xref: /openbmc/qemu/hw/arm/armsse.c (revision 287f43196d1008b1f85d7a33593789381dde2d4b)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
260                               &s->armv7m[i], sizeof(s->armv7m[i]),
261                               TYPE_ARMV7M);
262         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
263                              ARM_CPU_TYPE_NAME("cortex-m33"));
264         g_free(name);
265         name = g_strdup_printf("arm-sse-cpu-container%d", i);
266         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
267         g_free(name);
268         if (i > 0) {
269             name = g_strdup_printf("arm-sse-container-alias%d", i);
270             memory_region_init_alias(&s->container_alias[i - 1], obj,
271                                      name, &s->container, 0, UINT64_MAX);
272             g_free(name);
273         }
274     }
275 
276     sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
277                           TYPE_IOTKIT_SECCTL);
278     sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
279                           TYPE_TZ_PPC);
280     sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
281                           TYPE_TZ_PPC);
282     for (i = 0; i < info->sram_banks; i++) {
283         char *name = g_strdup_printf("mpc%d", i);
284         sysbus_init_child_obj(obj, name, &s->mpc[i],
285                               sizeof(s->mpc[i]), TYPE_TZ_MPC);
286         g_free(name);
287     }
288     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
289                             TYPE_OR_IRQ);
290 
291     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
292         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
293         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
294 
295         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
296         g_free(name);
297     }
298     sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
299                           TYPE_CMSDK_APB_TIMER);
300     sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
301                           TYPE_CMSDK_APB_TIMER);
302     sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
303                           TYPE_CMSDK_APB_TIMER);
304     sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
305                           TYPE_CMSDK_APB_DUALTIMER);
306     sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
307                           sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
308     sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
309                           sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
310     sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
311                           sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
312     sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
313                           sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
314     sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
315                           sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
316     if (info->has_mhus) {
317         sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
318                               TYPE_ARMSSE_MHU);
319         sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
320                               TYPE_ARMSSE_MHU);
321     }
322     if (info->has_ppus) {
323         for (i = 0; i < info->num_cpus; i++) {
324             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
325             int ppuidx = CPU0CORE_PPU + i;
326 
327             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
328                                   sizeof(s->ppu[ppuidx]),
329                                   TYPE_UNIMPLEMENTED_DEVICE);
330             g_free(name);
331         }
332         sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
333                               sizeof(s->ppu[DBG_PPU]),
334                               TYPE_UNIMPLEMENTED_DEVICE);
335         for (i = 0; i < info->sram_banks; i++) {
336             char *name = g_strdup_printf("RAM%d_PPU", i);
337             int ppuidx = RAM0_PPU + i;
338 
339             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
340                                   sizeof(s->ppu[ppuidx]),
341                                   TYPE_UNIMPLEMENTED_DEVICE);
342             g_free(name);
343         }
344     }
345     if (info->has_cachectrl) {
346         for (i = 0; i < info->num_cpus; i++) {
347             char *name = g_strdup_printf("cachectrl%d", i);
348 
349             sysbus_init_child_obj(obj, name, &s->cachectrl[i],
350                                   sizeof(s->cachectrl[i]),
351                                   TYPE_UNIMPLEMENTED_DEVICE);
352             g_free(name);
353         }
354     }
355     if (info->has_cpusecctrl) {
356         for (i = 0; i < info->num_cpus; i++) {
357             char *name = g_strdup_printf("cpusecctrl%d", i);
358 
359             sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
360                                   sizeof(s->cpusecctrl[i]),
361                                   TYPE_UNIMPLEMENTED_DEVICE);
362             g_free(name);
363         }
364     }
365     if (info->has_cpuid) {
366         for (i = 0; i < info->num_cpus; i++) {
367             char *name = g_strdup_printf("cpuid%d", i);
368 
369             sysbus_init_child_obj(obj, name, &s->cpuid[i],
370                                   sizeof(s->cpuid[i]),
371                                   TYPE_ARMSSE_CPUID);
372             g_free(name);
373         }
374     }
375     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
376     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
377                             TYPE_OR_IRQ);
378     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
379                             TYPE_SPLIT_IRQ);
380     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
381         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
382         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
383 
384         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
385         g_free(name);
386     }
387     if (info->num_cpus > 1) {
388         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
389             if (irq_is_common[i]) {
390                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
391                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
392 
393                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
394                 g_free(name);
395             }
396         }
397     }
398 }
399 
400 static void armsse_exp_irq(void *opaque, int n, int level)
401 {
402     qemu_irq *irqarray = opaque;
403 
404     qemu_set_irq(irqarray[n], level);
405 }
406 
407 static void armsse_mpcexp_status(void *opaque, int n, int level)
408 {
409     ARMSSE *s = ARMSSE(opaque);
410     qemu_set_irq(s->mpcexp_status_in[n], level);
411 }
412 
413 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
414 {
415     /*
416      * Return a qemu_irq which can be used to signal IRQ n to
417      * all CPUs in the SSE.
418      */
419     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
420     const ARMSSEInfo *info = asc->info;
421 
422     assert(irq_is_common[irqno]);
423 
424     if (info->num_cpus == 1) {
425         /* Only one CPU -- just connect directly to it */
426         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
427     } else {
428         /* Connect to the splitter which feeds all CPUs */
429         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
430     }
431 }
432 
433 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
434 {
435     /* Map a PPU unimplemented device stub */
436     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
437 
438     qdev_prop_set_string(dev, "name", name);
439     qdev_prop_set_uint64(dev, "size", 0x1000);
440     qdev_init_nofail(dev);
441     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
442 }
443 
444 static void armsse_realize(DeviceState *dev, Error **errp)
445 {
446     ARMSSE *s = ARMSSE(dev);
447     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
448     const ARMSSEInfo *info = asc->info;
449     int i;
450     MemoryRegion *mr;
451     Error *err = NULL;
452     SysBusDevice *sbd_apb_ppc0;
453     SysBusDevice *sbd_secctl;
454     DeviceState *dev_apb_ppc0;
455     DeviceState *dev_apb_ppc1;
456     DeviceState *dev_secctl;
457     DeviceState *dev_splitter;
458     uint32_t addr_width_max;
459 
460     if (!s->board_memory) {
461         error_setg(errp, "memory property was not set");
462         return;
463     }
464 
465     if (!s->mainclk_frq) {
466         error_setg(errp, "MAINCLK property was not set");
467         return;
468     }
469 
470     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
471     assert(is_power_of_2(info->sram_banks));
472     addr_width_max = 24 - ctz32(info->sram_banks);
473     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
474         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
475                    addr_width_max);
476         return;
477     }
478 
479     /* Handling of which devices should be available only to secure
480      * code is usually done differently for M profile than for A profile.
481      * Instead of putting some devices only into the secure address space,
482      * devices exist in both address spaces but with hard-wired security
483      * permissions that will cause the CPU to fault for non-secure accesses.
484      *
485      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
486      * which specifies hard-wired security permissions for different
487      * areas of the physical address space. For the ARMSSE IDAU, the
488      * top 4 bits of the physical address are the IDAU region ID, and
489      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
490      * region, otherwise it is an S region.
491      *
492      * The various devices and RAMs are generally all mapped twice,
493      * once into a region that the IDAU defines as secure and once
494      * into a non-secure region. They sit behind either a Memory
495      * Protection Controller (for RAM) or a Peripheral Protection
496      * Controller (for devices), which allow a more fine grained
497      * configuration of whether non-secure accesses are permitted.
498      *
499      * (The other place that guest software can configure security
500      * permissions is in the architected SAU (Security Attribution
501      * Unit), which is entirely inside the CPU. The IDAU can upgrade
502      * the security attributes for a region to more restrictive than
503      * the SAU specifies, but cannot downgrade them.)
504      *
505      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
506      * 0x20000000..0x2007ffff  32KB FPGA block RAM
507      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
508      * 0x40000000..0x4000ffff  base peripheral region 1
509      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
510      * 0x40020000..0x4002ffff  system control element peripherals
511      * 0x40080000..0x400fffff  base peripheral region 2
512      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
513      */
514 
515     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
516 
517     for (i = 0; i < info->num_cpus; i++) {
518         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
519         Object *cpuobj = OBJECT(&s->armv7m[i]);
520         int j;
521         char *gpioname;
522 
523         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
524         /*
525          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
526          * registers in the IoT Kit System Control Register block. In QEMU
527          * we set the initial value here, and also the reset value of the
528          * sysctl register, from this object's QOM init-svtor property.
529          * If the guest changes the INITSVTOR* registers at runtime then the
530          * code in iotkit-sysctl.c will update the CPU init-svtor property
531          * (which will then take effect on the next CPU warm-reset).
532          *
533          * Note that typically a board using the SSE-200 will have a system
534          * control processor whose boot firmware initializes the INITSVTOR*
535          * registers before powering up the CPUs. QEMU doesn't emulate
536          * the control processor, so instead we behave in the way that the
537          * firmware does: the initial value should be set by the board code
538          * (using the init-svtor property on the ARMSSE object) to match
539          * whatever its firmware does.
540          */
541         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
542         /*
543          * CPUs start powered down if the corresponding bit in the CPUWAIT
544          * register is 1. In real hardware the CPUWAIT register reset value is
545          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
546          * CPUWAIT1_RST parameters), but since all the boards we care about
547          * start CPU0 and leave CPU1 powered off, we hard-code that in
548          * info->cpuwait_rst for now. We can add QOM properties for this
549          * later if necessary.
550          */
551         if (extract32(info->cpuwait_rst, i, 1)) {
552             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
553             if (err) {
554                 error_propagate(errp, err);
555                 return;
556             }
557         }
558         if (!s->cpu_fpu[i]) {
559             object_property_set_bool(cpuobj, false, "vfp", &err);
560             if (err) {
561                 error_propagate(errp, err);
562                 return;
563             }
564         }
565         if (!s->cpu_dsp[i]) {
566             object_property_set_bool(cpuobj, false, "dsp", &err);
567             if (err) {
568                 error_propagate(errp, err);
569                 return;
570             }
571         }
572 
573         if (i > 0) {
574             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
575                                                 &s->container_alias[i - 1], -1);
576         } else {
577             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
578                                                 &s->container, -1);
579         }
580         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
581                                  "memory", &err);
582         if (err) {
583             error_propagate(errp, err);
584             return;
585         }
586         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
587         if (err) {
588             error_propagate(errp, err);
589             return;
590         }
591         object_property_set_bool(cpuobj, true, "realized", &err);
592         if (err) {
593             error_propagate(errp, err);
594             return;
595         }
596         /*
597          * The cluster must be realized after the armv7m container, as
598          * the container's CPU object is only created on realize, and the
599          * CPU must exist and have been parented into the cluster before
600          * the cluster is realized.
601          */
602         object_property_set_bool(OBJECT(&s->cluster[i]),
603                                  true, "realized", &err);
604         if (err) {
605             error_propagate(errp, err);
606             return;
607         }
608 
609         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
610         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
611         for (j = 0; j < s->exp_numirq; j++) {
612             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
613         }
614         if (i == 0) {
615             gpioname = g_strdup("EXP_IRQ");
616         } else {
617             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
618         }
619         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
620                                             s->exp_irqs[i],
621                                             gpioname, s->exp_numirq);
622         g_free(gpioname);
623     }
624 
625     /* Wire up the splitters that connect common IRQs to all CPUs */
626     if (info->num_cpus > 1) {
627         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
628             if (irq_is_common[i]) {
629                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
630                 DeviceState *devs = DEVICE(splitter);
631                 int cpunum;
632 
633                 object_property_set_int(splitter, info->num_cpus,
634                                         "num-lines", &err);
635                 if (err) {
636                     error_propagate(errp, err);
637                     return;
638                 }
639                 object_property_set_bool(splitter, true, "realized", &err);
640                 if (err) {
641                     error_propagate(errp, err);
642                     return;
643                 }
644                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
645                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
646 
647                     qdev_connect_gpio_out(devs, cpunum,
648                                           qdev_get_gpio_in(cpudev, i));
649                 }
650             }
651         }
652     }
653 
654     /* Set up the big aliases first */
655     make_alias(s, &s->alias1, &s->container, "alias 1",
656                0x10000000, 0x10000000, 0x00000000);
657     make_alias(s, &s->alias2, &s->container,
658                "alias 2", 0x30000000, 0x10000000, 0x20000000);
659     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
660      * a few extra devices that only appear there (generally the
661      * control interfaces for the protection controllers).
662      * We implement this by mapping those devices over the top of this
663      * alias MR at a higher priority. Some of the devices in this range
664      * are per-CPU, so we must put this alias in the per-cpu containers.
665      */
666     for (i = 0; i < info->num_cpus; i++) {
667         make_alias(s, &s->alias3[i], &s->cpu_container[i],
668                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
669     }
670 
671     /* Security controller */
672     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
673     if (err) {
674         error_propagate(errp, err);
675         return;
676     }
677     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
678     dev_secctl = DEVICE(&s->secctl);
679     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
680     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
681 
682     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
683     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
684 
685     /* The sec_resp_cfg output from the security controller must be split into
686      * multiple lines, one for each of the PPCs within the ARMSSE and one
687      * that will be an output from the ARMSSE to the system.
688      */
689     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
690                             "num-lines", &err);
691     if (err) {
692         error_propagate(errp, err);
693         return;
694     }
695     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
696                              "realized", &err);
697     if (err) {
698         error_propagate(errp, err);
699         return;
700     }
701     dev_splitter = DEVICE(&s->sec_resp_splitter);
702     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
703                                 qdev_get_gpio_in(dev_splitter, 0));
704 
705     /* Each SRAM bank lives behind its own Memory Protection Controller */
706     for (i = 0; i < info->sram_banks; i++) {
707         char *ramname = g_strdup_printf("armsse.sram%d", i);
708         SysBusDevice *sbd_mpc;
709         uint32_t sram_bank_size = 1 << s->sram_addr_width;
710 
711         memory_region_init_ram(&s->sram[i], NULL, ramname,
712                                sram_bank_size, &err);
713         g_free(ramname);
714         if (err) {
715             error_propagate(errp, err);
716             return;
717         }
718         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
719                                  "downstream", &err);
720         if (err) {
721             error_propagate(errp, err);
722             return;
723         }
724         object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
725         if (err) {
726             error_propagate(errp, err);
727             return;
728         }
729         /* Map the upstream end of the MPC into the right place... */
730         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
731         memory_region_add_subregion(&s->container,
732                                     0x20000000 + i * sram_bank_size,
733                                     sysbus_mmio_get_region(sbd_mpc, 1));
734         /* ...and its register interface */
735         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
736                                     sysbus_mmio_get_region(sbd_mpc, 0));
737     }
738 
739     /* We must OR together lines from the MPC splitters to go to the NVIC */
740     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
741                             IOTS_NUM_EXP_MPC + info->sram_banks,
742                             "num-lines", &err);
743     if (err) {
744         error_propagate(errp, err);
745         return;
746     }
747     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
748                              "realized", &err);
749     if (err) {
750         error_propagate(errp, err);
751         return;
752     }
753     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
754                           armsse_get_common_irq_in(s, 9));
755 
756     /* Devices behind APB PPC0:
757      *   0x40000000: timer0
758      *   0x40001000: timer1
759      *   0x40002000: dual timer
760      *   0x40003000: MHU0 (SSE-200 only)
761      *   0x40004000: MHU1 (SSE-200 only)
762      * We must configure and realize each downstream device and connect
763      * it to the appropriate PPC port; then we can realize the PPC and
764      * map its upstream ends to the right place in the container.
765      */
766     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
767     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
768     if (err) {
769         error_propagate(errp, err);
770         return;
771     }
772     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
773                        armsse_get_common_irq_in(s, 3));
774     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
775     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
776     if (err) {
777         error_propagate(errp, err);
778         return;
779     }
780 
781     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
782     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
783     if (err) {
784         error_propagate(errp, err);
785         return;
786     }
787     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
788                        armsse_get_common_irq_in(s, 4));
789     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
790     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
791     if (err) {
792         error_propagate(errp, err);
793         return;
794     }
795 
796 
797     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
798     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
799     if (err) {
800         error_propagate(errp, err);
801         return;
802     }
803     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
804                        armsse_get_common_irq_in(s, 5));
805     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
806     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
807     if (err) {
808         error_propagate(errp, err);
809         return;
810     }
811 
812     if (info->has_mhus) {
813         /*
814          * An SSE-200 with only one CPU should have only one MHU created,
815          * with the region where the second MHU usually is being RAZ/WI.
816          * We don't implement that SSE-200 config; if we want to support
817          * it then this code needs to be enhanced to handle creating the
818          * RAZ/WI region instead of the second MHU.
819          */
820         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
821 
822         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
823             char *port;
824             int cpunum;
825             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
826 
827             object_property_set_bool(OBJECT(&s->mhu[i]), true,
828                                      "realized", &err);
829             if (err) {
830                 error_propagate(errp, err);
831                 return;
832             }
833             port = g_strdup_printf("port[%d]", i + 3);
834             mr = sysbus_mmio_get_region(mhu_sbd, 0);
835             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
836                                      port, &err);
837             g_free(port);
838             if (err) {
839                 error_propagate(errp, err);
840                 return;
841             }
842 
843             /*
844              * Each MHU has an irq line for each CPU:
845              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
846              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
847              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
848              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
849              */
850             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
851                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
852 
853                 sysbus_connect_irq(mhu_sbd, cpunum,
854                                    qdev_get_gpio_in(cpudev, 6 + i));
855             }
856         }
857     }
858 
859     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
860     if (err) {
861         error_propagate(errp, err);
862         return;
863     }
864 
865     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
866     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
867 
868     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
869     memory_region_add_subregion(&s->container, 0x40000000, mr);
870     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
871     memory_region_add_subregion(&s->container, 0x40001000, mr);
872     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
873     memory_region_add_subregion(&s->container, 0x40002000, mr);
874     if (info->has_mhus) {
875         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
876         memory_region_add_subregion(&s->container, 0x40003000, mr);
877         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
878         memory_region_add_subregion(&s->container, 0x40004000, mr);
879     }
880     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
881         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
882                                     qdev_get_gpio_in_named(dev_apb_ppc0,
883                                                            "cfg_nonsec", i));
884         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
885                                     qdev_get_gpio_in_named(dev_apb_ppc0,
886                                                            "cfg_ap", i));
887     }
888     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
889                                 qdev_get_gpio_in_named(dev_apb_ppc0,
890                                                        "irq_enable", 0));
891     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
892                                 qdev_get_gpio_in_named(dev_apb_ppc0,
893                                                        "irq_clear", 0));
894     qdev_connect_gpio_out(dev_splitter, 0,
895                           qdev_get_gpio_in_named(dev_apb_ppc0,
896                                                  "cfg_sec_resp", 0));
897 
898     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
899      * ones) are sent individually to the security controller, and also
900      * ORed together to give a single combined PPC interrupt to the NVIC.
901      */
902     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
903                             NUM_PPCS, "num-lines", &err);
904     if (err) {
905         error_propagate(errp, err);
906         return;
907     }
908     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
909                              "realized", &err);
910     if (err) {
911         error_propagate(errp, err);
912         return;
913     }
914     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
915                           armsse_get_common_irq_in(s, 10));
916 
917     /*
918      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
919      * private per-CPU region (all these devices are SSE-200 only):
920      *  0x50010000: L1 icache control registers
921      *  0x50011000: CPUSECCTRL (CPU local security control registers)
922      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
923      */
924     if (info->has_cachectrl) {
925         for (i = 0; i < info->num_cpus; i++) {
926             char *name = g_strdup_printf("cachectrl%d", i);
927             MemoryRegion *mr;
928 
929             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
930             g_free(name);
931             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
932             object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
933                                      "realized", &err);
934             if (err) {
935                 error_propagate(errp, err);
936                 return;
937             }
938 
939             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
940             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
941         }
942     }
943     if (info->has_cpusecctrl) {
944         for (i = 0; i < info->num_cpus; i++) {
945             char *name = g_strdup_printf("CPUSECCTRL%d", i);
946             MemoryRegion *mr;
947 
948             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
949             g_free(name);
950             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
951             object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
952                                      "realized", &err);
953             if (err) {
954                 error_propagate(errp, err);
955                 return;
956             }
957 
958             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
959             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
960         }
961     }
962     if (info->has_cpuid) {
963         for (i = 0; i < info->num_cpus; i++) {
964             MemoryRegion *mr;
965 
966             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
967             object_property_set_bool(OBJECT(&s->cpuid[i]), true,
968                                      "realized", &err);
969             if (err) {
970                 error_propagate(errp, err);
971                 return;
972             }
973 
974             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
975             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
976         }
977     }
978 
979     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
980     /* Devices behind APB PPC1:
981      *   0x4002f000: S32K timer
982      */
983     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
984     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
985     if (err) {
986         error_propagate(errp, err);
987         return;
988     }
989     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
990                        armsse_get_common_irq_in(s, 2));
991     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
992     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
993     if (err) {
994         error_propagate(errp, err);
995         return;
996     }
997 
998     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
999     if (err) {
1000         error_propagate(errp, err);
1001         return;
1002     }
1003     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
1004     memory_region_add_subregion(&s->container, 0x4002f000, mr);
1005 
1006     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
1007     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1008                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1009                                                        "cfg_nonsec", 0));
1010     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1011                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1012                                                        "cfg_ap", 0));
1013     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1014                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1015                                                        "irq_enable", 0));
1016     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1017                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1018                                                        "irq_clear", 0));
1019     qdev_connect_gpio_out(dev_splitter, 1,
1020                           qdev_get_gpio_in_named(dev_apb_ppc1,
1021                                                  "cfg_sec_resp", 0));
1022 
1023     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1024                             "SYS_VERSION", &err);
1025     if (err) {
1026         error_propagate(errp, err);
1027         return;
1028     }
1029     object_property_set_int(OBJECT(&s->sysinfo),
1030                             armsse_sys_config_value(s, info),
1031                             "SYS_CONFIG", &err);
1032     if (err) {
1033         error_propagate(errp, err);
1034         return;
1035     }
1036     object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1037     if (err) {
1038         error_propagate(errp, err);
1039         return;
1040     }
1041     /* System information registers */
1042     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1043     /* System control registers */
1044     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1045                             "SYS_VERSION", &err);
1046     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1047                             "CPUWAIT_RST", &err);
1048     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1049                             "INITSVTOR0_RST", &err);
1050     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1051                             "INITSVTOR1_RST", &err);
1052     object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1053     if (err) {
1054         error_propagate(errp, err);
1055         return;
1056     }
1057     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1058 
1059     if (info->has_ppus) {
1060         /* CPUnCORE_PPU for each CPU */
1061         for (i = 0; i < info->num_cpus; i++) {
1062             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1063 
1064             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1065             /*
1066              * We don't support CPU debug so don't create the
1067              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1068              */
1069             g_free(name);
1070         }
1071         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1072 
1073         for (i = 0; i < info->sram_banks; i++) {
1074             char *name = g_strdup_printf("RAM%d_PPU", i);
1075 
1076             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1077             g_free(name);
1078         }
1079     }
1080 
1081     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1082     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1083     if (err) {
1084         error_propagate(errp, err);
1085         return;
1086     }
1087     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1088     if (err) {
1089         error_propagate(errp, err);
1090         return;
1091     }
1092     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1093                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1094 
1095     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1096     object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1097     if (err) {
1098         error_propagate(errp, err);
1099         return;
1100     }
1101     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1102                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1103     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1104 
1105     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1106 
1107     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1108     object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1109     if (err) {
1110         error_propagate(errp, err);
1111         return;
1112     }
1113     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1114                        armsse_get_common_irq_in(s, 1));
1115     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1116 
1117     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1118     object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1119     if (err) {
1120         error_propagate(errp, err);
1121         return;
1122     }
1123     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1124                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1125     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1126 
1127     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1128         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1129 
1130         object_property_set_int(splitter, 2, "num-lines", &err);
1131         if (err) {
1132             error_propagate(errp, err);
1133             return;
1134         }
1135         object_property_set_bool(splitter, true, "realized", &err);
1136         if (err) {
1137             error_propagate(errp, err);
1138             return;
1139         }
1140     }
1141 
1142     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1143         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1144 
1145         armsse_forward_ppc(s, ppcname, i);
1146         g_free(ppcname);
1147     }
1148 
1149     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1150         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1151 
1152         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1153         g_free(ppcname);
1154     }
1155 
1156     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1157         /* Wire up IRQ splitter for internal PPCs */
1158         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1159         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1160                                          i - NUM_EXTERNAL_PPCS);
1161         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1162 
1163         qdev_connect_gpio_out(devs, 0,
1164                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1165         qdev_connect_gpio_out(devs, 1,
1166                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1167         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1168                                     qdev_get_gpio_in(devs, 0));
1169         g_free(gpioname);
1170     }
1171 
1172     /* Wire up the splitters for the MPC IRQs */
1173     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1174         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1175         DeviceState *dev_splitter = DEVICE(splitter);
1176 
1177         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1178         if (err) {
1179             error_propagate(errp, err);
1180             return;
1181         }
1182         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1183         if (err) {
1184             error_propagate(errp, err);
1185             return;
1186         }
1187 
1188         if (i < IOTS_NUM_EXP_MPC) {
1189             /* Splitter input is from GPIO input line */
1190             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1191             qdev_connect_gpio_out(dev_splitter, 0,
1192                                   qdev_get_gpio_in_named(dev_secctl,
1193                                                          "mpcexp_status", i));
1194         } else {
1195             /* Splitter input is from our own MPC */
1196             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1197                                         "irq", 0,
1198                                         qdev_get_gpio_in(dev_splitter, 0));
1199             qdev_connect_gpio_out(dev_splitter, 0,
1200                                   qdev_get_gpio_in_named(dev_secctl,
1201                                                          "mpc_status", 0));
1202         }
1203 
1204         qdev_connect_gpio_out(dev_splitter, 1,
1205                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1206     }
1207     /* Create GPIO inputs which will pass the line state for our
1208      * mpcexp_irq inputs to the correct splitter devices.
1209      */
1210     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1211                             IOTS_NUM_EXP_MPC);
1212 
1213     armsse_forward_sec_resp_cfg(s);
1214 
1215     /* Forward the MSC related signals */
1216     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1217     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1218     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1219     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1220                                 armsse_get_common_irq_in(s, 11));
1221 
1222     /*
1223      * Expose our container region to the board model; this corresponds
1224      * to the AHB Slave Expansion ports which allow bus master devices
1225      * (eg DMA controllers) in the board model to make transactions into
1226      * devices in the ARMSSE.
1227      */
1228     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1229 
1230     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1231 }
1232 
1233 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1234                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1235 {
1236     /*
1237      * For ARMSSE systems the IDAU responses are simple logical functions
1238      * of the address bits. The NSC attribute is guest-adjustable via the
1239      * NSCCFG register in the security controller.
1240      */
1241     ARMSSE *s = ARMSSE(ii);
1242     int region = extract32(address, 28, 4);
1243 
1244     *ns = !(region & 1);
1245     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1246     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1247     *exempt = (address & 0xeff00000) == 0xe0000000;
1248     *iregion = region;
1249 }
1250 
1251 static const VMStateDescription armsse_vmstate = {
1252     .name = "iotkit",
1253     .version_id = 1,
1254     .minimum_version_id = 1,
1255     .fields = (VMStateField[]) {
1256         VMSTATE_UINT32(nsccfg, ARMSSE),
1257         VMSTATE_END_OF_LIST()
1258     }
1259 };
1260 
1261 static void armsse_reset(DeviceState *dev)
1262 {
1263     ARMSSE *s = ARMSSE(dev);
1264 
1265     s->nsccfg = 0;
1266 }
1267 
1268 static void armsse_class_init(ObjectClass *klass, void *data)
1269 {
1270     DeviceClass *dc = DEVICE_CLASS(klass);
1271     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1272     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1273     const ARMSSEInfo *info = data;
1274 
1275     dc->realize = armsse_realize;
1276     dc->vmsd = &armsse_vmstate;
1277     device_class_set_props(dc, info->props);
1278     dc->reset = armsse_reset;
1279     iic->check = armsse_idau_check;
1280     asc->info = info;
1281 }
1282 
1283 static const TypeInfo armsse_info = {
1284     .name = TYPE_ARMSSE,
1285     .parent = TYPE_SYS_BUS_DEVICE,
1286     .instance_size = sizeof(ARMSSE),
1287     .instance_init = armsse_init,
1288     .abstract = true,
1289     .interfaces = (InterfaceInfo[]) {
1290         { TYPE_IDAU_INTERFACE },
1291         { }
1292     }
1293 };
1294 
1295 static void armsse_register_types(void)
1296 {
1297     int i;
1298 
1299     type_register_static(&armsse_info);
1300 
1301     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1302         TypeInfo ti = {
1303             .name = armsse_variants[i].name,
1304             .parent = TYPE_ARMSSE,
1305             .class_init = armsse_class_init,
1306             .class_data = (void *)&armsse_variants[i],
1307         };
1308         type_register(&ti);
1309     }
1310 }
1311 
1312 type_init(armsse_register_types);
1313