xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision 0017c64e1ce298796caee2d38bde9d7fc59a1510)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2.1 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
38 #include "trace.h"
39 
40 /*
41  * define Byte Addressable Persistent Memory (PM) Region according to
42  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43  */
44 static const uint8_t nvdimm_nfit_spa_uuid[] =
45       UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
46               0x18, 0xb7, 0x8c, 0xdb);
47 
48 /*
49  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
50  * Interface Table (NFIT).
51  */
52 
53 /*
54  * System Physical Address Range Structure
55  *
56  * It describes the system physical address ranges occupied by NVDIMMs and
57  * the types of the regions.
58  */
59 struct NvdimmNfitSpa {
60     uint16_t type;
61     uint16_t length;
62     uint16_t spa_index;
63     uint16_t flags;
64     uint32_t reserved;
65     uint32_t proximity_domain;
66     uint8_t type_guid[16];
67     uint64_t spa_base;
68     uint64_t spa_length;
69     uint64_t mem_attr;
70 } QEMU_PACKED;
71 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
72 
73 /*
74  * Memory Device to System Physical Address Range Mapping Structure
75  *
76  * It enables identifying each NVDIMM region and the corresponding SPA
77  * describing the memory interleave
78  */
79 struct NvdimmNfitMemDev {
80     uint16_t type;
81     uint16_t length;
82     uint32_t nfit_handle;
83     uint16_t phys_id;
84     uint16_t region_id;
85     uint16_t spa_index;
86     uint16_t dcr_index;
87     uint64_t region_len;
88     uint64_t region_offset;
89     uint64_t region_dpa;
90     uint16_t interleave_index;
91     uint16_t interleave_ways;
92     uint16_t flags;
93     uint16_t reserved;
94 } QEMU_PACKED;
95 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
96 
97 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
98 
99 /*
100  * NVDIMM Control Region Structure
101  *
102  * It describes the NVDIMM and if applicable, Block Control Window.
103  */
104 struct NvdimmNfitControlRegion {
105     uint16_t type;
106     uint16_t length;
107     uint16_t dcr_index;
108     uint16_t vendor_id;
109     uint16_t device_id;
110     uint16_t revision_id;
111     uint16_t sub_vendor_id;
112     uint16_t sub_device_id;
113     uint16_t sub_revision_id;
114     uint8_t reserved[6];
115     uint32_t serial_number;
116     uint16_t fic;
117     uint16_t num_bcw;
118     uint64_t bcw_size;
119     uint64_t cmd_offset;
120     uint64_t cmd_size;
121     uint64_t status_offset;
122     uint64_t status_size;
123     uint16_t flags;
124     uint8_t reserved2[6];
125 } QEMU_PACKED;
126 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
127 
128 /*
129  * NVDIMM Platform Capabilities Structure
130  *
131  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
132  */
133 struct NvdimmNfitPlatformCaps {
134     uint16_t type;
135     uint16_t length;
136     uint8_t highest_cap;
137     uint8_t reserved[3];
138     uint32_t capabilities;
139     uint8_t reserved2[4];
140 } QEMU_PACKED;
141 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
142 
143 /*
144  * Module serial number is a unique number for each device. We use the
145  * slot id of NVDIMM device to generate this number so that each device
146  * associates with a different number.
147  *
148  * 0x123456 is a magic number we arbitrarily chose.
149  */
150 static uint32_t nvdimm_slot_to_sn(int slot)
151 {
152     return 0x123456 + slot;
153 }
154 
155 /*
156  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
157  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
158  * by ACPI device _ADR method.
159  *
160  * We generate the handle with the slot id of NVDIMM device and reserve
161  * 0 for NVDIMM root device.
162  */
163 static uint32_t nvdimm_slot_to_handle(int slot)
164 {
165     return slot + 1;
166 }
167 
168 /*
169  * index uniquely identifies the structure, 0 is reserved which indicates
170  * that the structure is not valid or the associated structure is not
171  * present.
172  *
173  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
174  * nfit_dc which are generated by the slot id of NVDIMM device.
175  */
176 static uint16_t nvdimm_slot_to_spa_index(int slot)
177 {
178     return (slot + 1) << 1;
179 }
180 
181 /* See the comments of nvdimm_slot_to_spa_index(). */
182 static uint32_t nvdimm_slot_to_dcr_index(int slot)
183 {
184     return nvdimm_slot_to_spa_index(slot) + 1;
185 }
186 
187 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
188 {
189     NVDIMMDevice *nvdimm = NULL;
190     GSList *list, *device_list = nvdimm_get_device_list();
191 
192     for (list = device_list; list; list = list->next) {
193         NVDIMMDevice *nvd = list->data;
194         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
195                                            NULL);
196 
197         if (nvdimm_slot_to_handle(slot) == handle) {
198             nvdimm = nvd;
199             break;
200         }
201     }
202 
203     g_slist_free(device_list);
204     return nvdimm;
205 }
206 
207 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
208 static void
209 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
210 {
211     NvdimmNfitSpa *nfit_spa;
212     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
213                                              NULL);
214     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
215                                              NULL);
216     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
217                                              NULL);
218     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
219                                        NULL);
220 
221     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
222 
223     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
224                                       Structure */);
225     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
226     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
227 
228     /*
229      * Control region is strict as all the device info, such as SN, index,
230      * is associated with slot id.
231      */
232     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
233                                        management during hot add/online
234                                        operation */ |
235                                   2 /* Data in Proximity Domain field is
236                                        valid*/);
237 
238     /* NUMA node. */
239     nfit_spa->proximity_domain = cpu_to_le32(node);
240     /* the region reported as PMEM. */
241     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
242            sizeof(nvdimm_nfit_spa_uuid));
243 
244     nfit_spa->spa_base = cpu_to_le64(addr);
245     nfit_spa->spa_length = cpu_to_le64(size);
246 
247     /* It is the PMEM and can be cached as writeback. */
248     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
249                                      0x8000ULL /* EFI_MEMORY_NV */);
250 }
251 
252 /*
253  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
254  * Structure
255  */
256 static void
257 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
258 {
259     NvdimmNfitMemDev *nfit_memdev;
260     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
261     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
262                                              NULL);
263     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
264                                             NULL);
265     uint32_t handle = nvdimm_slot_to_handle(slot);
266 
267     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
268 
269     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
270                                          Range Map Structure*/);
271     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
272     nfit_memdev->nfit_handle = cpu_to_le32(handle);
273 
274     /*
275      * associate memory device with System Physical Address Range
276      * Structure.
277      */
278     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
279     /* associate memory device with Control Region Structure. */
280     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
281 
282     /* The memory region on the device. */
283     nfit_memdev->region_len = cpu_to_le64(size);
284     /* The device address starts from 0. */
285     nfit_memdev->region_dpa = cpu_to_le64(0);
286 
287     /* Only one interleave for PMEM. */
288     nfit_memdev->interleave_ways = cpu_to_le16(1);
289 
290     if (nvdimm->unarmed) {
291         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
292     }
293 }
294 
295 /*
296  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
297  */
298 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
299 {
300     NvdimmNfitControlRegion *nfit_dcr;
301     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
302                                        NULL);
303     uint32_t sn = nvdimm_slot_to_sn(slot);
304 
305     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
306 
307     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
308     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
309     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
310 
311     /* vendor: Intel. */
312     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
313     nfit_dcr->device_id = cpu_to_le16(1);
314 
315     /* The _DSM method is following Intel's DSM specification. */
316     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
317                                              in ACPI 6.0 is 1. */);
318     nfit_dcr->serial_number = cpu_to_le32(sn);
319     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
320                                          Byte addressable, no energy backed.
321                                          See ACPI 6.2, sect 5.2.25.6 and
322                                          JEDEC Annex L Release 3. */);
323 }
324 
325 /*
326  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
327  */
328 static void
329 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
330 {
331     NvdimmNfitPlatformCaps *nfit_caps;
332 
333     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
334 
335     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
336     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
337     nfit_caps->highest_cap = 31 - clz32(capabilities);
338     nfit_caps->capabilities = cpu_to_le32(capabilities);
339 }
340 
341 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
342 {
343     GSList *device_list, *list = nvdimm_get_device_list();
344     GArray *structures = g_array_new(false, true /* clear */, 1);
345 
346     for (device_list = list; device_list; device_list = device_list->next) {
347         DeviceState *dev = device_list->data;
348 
349         /* build System Physical Address Range Structure. */
350         nvdimm_build_structure_spa(structures, dev);
351 
352         /*
353          * build Memory Device to System Physical Address Range Mapping
354          * Structure.
355          */
356         nvdimm_build_structure_memdev(structures, dev);
357 
358         /* build NVDIMM Control Region Structure. */
359         nvdimm_build_structure_dcr(structures, dev);
360     }
361     g_slist_free(list);
362 
363     if (state->persistence) {
364         nvdimm_build_structure_caps(structures, state->persistence);
365     }
366 
367     return structures;
368 }
369 
370 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
371 {
372     fit_buf->fit = g_array_new(false, true /* clear */, 1);
373 }
374 
375 static void nvdimm_build_fit_buffer(NVDIMMState *state)
376 {
377     NvdimmFitBuffer *fit_buf = &state->fit_buf;
378 
379     g_array_free(fit_buf->fit, true);
380     fit_buf->fit = nvdimm_build_device_structure(state);
381     fit_buf->dirty = true;
382 }
383 
384 void nvdimm_plug(NVDIMMState *state)
385 {
386     nvdimm_build_fit_buffer(state);
387 }
388 
389 /*
390  * NVDIMM Firmware Interface Table
391  * @signature: "NFIT"
392  *
393  * It provides information that allows OSPM to enumerate NVDIMM present in
394  * the platform and associate system physical address ranges created by the
395  * NVDIMMs.
396  *
397  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
398  */
399 
400 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
401                               GArray *table_data, BIOSLinker *linker,
402                               const char *oem_id, const char *oem_table_id)
403 {
404     NvdimmFitBuffer *fit_buf = &state->fit_buf;
405     AcpiTable table = { .sig = "NFIT", .rev = 1,
406                         .oem_id = oem_id, .oem_table_id = oem_table_id };
407 
408     acpi_add_table(table_offsets, table_data);
409 
410     acpi_table_begin(&table, table_data);
411     /* Reserved */
412     build_append_int_noprefix(table_data, 0, 4);
413     /* NVDIMM device structures. */
414     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
415     acpi_table_end(linker, &table);
416 }
417 
418 #define NVDIMM_DSM_MEMORY_SIZE      4096
419 
420 struct NvdimmDsmIn {
421     uint32_t handle;
422     uint32_t revision;
423     uint32_t function;
424     /* the remaining size in the page is used by arg3. */
425     union {
426         uint8_t arg3[4084];
427     };
428 } QEMU_PACKED;
429 typedef struct NvdimmDsmIn NvdimmDsmIn;
430 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
431 
432 struct NvdimmDsmOut {
433     /* the size of buffer filled by QEMU. */
434     uint32_t len;
435     uint8_t data[4092];
436 } QEMU_PACKED;
437 typedef struct NvdimmDsmOut NvdimmDsmOut;
438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
439 
440 struct NvdimmDsmFunc0Out {
441     /* the size of buffer filled by QEMU. */
442      uint32_t len;
443      uint32_t supported_func;
444 } QEMU_PACKED;
445 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
446 
447 struct NvdimmDsmFuncNoPayloadOut {
448     /* the size of buffer filled by QEMU. */
449      uint32_t len;
450      uint32_t func_ret_status;
451 } QEMU_PACKED;
452 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
453 
454 struct NvdimmFuncGetLabelSizeOut {
455     /* the size of buffer filled by QEMU. */
456     uint32_t len;
457     uint32_t func_ret_status; /* return status code. */
458     uint32_t label_size; /* the size of label data area. */
459     /*
460      * Maximum size of the namespace label data length supported by
461      * the platform in Get/Set Namespace Label Data functions.
462      */
463     uint32_t max_xfer;
464 } QEMU_PACKED;
465 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
466 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
467 
468 struct NvdimmFuncGetLabelDataIn {
469     uint32_t offset; /* the offset in the namespace label data area. */
470     uint32_t length; /* the size of data is to be read via the function. */
471 } QEMU_PACKED;
472 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
474                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
475 
476 struct NvdimmFuncGetLabelDataOut {
477     /* the size of buffer filled by QEMU. */
478     uint32_t len;
479     uint32_t func_ret_status; /* return status code. */
480     uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
481 } QEMU_PACKED;
482 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
483 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
484 
485 struct NvdimmFuncSetLabelDataIn {
486     uint32_t offset; /* the offset in the namespace label data area. */
487     uint32_t length; /* the size of data is to be written via the function. */
488     uint8_t in_buf[]; /* the data written to label data area. */
489 } QEMU_PACKED;
490 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
492                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
493 
494 struct NvdimmFuncReadFITIn {
495     uint32_t offset; /* the offset into FIT buffer. */
496 } QEMU_PACKED;
497 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
499                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
500 
501 struct NvdimmFuncReadFITOut {
502     /* the size of buffer filled by QEMU. */
503     uint32_t len;
504     uint32_t func_ret_status; /* return status code. */
505     uint8_t fit[]; /* the FIT data. */
506 } QEMU_PACKED;
507 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
508 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
509 
510 static void
511 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
512 {
513     NvdimmDsmFunc0Out func0 = {
514         .len = cpu_to_le32(sizeof(func0)),
515         .supported_func = cpu_to_le32(supported_func),
516     };
517     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
518 }
519 
520 static void
521 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
522 {
523     NvdimmDsmFuncNoPayloadOut out = {
524         .len = cpu_to_le32(sizeof(out)),
525         .func_ret_status = cpu_to_le32(func_ret_status),
526     };
527     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
528 }
529 
530 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
531 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
532 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
533 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
534 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
535 
536 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
537 
538 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
539 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
540                                      hwaddr dsm_mem_addr)
541 {
542     NvdimmFitBuffer *fit_buf = &state->fit_buf;
543     NvdimmFuncReadFITIn *read_fit;
544     NvdimmFuncReadFITOut *read_fit_out;
545     GArray *fit;
546     uint32_t read_len = 0, func_ret_status;
547     int size;
548 
549     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
550     read_fit->offset = le32_to_cpu(read_fit->offset);
551 
552     fit = fit_buf->fit;
553 
554     trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
555                                fit_buf->dirty ? "Yes" : "No");
556 
557     if (read_fit->offset > fit->len) {
558         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
559         goto exit;
560     }
561 
562     /* It is the first time to read FIT. */
563     if (!read_fit->offset) {
564         fit_buf->dirty = false;
565     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
566         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
567         goto exit;
568     }
569 
570     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
571     read_len = MIN(fit->len - read_fit->offset,
572                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
573 
574 exit:
575     size = sizeof(NvdimmFuncReadFITOut) + read_len;
576     read_fit_out = g_malloc(size);
577 
578     read_fit_out->len = cpu_to_le32(size);
579     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
580     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
581 
582     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
583 
584     g_free(read_fit_out);
585 }
586 
587 static void
588 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
589                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
590 {
591     switch (in->function) {
592     case 0x0:
593         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
594         return;
595     case 0x1 /* Read FIT */:
596         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
597         return;
598     }
599 
600     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
601 }
602 
603 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
604 {
605     /*
606      * function 0 is called to inquire which functions are supported by
607      * OSPM
608      */
609     if (!in->function) {
610         nvdimm_dsm_function0(0 /* No function supported other than
611                                   function 0 */, dsm_mem_addr);
612         return;
613     }
614 
615     /* No function except function 0 is supported yet. */
616     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
617 }
618 
619 /*
620  * the max transfer size is the max size transferred by both a
621  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
622  * function.
623  */
624 static uint32_t nvdimm_get_max_xfer_label_size(void)
625 {
626     uint32_t max_get_size, max_set_size, dsm_memory_size;
627 
628     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
629 
630     /*
631      * the max data ACPI can read one time which is transferred by
632      * the response of 'Get Namespace Label Data' function.
633      */
634     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
635 
636     /*
637      * the max data ACPI can write one time which is transferred by
638      * 'Set Namespace Label Data' function.
639      */
640     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
641                    sizeof(NvdimmFuncSetLabelDataIn);
642 
643     return MIN(max_get_size, max_set_size);
644 }
645 
646 /*
647  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
648  *
649  * It gets the size of Namespace Label data area and the max data size
650  * that Get/Set Namespace Label Data functions can transfer.
651  */
652 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
653 {
654     NvdimmFuncGetLabelSizeOut label_size_out = {
655         .len = cpu_to_le32(sizeof(label_size_out)),
656     };
657     uint32_t label_size, mxfer;
658 
659     label_size = nvdimm->label_size;
660     mxfer = nvdimm_get_max_xfer_label_size();
661 
662     trace_acpi_nvdimm_label_info(label_size, mxfer);
663 
664     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
665     label_size_out.label_size = cpu_to_le32(label_size);
666     label_size_out.max_xfer = cpu_to_le32(mxfer);
667 
668     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
669                               sizeof(label_size_out));
670 }
671 
672 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
673                                            uint32_t offset, uint32_t length,
674                                            bool is_write)
675 {
676     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
677 
678     if (offset + length < offset) {
679         trace_acpi_nvdimm_label_overflow(offset, length);
680         return ret;
681     }
682 
683     if (nvdimm->label_size < offset + length) {
684         trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
685         return ret;
686     }
687 
688     if (length > nvdimm_get_max_xfer_label_size()) {
689         trace_acpi_nvdimm_label_xfer_exceed(length,
690                                             nvdimm_get_max_xfer_label_size());
691         return ret;
692     }
693 
694     if (is_write && nvdimm->readonly) {
695         return NVDIMM_DSM_RET_STATUS_UNSUPPORT;
696     }
697 
698     return NVDIMM_DSM_RET_STATUS_SUCCESS;
699 }
700 
701 /*
702  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
703  */
704 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
705                                       hwaddr dsm_mem_addr)
706 {
707     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
708     NvdimmFuncGetLabelDataIn *get_label_data;
709     NvdimmFuncGetLabelDataOut *get_label_data_out;
710     uint32_t status;
711     int size;
712 
713     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
714     get_label_data->offset = le32_to_cpu(get_label_data->offset);
715     get_label_data->length = le32_to_cpu(get_label_data->length);
716 
717     trace_acpi_nvdimm_read_label(get_label_data->offset,
718                                  get_label_data->length);
719 
720     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
721                                         get_label_data->length, false);
722     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
723         nvdimm_dsm_no_payload(status, dsm_mem_addr);
724         return;
725     }
726 
727     size = sizeof(*get_label_data_out) + get_label_data->length;
728     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
729     get_label_data_out = g_malloc(size);
730 
731     get_label_data_out->len = cpu_to_le32(size);
732     get_label_data_out->func_ret_status =
733                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
734     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
735                          get_label_data->length, get_label_data->offset);
736 
737     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
738     g_free(get_label_data_out);
739 }
740 
741 /*
742  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
743  */
744 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
745                                       hwaddr dsm_mem_addr)
746 {
747     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
748     NvdimmFuncSetLabelDataIn *set_label_data;
749     uint32_t status;
750 
751     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
752 
753     set_label_data->offset = le32_to_cpu(set_label_data->offset);
754     set_label_data->length = le32_to_cpu(set_label_data->length);
755 
756     trace_acpi_nvdimm_write_label(set_label_data->offset,
757                                   set_label_data->length);
758 
759     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
760                                         set_label_data->length, true);
761     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
762         nvdimm_dsm_no_payload(status, dsm_mem_addr);
763         return;
764     }
765 
766     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
767                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
768 
769     nvc->write_label_data(nvdimm, set_label_data->in_buf,
770                           set_label_data->length, set_label_data->offset);
771     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
772 }
773 
774 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
775 {
776     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
777 
778     /* See the comments in nvdimm_dsm_root(). */
779     if (!in->function) {
780         uint32_t supported_func = 0;
781 
782         if (nvdimm && nvdimm->label_size) {
783             supported_func |= 0x1 /* Bit 0 indicates whether there is
784                                      support for any functions other
785                                      than function 0. */ |
786                               1 << 4 /* Get Namespace Label Size */ |
787                               1 << 5 /* Get Namespace Label Data */ |
788                               1 << 6 /* Set Namespace Label Data */;
789         }
790         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
791         return;
792     }
793 
794     if (!nvdimm) {
795         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
796                               dsm_mem_addr);
797         return;
798     }
799 
800     /* Encode DSM function according to DSM Spec Rev1. */
801     switch (in->function) {
802     case 4 /* Get Namespace Label Size */:
803         if (nvdimm->label_size) {
804             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
805             return;
806         }
807         break;
808     case 5 /* Get Namespace Label Data */:
809         if (nvdimm->label_size) {
810             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
811             return;
812         }
813         break;
814     case 0x6 /* Set Namespace Label Data */:
815         if (nvdimm->label_size) {
816             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
817             return;
818         }
819         break;
820     }
821 
822     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
823 }
824 
825 static uint64_t
826 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
827 {
828     trace_acpi_nvdimm_read_io_port();
829     return 0;
830 }
831 
832 static void
833 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
834 {
835     NVDIMMState *state = opaque;
836     NvdimmDsmIn *in;
837     hwaddr dsm_mem_addr = val;
838 
839     trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
840 
841     /*
842      * The DSM memory is mapped to guest address space so an evil guest
843      * can change its content while we are doing DSM emulation. Avoid
844      * this by copying DSM memory to QEMU local memory.
845      */
846     in = g_new(NvdimmDsmIn, 1);
847     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
848 
849     in->revision = le32_to_cpu(in->revision);
850     in->function = le32_to_cpu(in->function);
851     in->handle = le32_to_cpu(in->handle);
852 
853     trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
854 
855     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
856         trace_acpi_nvdimm_invalid_revision(in->revision);
857         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
858         goto exit;
859     }
860 
861     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
862         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
863         goto exit;
864     }
865 
866      /* Handle 0 is reserved for NVDIMM Root Device. */
867     if (!in->handle) {
868         nvdimm_dsm_root(in, dsm_mem_addr);
869         goto exit;
870     }
871 
872     nvdimm_dsm_device(in, dsm_mem_addr);
873 
874 exit:
875     g_free(in);
876 }
877 
878 static const MemoryRegionOps nvdimm_dsm_ops = {
879     .read = nvdimm_dsm_read,
880     .write = nvdimm_dsm_write,
881     .endianness = DEVICE_LITTLE_ENDIAN,
882     .valid = {
883         .min_access_size = 4,
884         .max_access_size = 4,
885     },
886 };
887 
888 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
889 {
890     if (dev->hotplugged) {
891         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
892     }
893 }
894 
895 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
896                             struct AcpiGenericAddress dsm_io,
897                             FWCfgState *fw_cfg, Object *owner)
898 {
899     state->dsm_io = dsm_io;
900     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
901                           "nvdimm-acpi-io", dsm_io.bit_width >> 3);
902     memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
903 
904     state->dsm_mem = g_array_new(false, true /* clear */, 1);
905     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
906     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
907                     state->dsm_mem->len);
908 
909     nvdimm_init_fit_buffer(&state->fit_buf);
910 }
911 
912 #define NVDIMM_COMMON_DSM       "NCAL"
913 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
914 
915 #define NVDIMM_DSM_MEMORY       "NRAM"
916 #define NVDIMM_DSM_IOPORT       "NPIO"
917 
918 #define NVDIMM_DSM_NOTIFY       "NTFI"
919 #define NVDIMM_DSM_HANDLE       "HDLE"
920 #define NVDIMM_DSM_REVISION     "REVS"
921 #define NVDIMM_DSM_FUNCTION     "FUNC"
922 #define NVDIMM_DSM_ARG3         "FARG"
923 
924 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
925 #define NVDIMM_DSM_OUT_BUF      "ODAT"
926 
927 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
928 
929 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
930 #define NVDIMM_DEVICE_DSM_UUID  "4309AC30-0D11-11E4-9191-0800200C9A66"
931 
932 static void nvdimm_build_common_dsm(Aml *dev,
933                                     NVDIMMState *nvdimm_state)
934 {
935     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
936     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
937     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
938     Aml *whilectx, *offset;
939     uint8_t byte_list[1];
940     AmlRegionSpace rs;
941 
942     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
943     uuid = aml_arg(0);
944     function = aml_arg(2);
945     handle = aml_arg(4);
946     dsm_mem = aml_local(6);
947     dsm_out_buf = aml_local(7);
948 
949     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
950 
951     if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
952         rs = AML_SYSTEM_IO;
953     } else {
954         rs = AML_SYSTEM_MEMORY;
955     }
956 
957     /* map DSM memory and IO into ACPI namespace. */
958     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
959                aml_int(nvdimm_state->dsm_io.address),
960                nvdimm_state->dsm_io.bit_width >> 3));
961     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
962                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
963 
964     /*
965      * DSM notifier:
966      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
967      *                    emulate the access.
968      *
969      * It is the IO port so that accessing them will cause VM-exit, the
970      * control will be transferred to QEMU.
971      */
972     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
973                       AML_PRESERVE);
974     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
975                nvdimm_state->dsm_io.bit_width));
976     aml_append(method, field);
977 
978     /*
979      * DSM input:
980      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
981      *                    happens on NVDIMM Root Device.
982      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
983      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
984      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
985      *                  containing function-specific arguments.
986      *
987      * They are RAM mapping on host so that these accesses never cause
988      * VM-EXIT.
989      */
990     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
991                       AML_PRESERVE);
992     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
993                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
994     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
995                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
996     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
997                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
998     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
999          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1000     aml_append(method, field);
1001 
1002     /*
1003      * DSM output:
1004      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1005      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1006      *
1007      * Since the page is reused by both input and out, the input data
1008      * will be lost after storing new result into ODAT so we should fetch
1009      * all the input data before writing the result.
1010      */
1011     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1012                       AML_PRESERVE);
1013     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1014                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1015     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1016        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1017     aml_append(method, field);
1018 
1019     /*
1020      * do not support any method if DSM memory address has not been
1021      * patched.
1022      */
1023     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1024 
1025     expected_uuid = aml_local(0);
1026 
1027     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1028     aml_append(ifctx, aml_store(
1029                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1030                /* UUID for NVDIMM Root Device */, expected_uuid));
1031     aml_append(method, ifctx);
1032     elsectx = aml_else();
1033     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1034     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1035                /* UUID for QEMU internal use */), expected_uuid));
1036     aml_append(elsectx, ifctx);
1037     elsectx2 = aml_else();
1038     aml_append(elsectx2, aml_store(aml_touuid(NVDIMM_DEVICE_DSM_UUID)
1039                /* UUID for NVDIMM Devices */, expected_uuid));
1040     aml_append(elsectx, elsectx2);
1041     aml_append(method, elsectx);
1042 
1043     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1044 
1045     unsupport = aml_if(aml_lor(unpatched, uuid_invalid));
1046 
1047     /*
1048      * function 0 is called to inquire what functions are supported by
1049      * OSPM
1050      */
1051     ifctx = aml_if(aml_equal(function, aml_int(0)));
1052     byte_list[0] = 0 /* No function Supported */;
1053     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1054     aml_append(unsupport, ifctx);
1055 
1056     /* No function is supported yet. */
1057     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1058     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1059     aml_append(method, unsupport);
1060 
1061     /*
1062      * The HDLE indicates the DSM function is issued from which device,
1063      * it reserves 0 for root device and is the handle for NVDIMM devices.
1064      * See the comments in nvdimm_slot_to_handle().
1065      */
1066     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1067     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1068     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1069 
1070     /*
1071      * The fourth parameter (Arg3) of _DSM is a package which contains
1072      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1073      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1074      * in the DSM Spec.
1075      */
1076     pckg = aml_arg(3);
1077     ifctx = aml_if(aml_land(aml_equal(aml_object_type(pckg),
1078                    aml_int(4 /* Package */)) /* It is a Package? */,
1079                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */));
1080 
1081     pckg_index = aml_local(2);
1082     pckg_buf = aml_local(3);
1083     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1084     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1085     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1086     aml_append(method, ifctx);
1087 
1088     /*
1089      * tell QEMU about the real address of DSM memory, then QEMU
1090      * gets the control and fills the result in DSM memory.
1091      */
1092     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1093 
1094     dsm_out_buf_size = aml_local(1);
1095     /* RLEN is not included in the payload returned to guest. */
1096     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1097                aml_int(4), dsm_out_buf_size));
1098 
1099     /*
1100      * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1101      * the Buffer Field <= to the size of an Integer (in bits), it will
1102      * be treated as an integer. Moreover, the integer size depends on
1103      * DSDT tables revision number. If revision number is < 2, integer
1104      * size is 32 bits, otherwise it is 64 bits.
1105      * Because of this CreateField() cannot be used if RLEN < Integer Size.
1106      *
1107      * Also please note that APCI ASL operator SizeOf() doesn't support
1108      * Integer and there isn't any other way to figure out the Integer
1109      * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1110      * build dsm_out_buf byte by byte.
1111      */
1112     ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1113     offset = aml_local(2);
1114     aml_append(ifctx, aml_store(aml_int(0), offset));
1115     aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1116     aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1117 
1118     whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1119     /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1120     aml_append(whilectx, aml_store(aml_derefof(aml_index(
1121                                    aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1122                                    aml_index(aml_name("TBUF"), aml_int(0))));
1123     aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1124                                          dsm_out_buf));
1125     aml_append(whilectx, aml_increment(offset));
1126     aml_append(ifctx, whilectx);
1127 
1128     aml_append(ifctx, aml_return(dsm_out_buf));
1129     aml_append(method, ifctx);
1130 
1131     /* If RLEN >= Integer size, just use CreateField() operator */
1132     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1133                                  dsm_out_buf_size));
1134     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1135                aml_int(0), dsm_out_buf_size, "OBUF"));
1136     aml_append(method, aml_return(aml_name("OBUF")));
1137 
1138     aml_append(dev, method);
1139 }
1140 
1141 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1142 {
1143     Aml *method;
1144 
1145     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1146     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1147                                   aml_arg(1), aml_arg(2), aml_arg(3),
1148                                   aml_int(handle))));
1149     aml_append(dev, method);
1150 }
1151 
1152 static void nvdimm_build_fit(Aml *dev)
1153 {
1154     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1155     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1156 
1157     buf = aml_local(0);
1158     buf_size = aml_local(1);
1159     fit = aml_local(2);
1160 
1161     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1162 
1163     /* build helper function, RFIT. */
1164     method = aml_method("RFIT", 1, AML_SERIALIZED);
1165     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1166 
1167     /* prepare input package. */
1168     pkg = aml_package(1);
1169     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1170     aml_append(pkg, aml_name("OFST"));
1171 
1172     /* call Read_FIT function. */
1173     call_result = aml_call5(NVDIMM_COMMON_DSM,
1174                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1175                             aml_int(1) /* Revision 1 */,
1176                             aml_int(0x1) /* Read FIT */,
1177                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1178     aml_append(method, aml_store(call_result, buf));
1179 
1180     /* handle _DSM result. */
1181     aml_append(method, aml_create_dword_field(buf,
1182                aml_int(0) /* offset at byte 0 */, "STAU"));
1183 
1184     aml_append(method, aml_store(aml_name("STAU"),
1185                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1186 
1187      /* if something is wrong during _DSM. */
1188     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1189                        aml_name("STAU"));
1190     ifctx = aml_if(aml_lnot(ifcond));
1191     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1192     aml_append(method, ifctx);
1193 
1194     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1195     aml_append(method, aml_subtract(buf_size,
1196                                     aml_int(4) /* the size of "STAU" */,
1197                                     buf_size));
1198 
1199     /* if we read the end of fit. */
1200     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1201     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1202     aml_append(method, ifctx);
1203 
1204     aml_append(method, aml_create_field(buf,
1205                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1206                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1207     aml_append(method, aml_return(aml_name("BUFF")));
1208     aml_append(dev, method);
1209 
1210     /* build _FIT. */
1211     method = aml_method("_FIT", 0, AML_SERIALIZED);
1212     offset = aml_local(3);
1213 
1214     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1215     aml_append(method, aml_store(aml_int(0), offset));
1216 
1217     whilectx = aml_while(aml_int(1));
1218     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1219     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1220 
1221     /*
1222      * if fit buffer was changed during RFIT, read from the beginning
1223      * again.
1224      */
1225     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1226                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1227     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1228     aml_append(ifctx, aml_store(aml_int(0), offset));
1229     aml_append(whilectx, ifctx);
1230 
1231     elsectx = aml_else();
1232 
1233     /* finish fit read if no data is read out. */
1234     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1235     aml_append(ifctx, aml_return(fit));
1236     aml_append(elsectx, ifctx);
1237 
1238     /* update the offset. */
1239     aml_append(elsectx, aml_add(offset, buf_size, offset));
1240     /* append the data we read out to the fit buffer. */
1241     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1242     aml_append(whilectx, elsectx);
1243     aml_append(method, whilectx);
1244 
1245     aml_append(dev, method);
1246 }
1247 
1248 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1249 {
1250     uint32_t slot;
1251     Aml *method, *pkg, *field, *com_call;
1252 
1253     for (slot = 0; slot < ram_slots; slot++) {
1254         uint32_t handle = nvdimm_slot_to_handle(slot);
1255         Aml *nvdimm_dev;
1256 
1257         nvdimm_dev = aml_device("NV%02X", slot);
1258 
1259         /*
1260          * ACPI 6.0: 9.20 NVDIMM Devices:
1261          *
1262          * _ADR object that is used to supply OSPM with unique address
1263          * of the NVDIMM device. This is done by returning the NFIT Device
1264          * handle that is used to identify the associated entries in ACPI
1265          * table NFIT or _FIT.
1266          */
1267         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1268 
1269         /*
1270          * ACPI v6.4: Section 6.5.10 NVDIMM Label Methods
1271          */
1272         /* _LSI */
1273         method = aml_method("_LSI", 0, AML_SERIALIZED);
1274         com_call = aml_call5(NVDIMM_COMMON_DSM,
1275                             aml_touuid(NVDIMM_DEVICE_DSM_UUID),
1276                             aml_int(1), aml_int(4), aml_int(0),
1277                             aml_int(handle));
1278         aml_append(method, aml_store(com_call, aml_local(0)));
1279 
1280         aml_append(method, aml_create_dword_field(aml_local(0),
1281                                                   aml_int(0), "STTS"));
1282         aml_append(method, aml_create_dword_field(aml_local(0), aml_int(4),
1283                                                   "SLSA"));
1284         aml_append(method, aml_create_dword_field(aml_local(0), aml_int(8),
1285                                                   "MAXT"));
1286 
1287         pkg = aml_package(3);
1288         aml_append(pkg, aml_name("STTS"));
1289         aml_append(pkg, aml_name("SLSA"));
1290         aml_append(pkg, aml_name("MAXT"));
1291         aml_append(method, aml_store(pkg, aml_local(1)));
1292         aml_append(method, aml_return(aml_local(1)));
1293 
1294         aml_append(nvdimm_dev, method);
1295 
1296         /* _LSR */
1297         method = aml_method("_LSR", 2, AML_SERIALIZED);
1298         aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
1299 
1300         aml_append(method, aml_create_dword_field(aml_name("INPT"),
1301                                                   aml_int(0), "OFST"));
1302         aml_append(method, aml_create_dword_field(aml_name("INPT"),
1303                                                   aml_int(4), "LEN"));
1304         aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1305         aml_append(method, aml_store(aml_arg(1), aml_name("LEN")));
1306 
1307         pkg = aml_package(1);
1308         aml_append(pkg, aml_name("INPT"));
1309         aml_append(method, aml_store(pkg, aml_local(0)));
1310 
1311         com_call = aml_call5(NVDIMM_COMMON_DSM,
1312                             aml_touuid(NVDIMM_DEVICE_DSM_UUID),
1313                             aml_int(1), aml_int(5), aml_local(0),
1314                             aml_int(handle));
1315         aml_append(method, aml_store(com_call, aml_local(3)));
1316         field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
1317         aml_append(method, field);
1318         field = aml_create_field(aml_local(3), aml_int(32),
1319                                  aml_shiftleft(aml_name("LEN"), aml_int(3)),
1320                                  "LDAT");
1321         aml_append(method, field);
1322         aml_append(method, aml_name_decl("LSA", aml_buffer(0, NULL)));
1323         aml_append(method, aml_to_buffer(aml_name("LDAT"), aml_name("LSA")));
1324 
1325         pkg = aml_package(2);
1326         aml_append(pkg, aml_name("STTS"));
1327         aml_append(pkg, aml_name("LSA"));
1328 
1329         aml_append(method, aml_store(pkg, aml_local(1)));
1330         aml_append(method, aml_return(aml_local(1)));
1331 
1332         aml_append(nvdimm_dev, method);
1333 
1334         /* _LSW */
1335         method = aml_method("_LSW", 3, AML_SERIALIZED);
1336         aml_append(method, aml_store(aml_arg(2), aml_local(2)));
1337         aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
1338         field = aml_create_dword_field(aml_name("INPT"),
1339                                                   aml_int(0), "OFST");
1340         aml_append(method, field);
1341         field = aml_create_dword_field(aml_name("INPT"),
1342                                                   aml_int(4), "TLEN");
1343         aml_append(method, field);
1344         aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1345         aml_append(method, aml_store(aml_arg(1), aml_name("TLEN")));
1346 
1347         aml_append(method, aml_concatenate(aml_name("INPT"), aml_local(2),
1348                                             aml_name("INPT")));
1349         pkg = aml_package(1);
1350         aml_append(pkg, aml_name("INPT"));
1351         aml_append(method, aml_store(pkg, aml_local(0)));
1352         com_call = aml_call5(NVDIMM_COMMON_DSM,
1353                             aml_touuid(NVDIMM_DEVICE_DSM_UUID),
1354                             aml_int(1), aml_int(6), aml_local(0),
1355                             aml_int(handle));
1356         aml_append(method, aml_store(com_call, aml_local(3)));
1357         field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
1358         aml_append(method, field);
1359         aml_append(method, aml_return(aml_name("STTS")));
1360 
1361         aml_append(nvdimm_dev, method);
1362 
1363         nvdimm_build_device_dsm(nvdimm_dev, handle);
1364         aml_append(root_dev, nvdimm_dev);
1365     }
1366 }
1367 
1368 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1369                               BIOSLinker *linker,
1370                               NVDIMMState *nvdimm_state,
1371                               uint32_t ram_slots, const char *oem_id)
1372 {
1373     int mem_addr_offset;
1374     Aml *ssdt, *sb_scope, *dev;
1375     AcpiTable table = { .sig = "SSDT", .rev = 1,
1376                         .oem_id = oem_id, .oem_table_id = "NVDIMM" };
1377 
1378     acpi_add_table(table_offsets, table_data);
1379 
1380     acpi_table_begin(&table, table_data);
1381     ssdt = init_aml_allocator();
1382     sb_scope = aml_scope("\\_SB");
1383 
1384     dev = aml_device("NVDR");
1385 
1386     /*
1387      * ACPI 6.0: 9.20 NVDIMM Devices:
1388      *
1389      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1390      * NVDIMM interface device. Platform firmware is required to contain one
1391      * such device in _SB scope if NVDIMMs support is exposed by platform to
1392      * OSPM.
1393      * For each NVDIMM present or intended to be supported by platform,
1394      * platform firmware also exposes an ACPI Namespace Device under the
1395      * root device.
1396      */
1397     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1398 
1399     nvdimm_build_common_dsm(dev, nvdimm_state);
1400 
1401     /* 0 is reserved for root device. */
1402     nvdimm_build_device_dsm(dev, 0);
1403     nvdimm_build_fit(dev);
1404 
1405     nvdimm_build_nvdimm_devices(dev, ram_slots);
1406 
1407     aml_append(sb_scope, dev);
1408     aml_append(ssdt, sb_scope);
1409 
1410     /* copy AML table into ACPI tables blob and patch header there */
1411     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1412     mem_addr_offset = build_append_named_dword(table_data,
1413                                                NVDIMM_ACPI_MEM_ADDR);
1414 
1415     bios_linker_loader_alloc(linker,
1416                              NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1417                              sizeof(NvdimmDsmIn), false /* high memory */);
1418     bios_linker_loader_add_pointer(linker,
1419         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1420         NVDIMM_DSM_MEM_FILE, 0);
1421     free_aml_allocator();
1422     /*
1423      * must be executed as the last so that pointer patching command above
1424      * would be executed by guest before it recalculated checksum which were
1425      * scheduled by acpi_table_end()
1426      */
1427     acpi_table_end(linker, &table);
1428 }
1429 
1430 void nvdimm_build_srat(GArray *table_data)
1431 {
1432     GSList *device_list, *list = nvdimm_get_device_list();
1433 
1434     for (device_list = list; device_list; device_list = device_list->next) {
1435         DeviceState *dev = device_list->data;
1436         Object *obj = OBJECT(dev);
1437         uint64_t addr, size;
1438         int node;
1439 
1440         node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1441         addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1442         size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1443 
1444         build_srat_memory(table_data, addr, size, node,
1445                           MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1446     }
1447     g_slist_free(list);
1448 }
1449 
1450 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1451                        BIOSLinker *linker, NVDIMMState *state,
1452                        uint32_t ram_slots, const char *oem_id,
1453                        const char *oem_table_id)
1454 {
1455     GSList *device_list;
1456 
1457     /* no nvdimm device can be plugged. */
1458     if (!ram_slots) {
1459         return;
1460     }
1461 
1462     nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1463                       ram_slots, oem_id);
1464 
1465     device_list = nvdimm_get_device_list();
1466     /* no NVDIMM device is plugged. */
1467     if (!device_list) {
1468         return;
1469     }
1470 
1471     nvdimm_build_nfit(state, table_offsets, table_data, linker,
1472                       oem_id, oem_table_id);
1473     g_slist_free(device_list);
1474 }
1475