xref: /openbmc/qemu/hw/arm/armsse.c (revision 200280af0e19bfaeb9431eb0ee1ee2d8bf8d3a0a)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/armsse.h"
19 #include "hw/arm/arm.h"
20 
21 /* Format of the System Information block SYS_CONFIG register */
22 typedef enum SysConfigFormat {
23     IoTKitFormat,
24     SSE200Format,
25 } SysConfigFormat;
26 
27 struct ARMSSEInfo {
28     const char *name;
29     int sram_banks;
30     int num_cpus;
31     uint32_t sys_version;
32     SysConfigFormat sys_config_format;
33     bool has_mhus;
34     bool has_ppus;
35     bool has_cachectrl;
36     bool has_cpusecctrl;
37     bool has_cpuid;
38 };
39 
40 static const ARMSSEInfo armsse_variants[] = {
41     {
42         .name = TYPE_IOTKIT,
43         .sram_banks = 1,
44         .num_cpus = 1,
45         .sys_version = 0x41743,
46         .sys_config_format = IoTKitFormat,
47         .has_mhus = false,
48         .has_ppus = false,
49         .has_cachectrl = false,
50         .has_cpusecctrl = false,
51         .has_cpuid = false,
52     },
53     {
54         .name = TYPE_SSE200,
55         .sram_banks = 4,
56         .num_cpus = 2,
57         .sys_version = 0x22041743,
58         .sys_config_format = SSE200Format,
59         .has_mhus = true,
60         .has_ppus = true,
61         .has_cachectrl = true,
62         .has_cpusecctrl = true,
63         .has_cpuid = true,
64     },
65 };
66 
67 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
68 {
69     /* Return the SYS_CONFIG value for this SSE */
70     uint32_t sys_config;
71 
72     switch (info->sys_config_format) {
73     case IoTKitFormat:
74         sys_config = 0;
75         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
76         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
77         break;
78     case SSE200Format:
79         sys_config = 0;
80         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
81         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
82         sys_config = deposit32(sys_config, 24, 4, 2);
83         if (info->num_cpus > 1) {
84             sys_config = deposit32(sys_config, 10, 1, 1);
85             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
86             sys_config = deposit32(sys_config, 28, 4, 2);
87         }
88         break;
89     default:
90         g_assert_not_reached();
91     }
92     return sys_config;
93 }
94 
95 /* Clock frequency in HZ of the 32KHz "slow clock" */
96 #define S32KCLK (32 * 1000)
97 
98 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
99 static bool irq_is_common[32] = {
100     [0 ... 5] = true,
101     /* 6, 7: per-CPU MHU interrupts */
102     [8 ... 12] = true,
103     /* 13: per-CPU icache interrupt */
104     /* 14: reserved */
105     [15 ... 20] = true,
106     /* 21: reserved */
107     [22 ... 26] = true,
108     /* 27: reserved */
109     /* 28, 29: per-CPU CTI interrupts */
110     /* 30, 31: reserved */
111 };
112 
113 /* Create an alias region of @size bytes starting at @base
114  * which mirrors the memory starting at @orig.
115  */
116 static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
117                        hwaddr base, hwaddr size, hwaddr orig)
118 {
119     memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
120     /* The alias is even lower priority than unimplemented_device regions */
121     memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
122 }
123 
124 static void irq_status_forwarder(void *opaque, int n, int level)
125 {
126     qemu_irq destirq = opaque;
127 
128     qemu_set_irq(destirq, level);
129 }
130 
131 static void nsccfg_handler(void *opaque, int n, int level)
132 {
133     ARMSSE *s = ARMSSE(opaque);
134 
135     s->nsccfg = level;
136 }
137 
138 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
139 {
140     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
141      * system using the ARMSSE has a collection of control lines which
142      * are provided by the security controller and which we want to
143      * expose as control lines on the ARMSSE device itself, so the
144      * code using the ARMSSE can wire them up to the PPCs.
145      */
146     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
147     DeviceState *armssedev = DEVICE(s);
148     DeviceState *dev_secctl = DEVICE(&s->secctl);
149     DeviceState *dev_splitter = DEVICE(splitter);
150     char *name;
151 
152     name = g_strdup_printf("%s_nonsec", ppcname);
153     qdev_pass_gpios(dev_secctl, armssedev, name);
154     g_free(name);
155     name = g_strdup_printf("%s_ap", ppcname);
156     qdev_pass_gpios(dev_secctl, armssedev, name);
157     g_free(name);
158     name = g_strdup_printf("%s_irq_enable", ppcname);
159     qdev_pass_gpios(dev_secctl, armssedev, name);
160     g_free(name);
161     name = g_strdup_printf("%s_irq_clear", ppcname);
162     qdev_pass_gpios(dev_secctl, armssedev, name);
163     g_free(name);
164 
165     /* irq_status is a little more tricky, because we need to
166      * split it so we can send it both to the security controller
167      * and to our OR gate for the NVIC interrupt line.
168      * Connect up the splitter's outputs, and create a GPIO input
169      * which will pass the line state to the input splitter.
170      */
171     name = g_strdup_printf("%s_irq_status", ppcname);
172     qdev_connect_gpio_out(dev_splitter, 0,
173                           qdev_get_gpio_in_named(dev_secctl,
174                                                  name, 0));
175     qdev_connect_gpio_out(dev_splitter, 1,
176                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
177     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
178     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
179                                         s->irq_status_in[ppcnum], name, 1);
180     g_free(name);
181 }
182 
183 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
184 {
185     /* Forward the 3rd output from the splitter device as a
186      * named GPIO output of the armsse object.
187      */
188     DeviceState *dev = DEVICE(s);
189     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
190 
191     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
192     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
193                                            s->sec_resp_cfg, 1);
194     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
195 }
196 
197 static void armsse_init(Object *obj)
198 {
199     ARMSSE *s = ARMSSE(obj);
200     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
201     const ARMSSEInfo *info = asc->info;
202     int i;
203 
204     assert(info->sram_banks <= MAX_SRAM_BANKS);
205     assert(info->num_cpus <= SSE_MAX_CPUS);
206 
207     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
208 
209     for (i = 0; i < info->num_cpus; i++) {
210         /*
211          * We put each CPU in its own cluster as they are logically
212          * distinct and may be configured differently.
213          */
214         char *name;
215 
216         name = g_strdup_printf("cluster%d", i);
217         object_initialize_child(obj, name, &s->cluster[i],
218                                 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
219                                 &error_abort, NULL);
220         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
221         g_free(name);
222 
223         name = g_strdup_printf("armv7m%d", i);
224         sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
225                               &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
226         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
227                              ARM_CPU_TYPE_NAME("cortex-m33"));
228         g_free(name);
229         name = g_strdup_printf("arm-sse-cpu-container%d", i);
230         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
231         g_free(name);
232         if (i > 0) {
233             name = g_strdup_printf("arm-sse-container-alias%d", i);
234             memory_region_init_alias(&s->container_alias[i - 1], obj,
235                                      name, &s->container, 0, UINT64_MAX);
236             g_free(name);
237         }
238     }
239 
240     sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
241                           TYPE_IOTKIT_SECCTL);
242     sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
243                           TYPE_TZ_PPC);
244     sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
245                           TYPE_TZ_PPC);
246     for (i = 0; i < info->sram_banks; i++) {
247         char *name = g_strdup_printf("mpc%d", i);
248         sysbus_init_child_obj(obj, name, &s->mpc[i],
249                               sizeof(s->mpc[i]), TYPE_TZ_MPC);
250         g_free(name);
251     }
252     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
253                             sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
254                             &error_abort, NULL);
255 
256     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
257         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
258         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
259 
260         object_initialize_child(obj, name, splitter, sizeof(*splitter),
261                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
262         g_free(name);
263     }
264     sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
265                           TYPE_CMSDK_APB_TIMER);
266     sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
267                           TYPE_CMSDK_APB_TIMER);
268     sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
269                           TYPE_CMSDK_APB_TIMER);
270     sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
271                           TYPE_CMSDK_APB_DUALTIMER);
272     sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
273                           sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
274     sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
275                           sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
276     sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
277                           sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
278     sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
279                           sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
280     sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
281                           sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
282     if (info->has_mhus) {
283         sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
284                               TYPE_UNIMPLEMENTED_DEVICE);
285         sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
286                               TYPE_UNIMPLEMENTED_DEVICE);
287     }
288     if (info->has_ppus) {
289         for (i = 0; i < info->num_cpus; i++) {
290             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
291             int ppuidx = CPU0CORE_PPU + i;
292 
293             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
294                                   sizeof(s->ppu[ppuidx]),
295                                   TYPE_UNIMPLEMENTED_DEVICE);
296             g_free(name);
297         }
298         sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
299                               sizeof(s->ppu[DBG_PPU]),
300                               TYPE_UNIMPLEMENTED_DEVICE);
301         for (i = 0; i < info->sram_banks; i++) {
302             char *name = g_strdup_printf("RAM%d_PPU", i);
303             int ppuidx = RAM0_PPU + i;
304 
305             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
306                                   sizeof(s->ppu[ppuidx]),
307                                   TYPE_UNIMPLEMENTED_DEVICE);
308             g_free(name);
309         }
310     }
311     if (info->has_cachectrl) {
312         for (i = 0; i < info->num_cpus; i++) {
313             char *name = g_strdup_printf("cachectrl%d", i);
314 
315             sysbus_init_child_obj(obj, name, &s->cachectrl[i],
316                                   sizeof(s->cachectrl[i]),
317                                   TYPE_UNIMPLEMENTED_DEVICE);
318             g_free(name);
319         }
320     }
321     if (info->has_cpusecctrl) {
322         for (i = 0; i < info->num_cpus; i++) {
323             char *name = g_strdup_printf("cpusecctrl%d", i);
324 
325             sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
326                                   sizeof(s->cpusecctrl[i]),
327                                   TYPE_UNIMPLEMENTED_DEVICE);
328             g_free(name);
329         }
330     }
331     if (info->has_cpuid) {
332         for (i = 0; i < info->num_cpus; i++) {
333             char *name = g_strdup_printf("cpuid%d", i);
334 
335             sysbus_init_child_obj(obj, name, &s->cpuid[i],
336                                   sizeof(s->cpuid[i]),
337                                   TYPE_ARMSSE_CPUID);
338             g_free(name);
339         }
340     }
341     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
342                             sizeof(s->nmi_orgate), TYPE_OR_IRQ,
343                             &error_abort, NULL);
344     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
345                             sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
346                             &error_abort, NULL);
347     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
348                             sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
349                             &error_abort, NULL);
350     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
351         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
352         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
353 
354         object_initialize_child(obj, name, splitter, sizeof(*splitter),
355                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
356         g_free(name);
357     }
358     if (info->num_cpus > 1) {
359         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
360             if (irq_is_common[i]) {
361                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
362                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
363 
364                 object_initialize_child(obj, name, splitter, sizeof(*splitter),
365                                         TYPE_SPLIT_IRQ, &error_abort, NULL);
366                 g_free(name);
367             }
368         }
369     }
370 }
371 
372 static void armsse_exp_irq(void *opaque, int n, int level)
373 {
374     qemu_irq *irqarray = opaque;
375 
376     qemu_set_irq(irqarray[n], level);
377 }
378 
379 static void armsse_mpcexp_status(void *opaque, int n, int level)
380 {
381     ARMSSE *s = ARMSSE(opaque);
382     qemu_set_irq(s->mpcexp_status_in[n], level);
383 }
384 
385 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
386 {
387     /*
388      * Return a qemu_irq which can be used to signal IRQ n to
389      * all CPUs in the SSE.
390      */
391     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
392     const ARMSSEInfo *info = asc->info;
393 
394     assert(irq_is_common[irqno]);
395 
396     if (info->num_cpus == 1) {
397         /* Only one CPU -- just connect directly to it */
398         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
399     } else {
400         /* Connect to the splitter which feeds all CPUs */
401         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
402     }
403 }
404 
405 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
406 {
407     /* Map a PPU unimplemented device stub */
408     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
409 
410     qdev_prop_set_string(dev, "name", name);
411     qdev_prop_set_uint64(dev, "size", 0x1000);
412     qdev_init_nofail(dev);
413     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
414 }
415 
416 static void armsse_realize(DeviceState *dev, Error **errp)
417 {
418     ARMSSE *s = ARMSSE(dev);
419     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
420     const ARMSSEInfo *info = asc->info;
421     int i;
422     MemoryRegion *mr;
423     Error *err = NULL;
424     SysBusDevice *sbd_apb_ppc0;
425     SysBusDevice *sbd_secctl;
426     DeviceState *dev_apb_ppc0;
427     DeviceState *dev_apb_ppc1;
428     DeviceState *dev_secctl;
429     DeviceState *dev_splitter;
430     uint32_t addr_width_max;
431 
432     if (!s->board_memory) {
433         error_setg(errp, "memory property was not set");
434         return;
435     }
436 
437     if (!s->mainclk_frq) {
438         error_setg(errp, "MAINCLK property was not set");
439         return;
440     }
441 
442     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
443     assert(is_power_of_2(info->sram_banks));
444     addr_width_max = 24 - ctz32(info->sram_banks);
445     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
446         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
447                    addr_width_max);
448         return;
449     }
450 
451     /* Handling of which devices should be available only to secure
452      * code is usually done differently for M profile than for A profile.
453      * Instead of putting some devices only into the secure address space,
454      * devices exist in both address spaces but with hard-wired security
455      * permissions that will cause the CPU to fault for non-secure accesses.
456      *
457      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
458      * which specifies hard-wired security permissions for different
459      * areas of the physical address space. For the ARMSSE IDAU, the
460      * top 4 bits of the physical address are the IDAU region ID, and
461      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
462      * region, otherwise it is an S region.
463      *
464      * The various devices and RAMs are generally all mapped twice,
465      * once into a region that the IDAU defines as secure and once
466      * into a non-secure region. They sit behind either a Memory
467      * Protection Controller (for RAM) or a Peripheral Protection
468      * Controller (for devices), which allow a more fine grained
469      * configuration of whether non-secure accesses are permitted.
470      *
471      * (The other place that guest software can configure security
472      * permissions is in the architected SAU (Security Attribution
473      * Unit), which is entirely inside the CPU. The IDAU can upgrade
474      * the security attributes for a region to more restrictive than
475      * the SAU specifies, but cannot downgrade them.)
476      *
477      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
478      * 0x20000000..0x2007ffff  32KB FPGA block RAM
479      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
480      * 0x40000000..0x4000ffff  base peripheral region 1
481      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
482      * 0x40020000..0x4002ffff  system control element peripherals
483      * 0x40080000..0x400fffff  base peripheral region 2
484      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
485      */
486 
487     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
488 
489     for (i = 0; i < info->num_cpus; i++) {
490         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
491         Object *cpuobj = OBJECT(&s->armv7m[i]);
492         int j;
493         char *gpioname;
494 
495         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
496         /*
497          * In real hardware the initial Secure VTOR is set from the INITSVTOR0
498          * register in the IoT Kit System Control Register block, and the
499          * initial value of that is in turn specifiable by the FPGA that
500          * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
501          * and simply set the CPU's init-svtor to the IoT Kit default value.
502          * In SSE-200 the situation is similar, except that the default value
503          * is a reset-time signal input. Typically a board using the SSE-200
504          * will have a system control processor whose boot firmware initializes
505          * the INITSVTOR* registers before powering up the CPUs in any case,
506          * so the hardware's default value doesn't matter. QEMU doesn't emulate
507          * the control processor, so instead we behave in the way that the
508          * firmware does. All boards currently known about have firmware that
509          * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
510          * IoTKit default. We can make this more configurable if necessary.
511          */
512         qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
513         /*
514          * Start all CPUs except CPU0 powered down. In real hardware it is
515          * a configurable property of the SSE-200 which CPUs start powered up
516          * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
517          * the boards we care about start CPU0 and leave CPU1 powered off,
518          * we hard-code that for now. We can add QOM properties for this
519          * later if necessary.
520          */
521         if (i > 0) {
522             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
523             if (err) {
524                 error_propagate(errp, err);
525                 return;
526             }
527         }
528 
529         if (i > 0) {
530             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
531                                                 &s->container_alias[i - 1], -1);
532         } else {
533             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
534                                                 &s->container, -1);
535         }
536         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
537                                  "memory", &err);
538         if (err) {
539             error_propagate(errp, err);
540             return;
541         }
542         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
543         if (err) {
544             error_propagate(errp, err);
545             return;
546         }
547         object_property_set_bool(cpuobj, true, "realized", &err);
548         if (err) {
549             error_propagate(errp, err);
550             return;
551         }
552         /*
553          * The cluster must be realized after the armv7m container, as
554          * the container's CPU object is only created on realize, and the
555          * CPU must exist and have been parented into the cluster before
556          * the cluster is realized.
557          */
558         object_property_set_bool(OBJECT(&s->cluster[i]),
559                                  true, "realized", &err);
560         if (err) {
561             error_propagate(errp, err);
562             return;
563         }
564 
565         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
566         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
567         for (j = 0; j < s->exp_numirq; j++) {
568             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
569         }
570         if (i == 0) {
571             gpioname = g_strdup("EXP_IRQ");
572         } else {
573             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
574         }
575         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
576                                             s->exp_irqs[i],
577                                             gpioname, s->exp_numirq);
578         g_free(gpioname);
579     }
580 
581     /* Wire up the splitters that connect common IRQs to all CPUs */
582     if (info->num_cpus > 1) {
583         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
584             if (irq_is_common[i]) {
585                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
586                 DeviceState *devs = DEVICE(splitter);
587                 int cpunum;
588 
589                 object_property_set_int(splitter, info->num_cpus,
590                                         "num-lines", &err);
591                 if (err) {
592                     error_propagate(errp, err);
593                     return;
594                 }
595                 object_property_set_bool(splitter, true, "realized", &err);
596                 if (err) {
597                     error_propagate(errp, err);
598                     return;
599                 }
600                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
601                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
602 
603                     qdev_connect_gpio_out(devs, cpunum,
604                                           qdev_get_gpio_in(cpudev, i));
605                 }
606             }
607         }
608     }
609 
610     /* Set up the big aliases first */
611     make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
612     make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
613     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
614      * a few extra devices that only appear there (generally the
615      * control interfaces for the protection controllers).
616      * We implement this by mapping those devices over the top of this
617      * alias MR at a higher priority.
618      */
619     make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
620 
621 
622     /* Security controller */
623     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
624     if (err) {
625         error_propagate(errp, err);
626         return;
627     }
628     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
629     dev_secctl = DEVICE(&s->secctl);
630     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
631     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
632 
633     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
634     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
635 
636     /* The sec_resp_cfg output from the security controller must be split into
637      * multiple lines, one for each of the PPCs within the ARMSSE and one
638      * that will be an output from the ARMSSE to the system.
639      */
640     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
641                             "num-lines", &err);
642     if (err) {
643         error_propagate(errp, err);
644         return;
645     }
646     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
647                              "realized", &err);
648     if (err) {
649         error_propagate(errp, err);
650         return;
651     }
652     dev_splitter = DEVICE(&s->sec_resp_splitter);
653     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
654                                 qdev_get_gpio_in(dev_splitter, 0));
655 
656     /* Each SRAM bank lives behind its own Memory Protection Controller */
657     for (i = 0; i < info->sram_banks; i++) {
658         char *ramname = g_strdup_printf("armsse.sram%d", i);
659         SysBusDevice *sbd_mpc;
660         uint32_t sram_bank_size = 1 << s->sram_addr_width;
661 
662         memory_region_init_ram(&s->sram[i], NULL, ramname,
663                                sram_bank_size, &err);
664         g_free(ramname);
665         if (err) {
666             error_propagate(errp, err);
667             return;
668         }
669         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
670                                  "downstream", &err);
671         if (err) {
672             error_propagate(errp, err);
673             return;
674         }
675         object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
676         if (err) {
677             error_propagate(errp, err);
678             return;
679         }
680         /* Map the upstream end of the MPC into the right place... */
681         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
682         memory_region_add_subregion(&s->container,
683                                     0x20000000 + i * sram_bank_size,
684                                     sysbus_mmio_get_region(sbd_mpc, 1));
685         /* ...and its register interface */
686         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
687                                     sysbus_mmio_get_region(sbd_mpc, 0));
688     }
689 
690     /* We must OR together lines from the MPC splitters to go to the NVIC */
691     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
692                             IOTS_NUM_EXP_MPC + info->sram_banks,
693                             "num-lines", &err);
694     if (err) {
695         error_propagate(errp, err);
696         return;
697     }
698     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
699                              "realized", &err);
700     if (err) {
701         error_propagate(errp, err);
702         return;
703     }
704     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
705                           armsse_get_common_irq_in(s, 9));
706 
707     /* Devices behind APB PPC0:
708      *   0x40000000: timer0
709      *   0x40001000: timer1
710      *   0x40002000: dual timer
711      *   0x40003000: MHU0 (SSE-200 only)
712      *   0x40004000: MHU1 (SSE-200 only)
713      * We must configure and realize each downstream device and connect
714      * it to the appropriate PPC port; then we can realize the PPC and
715      * map its upstream ends to the right place in the container.
716      */
717     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
718     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
719     if (err) {
720         error_propagate(errp, err);
721         return;
722     }
723     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
724                        armsse_get_common_irq_in(s, 3));
725     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
726     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
727     if (err) {
728         error_propagate(errp, err);
729         return;
730     }
731 
732     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
733     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
734     if (err) {
735         error_propagate(errp, err);
736         return;
737     }
738     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
739                        armsse_get_common_irq_in(s, 4));
740     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
741     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
742     if (err) {
743         error_propagate(errp, err);
744         return;
745     }
746 
747 
748     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
749     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
750     if (err) {
751         error_propagate(errp, err);
752         return;
753     }
754     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
755                        armsse_get_common_irq_in(s, 5));
756     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
757     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
758     if (err) {
759         error_propagate(errp, err);
760         return;
761     }
762 
763     if (info->has_mhus) {
764         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
765             char *name = g_strdup_printf("MHU%d", i);
766             char *port = g_strdup_printf("port[%d]", i + 3);
767 
768             qdev_prop_set_string(DEVICE(&s->mhu[i]), "name", name);
769             qdev_prop_set_uint64(DEVICE(&s->mhu[i]), "size", 0x1000);
770             object_property_set_bool(OBJECT(&s->mhu[i]), true,
771                                      "realized", &err);
772             if (err) {
773                 error_propagate(errp, err);
774                 return;
775             }
776             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mhu[i]), 0);
777             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
778                                      port, &err);
779             if (err) {
780                 error_propagate(errp, err);
781                 return;
782             }
783             g_free(name);
784             g_free(port);
785         }
786     }
787 
788     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
789     if (err) {
790         error_propagate(errp, err);
791         return;
792     }
793 
794     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
795     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
796 
797     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
798     memory_region_add_subregion(&s->container, 0x40000000, mr);
799     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
800     memory_region_add_subregion(&s->container, 0x40001000, mr);
801     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
802     memory_region_add_subregion(&s->container, 0x40002000, mr);
803     if (info->has_mhus) {
804         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
805         memory_region_add_subregion(&s->container, 0x40003000, mr);
806         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
807         memory_region_add_subregion(&s->container, 0x40004000, mr);
808     }
809     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
810         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
811                                     qdev_get_gpio_in_named(dev_apb_ppc0,
812                                                            "cfg_nonsec", i));
813         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
814                                     qdev_get_gpio_in_named(dev_apb_ppc0,
815                                                            "cfg_ap", i));
816     }
817     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
818                                 qdev_get_gpio_in_named(dev_apb_ppc0,
819                                                        "irq_enable", 0));
820     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
821                                 qdev_get_gpio_in_named(dev_apb_ppc0,
822                                                        "irq_clear", 0));
823     qdev_connect_gpio_out(dev_splitter, 0,
824                           qdev_get_gpio_in_named(dev_apb_ppc0,
825                                                  "cfg_sec_resp", 0));
826 
827     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
828      * ones) are sent individually to the security controller, and also
829      * ORed together to give a single combined PPC interrupt to the NVIC.
830      */
831     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
832                             NUM_PPCS, "num-lines", &err);
833     if (err) {
834         error_propagate(errp, err);
835         return;
836     }
837     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
838                              "realized", &err);
839     if (err) {
840         error_propagate(errp, err);
841         return;
842     }
843     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
844                           armsse_get_common_irq_in(s, 10));
845 
846     /*
847      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
848      * private per-CPU region (all these devices are SSE-200 only):
849      *  0x50010000: L1 icache control registers
850      *  0x50011000: CPUSECCTRL (CPU local security control registers)
851      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
852      */
853     if (info->has_cachectrl) {
854         for (i = 0; i < info->num_cpus; i++) {
855             char *name = g_strdup_printf("cachectrl%d", i);
856             MemoryRegion *mr;
857 
858             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
859             g_free(name);
860             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
861             object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
862                                      "realized", &err);
863             if (err) {
864                 error_propagate(errp, err);
865                 return;
866             }
867 
868             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
869             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
870         }
871     }
872     if (info->has_cpusecctrl) {
873         for (i = 0; i < info->num_cpus; i++) {
874             char *name = g_strdup_printf("CPUSECCTRL%d", i);
875             MemoryRegion *mr;
876 
877             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
878             g_free(name);
879             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
880             object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
881                                      "realized", &err);
882             if (err) {
883                 error_propagate(errp, err);
884                 return;
885             }
886 
887             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
888             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
889         }
890     }
891     if (info->has_cpuid) {
892         for (i = 0; i < info->num_cpus; i++) {
893             MemoryRegion *mr;
894 
895             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
896             object_property_set_bool(OBJECT(&s->cpuid[i]), true,
897                                      "realized", &err);
898             if (err) {
899                 error_propagate(errp, err);
900                 return;
901             }
902 
903             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
904             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
905         }
906     }
907 
908     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
909     /* Devices behind APB PPC1:
910      *   0x4002f000: S32K timer
911      */
912     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
913     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
914     if (err) {
915         error_propagate(errp, err);
916         return;
917     }
918     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
919                        armsse_get_common_irq_in(s, 2));
920     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
921     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
922     if (err) {
923         error_propagate(errp, err);
924         return;
925     }
926 
927     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
928     if (err) {
929         error_propagate(errp, err);
930         return;
931     }
932     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
933     memory_region_add_subregion(&s->container, 0x4002f000, mr);
934 
935     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
936     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
937                                 qdev_get_gpio_in_named(dev_apb_ppc1,
938                                                        "cfg_nonsec", 0));
939     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
940                                 qdev_get_gpio_in_named(dev_apb_ppc1,
941                                                        "cfg_ap", 0));
942     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
943                                 qdev_get_gpio_in_named(dev_apb_ppc1,
944                                                        "irq_enable", 0));
945     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
946                                 qdev_get_gpio_in_named(dev_apb_ppc1,
947                                                        "irq_clear", 0));
948     qdev_connect_gpio_out(dev_splitter, 1,
949                           qdev_get_gpio_in_named(dev_apb_ppc1,
950                                                  "cfg_sec_resp", 0));
951 
952     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
953                             "SYS_VERSION", &err);
954     if (err) {
955         error_propagate(errp, err);
956         return;
957     }
958     object_property_set_int(OBJECT(&s->sysinfo),
959                             armsse_sys_config_value(s, info),
960                             "SYS_CONFIG", &err);
961     if (err) {
962         error_propagate(errp, err);
963         return;
964     }
965     object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
966     if (err) {
967         error_propagate(errp, err);
968         return;
969     }
970     /* System information registers */
971     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
972     /* System control registers */
973     object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
974     if (err) {
975         error_propagate(errp, err);
976         return;
977     }
978     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
979 
980     if (info->has_ppus) {
981         /* CPUnCORE_PPU for each CPU */
982         for (i = 0; i < info->num_cpus; i++) {
983             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
984 
985             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
986             /*
987              * We don't support CPU debug so don't create the
988              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
989              */
990             g_free(name);
991         }
992         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
993 
994         for (i = 0; i < info->sram_banks; i++) {
995             char *name = g_strdup_printf("RAM%d_PPU", i);
996 
997             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
998             g_free(name);
999         }
1000     }
1001 
1002     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1003     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1004     if (err) {
1005         error_propagate(errp, err);
1006         return;
1007     }
1008     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1009     if (err) {
1010         error_propagate(errp, err);
1011         return;
1012     }
1013     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1014                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1015 
1016     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1017     object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1018     if (err) {
1019         error_propagate(errp, err);
1020         return;
1021     }
1022     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1023                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1024     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1025 
1026     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1027 
1028     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1029     object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1030     if (err) {
1031         error_propagate(errp, err);
1032         return;
1033     }
1034     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1035                        armsse_get_common_irq_in(s, 1));
1036     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1037 
1038     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1039     object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1040     if (err) {
1041         error_propagate(errp, err);
1042         return;
1043     }
1044     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1045                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1046     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1047 
1048     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1049         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1050 
1051         object_property_set_int(splitter, 2, "num-lines", &err);
1052         if (err) {
1053             error_propagate(errp, err);
1054             return;
1055         }
1056         object_property_set_bool(splitter, true, "realized", &err);
1057         if (err) {
1058             error_propagate(errp, err);
1059             return;
1060         }
1061     }
1062 
1063     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1064         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1065 
1066         armsse_forward_ppc(s, ppcname, i);
1067         g_free(ppcname);
1068     }
1069 
1070     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1071         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1072 
1073         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1074         g_free(ppcname);
1075     }
1076 
1077     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1078         /* Wire up IRQ splitter for internal PPCs */
1079         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1080         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1081                                          i - NUM_EXTERNAL_PPCS);
1082         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1083 
1084         qdev_connect_gpio_out(devs, 0,
1085                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1086         qdev_connect_gpio_out(devs, 1,
1087                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1088         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1089                                     qdev_get_gpio_in(devs, 0));
1090         g_free(gpioname);
1091     }
1092 
1093     /* Wire up the splitters for the MPC IRQs */
1094     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1095         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1096         DeviceState *dev_splitter = DEVICE(splitter);
1097 
1098         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1099         if (err) {
1100             error_propagate(errp, err);
1101             return;
1102         }
1103         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1104         if (err) {
1105             error_propagate(errp, err);
1106             return;
1107         }
1108 
1109         if (i < IOTS_NUM_EXP_MPC) {
1110             /* Splitter input is from GPIO input line */
1111             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1112             qdev_connect_gpio_out(dev_splitter, 0,
1113                                   qdev_get_gpio_in_named(dev_secctl,
1114                                                          "mpcexp_status", i));
1115         } else {
1116             /* Splitter input is from our own MPC */
1117             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1118                                         "irq", 0,
1119                                         qdev_get_gpio_in(dev_splitter, 0));
1120             qdev_connect_gpio_out(dev_splitter, 0,
1121                                   qdev_get_gpio_in_named(dev_secctl,
1122                                                          "mpc_status", 0));
1123         }
1124 
1125         qdev_connect_gpio_out(dev_splitter, 1,
1126                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1127     }
1128     /* Create GPIO inputs which will pass the line state for our
1129      * mpcexp_irq inputs to the correct splitter devices.
1130      */
1131     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1132                             IOTS_NUM_EXP_MPC);
1133 
1134     armsse_forward_sec_resp_cfg(s);
1135 
1136     /* Forward the MSC related signals */
1137     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1138     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1139     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1140     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1141                                 armsse_get_common_irq_in(s, 11));
1142 
1143     /*
1144      * Expose our container region to the board model; this corresponds
1145      * to the AHB Slave Expansion ports which allow bus master devices
1146      * (eg DMA controllers) in the board model to make transactions into
1147      * devices in the ARMSSE.
1148      */
1149     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1150 
1151     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1152 }
1153 
1154 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1155                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1156 {
1157     /*
1158      * For ARMSSE systems the IDAU responses are simple logical functions
1159      * of the address bits. The NSC attribute is guest-adjustable via the
1160      * NSCCFG register in the security controller.
1161      */
1162     ARMSSE *s = ARMSSE(ii);
1163     int region = extract32(address, 28, 4);
1164 
1165     *ns = !(region & 1);
1166     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1167     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1168     *exempt = (address & 0xeff00000) == 0xe0000000;
1169     *iregion = region;
1170 }
1171 
1172 static const VMStateDescription armsse_vmstate = {
1173     .name = "iotkit",
1174     .version_id = 1,
1175     .minimum_version_id = 1,
1176     .fields = (VMStateField[]) {
1177         VMSTATE_UINT32(nsccfg, ARMSSE),
1178         VMSTATE_END_OF_LIST()
1179     }
1180 };
1181 
1182 static Property armsse_properties[] = {
1183     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
1184                      MemoryRegion *),
1185     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
1186     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
1187     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
1188     DEFINE_PROP_END_OF_LIST()
1189 };
1190 
1191 static void armsse_reset(DeviceState *dev)
1192 {
1193     ARMSSE *s = ARMSSE(dev);
1194 
1195     s->nsccfg = 0;
1196 }
1197 
1198 static void armsse_class_init(ObjectClass *klass, void *data)
1199 {
1200     DeviceClass *dc = DEVICE_CLASS(klass);
1201     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1202     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1203 
1204     dc->realize = armsse_realize;
1205     dc->vmsd = &armsse_vmstate;
1206     dc->props = armsse_properties;
1207     dc->reset = armsse_reset;
1208     iic->check = armsse_idau_check;
1209     asc->info = data;
1210 }
1211 
1212 static const TypeInfo armsse_info = {
1213     .name = TYPE_ARMSSE,
1214     .parent = TYPE_SYS_BUS_DEVICE,
1215     .instance_size = sizeof(ARMSSE),
1216     .instance_init = armsse_init,
1217     .abstract = true,
1218     .interfaces = (InterfaceInfo[]) {
1219         { TYPE_IDAU_INTERFACE },
1220         { }
1221     }
1222 };
1223 
1224 static void armsse_register_types(void)
1225 {
1226     int i;
1227 
1228     type_register_static(&armsse_info);
1229 
1230     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1231         TypeInfo ti = {
1232             .name = armsse_variants[i].name,
1233             .parent = TYPE_ARMSSE,
1234             .class_init = armsse_class_init,
1235             .class_data = (void *)&armsse_variants[i],
1236         };
1237         type_register(&ti);
1238     }
1239 }
1240 
1241 type_init(armsse_register_types);
1242