xref: /openbmc/qemu/contrib/plugins/cache.c (revision d30b5bc95a9406b4125a35defba3a953358215cb)
1 /*
2  * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
3  *
4  * License: GNU GPL, version 2 or later.
5  *   See the COPYING file in the top-level directory.
6  */
7 
8 #include <inttypes.h>
9 #include <stdio.h>
10 #include <glib.h>
11 
12 #include <qemu-plugin.h>
13 
14 #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)
15 
16 QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
17 
18 static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
19 
20 static GHashTable *miss_ht;
21 
22 static GMutex hashtable_lock;
23 static GRand *rng;
24 
25 static int limit;
26 static bool sys;
27 
28 enum EvictionPolicy {
29     LRU,
30     FIFO,
31     RAND,
32 };
33 
34 enum EvictionPolicy policy;
35 
36 /*
37  * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
38  * put in any of the blocks inside the set. The number of block per set is
39  * called the associativity (assoc).
40  *
41  * Each block contains the stored tag and a valid bit. Since this is not
42  * a functional simulator, the data itself is not stored. We only identify
43  * whether a block is in the cache or not by searching for its tag.
44  *
45  * In order to search for memory data in the cache, the set identifier and tag
46  * are extracted from the address and the set is probed to see whether a tag
47  * match occur.
48  *
49  * An address is logically divided into three portions: The block offset,
50  * the set number, and the tag.
51  *
52  * The set number is used to identify the set in which the block may exist.
53  * The tag is compared against all the tags of a set to search for a match. If a
54  * match is found, then the access is a hit.
55  *
56  * The CacheSet also contains bookkeaping information about eviction details.
57  */
58 
59 typedef struct {
60     uint64_t tag;
61     bool valid;
62 } CacheBlock;
63 
64 typedef struct {
65     CacheBlock *blocks;
66     uint64_t *lru_priorities;
67     uint64_t lru_gen_counter;
68     GQueue *fifo_queue;
69 } CacheSet;
70 
71 typedef struct {
72     CacheSet *sets;
73     int num_sets;
74     int cachesize;
75     int assoc;
76     int blksize_shift;
77     uint64_t set_mask;
78     uint64_t tag_mask;
79     uint64_t accesses;
80     uint64_t misses;
81 } Cache;
82 
83 typedef struct {
84     char *disas_str;
85     const char *symbol;
86     uint64_t addr;
87     uint64_t l1_dmisses;
88     uint64_t l1_imisses;
89     uint64_t l2_misses;
90 } InsnData;
91 
92 void (*update_hit)(Cache *cache, int set, int blk);
93 void (*update_miss)(Cache *cache, int set, int blk);
94 
95 void (*metadata_init)(Cache *cache);
96 void (*metadata_destroy)(Cache *cache);
97 
98 static int cores;
99 static Cache **l1_dcaches, **l1_icaches;
100 
101 static bool use_l2;
102 static Cache **l2_ucaches;
103 
104 static GMutex *l1_dcache_locks;
105 static GMutex *l1_icache_locks;
106 static GMutex *l2_ucache_locks;
107 
108 static uint64_t l1_dmem_accesses;
109 static uint64_t l1_imem_accesses;
110 static uint64_t l1_imisses;
111 static uint64_t l1_dmisses;
112 
113 static uint64_t l2_mem_accesses;
114 static uint64_t l2_misses;
115 
116 static int pow_of_two(int num)
117 {
118     g_assert((num & (num - 1)) == 0);
119     int ret = 0;
120     while (num /= 2) {
121         ret++;
122     }
123     return ret;
124 }
125 
126 /*
127  * LRU evection policy: For each set, a generation counter is maintained
128  * alongside a priority array.
129  *
130  * On each set access, the generation counter is incremented.
131  *
132  * On a cache hit: The hit-block is assigned the current generation counter,
133  * indicating that it is the most recently used block.
134  *
135  * On a cache miss: The block with the least priority is searched and replaced
136  * with the newly-cached block, of which the priority is set to the current
137  * generation number.
138  */
139 
140 static void lru_priorities_init(Cache *cache)
141 {
142     int i;
143 
144     for (i = 0; i < cache->num_sets; i++) {
145         cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
146         cache->sets[i].lru_gen_counter = 0;
147     }
148 }
149 
150 static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
151 {
152     CacheSet *set = &cache->sets[set_idx];
153     set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
154     set->lru_gen_counter++;
155 }
156 
157 static int lru_get_lru_block(Cache *cache, int set_idx)
158 {
159     int i, min_idx, min_priority;
160 
161     min_priority = cache->sets[set_idx].lru_priorities[0];
162     min_idx = 0;
163 
164     for (i = 1; i < cache->assoc; i++) {
165         if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
166             min_priority = cache->sets[set_idx].lru_priorities[i];
167             min_idx = i;
168         }
169     }
170     return min_idx;
171 }
172 
173 static void lru_priorities_destroy(Cache *cache)
174 {
175     int i;
176 
177     for (i = 0; i < cache->num_sets; i++) {
178         g_free(cache->sets[i].lru_priorities);
179     }
180 }
181 
182 /*
183  * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
184  * stores accesses to the cache.
185  *
186  * On a compulsory miss: The block index is enqueued to the fifo_queue to
187  * indicate that it's the latest cached block.
188  *
189  * On a conflict miss: The first-in block is removed from the cache and the new
190  * block is put in its place and enqueued to the FIFO queue.
191  */
192 
193 static void fifo_init(Cache *cache)
194 {
195     int i;
196 
197     for (i = 0; i < cache->num_sets; i++) {
198         cache->sets[i].fifo_queue = g_queue_new();
199     }
200 }
201 
202 static int fifo_get_first_block(Cache *cache, int set)
203 {
204     GQueue *q = cache->sets[set].fifo_queue;
205     return GPOINTER_TO_INT(g_queue_pop_tail(q));
206 }
207 
208 static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
209 {
210     GQueue *q = cache->sets[set].fifo_queue;
211     g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
212 }
213 
214 static void fifo_destroy(Cache *cache)
215 {
216     int i;
217 
218     for (i = 0; i < cache->num_sets; i++) {
219         g_queue_free(cache->sets[i].fifo_queue);
220     }
221 }
222 
223 static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
224 {
225     return addr & cache->tag_mask;
226 }
227 
228 static inline uint64_t extract_set(Cache *cache, uint64_t addr)
229 {
230     return (addr & cache->set_mask) >> cache->blksize_shift;
231 }
232 
233 static const char *cache_config_error(int blksize, int assoc, int cachesize)
234 {
235     if (cachesize % blksize != 0) {
236         return "cache size must be divisible by block size";
237     } else if (cachesize % (blksize * assoc) != 0) {
238         return "cache size must be divisible by set size (assoc * block size)";
239     } else {
240         return NULL;
241     }
242 }
243 
244 static bool bad_cache_params(int blksize, int assoc, int cachesize)
245 {
246     return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
247 }
248 
249 static Cache *cache_init(int blksize, int assoc, int cachesize)
250 {
251     Cache *cache;
252     int i;
253     uint64_t blk_mask;
254 
255     /*
256      * This function shall not be called directly, and hence expects suitable
257      * parameters.
258      */
259     g_assert(!bad_cache_params(blksize, assoc, cachesize));
260 
261     cache = g_new(Cache, 1);
262     cache->assoc = assoc;
263     cache->cachesize = cachesize;
264     cache->num_sets = cachesize / (blksize * assoc);
265     cache->sets = g_new(CacheSet, cache->num_sets);
266     cache->blksize_shift = pow_of_two(blksize);
267     cache->accesses = 0;
268     cache->misses = 0;
269 
270     for (i = 0; i < cache->num_sets; i++) {
271         cache->sets[i].blocks = g_new0(CacheBlock, assoc);
272     }
273 
274     blk_mask = blksize - 1;
275     cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
276     cache->tag_mask = ~(cache->set_mask | blk_mask);
277 
278     if (metadata_init) {
279         metadata_init(cache);
280     }
281 
282     return cache;
283 }
284 
285 static Cache **caches_init(int blksize, int assoc, int cachesize)
286 {
287     Cache **caches;
288     int i;
289 
290     if (bad_cache_params(blksize, assoc, cachesize)) {
291         return NULL;
292     }
293 
294     caches = g_new(Cache *, cores);
295 
296     for (i = 0; i < cores; i++) {
297         caches[i] = cache_init(blksize, assoc, cachesize);
298     }
299 
300     return caches;
301 }
302 
303 static int get_invalid_block(Cache *cache, uint64_t set)
304 {
305     int i;
306 
307     for (i = 0; i < cache->assoc; i++) {
308         if (!cache->sets[set].blocks[i].valid) {
309             return i;
310         }
311     }
312 
313     return -1;
314 }
315 
316 static int get_replaced_block(Cache *cache, int set)
317 {
318     switch (policy) {
319     case RAND:
320         return g_rand_int_range(rng, 0, cache->assoc);
321     case LRU:
322         return lru_get_lru_block(cache, set);
323     case FIFO:
324         return fifo_get_first_block(cache, set);
325     default:
326         g_assert_not_reached();
327     }
328 }
329 
330 static int in_cache(Cache *cache, uint64_t addr)
331 {
332     int i;
333     uint64_t tag, set;
334 
335     tag = extract_tag(cache, addr);
336     set = extract_set(cache, addr);
337 
338     for (i = 0; i < cache->assoc; i++) {
339         if (cache->sets[set].blocks[i].tag == tag &&
340                 cache->sets[set].blocks[i].valid) {
341             return i;
342         }
343     }
344 
345     return -1;
346 }
347 
348 /**
349  * access_cache(): Simulate a cache access
350  * @cache: The cache under simulation
351  * @addr: The address of the requested memory location
352  *
353  * Returns true if the requested data is hit in the cache and false when missed.
354  * The cache is updated on miss for the next access.
355  */
356 static bool access_cache(Cache *cache, uint64_t addr)
357 {
358     int hit_blk, replaced_blk;
359     uint64_t tag, set;
360 
361     tag = extract_tag(cache, addr);
362     set = extract_set(cache, addr);
363 
364     hit_blk = in_cache(cache, addr);
365     if (hit_blk != -1) {
366         if (update_hit) {
367             update_hit(cache, set, hit_blk);
368         }
369         return true;
370     }
371 
372     replaced_blk = get_invalid_block(cache, set);
373 
374     if (replaced_blk == -1) {
375         replaced_blk = get_replaced_block(cache, set);
376     }
377 
378     if (update_miss) {
379         update_miss(cache, set, replaced_blk);
380     }
381 
382     cache->sets[set].blocks[replaced_blk].tag = tag;
383     cache->sets[set].blocks[replaced_blk].valid = true;
384 
385     return false;
386 }
387 
388 static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
389                             uint64_t vaddr, void *userdata)
390 {
391     uint64_t effective_addr;
392     struct qemu_plugin_hwaddr *hwaddr;
393     int cache_idx;
394     InsnData *insn;
395     bool hit_in_l1;
396 
397     hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
398     if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
399         return;
400     }
401 
402     effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
403     cache_idx = vcpu_index % cores;
404 
405     g_mutex_lock(&l1_dcache_locks[cache_idx]);
406     hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
407     if (!hit_in_l1) {
408         insn = userdata;
409         __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
410         l1_dcaches[cache_idx]->misses++;
411     }
412     l1_dcaches[cache_idx]->accesses++;
413     g_mutex_unlock(&l1_dcache_locks[cache_idx]);
414 
415     if (hit_in_l1 || !use_l2) {
416         /* No need to access L2 */
417         return;
418     }
419 
420     g_mutex_lock(&l2_ucache_locks[cache_idx]);
421     if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
422         insn = userdata;
423         __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
424         l2_ucaches[cache_idx]->misses++;
425     }
426     l2_ucaches[cache_idx]->accesses++;
427     g_mutex_unlock(&l2_ucache_locks[cache_idx]);
428 }
429 
430 static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
431 {
432     uint64_t insn_addr;
433     InsnData *insn;
434     int cache_idx;
435     bool hit_in_l1;
436 
437     insn_addr = ((InsnData *) userdata)->addr;
438 
439     cache_idx = vcpu_index % cores;
440     g_mutex_lock(&l1_icache_locks[cache_idx]);
441     hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
442     if (!hit_in_l1) {
443         insn = userdata;
444         __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
445         l1_icaches[cache_idx]->misses++;
446     }
447     l1_icaches[cache_idx]->accesses++;
448     g_mutex_unlock(&l1_icache_locks[cache_idx]);
449 
450     if (hit_in_l1 || !use_l2) {
451         /* No need to access L2 */
452         return;
453     }
454 
455     g_mutex_lock(&l2_ucache_locks[cache_idx]);
456     if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
457         insn = userdata;
458         __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
459         l2_ucaches[cache_idx]->misses++;
460     }
461     l2_ucaches[cache_idx]->accesses++;
462     g_mutex_unlock(&l2_ucache_locks[cache_idx]);
463 }
464 
465 static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
466 {
467     size_t n_insns;
468     size_t i;
469     InsnData *data;
470 
471     n_insns = qemu_plugin_tb_n_insns(tb);
472     for (i = 0; i < n_insns; i++) {
473         struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
474         uint64_t effective_addr;
475 
476         if (sys) {
477             effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
478         } else {
479             effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
480         }
481 
482         /*
483          * Instructions might get translated multiple times, we do not create
484          * new entries for those instructions. Instead, we fetch the same
485          * entry from the hash table and register it for the callback again.
486          */
487         g_mutex_lock(&hashtable_lock);
488         data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
489         if (data == NULL) {
490             data = g_new0(InsnData, 1);
491             data->disas_str = qemu_plugin_insn_disas(insn);
492             data->symbol = qemu_plugin_insn_symbol(insn);
493             data->addr = effective_addr;
494             g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
495                                (gpointer) data);
496         }
497         g_mutex_unlock(&hashtable_lock);
498 
499         qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
500                                          QEMU_PLUGIN_CB_NO_REGS,
501                                          rw, data);
502 
503         qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
504                                                QEMU_PLUGIN_CB_NO_REGS, data);
505     }
506 }
507 
508 static void insn_free(gpointer data)
509 {
510     InsnData *insn = (InsnData *) data;
511     g_free(insn->disas_str);
512     g_free(insn);
513 }
514 
515 static void cache_free(Cache *cache)
516 {
517     for (int i = 0; i < cache->num_sets; i++) {
518         g_free(cache->sets[i].blocks);
519     }
520 
521     if (metadata_destroy) {
522         metadata_destroy(cache);
523     }
524 
525     g_free(cache->sets);
526     g_free(cache);
527 }
528 
529 static void caches_free(Cache **caches)
530 {
531     int i;
532 
533     for (i = 0; i < cores; i++) {
534         cache_free(caches[i]);
535     }
536 }
537 
538 static void append_stats_line(GString *line, uint64_t l1_daccess,
539                               uint64_t l1_dmisses, uint64_t l1_iaccess,
540                               uint64_t l1_imisses,  uint64_t l2_access,
541                               uint64_t l2_misses)
542 {
543     double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate;
544 
545     l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
546     l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;
547 
548     g_string_append_printf(line, "%-14" PRIu64 " %-12" PRIu64 " %9.4lf%%"
549                            "  %-14" PRIu64 " %-12" PRIu64 " %9.4lf%%",
550                            l1_daccess,
551                            l1_dmisses,
552                            l1_daccess ? l1_dmiss_rate : 0.0,
553                            l1_iaccess,
554                            l1_imisses,
555                            l1_iaccess ? l1_imiss_rate : 0.0);
556 
557     if (use_l2) {
558         l2_miss_rate =  ((double) l2_misses) / (l2_access) * 100.0;
559         g_string_append_printf(line,
560                                "  %-12" PRIu64 " %-11" PRIu64 " %10.4lf%%",
561                                l2_access,
562                                l2_misses,
563                                l2_access ? l2_miss_rate : 0.0);
564     }
565 
566     g_string_append(line, "\n");
567 }
568 
569 static void sum_stats(void)
570 {
571     int i;
572 
573     g_assert(cores > 1);
574     for (i = 0; i < cores; i++) {
575         l1_imisses += l1_icaches[i]->misses;
576         l1_dmisses += l1_dcaches[i]->misses;
577         l1_imem_accesses += l1_icaches[i]->accesses;
578         l1_dmem_accesses += l1_dcaches[i]->accesses;
579 
580         if (use_l2) {
581             l2_misses += l2_ucaches[i]->misses;
582             l2_mem_accesses += l2_ucaches[i]->accesses;
583         }
584     }
585 }
586 
587 static int dcmp(gconstpointer a, gconstpointer b)
588 {
589     InsnData *insn_a = (InsnData *) a;
590     InsnData *insn_b = (InsnData *) b;
591 
592     return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
593 }
594 
595 static int icmp(gconstpointer a, gconstpointer b)
596 {
597     InsnData *insn_a = (InsnData *) a;
598     InsnData *insn_b = (InsnData *) b;
599 
600     return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
601 }
602 
603 static int l2_cmp(gconstpointer a, gconstpointer b)
604 {
605     InsnData *insn_a = (InsnData *) a;
606     InsnData *insn_b = (InsnData *) b;
607 
608     return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
609 }
610 
611 static void log_stats(void)
612 {
613     int i;
614     Cache *icache, *dcache, *l2_cache;
615 
616     g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
617                                           " dmiss rate, insn accesses,"
618                                           " insn misses, imiss rate");
619 
620     if (use_l2) {
621         g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
622     }
623 
624     g_string_append(rep, "\n");
625 
626     for (i = 0; i < cores; i++) {
627         g_string_append_printf(rep, "%-8d", i);
628         dcache = l1_dcaches[i];
629         icache = l1_icaches[i];
630         l2_cache = use_l2 ? l2_ucaches[i] : NULL;
631         append_stats_line(rep, dcache->accesses, dcache->misses,
632                 icache->accesses, icache->misses,
633                 l2_cache ? l2_cache->accesses : 0,
634                 l2_cache ? l2_cache->misses : 0);
635     }
636 
637     if (cores > 1) {
638         sum_stats();
639         g_string_append_printf(rep, "%-8s", "sum");
640         append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
641                 l1_imem_accesses, l1_imisses,
642                 l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
643     }
644 
645     g_string_append(rep, "\n");
646     qemu_plugin_outs(rep->str);
647 }
648 
649 static void log_top_insns(void)
650 {
651     int i;
652     GList *curr, *miss_insns;
653     InsnData *insn;
654 
655     miss_insns = g_hash_table_get_values(miss_ht);
656     miss_insns = g_list_sort(miss_insns, dcmp);
657     g_autoptr(GString) rep = g_string_new("");
658     g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
659 
660     for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
661         insn = (InsnData *) curr->data;
662         g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
663         if (insn->symbol) {
664             g_string_append_printf(rep, " (%s)", insn->symbol);
665         }
666         g_string_append_printf(rep, ", %" PRId64 ", %s\n",
667                                insn->l1_dmisses, insn->disas_str);
668     }
669 
670     miss_insns = g_list_sort(miss_insns, icmp);
671     g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
672 
673     for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
674         insn = (InsnData *) curr->data;
675         g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
676         if (insn->symbol) {
677             g_string_append_printf(rep, " (%s)", insn->symbol);
678         }
679         g_string_append_printf(rep, ", %" PRId64 ", %s\n",
680                                insn->l1_imisses, insn->disas_str);
681     }
682 
683     if (!use_l2) {
684         goto finish;
685     }
686 
687     miss_insns = g_list_sort(miss_insns, l2_cmp);
688     g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");
689 
690     for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
691         insn = (InsnData *) curr->data;
692         g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
693         if (insn->symbol) {
694             g_string_append_printf(rep, " (%s)", insn->symbol);
695         }
696         g_string_append_printf(rep, ", %" PRId64 ", %s\n",
697                                insn->l2_misses, insn->disas_str);
698     }
699 
700 finish:
701     qemu_plugin_outs(rep->str);
702     g_list_free(miss_insns);
703 }
704 
705 static void plugin_exit(qemu_plugin_id_t id, void *p)
706 {
707     log_stats();
708     log_top_insns();
709 
710     caches_free(l1_dcaches);
711     caches_free(l1_icaches);
712 
713     g_free(l1_dcache_locks);
714     g_free(l1_icache_locks);
715 
716     if (use_l2) {
717         caches_free(l2_ucaches);
718         g_free(l2_ucache_locks);
719     }
720 
721     g_hash_table_destroy(miss_ht);
722 }
723 
724 static void policy_init(void)
725 {
726     switch (policy) {
727     case LRU:
728         update_hit = lru_update_blk;
729         update_miss = lru_update_blk;
730         metadata_init = lru_priorities_init;
731         metadata_destroy = lru_priorities_destroy;
732         break;
733     case FIFO:
734         update_miss = fifo_update_on_miss;
735         metadata_init = fifo_init;
736         metadata_destroy = fifo_destroy;
737         break;
738     case RAND:
739         rng = g_rand_new();
740         break;
741     default:
742         g_assert_not_reached();
743     }
744 }
745 
746 QEMU_PLUGIN_EXPORT
747 int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
748                         int argc, char **argv)
749 {
750     int i;
751     int l1_iassoc, l1_iblksize, l1_icachesize;
752     int l1_dassoc, l1_dblksize, l1_dcachesize;
753     int l2_assoc, l2_blksize, l2_cachesize;
754 
755     limit = 32;
756     sys = info->system_emulation;
757 
758     l1_dassoc = 8;
759     l1_dblksize = 64;
760     l1_dcachesize = l1_dblksize * l1_dassoc * 32;
761 
762     l1_iassoc = 8;
763     l1_iblksize = 64;
764     l1_icachesize = l1_iblksize * l1_iassoc * 32;
765 
766     l2_assoc = 16;
767     l2_blksize = 64;
768     l2_cachesize = l2_assoc * l2_blksize * 2048;
769 
770     policy = LRU;
771 
772     cores = sys ? qemu_plugin_n_vcpus() : 1;
773 
774     for (i = 0; i < argc; i++) {
775         char *opt = argv[i];
776         g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
777 
778         if (g_strcmp0(tokens[0], "iblksize") == 0) {
779             l1_iblksize = STRTOLL(tokens[1]);
780         } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
781             l1_iassoc = STRTOLL(tokens[1]);
782         } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
783             l1_icachesize = STRTOLL(tokens[1]);
784         } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
785             l1_dblksize = STRTOLL(tokens[1]);
786         } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
787             l1_dassoc = STRTOLL(tokens[1]);
788         } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
789             l1_dcachesize = STRTOLL(tokens[1]);
790         } else if (g_strcmp0(tokens[0], "limit") == 0) {
791             limit = STRTOLL(tokens[1]);
792         } else if (g_strcmp0(tokens[0], "cores") == 0) {
793             cores = STRTOLL(tokens[1]);
794         } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
795             use_l2 = true;
796             l2_cachesize = STRTOLL(tokens[1]);
797         } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
798             use_l2 = true;
799             l2_blksize = STRTOLL(tokens[1]);
800         } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
801             use_l2 = true;
802             l2_assoc = STRTOLL(tokens[1]);
803         } else if (g_strcmp0(tokens[0], "l2") == 0) {
804             if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
805                 fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
806                 return -1;
807             }
808         } else if (g_strcmp0(tokens[0], "evict") == 0) {
809             if (g_strcmp0(tokens[1], "rand") == 0) {
810                 policy = RAND;
811             } else if (g_strcmp0(tokens[1], "lru") == 0) {
812                 policy = LRU;
813             } else if (g_strcmp0(tokens[1], "fifo") == 0) {
814                 policy = FIFO;
815             } else {
816                 fprintf(stderr, "invalid eviction policy: %s\n", opt);
817                 return -1;
818             }
819         } else {
820             fprintf(stderr, "option parsing failed: %s\n", opt);
821             return -1;
822         }
823     }
824 
825     policy_init();
826 
827     l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
828     if (!l1_dcaches) {
829         const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
830         fprintf(stderr, "dcache cannot be constructed from given parameters\n");
831         fprintf(stderr, "%s\n", err);
832         return -1;
833     }
834 
835     l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
836     if (!l1_icaches) {
837         const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
838         fprintf(stderr, "icache cannot be constructed from given parameters\n");
839         fprintf(stderr, "%s\n", err);
840         return -1;
841     }
842 
843     l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
844     if (!l2_ucaches && use_l2) {
845         const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
846         fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
847         fprintf(stderr, "%s\n", err);
848         return -1;
849     }
850 
851     l1_dcache_locks = g_new0(GMutex, cores);
852     l1_icache_locks = g_new0(GMutex, cores);
853     l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;
854 
855     qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
856     qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
857 
858     miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
859 
860     return 0;
861 }
862