xref: /openbmc/qemu/block/qed.h (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef BLOCK_QED_H
16 #define BLOCK_QED_H
17 
18 #include "block/block_int.h"
19 #include "qemu/cutils.h"
20 
21 /* The layout of a QED file is as follows:
22  *
23  * +--------+----------+----------+----------+-----+
24  * | header | L1 table | cluster0 | cluster1 | ... |
25  * +--------+----------+----------+----------+-----+
26  *
27  * There is a 2-level pagetable for cluster allocation:
28  *
29  *                     +----------+
30  *                     | L1 table |
31  *                     +----------+
32  *                ,------'  |  '------.
33  *           +----------+   |    +----------+
34  *           | L2 table |  ...   | L2 table |
35  *           +----------+        +----------+
36  *       ,------'  |  '------.
37  *  +----------+   |    +----------+
38  *  |   Data   |  ...   |   Data   |
39  *  +----------+        +----------+
40  *
41  * The L1 table is fixed size and always present.  L2 tables are allocated on
42  * demand.  The L1 table size determines the maximum possible image size; it
43  * can be influenced using the cluster_size and table_size values.
44  *
45  * All fields are little-endian on disk.
46  */
47 #define  QED_DEFAULT_CLUSTER_SIZE  65536
48 enum {
49     QED_MAGIC = 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24,
50 
51     /* The image supports a backing file */
52     QED_F_BACKING_FILE = 0x01,
53 
54     /* The image needs a consistency check before use */
55     QED_F_NEED_CHECK = 0x02,
56 
57     /* The backing file format must not be probed, treat as raw image */
58     QED_F_BACKING_FORMAT_NO_PROBE = 0x04,
59 
60     /* Feature bits must be used when the on-disk format changes */
61     QED_FEATURE_MASK = QED_F_BACKING_FILE | /* supported feature bits */
62                        QED_F_NEED_CHECK |
63                        QED_F_BACKING_FORMAT_NO_PROBE,
64     QED_COMPAT_FEATURE_MASK = 0,            /* supported compat feature bits */
65     QED_AUTOCLEAR_FEATURE_MASK = 0,         /* supported autoclear feature bits */
66 
67     /* Data is stored in groups of sectors called clusters.  Cluster size must
68      * be large to avoid keeping too much metadata.  I/O requests that have
69      * sub-cluster size will require read-modify-write.
70      */
71     QED_MIN_CLUSTER_SIZE = 4 * 1024, /* in bytes */
72     QED_MAX_CLUSTER_SIZE = 64 * 1024 * 1024,
73 
74     /* Allocated clusters are tracked using a 2-level pagetable.  Table size is
75      * a multiple of clusters so large maximum image sizes can be supported
76      * without jacking up the cluster size too much.
77      */
78     QED_MIN_TABLE_SIZE = 1,        /* in clusters */
79     QED_MAX_TABLE_SIZE = 16,
80     QED_DEFAULT_TABLE_SIZE = 4,
81 
82     /* Delay to flush and clean image after last allocating write completes */
83     QED_NEED_CHECK_TIMEOUT = 5,    /* in seconds */
84 };
85 
86 typedef struct {
87     uint32_t magic;                 /* QED\0 */
88 
89     uint32_t cluster_size;          /* in bytes */
90     uint32_t table_size;            /* for L1 and L2 tables, in clusters */
91     uint32_t header_size;           /* in clusters */
92 
93     uint64_t features;              /* format feature bits */
94     uint64_t compat_features;       /* compatible feature bits */
95     uint64_t autoclear_features;    /* self-resetting feature bits */
96 
97     uint64_t l1_table_offset;       /* in bytes */
98     uint64_t image_size;            /* total logical image size, in bytes */
99 
100     /* if (features & QED_F_BACKING_FILE) */
101     uint32_t backing_filename_offset; /* in bytes from start of header */
102     uint32_t backing_filename_size;   /* in bytes */
103 } QEMU_PACKED QEDHeader;
104 
105 typedef struct {
106     uint64_t offsets[0];            /* in bytes */
107 } QEDTable;
108 
109 /* The L2 cache is a simple write-through cache for L2 structures */
110 typedef struct CachedL2Table {
111     QEDTable *table;
112     uint64_t offset;    /* offset=0 indicates an invalidate entry */
113     QTAILQ_ENTRY(CachedL2Table) node;
114     int ref;
115 } CachedL2Table;
116 
117 typedef struct {
118     QTAILQ_HEAD(, CachedL2Table) entries;
119     unsigned int n_entries;
120 } L2TableCache;
121 
122 typedef struct QEDRequest {
123     CachedL2Table *l2_table;
124 } QEDRequest;
125 
126 enum {
127     QED_AIOCB_WRITE = 0x0001,       /* read or write? */
128     QED_AIOCB_ZERO  = 0x0002,       /* zero write, used with QED_AIOCB_WRITE */
129 };
130 
131 typedef struct QEDAIOCB {
132     BlockDriverState *bs;
133     QSIMPLEQ_ENTRY(QEDAIOCB) next;  /* next request */
134     int flags;                      /* QED_AIOCB_* bits ORed together */
135     uint64_t end_pos;               /* request end on block device, in bytes */
136 
137     /* User scatter-gather list */
138     QEMUIOVector *qiov;
139     size_t qiov_offset;             /* byte count already processed */
140 
141     /* Current cluster scatter-gather list */
142     QEMUIOVector cur_qiov;
143     QEMUIOVector *backing_qiov;
144     uint64_t cur_pos;               /* position on block device, in bytes */
145     uint64_t cur_cluster;           /* cluster offset in image file */
146     unsigned int cur_nclusters;     /* number of clusters being accessed */
147     int find_cluster_ret;           /* used for L1/L2 update */
148 
149     QEDRequest request;
150 } QEDAIOCB;
151 
152 typedef struct {
153     BlockDriverState *bs;           /* device */
154 
155     /* Written only by an allocating write or the timer handler (the latter
156      * while allocating reqs are plugged).
157      */
158     QEDHeader header;               /* always cpu-endian */
159 
160     /* Protected by table_lock.  */
161     CoMutex table_lock;
162     QEDTable *l1_table;
163     L2TableCache l2_cache;          /* l2 table cache */
164     uint32_t table_nelems;
165     uint32_t l1_shift;
166     uint32_t l2_shift;
167     uint32_t l2_mask;
168     uint64_t file_size;             /* length of image file, in bytes */
169 
170     /* Allocating write request queue */
171     QEDAIOCB *allocating_acb;
172     CoQueue allocating_write_reqs;
173     bool allocating_write_reqs_plugged;
174 
175     /* Periodic flush and clear need check flag */
176     QEMUTimer *need_check_timer;
177 } BDRVQEDState;
178 
179 enum {
180     QED_CLUSTER_FOUND,         /* cluster found */
181     QED_CLUSTER_ZERO,          /* zero cluster found */
182     QED_CLUSTER_L2,            /* cluster missing in L2 */
183     QED_CLUSTER_L1,            /* cluster missing in L1 */
184 };
185 
186 /**
187  * Header functions
188  */
189 int qed_write_header_sync(BDRVQEDState *s);
190 
191 /**
192  * L2 cache functions
193  */
194 void qed_init_l2_cache(L2TableCache *l2_cache);
195 void qed_free_l2_cache(L2TableCache *l2_cache);
196 CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache);
197 void qed_unref_l2_cache_entry(CachedL2Table *entry);
198 CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset);
199 void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table);
200 
201 /**
202  * Table I/O functions
203  */
204 int coroutine_fn qed_read_l1_table_sync(BDRVQEDState *s);
205 int coroutine_fn qed_write_l1_table(BDRVQEDState *s, unsigned int index,
206                                     unsigned int n);
207 int coroutine_fn qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index,
208                                          unsigned int n);
209 int coroutine_fn qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
210                                         uint64_t offset);
211 int coroutine_fn qed_read_l2_table(BDRVQEDState *s, QEDRequest *request,
212                                    uint64_t offset);
213 int coroutine_fn qed_write_l2_table(BDRVQEDState *s, QEDRequest *request,
214                                     unsigned int index, unsigned int n,
215                                     bool flush);
216 int coroutine_fn qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
217                                          unsigned int index, unsigned int n,
218                                          bool flush);
219 
220 /**
221  * Cluster functions
222  */
223 int coroutine_fn qed_find_cluster(BDRVQEDState *s, QEDRequest *request,
224                                   uint64_t pos, size_t *len,
225                                   uint64_t *img_offset);
226 
227 /**
228  * Consistency check
229  */
230 int coroutine_fn qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix);
231 
232 QEDTable *qed_alloc_table(BDRVQEDState *s);
233 
234 /**
235  * Round down to the start of a cluster
236  */
237 static inline uint64_t qed_start_of_cluster(BDRVQEDState *s, uint64_t offset)
238 {
239     return offset & ~(uint64_t)(s->header.cluster_size - 1);
240 }
241 
242 static inline uint64_t qed_offset_into_cluster(BDRVQEDState *s, uint64_t offset)
243 {
244     return offset & (s->header.cluster_size - 1);
245 }
246 
247 static inline uint64_t qed_bytes_to_clusters(BDRVQEDState *s, uint64_t bytes)
248 {
249     return qed_start_of_cluster(s, bytes + (s->header.cluster_size - 1)) /
250            (s->header.cluster_size - 1);
251 }
252 
253 static inline unsigned int qed_l1_index(BDRVQEDState *s, uint64_t pos)
254 {
255     return pos >> s->l1_shift;
256 }
257 
258 static inline unsigned int qed_l2_index(BDRVQEDState *s, uint64_t pos)
259 {
260     return (pos >> s->l2_shift) & s->l2_mask;
261 }
262 
263 /**
264  * Test if a cluster offset is valid
265  */
266 static inline bool qed_check_cluster_offset(BDRVQEDState *s, uint64_t offset)
267 {
268     uint64_t header_size = (uint64_t)s->header.header_size *
269                            s->header.cluster_size;
270 
271     if (offset & (s->header.cluster_size - 1)) {
272         return false;
273     }
274     return offset >= header_size && offset < s->file_size;
275 }
276 
277 /**
278  * Test if a table offset is valid
279  */
280 static inline bool qed_check_table_offset(BDRVQEDState *s, uint64_t offset)
281 {
282     uint64_t end_offset = offset + (s->header.table_size - 1) *
283                           s->header.cluster_size;
284 
285     /* Overflow check */
286     if (end_offset <= offset) {
287         return false;
288     }
289 
290     return qed_check_cluster_offset(s, offset) &&
291            qed_check_cluster_offset(s, end_offset);
292 }
293 
294 static inline bool qed_offset_is_cluster_aligned(BDRVQEDState *s,
295                                                  uint64_t offset)
296 {
297     if (qed_offset_into_cluster(s, offset)) {
298         return false;
299     }
300     return true;
301 }
302 
303 static inline bool qed_offset_is_unalloc_cluster(uint64_t offset)
304 {
305     if (offset == 0) {
306         return true;
307     }
308     return false;
309 }
310 
311 static inline bool qed_offset_is_zero_cluster(uint64_t offset)
312 {
313     if (offset == 1) {
314         return true;
315     }
316     return false;
317 }
318 
319 #endif /* BLOCK_QED_H */
320