s[i], errp)) {
1046             return;
1047         }
1048 
1049         if (i > 0) {
1050             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1051                                                 &s->container_alias[i - 1], -1);
1052         } else {
1053             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1054                                                 &s->container, -1);
1055         }
1056         object_property_set_link(cpuobj, "memory",
1057                                  OBJECT(&s->cpu_container[i]), &error_abort);
1058         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1059         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1060             return;
1061         }
1062         /*
1063          * The cluster must be realized after the armv7m container, as
1064          * the container's CPU object is only created on realize, and the
1065          * CPU must exist and have been parented into the cluster before
1066          * the cluster is realized.
1067          */
1068         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1069             return;
1070         }
1071 
1072         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1073         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1074         for (j = 0; j < s->exp_numirq; j++) {
1075             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1076         }
1077         if (i == 0) {
1078             gpioname = g_strdup("EXP_IRQ");
1079         } else {
1080             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1081         }
1082         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1083                                             s->exp_irqs[i],
1084                                             gpioname, s->exp_numirq);
1085         g_free(gpioname);
1086     }
1087 
1088     /* Wire up the splitters that connect common IRQs to all CPUs */
1089     if (info->num_cpus > 1) {
1090         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1091             if (info->irq_is_common[i]) {
1092                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1093                 DeviceState *devs = DEVICE(splitter);
1094                 int cpunum;
1095 
1096                 if (!object_property_set_int(splitter, "num-lines",
1097                                              info->num_cpus, errp)) {
1098                     return;
1099                 }
1100                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1101                     return;
1102                 }
1103                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1104                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1105 
1106                     qdev_connect_gpio_out(devs, cpunum,
1107                                           qdev_get_gpio_in(cpudev, i));
1108                 }
1109             }
1110         }
1111     }
1112 
1113     /* Set up the big aliases first */
1114     make_alias(s, &s->alias1, &s->container, "alias 1",
1115                0x10000000, 0x10000000, 0x00000000);
1116     make_alias(s, &s->alias2, &s->container,
1117                "alias 2", 0x30000000, 0x10000000, 0x20000000);
1118     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1119      * a few extra devices that only appear there (generally the
1120      * control interfaces for the protection controllers).
1121      * We implement this by mapping those devices over the top of this
1122      * alias MR at a higher priority. Some of the devices in this range
1123      * are per-CPU, so we must put this alias in the per-cpu containers.
1124      */
1125     for (i = 0; i < info->num_cpus; i++) {
1126         make_alias(s, &s->alias3[i], &s->cpu_container[i],
1127                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
1128     }
1129 
1130     /* Security controller */
1131     object_property_set_int(OBJECT(&s->secctl), "sse-version",
1132                             info->sse_version, &error_abort);
1133     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1134         return;
1135     }
1136     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1137     dev_secctl = DEVICE(&s->secctl);
1138     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1139     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1140 
1141     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1142     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1143 
1144     /* The sec_resp_cfg output from the security controller must be split into
1145      * multiple lines, one for each of the PPCs within the ARMSSE and one
1146      * that will be an output from the ARMSSE to the system.
1147      */
1148     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1149                                  "num-lines", 3, errp)) {
1150         return;
1151     }
1152     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1153         return;
1154     }
1155     dev_splitter = DEVICE(&s->sec_resp_splitter);
1156     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1157                                 qdev_get_gpio_in(dev_splitter, 0));
1158 
1159     /* Each SRAM bank lives behind its own Memory Protection Controller */
1160     for (i = 0; i < info->sram_banks; i++) {
1161         char *ramname = g_strdup_printf("armsse.sram%d", i);
1162         SysBusDevice *sbd_mpc;
1163         uint32_t sram_bank_size = 1 << s->sram_addr_width;
1164 
1165         memory_region_init_ram(&s->sram[i], NULL, ramname,
1166                                sram_bank_size, errp);
1167         g_free(ramname);
1168         if (*errp) {
1169             return;
1170         }
1171         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1172                                  OBJECT(&s->sram[i]), &error_abort);
1173         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1174             return;
1175         }
1176         /* Map the upstream end of the MPC into the right place... */
1177         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1178         memory_region_add_subregion(&s->container,
1179                                     info->sram_bank_base + i * sram_bank_size,
1180                                     sysbus_mmio_get_region(sbd_mpc, 1));
1181         /* ...and its register interface */
1182         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1183                                     sysbus_mmio_get_region(sbd_mpc, 0));
1184     }
1185 
1186     /* We must OR together lines from the MPC splitters to go to the NVIC */
1187     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1188                                  IOTS_NUM_EXP_MPC + info->sram_banks,
1189                                  errp)) {
1190         return;
1191     }
1192     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1193         return;
1194     }
1195     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1196                           armsse_get_common_irq_in(s, 9));
1197 
1198     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1199     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1200                                  errp)) {
1201         return;
1202     }
1203     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1204         return;
1205     }
1206     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1207                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1208 
1209     /* The SSE-300 has a System Counter / System Timestamp Generator */
1210     if (info->has_sse_counter) {
1211         SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1212 
1213         qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1214         if (!sysbus_realize(sbd, errp)) {
1215             return;
1216         }
1217         /*
1218          * The control frame is only in the Secure region;
1219          * the status frame is in the NS region (and visible in the
1220          * S region via the alias mapping).
1221          */
1222         memory_region_add_subregion(&s->container, 0x58100000,
1223                                     sysbus_mmio_get_region(sbd, 0));
1224         memory_region_add_subregion(&s->container, 0x48101000,
1225                                     sysbus_mmio_get_region(sbd, 1));
1226     }
1227 
1228     if (info->has_tcms) {
1229         /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1230         memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp);
1231         if (*errp) {
1232             return;
1233         }
1234         memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp);
1235         if (*errp) {
1236             return;
1237         }
1238         memory_region_add_subregion(&s->container, 0x00000000, &s->itcm);
1239         memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm);
1240     }
1241 
1242     /* Devices behind APB PPC0:
1243      *   0x40000000: timer0
1244      *   0x40001000: timer1
1245      *   0x40002000: dual timer
1246      *   0x40003000: MHU0 (SSE-200 only)
1247      *   0x40004000: MHU1 (SSE-200 only)
1248      * We must configure and realize each downstream device and connect
1249      * it to the appropriate PPC port; then we can realize the PPC and
1250      * map its upstream ends to the right place in the container.
1251      */
1252     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1253         SysBusDevice *sbd;
1254         qemu_irq irq;
1255 
1256         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1257             sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1258 
1259             qdev_connect_clock_in(DEVICE(sbd), "pclk",
1260                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1261             if (!sysbus_realize(sbd, errp)) {
1262                 return;
1263             }
1264             mr = sysbus_mmio_get_region(sbd, 0);
1265         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1266             sbd = SYS_BUS_DEVICE(&s->dualtimer);
1267 
1268             qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1269             if (!sysbus_realize(sbd, errp)) {
1270                 return;
1271             }
1272             mr = sysbus_mmio_get_region(sbd, 0);
1273         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1274             sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1275 
1276             assert(info->has_sse_counter);
1277             object_property_set_link(OBJECT(sbd), "counter",
1278                                      OBJECT(&s->sse_counter), &error_abort);
1279             if (!sysbus_realize(sbd, errp)) {
1280                 return;
1281             }
1282             mr = sysbus_mmio_get_region(sbd, 0);
1283         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1284             sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1285 
1286             qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1287                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1288             if (!sysbus_realize(sbd, errp)) {
1289                 return;
1290             }
1291             mr = sysbus_mmio_get_region(sbd, 0);
1292         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1293             sbd = SYS_BUS_DEVICE(&s->sysinfo);
1294 
1295             object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1296                                     info->sys_version, &error_abort);
1297             object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1298                                     armsse_sys_config_value(s, info),
1299                                     &error_abort);
1300             object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1301                                     info->sse_version, &error_abort);
1302             object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1303                                     info->iidr, &error_abort);
1304             if (!sysbus_realize(sbd, errp)) {
1305                 return;
1306             }
1307             mr = sysbus_mmio_get_region(sbd, 0);
1308         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1309             /* System control registers */
1310             sbd = SYS_BUS_DEVICE(&s->sysctl);
1311 
1312             object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1313                                     info->sse_version, &error_abort);
1314             object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1315                                     info->cpuwait_rst, &error_abort);
1316             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1317                                     s->init_svtor, &error_abort);
1318             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1319                                     s->init_svtor, &error_abort);
1320             if (!sysbus_realize(sbd, errp)) {
1321                 return;
1322             }
1323             mr = sysbus_mmio_get_region(sbd, 0);
1324         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1325             sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1326 
1327             qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1328             qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1329             if (!sysbus_realize(sbd, errp)) {
1330                 return;
1331             }
1332             mr = sysbus_mmio_get_region(sbd, 0);
1333         } else {
1334             g_assert_not_reached();
1335         }
1336 
1337         switch (devinfo->irq) {
1338         case NO_IRQ:
1339             irq = NULL;
1340             break;
1341         case 0 ... NUM_SSE_IRQS - 1:
1342             irq = armsse_get_common_irq_in(s, devinfo->irq);
1343             break;
1344         case NMI_0:
1345         case NMI_1:
1346             irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1347                                    devinfo->irq - NMI_0);
1348             break;
1349         default:
1350             g_assert_not_reached();
1351         }
1352 
1353         if (irq) {
1354             sysbus_connect_irq(sbd, 0, irq);
1355         }
1356 
1357         /*
1358          * Devices connected to a PPC are connected to the port here;
1359          * we will map the upstream end of that port to the right address
1360          * in the container later after the PPC has been realized.
1361          * Devices not connected to a PPC can be mapped immediately.
1362          */
1363         if (devinfo->ppc != NO_PPC) {
1364             TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1365             g_autofree char *portname = g_strdup_printf("port[%d]",
1366                                                         devinfo->ppc_port);
1367             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1368                                      &error_abort);
1369         } else {
1370             memory_region_add_subregion(&s->container, devinfo->addr, mr);
1371         }
1372     }
1373 
1374     if (info->has_mhus) {
1375         /*
1376          * An SSE-200 with only one CPU should have only one MHU created,
1377          * with the region where the second MHU usually is being RAZ/WI.
1378          * We don't implement that SSE-200 config; if we want to support
1379          * it then this code needs to be enhanced to handle creating the
1380          * RAZ/WI region instead of the second MHU.
1381          */
1382         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1383 
1384         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1385             char *port;
1386             int cpunum;
1387             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1388 
1389             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1390                 return;
1391             }
1392             port = g_strdup_printf("port[%d]", i + 3);
1393             mr = sysbus_mmio_get_region(mhu_sbd, 0);
1394             object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1395                                      &error_abort);
1396             g_free(port);
1397 
1398             /*
1399              * Each MHU has an irq line for each CPU:
1400              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1401              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1402              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1403              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1404              */
1405             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1406                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1407 
1408                 sysbus_connect_irq(mhu_sbd, cpunum,
1409                                    qdev_get_gpio_in(cpudev, 6 + i));
1410             }
1411         }
1412     }
1413 
1414     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1415         return;
1416     }
1417 
1418     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1419     dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1420 
1421     if (info->has_mhus) {
1422         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1423         memory_region_add_subregion(&s->container, 0x40003000, mr);
1424         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1425         memory_region_add_subregion(&s->container, 0x40004000, mr);
1426     }
1427     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1428         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1429                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1430                                                            "cfg_nonsec", i));
1431         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1432                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1433                                                            "cfg_ap", i));
1434     }
1435     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1436                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1437                                                        "irq_enable", 0));
1438     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1439                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1440                                                        "irq_clear", 0));
1441     qdev_connect_gpio_out(dev_splitter, 0,
1442                           qdev_get_gpio_in_named(dev_apb_ppc0,
1443                                                  "cfg_sec_resp", 0));
1444 
1445     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1446      * ones) are sent individually to the security controller, and also
1447      * ORed together to give a single combined PPC interrupt to the NVIC.
1448      */
1449     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1450                                  "num-lines", NUM_PPCS, errp)) {
1451         return;
1452     }
1453     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1454         return;
1455     }
1456     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1457                           armsse_get_common_irq_in(s, 10));
1458 
1459     /*
1460      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1461      * private per-CPU region (all these devices are SSE-200 only):
1462      *  0x50010000: L1 icache control registers
1463      *  0x50011000: CPUSECCTRL (CPU local security control registers)
1464      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1465      * The SSE-300 has an extra:
1466      *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1467      */
1468     if (info->has_cachectrl) {
1469         for (i = 0; i < info->num_cpus; i++) {
1470             char *name = g_strdup_printf("cachectrl%d", i);
1471 
1472             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1473             g_free(name);
1474             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1475             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1476                 return;
1477             }
1478 
1479             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1480             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1481         }
1482     }
1483     if (info->has_cpusecctrl) {
1484         for (i = 0; i < info->num_cpus; i++) {
1485             char *name = g_strdup_printf("CPUSECCTRL%d", i);
1486 
1487             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1488             g_free(name);
1489             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1490             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1491                 return;
1492             }
1493 
1494             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1495             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1496         }
1497     }
1498     if (info->has_cpuid) {
1499         for (i = 0; i < info->num_cpus; i++) {
1500 
1501             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1502             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1503                 return;
1504             }
1505 
1506             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1507             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1508         }
1509     }
1510     if (info->has_cpu_pwrctrl) {
1511         for (i = 0; i < info->num_cpus; i++) {
1512 
1513             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1514                 return;
1515             }
1516 
1517             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1518             memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1519         }
1520     }
1521 
1522     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1523         return;
1524     }
1525 
1526     dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1527     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1528                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1529                                                        "cfg_nonsec", 0));
1530     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1531                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1532                                                        "cfg_ap", 0));
1533     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1534                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1535                                                        "irq_enable", 0));
1536     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1537                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1538                                                        "irq_clear", 0));
1539     qdev_connect_gpio_out(dev_splitter, 1,
1540                           qdev_get_gpio_in_named(dev_apb_ppc1,
1541                                                  "cfg_sec_resp", 0));
1542 
1543     /*
1544      * Now both PPCs are realized we can map the upstream ends of
1545      * ports which correspond to entries in the devinfo array.
1546      * The ports which are connected to non-devinfo devices have
1547      * already been mapped.
1548      */
1549     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1550         SysBusDevice *ppc_sbd;
1551 
1552         if (devinfo->ppc == NO_PPC) {
1553             continue;
1554         }
1555         ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1556         mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1557         memory_region_add_subregion(&s->container, devinfo->addr, mr);
1558     }
1559 
1560     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1561         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1562 
1563         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1564             return;
1565         }
1566         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1567             return;
1568         }
1569     }
1570 
1571     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1572         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1573 
1574         armsse_forward_ppc(s, ppcname, i);
1575         g_free(ppcname);
1576     }
1577 
1578     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1579         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1580 
1581         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1582         g_free(ppcname);
1583     }
1584 
1585     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1586         /* Wire up IRQ splitter for internal PPCs */
1587         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1588         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1589                                          i - NUM_EXTERNAL_PPCS);
1590         TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1591 
1592         qdev_connect_gpio_out(devs, 0,
1593                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1594         qdev_connect_gpio_out(devs, 1,
1595                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1596         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1597                                     qdev_get_gpio_in(devs, 0));
1598         g_free(gpioname);
1599     }
1600 
1601     /* Wire up the splitters for the MPC IRQs */
1602     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1603         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1604         DeviceState *devs = DEVICE(splitter);
1605 
1606         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1607                                      errp)) {
1608             return;
1609         }
1610         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1611             return;
1612         }
1613 
1614         if (i < IOTS_NUM_EXP_MPC) {
1615             /* Splitter input is from GPIO input line */
1616             s->mpcexp_status_in[i] = qdev_get_gpio_in(devs, 0);
1617             qdev_connect_gpio_out(devs, 0,
1618                                   qdev_get_gpio_in_named(dev_secctl,
1619                                                          "mpcexp_status", i));
1620         } else {
1621             /* Splitter input is from our own MPC */
1622             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1623                                         "irq", 0,
1624                                         qdev_get_gpio_in(devs, 0));
1625             qdev_connect_gpio_out(devs, 0,
1626                                   qdev_get_gpio_in_named(dev_secctl,
1627                                                          "mpc_status",
1628                                                          i - IOTS_NUM_EXP_MPC));
1629         }
1630 
1631         qdev_connect_gpio_out(devs, 1,
1632                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1633     }
1634     /* Create GPIO inputs which will pass the line state for our
1635      * mpcexp_irq inputs to the correct splitter devices.
1636      */
1637     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1638                             IOTS_NUM_EXP_MPC);
1639 
1640     armsse_forward_sec_resp_cfg(s);
1641 
1642     /* Forward the MSC related signals */
1643     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1644     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1645     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1646     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1647                                 armsse_get_common_irq_in(s, 11));
1648 
1649     /*
1650      * Expose our container region to the board model; this corresponds
1651      * to the AHB Slave Expansion ports which allow bus master devices
1652      * (eg DMA controllers) in the board model to make transactions into
1653      * devices in the ARMSSE.
1654      */
1655     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1656 }
1657 
1658 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1659                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1660 {
1661     /*
1662      * For ARMSSE systems the IDAU responses are simple logical functions
1663      * of the address bits. The NSC attribute is guest-adjustable via the
1664      * NSCCFG register in the security controller.
1665      */
1666     ARMSSE *s = ARM_SSE(ii);
1667     int region = extract32(address, 28, 4);
1668 
1669     *ns = !(region & 1);
1670     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1671     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1672     *exempt = (address & 0xeff00000) == 0xe0000000;
1673     *iregion = region;
1674 }
1675 
1676 static const VMStateDescription armsse_vmstate = {
1677     .name = "iotkit",
1678     .version_id = 2,
1679     .minimum_version_id = 2,
1680     .fields = (const VMStateField[]) {
1681         VMSTATE_CLOCK(mainclk, ARMSSE),
1682         VMSTATE_CLOCK(s32kclk, ARMSSE),
1683         VMSTATE_UINT32(nsccfg, ARMSSE),
1684         VMSTATE_END_OF_LIST()
1685     }
1686 };
1687 
1688 static void armsse_reset(DeviceState *dev)
1689 {
1690     ARMSSE *s = ARM_SSE(dev);
1691 
1692     s->nsccfg = 0;
1693 }
1694 
1695 static void armsse_class_init(ObjectClass *klass, void *data)
1696 {
1697     DeviceClass *dc = DEVICE_CLASS(klass);
1698     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1699     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1700     const ARMSSEInfo *info = data;
1701 
1702     dc->realize = armsse_realize;
1703     dc->vmsd = &armsse_vmstate;
1704     device_class_set_props(dc, info->props);
1705     dc->reset = armsse_reset;
1706     iic->check = armsse_idau_check;
1707     asc->info = info;
1708 }
1709 
1710 static const TypeInfo armsse_info = {
1711     .name = TYPE_ARM_SSE,
1712     .parent = TYPE_SYS_BUS_DEVICE,
1713     .instance_size = sizeof(ARMSSE),
1714     .class_size = sizeof(ARMSSEClass),
1715     .instance_init = armsse_init,
1716     .abstract = true,
1717     .interfaces = (InterfaceInfo[]) {
1718         { TYPE_IDAU_INTERFACE },
1719         { }
1720     }
1721 };
1722 
1723 static void armsse_register_types(void)
1724 {
1725     int i;
1726 
1727     type_register_static(&armsse_info);
1728 
1729     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1730         TypeInfo ti = {
1731             .name = armsse_variants[i].name,
1732             .parent = TYPE_ARM_SSE,
1733             .class_init = armsse_class_init,
1734             .class_data = (void *)&armsse_variants[i],
1735         };
1736         type_register(&ti);
1737     }
1738 }
1739 
1740 type_init(armsse_register_types);
1741