xref: /openbmc/qemu/hw/arm/armsse.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
18 #include "trace.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-clock.h"
27 
28 /*
29  * The SSE-300 puts some devices in different places to the
30  * SSE-200 (and original IoTKit). We use an array of these structs
31  * to define how each variant lays out these devices. (Parts of the
32  * SoC that are the same for all variants aren't handled via these
33  * data structures.)
34  */
35 
36 #define NO_IRQ -1
37 #define NO_PPC -1
38 /*
39  * Special values for ARMSSEDeviceInfo::irq to indicate that this
40  * device uses one of the inputs to the OR gate that feeds into the
41  * CPU NMI input.
42  */
43 #define NMI_0 10000
44 #define NMI_1 10001
45 
46 typedef struct ARMSSEDeviceInfo {
47     const char *name; /* name to use for the QOM object; NULL terminates list */
48     const char *type; /* QOM type name */
49     unsigned int index; /* Which of the N devices of this type is this ? */
50     hwaddr addr;
51     hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52     int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
53     int ppc_port; /* Port number of this device on the PPC */
54     int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55     bool slowclk; /* true if device uses the slow 32KHz clock */
56 } ARMSSEDeviceInfo;
57 
58 struct ARMSSEInfo {
59     const char *name;
60     const char *cpu_type;
61     uint32_t sse_version;
62     int sram_banks;
63     uint32_t sram_bank_base;
64     int num_cpus;
65     uint32_t sys_version;
66     uint32_t iidr;
67     uint32_t cpuwait_rst;
68     bool has_mhus;
69     bool has_cachectrl;
70     bool has_cpusecctrl;
71     bool has_cpuid;
72     bool has_cpu_pwrctrl;
73     bool has_sse_counter;
74     bool has_tcms;
75     Property *props;
76     const ARMSSEDeviceInfo *devinfo;
77     const bool *irq_is_common;
78 };
79 
80 static Property iotkit_properties[] = {
81     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
82                      MemoryRegion *),
83     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
84     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
85     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
86     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
87     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
88     DEFINE_PROP_END_OF_LIST()
89 };
90 
91 static Property sse200_properties[] = {
92     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
93                      MemoryRegion *),
94     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
95     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
96     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
97     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
98     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
99     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
100     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
101     DEFINE_PROP_END_OF_LIST()
102 };
103 
104 static Property sse300_properties[] = {
105     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
106                      MemoryRegion *),
107     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
108     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
109     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
110     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
111     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
112     DEFINE_PROP_END_OF_LIST()
113 };
114 
115 static const ARMSSEDeviceInfo iotkit_devices[] = {
116     {
117         .name = "timer0",
118         .type = TYPE_CMSDK_APB_TIMER,
119         .index = 0,
120         .addr = 0x40000000,
121         .ppc = 0,
122         .ppc_port = 0,
123         .irq = 3,
124     },
125     {
126         .name = "timer1",
127         .type = TYPE_CMSDK_APB_TIMER,
128         .index = 1,
129         .addr = 0x40001000,
130         .ppc = 0,
131         .ppc_port = 1,
132         .irq = 4,
133     },
134     {
135         .name = "s32ktimer",
136         .type = TYPE_CMSDK_APB_TIMER,
137         .index = 2,
138         .addr = 0x4002f000,
139         .ppc = 1,
140         .ppc_port = 0,
141         .irq = 2,
142         .slowclk = true,
143     },
144     {
145         .name = "dualtimer",
146         .type = TYPE_CMSDK_APB_DUALTIMER,
147         .index = 0,
148         .addr = 0x40002000,
149         .ppc = 0,
150         .ppc_port = 2,
151         .irq = 5,
152     },
153     {
154         .name = "s32kwatchdog",
155         .type = TYPE_CMSDK_APB_WATCHDOG,
156         .index = 0,
157         .addr = 0x5002e000,
158         .ppc = NO_PPC,
159         .irq = NMI_0,
160         .slowclk = true,
161     },
162     {
163         .name = "nswatchdog",
164         .type = TYPE_CMSDK_APB_WATCHDOG,
165         .index = 1,
166         .addr = 0x40081000,
167         .ppc = NO_PPC,
168         .irq = 1,
169     },
170     {
171         .name = "swatchdog",
172         .type = TYPE_CMSDK_APB_WATCHDOG,
173         .index = 2,
174         .addr = 0x50081000,
175         .ppc = NO_PPC,
176         .irq = NMI_1,
177     },
178     {
179         .name = "armsse-sysinfo",
180         .type = TYPE_IOTKIT_SYSINFO,
181         .index = 0,
182         .addr = 0x40020000,
183         .ppc = NO_PPC,
184         .irq = NO_IRQ,
185     },
186     {
187         .name = "armsse-sysctl",
188         .type = TYPE_IOTKIT_SYSCTL,
189         .index = 0,
190         .addr = 0x50021000,
191         .ppc = NO_PPC,
192         .irq = NO_IRQ,
193     },
194     {
195         .name = NULL,
196     }
197 };
198 
199 static const ARMSSEDeviceInfo sse200_devices[] = {
200     {
201         .name = "timer0",
202         .type = TYPE_CMSDK_APB_TIMER,
203         .index = 0,
204         .addr = 0x40000000,
205         .ppc = 0,
206         .ppc_port = 0,
207         .irq = 3,
208     },
209     {
210         .name = "timer1",
211         .type = TYPE_CMSDK_APB_TIMER,
212         .index = 1,
213         .addr = 0x40001000,
214         .ppc = 0,
215         .ppc_port = 1,
216         .irq = 4,
217     },
218     {
219         .name = "s32ktimer",
220         .type = TYPE_CMSDK_APB_TIMER,
221         .index = 2,
222         .addr = 0x4002f000,
223         .ppc = 1,
224         .ppc_port = 0,
225         .irq = 2,
226         .slowclk = true,
227     },
228     {
229         .name = "dualtimer",
230         .type = TYPE_CMSDK_APB_DUALTIMER,
231         .index = 0,
232         .addr = 0x40002000,
233         .ppc = 0,
234         .ppc_port = 2,
235         .irq = 5,
236     },
237     {
238         .name = "s32kwatchdog",
239         .type = TYPE_CMSDK_APB_WATCHDOG,
240         .index = 0,
241         .addr = 0x5002e000,
242         .ppc = NO_PPC,
243         .irq = NMI_0,
244         .slowclk = true,
245     },
246     {
247         .name = "nswatchdog",
248         .type = TYPE_CMSDK_APB_WATCHDOG,
249         .index = 1,
250         .addr = 0x40081000,
251         .ppc = NO_PPC,
252         .irq = 1,
253     },
254     {
255         .name = "swatchdog",
256         .type = TYPE_CMSDK_APB_WATCHDOG,
257         .index = 2,
258         .addr = 0x50081000,
259         .ppc = NO_PPC,
260         .irq = NMI_1,
261     },
262     {
263         .name = "armsse-sysinfo",
264         .type = TYPE_IOTKIT_SYSINFO,
265         .index = 0,
266         .addr = 0x40020000,
267         .ppc = NO_PPC,
268         .irq = NO_IRQ,
269     },
270     {
271         .name = "armsse-sysctl",
272         .type = TYPE_IOTKIT_SYSCTL,
273         .index = 0,
274         .addr = 0x50021000,
275         .ppc = NO_PPC,
276         .irq = NO_IRQ,
277     },
278     {
279         .name = "CPU0CORE_PPU",
280         .type = TYPE_UNIMPLEMENTED_DEVICE,
281         .index = 0,
282         .addr = 0x50023000,
283         .size = 0x1000,
284         .ppc = NO_PPC,
285         .irq = NO_IRQ,
286     },
287     {
288         .name = "CPU1CORE_PPU",
289         .type = TYPE_UNIMPLEMENTED_DEVICE,
290         .index = 1,
291         .addr = 0x50025000,
292         .size = 0x1000,
293         .ppc = NO_PPC,
294         .irq = NO_IRQ,
295     },
296     {
297         .name = "DBG_PPU",
298         .type = TYPE_UNIMPLEMENTED_DEVICE,
299         .index = 2,
300         .addr = 0x50029000,
301         .size = 0x1000,
302         .ppc = NO_PPC,
303         .irq = NO_IRQ,
304     },
305     {
306         .name = "RAM0_PPU",
307         .type = TYPE_UNIMPLEMENTED_DEVICE,
308         .index = 3,
309         .addr = 0x5002a000,
310         .size = 0x1000,
311         .ppc = NO_PPC,
312         .irq = NO_IRQ,
313     },
314     {
315         .name = "RAM1_PPU",
316         .type = TYPE_UNIMPLEMENTED_DEVICE,
317         .index = 4,
318         .addr = 0x5002b000,
319         .size = 0x1000,
320         .ppc = NO_PPC,
321         .irq = NO_IRQ,
322     },
323     {
324         .name = "RAM2_PPU",
325         .type = TYPE_UNIMPLEMENTED_DEVICE,
326         .index = 5,
327         .addr = 0x5002c000,
328         .size = 0x1000,
329         .ppc = NO_PPC,
330         .irq = NO_IRQ,
331     },
332     {
333         .name = "RAM3_PPU",
334         .type = TYPE_UNIMPLEMENTED_DEVICE,
335         .index = 6,
336         .addr = 0x5002d000,
337         .size = 0x1000,
338         .ppc = NO_PPC,
339         .irq = NO_IRQ,
340     },
341     {
342         .name = "SYS_PPU",
343         .type = TYPE_UNIMPLEMENTED_DEVICE,
344         .index = 7,
345         .addr = 0x50022000,
346         .size = 0x1000,
347         .ppc = NO_PPC,
348         .irq = NO_IRQ,
349     },
350     {
351         .name = NULL,
352     }
353 };
354 
355 static const ARMSSEDeviceInfo sse300_devices[] = {
356     {
357         .name = "timer0",
358         .type = TYPE_SSE_TIMER,
359         .index = 0,
360         .addr = 0x48000000,
361         .ppc = 0,
362         .ppc_port = 0,
363         .irq = 3,
364     },
365     {
366         .name = "timer1",
367         .type = TYPE_SSE_TIMER,
368         .index = 1,
369         .addr = 0x48001000,
370         .ppc = 0,
371         .ppc_port = 1,
372         .irq = 4,
373     },
374     {
375         .name = "timer2",
376         .type = TYPE_SSE_TIMER,
377         .index = 2,
378         .addr = 0x48002000,
379         .ppc = 0,
380         .ppc_port = 2,
381         .irq = 5,
382     },
383     {
384         .name = "timer3",
385         .type = TYPE_SSE_TIMER,
386         .index = 3,
387         .addr = 0x48003000,
388         .ppc = 0,
389         .ppc_port = 5,
390         .irq = 27,
391     },
392     {
393         .name = "s32ktimer",
394         .type = TYPE_CMSDK_APB_TIMER,
395         .index = 0,
396         .addr = 0x4802f000,
397         .ppc = 1,
398         .ppc_port = 0,
399         .irq = 2,
400         .slowclk = true,
401     },
402     {
403         .name = "s32kwatchdog",
404         .type = TYPE_CMSDK_APB_WATCHDOG,
405         .index = 0,
406         .addr = 0x4802e000,
407         .ppc = NO_PPC,
408         .irq = NMI_0,
409         .slowclk = true,
410     },
411     {
412         .name = "watchdog",
413         .type = TYPE_UNIMPLEMENTED_DEVICE,
414         .index = 0,
415         .addr = 0x48040000,
416         .size = 0x2000,
417         .ppc = NO_PPC,
418         .irq = NO_IRQ,
419     },
420     {
421         .name = "armsse-sysinfo",
422         .type = TYPE_IOTKIT_SYSINFO,
423         .index = 0,
424         .addr = 0x48020000,
425         .ppc = NO_PPC,
426         .irq = NO_IRQ,
427     },
428     {
429         .name = "armsse-sysctl",
430         .type = TYPE_IOTKIT_SYSCTL,
431         .index = 0,
432         .addr = 0x58021000,
433         .ppc = NO_PPC,
434         .irq = NO_IRQ,
435     },
436     {
437         .name = "SYS_PPU",
438         .type = TYPE_UNIMPLEMENTED_DEVICE,
439         .index = 1,
440         .addr = 0x58022000,
441         .size = 0x1000,
442         .ppc = NO_PPC,
443         .irq = NO_IRQ,
444     },
445     {
446         .name = "CPU0CORE_PPU",
447         .type = TYPE_UNIMPLEMENTED_DEVICE,
448         .index = 2,
449         .addr = 0x50023000,
450         .size = 0x1000,
451         .ppc = NO_PPC,
452         .irq = NO_IRQ,
453     },
454     {
455         .name = "MGMT_PPU",
456         .type = TYPE_UNIMPLEMENTED_DEVICE,
457         .index = 3,
458         .addr = 0x50028000,
459         .size = 0x1000,
460         .ppc = NO_PPC,
461         .irq = NO_IRQ,
462     },
463     {
464         .name = "DEBUG_PPU",
465         .type = TYPE_UNIMPLEMENTED_DEVICE,
466         .index = 4,
467         .addr = 0x50029000,
468         .size = 0x1000,
469         .ppc = NO_PPC,
470         .irq = NO_IRQ,
471     },
472     {
473         .name = NULL,
474     }
475 };
476 
477 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
478 static const bool sse200_irq_is_common[32] = {
479     [0 ... 5] = true,
480     /* 6, 7: per-CPU MHU interrupts */
481     [8 ... 12] = true,
482     /* 13: per-CPU icache interrupt */
483     /* 14: reserved */
484     [15 ... 20] = true,
485     /* 21: reserved */
486     [22 ... 26] = true,
487     /* 27: reserved */
488     /* 28, 29: per-CPU CTI interrupts */
489     /* 30, 31: reserved */
490 };
491 
492 static const bool sse300_irq_is_common[32] = {
493     [0 ... 5] = true,
494     /* 6, 7: per-CPU MHU interrupts */
495     [8 ... 12] = true,
496     /* 13: reserved */
497     [14 ... 16] = true,
498     /* 17-25: reserved */
499     [26 ... 27] = true,
500     /* 28, 29: per-CPU CTI interrupts */
501     /* 30, 31: reserved */
502 };
503 
504 static const ARMSSEInfo armsse_variants[] = {
505     {
506         .name = TYPE_IOTKIT,
507         .sse_version = ARMSSE_IOTKIT,
508         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
509         .sram_banks = 1,
510         .sram_bank_base = 0x20000000,
511         .num_cpus = 1,
512         .sys_version = 0x41743,
513         .iidr = 0,
514         .cpuwait_rst = 0,
515         .has_mhus = false,
516         .has_cachectrl = false,
517         .has_cpusecctrl = false,
518         .has_cpuid = false,
519         .has_cpu_pwrctrl = false,
520         .has_sse_counter = false,
521         .has_tcms = false,
522         .props = iotkit_properties,
523         .devinfo = iotkit_devices,
524         .irq_is_common = sse200_irq_is_common,
525     },
526     {
527         .name = TYPE_SSE200,
528         .sse_version = ARMSSE_SSE200,
529         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
530         .sram_banks = 4,
531         .sram_bank_base = 0x20000000,
532         .num_cpus = 2,
533         .sys_version = 0x22041743,
534         .iidr = 0,
535         .cpuwait_rst = 2,
536         .has_mhus = true,
537         .has_cachectrl = true,
538         .has_cpusecctrl = true,
539         .has_cpuid = true,
540         .has_cpu_pwrctrl = false,
541         .has_sse_counter = false,
542         .has_tcms = false,
543         .props = sse200_properties,
544         .devinfo = sse200_devices,
545         .irq_is_common = sse200_irq_is_common,
546     },
547     {
548         .name = TYPE_SSE300,
549         .sse_version = ARMSSE_SSE300,
550         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
551         .sram_banks = 2,
552         .sram_bank_base = 0x21000000,
553         .num_cpus = 1,
554         .sys_version = 0x7e00043b,
555         .iidr = 0x74a0043b,
556         .cpuwait_rst = 0,
557         .has_mhus = false,
558         .has_cachectrl = false,
559         .has_cpusecctrl = true,
560         .has_cpuid = true,
561         .has_cpu_pwrctrl = true,
562         .has_sse_counter = true,
563         .has_tcms = true,
564         .props = sse300_properties,
565         .devinfo = sse300_devices,
566         .irq_is_common = sse300_irq_is_common,
567     },
568 };
569 
570 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
571 {
572     /* Return the SYS_CONFIG value for this SSE */
573     uint32_t sys_config;
574 
575     switch (info->sse_version) {
576     case ARMSSE_IOTKIT:
577         sys_config = 0;
578         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
579         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
580         break;
581     case ARMSSE_SSE200:
582         sys_config = 0;
583         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
584         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
585         sys_config = deposit32(sys_config, 24, 4, 2);
586         if (info->num_cpus > 1) {
587             sys_config = deposit32(sys_config, 10, 1, 1);
588             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
589             sys_config = deposit32(sys_config, 28, 4, 2);
590         }
591         break;
592     case ARMSSE_SSE300:
593         sys_config = 0;
594         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
595         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
596         sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
597         break;
598     default:
599         g_assert_not_reached();
600     }
601     return sys_config;
602 }
603 
604 /* Clock frequency in HZ of the 32KHz "slow clock" */
605 #define S32KCLK (32 * 1000)
606 
607 /*
608  * Create an alias region in @container of @size bytes starting at @base
609  * which mirrors the memory starting at @orig.
610  */
611 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
612                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
613 {
614     memory_region_init_alias(mr, NULL, name, container, orig, size);
615     /* The alias is even lower priority than unimplemented_device regions */
616     memory_region_add_subregion_overlap(container, base, mr, -1500);
617 }
618 
619 static void irq_status_forwarder(void *opaque, int n, int level)
620 {
621     qemu_irq destirq = opaque;
622 
623     qemu_set_irq(destirq, level);
624 }
625 
626 static void nsccfg_handler(void *opaque, int n, int level)
627 {
628     ARMSSE *s = ARM_SSE(opaque);
629 
630     s->nsccfg = level;
631 }
632 
633 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
634 {
635     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
636      * system using the ARMSSE has a collection of control lines which
637      * are provided by the security controller and which we want to
638      * expose as control lines on the ARMSSE device itself, so the
639      * code using the ARMSSE can wire them up to the PPCs.
640      */
641     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
642     DeviceState *armssedev = DEVICE(s);
643     DeviceState *dev_secctl = DEVICE(&s->secctl);
644     DeviceState *dev_splitter = DEVICE(splitter);
645     char *name;
646 
647     name = g_strdup_printf("%s_nonsec", ppcname);
648     qdev_pass_gpios(dev_secctl, armssedev, name);
649     g_free(name);
650     name = g_strdup_printf("%s_ap", ppcname);
651     qdev_pass_gpios(dev_secctl, armssedev, name);
652     g_free(name);
653     name = g_strdup_printf("%s_irq_enable", ppcname);
654     qdev_pass_gpios(dev_secctl, armssedev, name);
655     g_free(name);
656     name = g_strdup_printf("%s_irq_clear", ppcname);
657     qdev_pass_gpios(dev_secctl, armssedev, name);
658     g_free(name);
659 
660     /* irq_status is a little more tricky, because we need to
661      * split it so we can send it both to the security controller
662      * and to our OR gate for the NVIC interrupt line.
663      * Connect up the splitter's outputs, and create a GPIO input
664      * which will pass the line state to the input splitter.
665      */
666     name = g_strdup_printf("%s_irq_status", ppcname);
667     qdev_connect_gpio_out(dev_splitter, 0,
668                           qdev_get_gpio_in_named(dev_secctl,
669                                                  name, 0));
670     qdev_connect_gpio_out(dev_splitter, 1,
671                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
672     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
673     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
674                                         s->irq_status_in[ppcnum], name, 1);
675     g_free(name);
676 }
677 
678 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
679 {
680     /* Forward the 3rd output from the splitter device as a
681      * named GPIO output of the armsse object.
682      */
683     DeviceState *dev = DEVICE(s);
684     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
685 
686     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
687     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
688                                            s->sec_resp_cfg, 1);
689     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
690 }
691 
692 static void armsse_init(Object *obj)
693 {
694     ARMSSE *s = ARM_SSE(obj);
695     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
696     const ARMSSEInfo *info = asc->info;
697     const ARMSSEDeviceInfo *devinfo;
698     int i;
699 
700     assert(info->sram_banks <= MAX_SRAM_BANKS);
701     assert(info->num_cpus <= SSE_MAX_CPUS);
702 
703     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0);
704     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
705 
706     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
707 
708     for (i = 0; i < info->num_cpus; i++) {
709         /*
710          * We put each CPU in its own cluster as they are logically
711          * distinct and may be configured differently.
712          */
713         char *name;
714 
715         name = g_strdup_printf("cluster%d", i);
716         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
717         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
718         g_free(name);
719 
720         name = g_strdup_printf("armv7m%d", i);
721         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
722                                 TYPE_ARMV7M);
723         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
724         g_free(name);
725         name = g_strdup_printf("arm-sse-cpu-container%d", i);
726         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
727         g_free(name);
728         if (i > 0) {
729             name = g_strdup_printf("arm-sse-container-alias%d", i);
730             memory_region_init_alias(&s->container_alias[i - 1], obj,
731                                      name, &s->container, 0, UINT64_MAX);
732             g_free(name);
733         }
734     }
735 
736     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
737         assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
738         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
739             assert(devinfo->index < ARRAY_SIZE(s->timer));
740             object_initialize_child(obj, devinfo->name,
741                                     &s->timer[devinfo->index],
742                                     TYPE_CMSDK_APB_TIMER);
743         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
744             assert(devinfo->index == 0);
745             object_initialize_child(obj, devinfo->name, &s->dualtimer,
746                                     TYPE_CMSDK_APB_DUALTIMER);
747         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
748             assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
749             object_initialize_child(obj, devinfo->name,
750                                     &s->sse_timer[devinfo->index],
751                                     TYPE_SSE_TIMER);
752         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
753             assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
754             object_initialize_child(obj, devinfo->name,
755                                     &s->cmsdk_watchdog[devinfo->index],
756                                     TYPE_CMSDK_APB_WATCHDOG);
757         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
758             assert(devinfo->index == 0);
759             object_initialize_child(obj, devinfo->name, &s->sysinfo,
760                                     TYPE_IOTKIT_SYSINFO);
761         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
762             assert(devinfo->index == 0);
763             object_initialize_child(obj, devinfo->name, &s->sysctl,
764                                     TYPE_IOTKIT_SYSCTL);
765         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
766             assert(devinfo->index < ARRAY_SIZE(s->unimp));
767             object_initialize_child(obj, devinfo->name,
768                                     &s->unimp[devinfo->index],
769                                     TYPE_UNIMPLEMENTED_DEVICE);
770         } else {
771             g_assert_not_reached();
772         }
773     }
774 
775     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
776 
777     for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
778         g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
779         object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
780     }
781 
782     for (i = 0; i < info->sram_banks; i++) {
783         char *name = g_strdup_printf("mpc%d", i);
784         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
785         g_free(name);
786     }
787     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
788                             TYPE_OR_IRQ);
789 
790     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
791         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
792         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
793 
794         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
795         g_free(name);
796     }
797 
798     if (info->has_mhus) {
799         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
800         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
801     }
802     if (info->has_cachectrl) {
803         for (i = 0; i < info->num_cpus; i++) {
804             char *name = g_strdup_printf("cachectrl%d", i);
805 
806             object_initialize_child(obj, name, &s->cachectrl[i],
807                                     TYPE_UNIMPLEMENTED_DEVICE);
808             g_free(name);
809         }
810     }
811     if (info->has_cpusecctrl) {
812         for (i = 0; i < info->num_cpus; i++) {
813             char *name = g_strdup_printf("cpusecctrl%d", i);
814 
815             object_initialize_child(obj, name, &s->cpusecctrl[i],
816                                     TYPE_UNIMPLEMENTED_DEVICE);
817             g_free(name);
818         }
819     }
820     if (info->has_cpuid) {
821         for (i = 0; i < info->num_cpus; i++) {
822             char *name = g_strdup_printf("cpuid%d", i);
823 
824             object_initialize_child(obj, name, &s->cpuid[i],
825                                     TYPE_ARMSSE_CPUID);
826             g_free(name);
827         }
828     }
829     if (info->has_cpu_pwrctrl) {
830         for (i = 0; i < info->num_cpus; i++) {
831             char *name = g_strdup_printf("cpu_pwrctrl%d", i);
832 
833             object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
834                                     TYPE_ARMSSE_CPU_PWRCTRL);
835             g_free(name);
836         }
837     }
838     if (info->has_sse_counter) {
839         object_initialize_child(obj, "sse-counter", &s->sse_counter,
840                                 TYPE_SSE_COUNTER);
841     }
842 
843     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
844     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
845                             TYPE_OR_IRQ);
846     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
847                             TYPE_SPLIT_IRQ);
848     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
849         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
850         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
851 
852         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
853         g_free(name);
854     }
855     if (info->num_cpus > 1) {
856         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
857             if (info->irq_is_common[i]) {
858                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
859                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
860 
861                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
862                 g_free(name);
863             }
864         }
865     }
866 }
867 
868 static void armsse_exp_irq(void *opaque, int n, int level)
869 {
870     qemu_irq *irqarray = opaque;
871 
872     qemu_set_irq(irqarray[n], level);
873 }
874 
875 static void armsse_mpcexp_status(void *opaque, int n, int level)
876 {
877     ARMSSE *s = ARM_SSE(opaque);
878     qemu_set_irq(s->mpcexp_status_in[n], level);
879 }
880 
881 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
882 {
883     /*
884      * Return a qemu_irq which can be used to signal IRQ n to
885      * all CPUs in the SSE.
886      */
887     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
888     const ARMSSEInfo *info = asc->info;
889 
890     assert(info->irq_is_common[irqno]);
891 
892     if (info->num_cpus == 1) {
893         /* Only one CPU -- just connect directly to it */
894         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
895     } else {
896         /* Connect to the splitter which feeds all CPUs */
897         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
898     }
899 }
900 
901 static void armsse_realize(DeviceState *dev, Error **errp)
902 {
903     ARMSSE *s = ARM_SSE(dev);
904     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
905     const ARMSSEInfo *info = asc->info;
906     const ARMSSEDeviceInfo *devinfo;
907     int i;
908     MemoryRegion *mr;
909     SysBusDevice *sbd_apb_ppc0;
910     SysBusDevice *sbd_secctl;
911     DeviceState *dev_apb_ppc0;
912     DeviceState *dev_apb_ppc1;
913     DeviceState *dev_secctl;
914     DeviceState *dev_splitter;
915     uint32_t addr_width_max;
916 
917     ERRP_GUARD();
918 
919     if (!s->board_memory) {
920         error_setg(errp, "memory property was not set");
921         return;
922     }
923 
924     if (!clock_has_source(s->mainclk)) {
925         error_setg(errp, "MAINCLK clock was not connected");
926     }
927     if (!clock_has_source(s->s32kclk)) {
928         error_setg(errp, "S32KCLK clock was not connected");
929     }
930 
931     assert(info->num_cpus <= SSE_MAX_CPUS);
932 
933     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
934     assert(is_power_of_2(info->sram_banks));
935     addr_width_max = 24 - ctz32(info->sram_banks);
936     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
937         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
938                    addr_width_max);
939         return;
940     }
941 
942     /* Handling of which devices should be available only to secure
943      * code is usually done differently for M profile than for A profile.
944      * Instead of putting some devices only into the secure address space,
945      * devices exist in both address spaces but with hard-wired security
946      * permissions that will cause the CPU to fault for non-secure accesses.
947      *
948      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
949      * which specifies hard-wired security permissions for different
950      * areas of the physical address space. For the ARMSSE IDAU, the
951      * top 4 bits of the physical address are the IDAU region ID, and
952      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
953      * region, otherwise it is an S region.
954      *
955      * The various devices and RAMs are generally all mapped twice,
956      * once into a region that the IDAU defines as secure and once
957      * into a non-secure region. They sit behind either a Memory
958      * Protection Controller (for RAM) or a Peripheral Protection
959      * Controller (for devices), which allow a more fine grained
960      * configuration of whether non-secure accesses are permitted.
961      *
962      * (The other place that guest software can configure security
963      * permissions is in the architected SAU (Security Attribution
964      * Unit), which is entirely inside the CPU. The IDAU can upgrade
965      * the security attributes for a region to more restrictive than
966      * the SAU specifies, but cannot downgrade them.)
967      *
968      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
969      * 0x20000000..0x2007ffff  32KB FPGA block RAM
970      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
971      * 0x40000000..0x4000ffff  base peripheral region 1
972      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
973      * 0x40020000..0x4002ffff  system control element peripherals
974      * 0x40080000..0x400fffff  base peripheral region 2
975      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
976      */
977 
978     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
979 
980     for (i = 0; i < info->num_cpus; i++) {
981         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
982         Object *cpuobj = OBJECT(&s->armv7m[i]);
983         int j;
984         char *gpioname;
985 
986         qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk);
987         /* The SSE subsystems do not wire up a systick refclk */
988 
989         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
990         /*
991          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
992          * registers in the IoT Kit System Control Register block. In QEMU
993          * we set the initial value here, and also the reset value of the
994          * sysctl register, from this object's QOM init-svtor property.
995          * If the guest changes the INITSVTOR* registers at runtime then the
996          * code in iotkit-sysctl.c will update the CPU init-svtor property
997          * (which will then take effect on the next CPU warm-reset).
998          *
999          * Note that typically a board using the SSE-200 will have a system
1000          * control processor whose boot firmware initializes the INITSVTOR*
1001          * registers before powering up the CPUs. QEMU doesn't emulate
1002          * the control processor, so instead we behave in the way that the
1003          * firmware does: the initial value should be set by the board code
1004          * (using the init-svtor property on the ARMSSE object) to match
1005          * whatever its firmware does.
1006          */
1007         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1008         /*
1009          * CPUs start powered down if the corresponding bit in the CPUWAIT
1010          * register is 1. In real hardware the CPUWAIT register reset value is
1011          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1012          * CPUWAIT1_RST parameters), but since all the boards we care about
1013          * start CPU0 and leave CPU1 powered off, we hard-code that in
1014          * info->cpuwait_rst for now. We can add QOM properties for this
1015          * later if necessary.
1016          */
1017         if (extract32(info->cpuwait_rst, i, 1)) {
1018             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1019                                           errp)) {
1020                 return;
1021             }
1022         }
1023         if (!s->cpu_fpu[i]) {
1024             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1025                 return;
1026             }
1027         }
1028         if (!s->cpu_dsp[i]) {
1029             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1030                 return;
1031             }
1032         }
1033 
1034         if (i > 0) {
1035             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1036                                                 &s->container_alias[i - 1], -1);
1037         } else {
1038             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1039                                                 &s->container, -1);
1040         }
1041         object_property_set_link(cpuobj, "memory",
1042                                  OBJECT(&s->cpu_container[i]), &error_abort);
1043         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1044         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1045             return;
1046         }
1047         /*
1048          * The cluster must be realized after the armv7m container, as
1049          * the container's CPU object is only created on realize, and the
1050          * CPU must exist and have been parented into the cluster before
1051          * the cluster is realized.
1052          */
1053         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1054             return;
1055         }
1056 
1057         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1058         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1059         for (j = 0; j < s->exp_numirq; j++) {
1060             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1061         }
1062         if (i == 0) {
1063             gpioname = g_strdup("EXP_IRQ");
1064         } else {
1065             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1066         }
1067         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1068                                             s->exp_irqs[i],
1069                                             gpioname, s->exp_numirq);
1070         g_free(gpioname);
1071     }
1072 
1073     /* Wire up the splitters that connect common IRQs to all CPUs */
1074     if (info->num_cpus > 1) {
1075         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1076             if (info->irq_is_common[i]) {
1077                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1078                 DeviceState *devs = DEVICE(splitter);
1079                 int cpunum;
1080 
1081                 if (!object_property_set_int(splitter, "num-lines",
1082                                              info->num_cpus, errp)) {
1083                     return;
1084                 }
1085                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1086                     return;
1087                 }
1088                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1089                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1090 
1091                     qdev_connect_gpio_out(devs, cpunum,
1092                                           qdev_get_gpio_in(cpudev, i));
1093                 }
1094             }
1095         }
1096     }
1097 
1098     /* Set up the big aliases first */
1099     make_alias(s, &s->alias1, &s->container, "alias 1",
1100                0x10000000, 0x10000000, 0x00000000);
1101     make_alias(s, &s->alias2, &s->container,
1102                "alias 2", 0x30000000, 0x10000000, 0x20000000);
1103     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1104      * a few extra devices that only appear there (generally the
1105      * control interfaces for the protection controllers).
1106      * We implement this by mapping those devices over the top of this
1107      * alias MR at a higher priority. Some of the devices in this range
1108      * are per-CPU, so we must put this alias in the per-cpu containers.
1109      */
1110     for (i = 0; i < info->num_cpus; i++) {
1111         make_alias(s, &s->alias3[i], &s->cpu_container[i],
1112                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
1113     }
1114 
1115     /* Security controller */
1116     object_property_set_int(OBJECT(&s->secctl), "sse-version",
1117                             info->sse_version, &error_abort);
1118     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1119         return;
1120     }
1121     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1122     dev_secctl = DEVICE(&s->secctl);
1123     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1124     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1125 
1126     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1127     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1128 
1129     /* The sec_resp_cfg output from the security controller must be split into
1130      * multiple lines, one for each of the PPCs within the ARMSSE and one
1131      * that will be an output from the ARMSSE to the system.
1132      */
1133     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1134                                  "num-lines", 3, errp)) {
1135         return;
1136     }
1137     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1138         return;
1139     }
1140     dev_splitter = DEVICE(&s->sec_resp_splitter);
1141     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1142                                 qdev_get_gpio_in(dev_splitter, 0));
1143 
1144     /* Each SRAM bank lives behind its own Memory Protection Controller */
1145     for (i = 0; i < info->sram_banks; i++) {
1146         char *ramname = g_strdup_printf("armsse.sram%d", i);
1147         SysBusDevice *sbd_mpc;
1148         uint32_t sram_bank_size = 1 << s->sram_addr_width;
1149 
1150         memory_region_init_ram(&s->sram[i], NULL, ramname,
1151                                sram_bank_size, errp);
1152         g_free(ramname);
1153         if (*errp) {
1154             return;
1155         }
1156         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1157                                  OBJECT(&s->sram[i]), &error_abort);
1158         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1159             return;
1160         }
1161         /* Map the upstream end of the MPC into the right place... */
1162         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1163         memory_region_add_subregion(&s->container,
1164                                     info->sram_bank_base + i * sram_bank_size,
1165                                     sysbus_mmio_get_region(sbd_mpc, 1));
1166         /* ...and its register interface */
1167         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1168                                     sysbus_mmio_get_region(sbd_mpc, 0));
1169     }
1170 
1171     /* We must OR together lines from the MPC splitters to go to the NVIC */
1172     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1173                                  IOTS_NUM_EXP_MPC + info->sram_banks,
1174                                  errp)) {
1175         return;
1176     }
1177     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1178         return;
1179     }
1180     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1181                           armsse_get_common_irq_in(s, 9));
1182 
1183     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1184     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1185                                  errp)) {
1186         return;
1187     }
1188     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1189         return;
1190     }
1191     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1192                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1193 
1194     /* The SSE-300 has a System Counter / System Timestamp Generator */
1195     if (info->has_sse_counter) {
1196         SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1197 
1198         qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1199         if (!sysbus_realize(sbd, errp)) {
1200             return;
1201         }
1202         /*
1203          * The control frame is only in the Secure region;
1204          * the status frame is in the NS region (and visible in the
1205          * S region via the alias mapping).
1206          */
1207         memory_region_add_subregion(&s->container, 0x58100000,
1208                                     sysbus_mmio_get_region(sbd, 0));
1209         memory_region_add_subregion(&s->container, 0x48101000,
1210                                     sysbus_mmio_get_region(sbd, 1));
1211     }
1212 
1213     if (info->has_tcms) {
1214         /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1215         memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp);
1216         if (*errp) {
1217             return;
1218         }
1219         memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp);
1220         if (*errp) {
1221             return;
1222         }
1223         memory_region_add_subregion(&s->container, 0x00000000, &s->itcm);
1224         memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm);
1225     }
1226 
1227     /* Devices behind APB PPC0:
1228      *   0x40000000: timer0
1229      *   0x40001000: timer1
1230      *   0x40002000: dual timer
1231      *   0x40003000: MHU0 (SSE-200 only)
1232      *   0x40004000: MHU1 (SSE-200 only)
1233      * We must configure and realize each downstream device and connect
1234      * it to the appropriate PPC port; then we can realize the PPC and
1235      * map its upstream ends to the right place in the container.
1236      */
1237     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1238         SysBusDevice *sbd;
1239         qemu_irq irq;
1240 
1241         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1242             sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1243 
1244             qdev_connect_clock_in(DEVICE(sbd), "pclk",
1245                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1246             if (!sysbus_realize(sbd, errp)) {
1247                 return;
1248             }
1249             mr = sysbus_mmio_get_region(sbd, 0);
1250         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1251             sbd = SYS_BUS_DEVICE(&s->dualtimer);
1252 
1253             qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1254             if (!sysbus_realize(sbd, errp)) {
1255                 return;
1256             }
1257             mr = sysbus_mmio_get_region(sbd, 0);
1258         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1259             sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1260 
1261             assert(info->has_sse_counter);
1262             object_property_set_link(OBJECT(sbd), "counter",
1263                                      OBJECT(&s->sse_counter), &error_abort);
1264             if (!sysbus_realize(sbd, errp)) {
1265                 return;
1266             }
1267             mr = sysbus_mmio_get_region(sbd, 0);
1268         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1269             sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1270 
1271             qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1272                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1273             if (!sysbus_realize(sbd, errp)) {
1274                 return;
1275             }
1276             mr = sysbus_mmio_get_region(sbd, 0);
1277         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1278             sbd = SYS_BUS_DEVICE(&s->sysinfo);
1279 
1280             object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1281                                     info->sys_version, &error_abort);
1282             object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1283                                     armsse_sys_config_value(s, info),
1284                                     &error_abort);
1285             object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1286                                     info->sse_version, &error_abort);
1287             object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1288                                     info->iidr, &error_abort);
1289             if (!sysbus_realize(sbd, errp)) {
1290                 return;
1291             }
1292             mr = sysbus_mmio_get_region(sbd, 0);
1293         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1294             /* System control registers */
1295             sbd = SYS_BUS_DEVICE(&s->sysctl);
1296 
1297             object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1298                                     info->sse_version, &error_abort);
1299             object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1300                                     info->cpuwait_rst, &error_abort);
1301             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1302                                     s->init_svtor, &error_abort);
1303             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1304                                     s->init_svtor, &error_abort);
1305             if (!sysbus_realize(sbd, errp)) {
1306                 return;
1307             }
1308             mr = sysbus_mmio_get_region(sbd, 0);
1309         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1310             sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1311 
1312             qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1313             qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1314             if (!sysbus_realize(sbd, errp)) {
1315                 return;
1316             }
1317             mr = sysbus_mmio_get_region(sbd, 0);
1318         } else {
1319             g_assert_not_reached();
1320         }
1321 
1322         switch (devinfo->irq) {
1323         case NO_IRQ:
1324             irq = NULL;
1325             break;
1326         case 0 ... NUM_SSE_IRQS - 1:
1327             irq = armsse_get_common_irq_in(s, devinfo->irq);
1328             break;
1329         case NMI_0:
1330         case NMI_1:
1331             irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1332                                    devinfo->irq - NMI_0);
1333             break;
1334         default:
1335             g_assert_not_reached();
1336         }
1337 
1338         if (irq) {
1339             sysbus_connect_irq(sbd, 0, irq);
1340         }
1341 
1342         /*
1343          * Devices connected to a PPC are connected to the port here;
1344          * we will map the upstream end of that port to the right address
1345          * in the container later after the PPC has been realized.
1346          * Devices not connected to a PPC can be mapped immediately.
1347          */
1348         if (devinfo->ppc != NO_PPC) {
1349             TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1350             g_autofree char *portname = g_strdup_printf("port[%d]",
1351                                                         devinfo->ppc_port);
1352             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1353                                      &error_abort);
1354         } else {
1355             memory_region_add_subregion(&s->container, devinfo->addr, mr);
1356         }
1357     }
1358 
1359     if (info->has_mhus) {
1360         /*
1361          * An SSE-200 with only one CPU should have only one MHU created,
1362          * with the region where the second MHU usually is being RAZ/WI.
1363          * We don't implement that SSE-200 config; if we want to support
1364          * it then this code needs to be enhanced to handle creating the
1365          * RAZ/WI region instead of the second MHU.
1366          */
1367         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1368 
1369         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1370             char *port;
1371             int cpunum;
1372             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1373 
1374             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1375                 return;
1376             }
1377             port = g_strdup_printf("port[%d]", i + 3);
1378             mr = sysbus_mmio_get_region(mhu_sbd, 0);
1379             object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1380                                      &error_abort);
1381             g_free(port);
1382 
1383             /*
1384              * Each MHU has an irq line for each CPU:
1385              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1386              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1387              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1388              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1389              */
1390             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1391                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1392 
1393                 sysbus_connect_irq(mhu_sbd, cpunum,
1394                                    qdev_get_gpio_in(cpudev, 6 + i));
1395             }
1396         }
1397     }
1398 
1399     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1400         return;
1401     }
1402 
1403     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1404     dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1405 
1406     if (info->has_mhus) {
1407         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1408         memory_region_add_subregion(&s->container, 0x40003000, mr);
1409         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1410         memory_region_add_subregion(&s->container, 0x40004000, mr);
1411     }
1412     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1413         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1414                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1415                                                            "cfg_nonsec", i));
1416         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1417                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1418                                                            "cfg_ap", i));
1419     }
1420     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1421                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1422                                                        "irq_enable", 0));
1423     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1424                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1425                                                        "irq_clear", 0));
1426     qdev_connect_gpio_out(dev_splitter, 0,
1427                           qdev_get_gpio_in_named(dev_apb_ppc0,
1428                                                  "cfg_sec_resp", 0));
1429 
1430     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1431      * ones) are sent individually to the security controller, and also
1432      * ORed together to give a single combined PPC interrupt to the NVIC.
1433      */
1434     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1435                                  "num-lines", NUM_PPCS, errp)) {
1436         return;
1437     }
1438     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1439         return;
1440     }
1441     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1442                           armsse_get_common_irq_in(s, 10));
1443 
1444     /*
1445      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1446      * private per-CPU region (all these devices are SSE-200 only):
1447      *  0x50010000: L1 icache control registers
1448      *  0x50011000: CPUSECCTRL (CPU local security control registers)
1449      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1450      * The SSE-300 has an extra:
1451      *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1452      */
1453     if (info->has_cachectrl) {
1454         for (i = 0; i < info->num_cpus; i++) {
1455             char *name = g_strdup_printf("cachectrl%d", i);
1456             MemoryRegion *mr;
1457 
1458             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1459             g_free(name);
1460             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1461             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1462                 return;
1463             }
1464 
1465             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1466             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1467         }
1468     }
1469     if (info->has_cpusecctrl) {
1470         for (i = 0; i < info->num_cpus; i++) {
1471             char *name = g_strdup_printf("CPUSECCTRL%d", i);
1472             MemoryRegion *mr;
1473 
1474             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1475             g_free(name);
1476             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1477             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1478                 return;
1479             }
1480 
1481             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1482             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1483         }
1484     }
1485     if (info->has_cpuid) {
1486         for (i = 0; i < info->num_cpus; i++) {
1487             MemoryRegion *mr;
1488 
1489             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1490             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1491                 return;
1492             }
1493 
1494             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1495             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1496         }
1497     }
1498     if (info->has_cpu_pwrctrl) {
1499         for (i = 0; i < info->num_cpus; i++) {
1500             MemoryRegion *mr;
1501 
1502             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1503                 return;
1504             }
1505 
1506             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1507             memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1508         }
1509     }
1510 
1511     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1512         return;
1513     }
1514 
1515     dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1516     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1517                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1518                                                        "cfg_nonsec", 0));
1519     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1520                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1521                                                        "cfg_ap", 0));
1522     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1523                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1524                                                        "irq_enable", 0));
1525     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1526                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1527                                                        "irq_clear", 0));
1528     qdev_connect_gpio_out(dev_splitter, 1,
1529                           qdev_get_gpio_in_named(dev_apb_ppc1,
1530                                                  "cfg_sec_resp", 0));
1531 
1532     /*
1533      * Now both PPCs are realized we can map the upstream ends of
1534      * ports which correspond to entries in the devinfo array.
1535      * The ports which are connected to non-devinfo devices have
1536      * already been mapped.
1537      */
1538     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1539         SysBusDevice *ppc_sbd;
1540 
1541         if (devinfo->ppc == NO_PPC) {
1542             continue;
1543         }
1544         ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1545         mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1546         memory_region_add_subregion(&s->container, devinfo->addr, mr);
1547     }
1548 
1549     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1550         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1551 
1552         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1553             return;
1554         }
1555         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1556             return;
1557         }
1558     }
1559 
1560     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1561         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1562 
1563         armsse_forward_ppc(s, ppcname, i);
1564         g_free(ppcname);
1565     }
1566 
1567     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1568         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1569 
1570         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1571         g_free(ppcname);
1572     }
1573 
1574     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1575         /* Wire up IRQ splitter for internal PPCs */
1576         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1577         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1578                                          i - NUM_EXTERNAL_PPCS);
1579         TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1580 
1581         qdev_connect_gpio_out(devs, 0,
1582                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1583         qdev_connect_gpio_out(devs, 1,
1584                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1585         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1586                                     qdev_get_gpio_in(devs, 0));
1587         g_free(gpioname);
1588     }
1589 
1590     /* Wire up the splitters for the MPC IRQs */
1591     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1592         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1593         DeviceState *dev_splitter = DEVICE(splitter);
1594 
1595         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1596                                      errp)) {
1597             return;
1598         }
1599         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1600             return;
1601         }
1602 
1603         if (i < IOTS_NUM_EXP_MPC) {
1604             /* Splitter input is from GPIO input line */
1605             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1606             qdev_connect_gpio_out(dev_splitter, 0,
1607                                   qdev_get_gpio_in_named(dev_secctl,
1608                                                          "mpcexp_status", i));
1609         } else {
1610             /* Splitter input is from our own MPC */
1611             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1612                                         "irq", 0,
1613                                         qdev_get_gpio_in(dev_splitter, 0));
1614             qdev_connect_gpio_out(dev_splitter, 0,
1615                                   qdev_get_gpio_in_named(dev_secctl,
1616                                                          "mpc_status",
1617                                                          i - IOTS_NUM_EXP_MPC));
1618         }
1619 
1620         qdev_connect_gpio_out(dev_splitter, 1,
1621                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1622     }
1623     /* Create GPIO inputs which will pass the line state for our
1624      * mpcexp_irq inputs to the correct splitter devices.
1625      */
1626     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1627                             IOTS_NUM_EXP_MPC);
1628 
1629     armsse_forward_sec_resp_cfg(s);
1630 
1631     /* Forward the MSC related signals */
1632     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1633     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1634     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1635     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1636                                 armsse_get_common_irq_in(s, 11));
1637 
1638     /*
1639      * Expose our container region to the board model; this corresponds
1640      * to the AHB Slave Expansion ports which allow bus master devices
1641      * (eg DMA controllers) in the board model to make transactions into
1642      * devices in the ARMSSE.
1643      */
1644     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1645 }
1646 
1647 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1648                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1649 {
1650     /*
1651      * For ARMSSE systems the IDAU responses are simple logical functions
1652      * of the address bits. The NSC attribute is guest-adjustable via the
1653      * NSCCFG register in the security controller.
1654      */
1655     ARMSSE *s = ARM_SSE(ii);
1656     int region = extract32(address, 28, 4);
1657 
1658     *ns = !(region & 1);
1659     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1660     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1661     *exempt = (address & 0xeff00000) == 0xe0000000;
1662     *iregion = region;
1663 }
1664 
1665 static const VMStateDescription armsse_vmstate = {
1666     .name = "iotkit",
1667     .version_id = 2,
1668     .minimum_version_id = 2,
1669     .fields = (VMStateField[]) {
1670         VMSTATE_CLOCK(mainclk, ARMSSE),
1671         VMSTATE_CLOCK(s32kclk, ARMSSE),
1672         VMSTATE_UINT32(nsccfg, ARMSSE),
1673         VMSTATE_END_OF_LIST()
1674     }
1675 };
1676 
1677 static void armsse_reset(DeviceState *dev)
1678 {
1679     ARMSSE *s = ARM_SSE(dev);
1680 
1681     s->nsccfg = 0;
1682 }
1683 
1684 static void armsse_class_init(ObjectClass *klass, void *data)
1685 {
1686     DeviceClass *dc = DEVICE_CLASS(klass);
1687     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1688     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1689     const ARMSSEInfo *info = data;
1690 
1691     dc->realize = armsse_realize;
1692     dc->vmsd = &armsse_vmstate;
1693     device_class_set_props(dc, info->props);
1694     dc->reset = armsse_reset;
1695     iic->check = armsse_idau_check;
1696     asc->info = info;
1697 }
1698 
1699 static const TypeInfo armsse_info = {
1700     .name = TYPE_ARM_SSE,
1701     .parent = TYPE_SYS_BUS_DEVICE,
1702     .instance_size = sizeof(ARMSSE),
1703     .class_size = sizeof(ARMSSEClass),
1704     .instance_init = armsse_init,
1705     .abstract = true,
1706     .interfaces = (InterfaceInfo[]) {
1707         { TYPE_IDAU_INTERFACE },
1708         { }
1709     }
1710 };
1711 
1712 static void armsse_register_types(void)
1713 {
1714     int i;
1715 
1716     type_register_static(&armsse_info);
1717 
1718     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1719         TypeInfo ti = {
1720             .name = armsse_variants[i].name,
1721             .parent = TYPE_ARM_SSE,
1722             .class_init = armsse_class_init,
1723             .class_data = (void *)&armsse_variants[i],
1724         };
1725         type_register(&ti);
1726     }
1727 }
1728 
1729 type_init(armsse_register_types);
1730