xref: /openbmc/qemu/block/qcow2-refcount.c (revision 083fab0290f2c40d3d04f7f22eed9c8f2d5b6787)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33 
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38 
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61 
62 
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72 
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82 
83 
84 /*********************************************************/
85 /* refcount handling */
86 
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96 
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102 
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104 
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107 
108     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111 
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131 
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137 
138 
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143 
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151 
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157 
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165 
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171 
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179 
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184 
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191 
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196 
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203 
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208 
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215 
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220 
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226 
227 
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233 
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238 
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251 
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263 
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270 
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276 
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279 
280     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
281 
282     return 0;
283 }
284 
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291 
292     return (block_a == block_b);
293 }
294 
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307 
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309 
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312 
313     if (refcount_table_index < s->refcount_table_size) {
314 
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317 
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327 
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332 
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355 
356     *refcount_block = NULL;
357 
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363 
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366     if (new_block < 0) {
367         return new_block;
368     }
369 
370 #ifdef DEBUG_ALLOC2
371     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
372         " at %" PRIx64 "\n",
373         refcount_table_index, cluster_index << s->cluster_bits, new_block);
374 #endif
375 
376     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
377         /* Zero the new refcount block before updating it */
378         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
379                                     refcount_block);
380         if (ret < 0) {
381             goto fail;
382         }
383 
384         memset(*refcount_block, 0, s->cluster_size);
385 
386         /* The block describes itself, need to update the cache */
387         int block_index = (new_block >> s->cluster_bits) &
388             (s->refcount_block_size - 1);
389         s->set_refcount(*refcount_block, block_index, 1);
390     } else {
391         /* Described somewhere else. This can recurse at most twice before we
392          * arrive at a block that describes itself. */
393         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
394                               QCOW2_DISCARD_NEVER);
395         if (ret < 0) {
396             goto fail;
397         }
398 
399         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
400         if (ret < 0) {
401             goto fail;
402         }
403 
404         /* Initialize the new refcount block only after updating its refcount,
405          * update_refcount uses the refcount cache itself */
406         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
407                                     refcount_block);
408         if (ret < 0) {
409             goto fail;
410         }
411 
412         memset(*refcount_block, 0, s->cluster_size);
413     }
414 
415     /* Now the new refcount block needs to be written to disk */
416     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
417     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
418     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
419     if (ret < 0) {
420         goto fail;
421     }
422 
423     /* If the refcount table is big enough, just hook the block up there */
424     if (refcount_table_index < s->refcount_table_size) {
425         uint64_t data64 = cpu_to_be64(new_block);
426         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
427         ret = bdrv_pwrite_sync(bs->file,
428             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
429             &data64, sizeof(data64));
430         if (ret < 0) {
431             goto fail;
432         }
433 
434         s->refcount_table[refcount_table_index] = new_block;
435         /* If there's a hole in s->refcount_table then it can happen
436          * that refcount_table_index < s->max_refcount_table_index */
437         s->max_refcount_table_index =
438             MAX(s->max_refcount_table_index, refcount_table_index);
439 
440         /* The new refcount block may be where the caller intended to put its
441          * data, so let it restart the search. */
442         return -EAGAIN;
443     }
444 
445     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
446 
447     /*
448      * If we come here, we need to grow the refcount table. Again, a new
449      * refcount table needs some space and we can't simply allocate to avoid
450      * endless recursion.
451      *
452      * Therefore let's grab new refcount blocks at the end of the image, which
453      * will describe themselves and the new refcount table. This way we can
454      * reference them only in the new table and do the switch to the new
455      * refcount table at once without producing an inconsistent state in
456      * between.
457      */
458     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
459 
460     /* Calculate the number of refcount blocks needed so far; this will be the
461      * basis for calculating the index of the first cluster used for the
462      * self-describing refcount structures which we are about to create.
463      *
464      * Because we reached this point, there cannot be any refcount entries for
465      * cluster_index or higher indices yet. However, because new_block has been
466      * allocated to describe that cluster (and it will assume this role later
467      * on), we cannot use that index; also, new_block may actually have a higher
468      * cluster index than cluster_index, so it needs to be taken into account
469      * here (and 1 needs to be added to its value because that cluster is used).
470      */
471     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
472                                             (new_block >> s->cluster_bits) + 1),
473                                         s->refcount_block_size);
474 
475     /* Create the new refcount table and blocks */
476     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
477         s->cluster_size;
478 
479     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
480                               refcount_table_index, new_block);
481     if (ret < 0) {
482         return ret;
483     }
484 
485     ret = load_refcount_block(bs, new_block, refcount_block);
486     if (ret < 0) {
487         return ret;
488     }
489 
490     /* If we were trying to do the initial refcount update for some cluster
491      * allocation, we might have used the same clusters to store newly
492      * allocated metadata. Make the caller search some new space. */
493     return -EAGAIN;
494 
495 fail:
496     if (*refcount_block != NULL) {
497         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
498     }
499     return ret;
500 }
501 
502 /*
503  * Starting at @start_offset, this function creates new self-covering refcount
504  * structures: A new refcount table and refcount blocks which cover all of
505  * themselves, and a number of @additional_clusters beyond their end.
506  * @start_offset must be at the end of the image file, that is, there must be
507  * only empty space beyond it.
508  * If @exact_size is false, the refcount table will have 50 % more entries than
509  * necessary so it will not need to grow again soon.
510  * If @new_refblock_offset is not zero, it contains the offset of a refcount
511  * block that should be entered into the new refcount table at index
512  * @new_refblock_index.
513  *
514  * Returns: The offset after the new refcount structures (i.e. where the
515  *          @additional_clusters may be placed) on success, -errno on error.
516  */
517 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
518                             uint64_t additional_clusters, bool exact_size,
519                             int new_refblock_index,
520                             uint64_t new_refblock_offset)
521 {
522     BDRVQcow2State *s = bs->opaque;
523     uint64_t total_refblock_count_u64, additional_refblock_count;
524     int total_refblock_count, table_size, area_reftable_index, table_clusters;
525     int i;
526     uint64_t table_offset, block_offset, end_offset;
527     int ret;
528     uint64_t *new_table;
529 
530     assert(!(start_offset % s->cluster_size));
531 
532     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
533                                  additional_clusters,
534                                  s->cluster_size, s->refcount_order,
535                                  !exact_size, &total_refblock_count_u64);
536     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
537         return -EFBIG;
538     }
539     total_refblock_count = total_refblock_count_u64;
540 
541     /* Index in the refcount table of the first refcount block to cover the area
542      * of refcount structures we are about to create; we know that
543      * @total_refblock_count can cover @start_offset, so this will definitely
544      * fit into an int. */
545     area_reftable_index = (start_offset / s->cluster_size) /
546                           s->refcount_block_size;
547 
548     if (exact_size) {
549         table_size = total_refblock_count;
550     } else {
551         table_size = total_refblock_count +
552                      DIV_ROUND_UP(total_refblock_count, 2);
553     }
554     /* The qcow2 file can only store the reftable size in number of clusters */
555     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
556     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
557 
558     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
559         return -EFBIG;
560     }
561 
562     new_table = g_try_new0(uint64_t, table_size);
563 
564     assert(table_size > 0);
565     if (new_table == NULL) {
566         ret = -ENOMEM;
567         goto fail;
568     }
569 
570     /* Fill the new refcount table */
571     if (table_size > s->max_refcount_table_index) {
572         /* We're actually growing the reftable */
573         memcpy(new_table, s->refcount_table,
574                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
575     } else {
576         /* Improbable case: We're shrinking the reftable. However, the caller
577          * has assured us that there is only empty space beyond @start_offset,
578          * so we can simply drop all of the refblocks that won't fit into the
579          * new reftable. */
580         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
581     }
582 
583     if (new_refblock_offset) {
584         assert(new_refblock_index < total_refblock_count);
585         new_table[new_refblock_index] = new_refblock_offset;
586     }
587 
588     /* Count how many new refblocks we have to create */
589     additional_refblock_count = 0;
590     for (i = area_reftable_index; i < total_refblock_count; i++) {
591         if (!new_table[i]) {
592             additional_refblock_count++;
593         }
594     }
595 
596     table_offset = start_offset + additional_refblock_count * s->cluster_size;
597     end_offset = table_offset + table_clusters * s->cluster_size;
598 
599     /* Fill the refcount blocks, and create new ones, if necessary */
600     block_offset = start_offset;
601     for (i = area_reftable_index; i < total_refblock_count; i++) {
602         void *refblock_data;
603         uint64_t first_offset_covered;
604 
605         /* Reuse an existing refblock if possible, create a new one otherwise */
606         if (new_table[i]) {
607             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
608                                   &refblock_data);
609             if (ret < 0) {
610                 goto fail;
611             }
612         } else {
613             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
614                                         block_offset, &refblock_data);
615             if (ret < 0) {
616                 goto fail;
617             }
618             memset(refblock_data, 0, s->cluster_size);
619             qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
620                                          refblock_data);
621 
622             new_table[i] = block_offset;
623             block_offset += s->cluster_size;
624         }
625 
626         /* First host offset covered by this refblock */
627         first_offset_covered = (uint64_t)i * s->refcount_block_size *
628                                s->cluster_size;
629         if (first_offset_covered < end_offset) {
630             int j, end_index;
631 
632             /* Set the refcount of all of the new refcount structures to 1 */
633 
634             if (first_offset_covered < start_offset) {
635                 assert(i == area_reftable_index);
636                 j = (start_offset - first_offset_covered) / s->cluster_size;
637                 assert(j < s->refcount_block_size);
638             } else {
639                 j = 0;
640             }
641 
642             end_index = MIN((end_offset - first_offset_covered) /
643                             s->cluster_size,
644                             s->refcount_block_size);
645 
646             for (; j < end_index; j++) {
647                 /* The caller guaranteed us this space would be empty */
648                 assert(s->get_refcount(refblock_data, j) == 0);
649                 s->set_refcount(refblock_data, j, 1);
650             }
651 
652             qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
653                                          refblock_data);
654         }
655 
656         qcow2_cache_put(bs, s->refcount_block_cache, &refblock_data);
657     }
658 
659     assert(block_offset == table_offset);
660 
661     /* Write refcount blocks to disk */
662     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
663     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
664     if (ret < 0) {
665         goto fail;
666     }
667 
668     /* Write refcount table to disk */
669     for (i = 0; i < total_refblock_count; i++) {
670         cpu_to_be64s(&new_table[i]);
671     }
672 
673     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
674     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
675         table_size * sizeof(uint64_t));
676     if (ret < 0) {
677         goto fail;
678     }
679 
680     for (i = 0; i < total_refblock_count; i++) {
681         be64_to_cpus(&new_table[i]);
682     }
683 
684     /* Hook up the new refcount table in the qcow2 header */
685     struct QEMU_PACKED {
686         uint64_t d64;
687         uint32_t d32;
688     } data;
689     data.d64 = cpu_to_be64(table_offset);
690     data.d32 = cpu_to_be32(table_clusters);
691     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
692     ret = bdrv_pwrite_sync(bs->file,
693                            offsetof(QCowHeader, refcount_table_offset),
694                            &data, sizeof(data));
695     if (ret < 0) {
696         goto fail;
697     }
698 
699     /* And switch it in memory */
700     uint64_t old_table_offset = s->refcount_table_offset;
701     uint64_t old_table_size = s->refcount_table_size;
702 
703     g_free(s->refcount_table);
704     s->refcount_table = new_table;
705     s->refcount_table_size = table_size;
706     s->refcount_table_offset = table_offset;
707     update_max_refcount_table_index(s);
708 
709     /* Free old table. */
710     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
711                         QCOW2_DISCARD_OTHER);
712 
713     return end_offset;
714 
715 fail:
716     g_free(new_table);
717     return ret;
718 }
719 
720 void qcow2_process_discards(BlockDriverState *bs, int ret)
721 {
722     BDRVQcow2State *s = bs->opaque;
723     Qcow2DiscardRegion *d, *next;
724 
725     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
726         QTAILQ_REMOVE(&s->discards, d, next);
727 
728         /* Discard is optional, ignore the return value */
729         if (ret >= 0) {
730             bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
731         }
732 
733         g_free(d);
734     }
735 }
736 
737 static void update_refcount_discard(BlockDriverState *bs,
738                                     uint64_t offset, uint64_t length)
739 {
740     BDRVQcow2State *s = bs->opaque;
741     Qcow2DiscardRegion *d, *p, *next;
742 
743     QTAILQ_FOREACH(d, &s->discards, next) {
744         uint64_t new_start = MIN(offset, d->offset);
745         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
746 
747         if (new_end - new_start <= length + d->bytes) {
748             /* There can't be any overlap, areas ending up here have no
749              * references any more and therefore shouldn't get freed another
750              * time. */
751             assert(d->bytes + length == new_end - new_start);
752             d->offset = new_start;
753             d->bytes = new_end - new_start;
754             goto found;
755         }
756     }
757 
758     d = g_malloc(sizeof(*d));
759     *d = (Qcow2DiscardRegion) {
760         .bs     = bs,
761         .offset = offset,
762         .bytes  = length,
763     };
764     QTAILQ_INSERT_TAIL(&s->discards, d, next);
765 
766 found:
767     /* Merge discard requests if they are adjacent now */
768     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
769         if (p == d
770             || p->offset > d->offset + d->bytes
771             || d->offset > p->offset + p->bytes)
772         {
773             continue;
774         }
775 
776         /* Still no overlap possible */
777         assert(p->offset == d->offset + d->bytes
778             || d->offset == p->offset + p->bytes);
779 
780         QTAILQ_REMOVE(&s->discards, p, next);
781         d->offset = MIN(d->offset, p->offset);
782         d->bytes += p->bytes;
783         g_free(p);
784     }
785 }
786 
787 /* XXX: cache several refcount block clusters ? */
788 /* @addend is the absolute value of the addend; if @decrease is set, @addend
789  * will be subtracted from the current refcount, otherwise it will be added */
790 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
791                                                    int64_t offset,
792                                                    int64_t length,
793                                                    uint64_t addend,
794                                                    bool decrease,
795                                                    enum qcow2_discard_type type)
796 {
797     BDRVQcow2State *s = bs->opaque;
798     int64_t start, last, cluster_offset;
799     void *refcount_block = NULL;
800     int64_t old_table_index = -1;
801     int ret;
802 
803 #ifdef DEBUG_ALLOC2
804     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
805             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
806             addend);
807 #endif
808     if (length < 0) {
809         return -EINVAL;
810     } else if (length == 0) {
811         return 0;
812     }
813 
814     if (decrease) {
815         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
816             s->l2_table_cache);
817     }
818 
819     start = start_of_cluster(s, offset);
820     last = start_of_cluster(s, offset + length - 1);
821     for(cluster_offset = start; cluster_offset <= last;
822         cluster_offset += s->cluster_size)
823     {
824         int block_index;
825         uint64_t refcount;
826         int64_t cluster_index = cluster_offset >> s->cluster_bits;
827         int64_t table_index = cluster_index >> s->refcount_block_bits;
828 
829         /* Load the refcount block and allocate it if needed */
830         if (table_index != old_table_index) {
831             if (refcount_block) {
832                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
833             }
834             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
835             if (ret < 0) {
836                 goto fail;
837             }
838         }
839         old_table_index = table_index;
840 
841         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
842                                      refcount_block);
843 
844         /* we can update the count and save it */
845         block_index = cluster_index & (s->refcount_block_size - 1);
846 
847         refcount = s->get_refcount(refcount_block, block_index);
848         if (decrease ? (refcount - addend > refcount)
849                      : (refcount + addend < refcount ||
850                         refcount + addend > s->refcount_max))
851         {
852             ret = -EINVAL;
853             goto fail;
854         }
855         if (decrease) {
856             refcount -= addend;
857         } else {
858             refcount += addend;
859         }
860         if (refcount == 0 && cluster_index < s->free_cluster_index) {
861             s->free_cluster_index = cluster_index;
862         }
863         s->set_refcount(refcount_block, block_index, refcount);
864 
865         if (refcount == 0) {
866             void *table;
867 
868             table = qcow2_cache_is_table_offset(bs, s->refcount_block_cache,
869                                                 offset);
870             if (table != NULL) {
871                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
872                 qcow2_cache_discard(bs, s->refcount_block_cache, table);
873             }
874 
875             table = qcow2_cache_is_table_offset(bs, s->l2_table_cache, offset);
876             if (table != NULL) {
877                 qcow2_cache_discard(bs, s->l2_table_cache, table);
878             }
879 
880             if (s->discard_passthrough[type]) {
881                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
882             }
883         }
884     }
885 
886     ret = 0;
887 fail:
888     if (!s->cache_discards) {
889         qcow2_process_discards(bs, ret);
890     }
891 
892     /* Write last changed block to disk */
893     if (refcount_block) {
894         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
895     }
896 
897     /*
898      * Try do undo any updates if an error is returned (This may succeed in
899      * some cases like ENOSPC for allocating a new refcount block)
900      */
901     if (ret < 0) {
902         int dummy;
903         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
904                                 !decrease, QCOW2_DISCARD_NEVER);
905         (void)dummy;
906     }
907 
908     return ret;
909 }
910 
911 /*
912  * Increases or decreases the refcount of a given cluster.
913  *
914  * @addend is the absolute value of the addend; if @decrease is set, @addend
915  * will be subtracted from the current refcount, otherwise it will be added.
916  *
917  * On success 0 is returned; on failure -errno is returned.
918  */
919 int qcow2_update_cluster_refcount(BlockDriverState *bs,
920                                   int64_t cluster_index,
921                                   uint64_t addend, bool decrease,
922                                   enum qcow2_discard_type type)
923 {
924     BDRVQcow2State *s = bs->opaque;
925     int ret;
926 
927     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
928                           decrease, type);
929     if (ret < 0) {
930         return ret;
931     }
932 
933     return 0;
934 }
935 
936 
937 
938 /*********************************************************/
939 /* cluster allocation functions */
940 
941 
942 
943 /* return < 0 if error */
944 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
945 {
946     BDRVQcow2State *s = bs->opaque;
947     uint64_t i, nb_clusters, refcount;
948     int ret;
949 
950     /* We can't allocate clusters if they may still be queued for discard. */
951     if (s->cache_discards) {
952         qcow2_process_discards(bs, 0);
953     }
954 
955     nb_clusters = size_to_clusters(s, size);
956 retry:
957     for(i = 0; i < nb_clusters; i++) {
958         uint64_t next_cluster_index = s->free_cluster_index++;
959         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
960 
961         if (ret < 0) {
962             return ret;
963         } else if (refcount != 0) {
964             goto retry;
965         }
966     }
967 
968     /* Make sure that all offsets in the "allocated" range are representable
969      * in an int64_t */
970     if (s->free_cluster_index > 0 &&
971         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
972     {
973         return -EFBIG;
974     }
975 
976 #ifdef DEBUG_ALLOC2
977     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
978             size,
979             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
980 #endif
981     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
982 }
983 
984 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
985 {
986     int64_t offset;
987     int ret;
988 
989     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
990     do {
991         offset = alloc_clusters_noref(bs, size);
992         if (offset < 0) {
993             return offset;
994         }
995 
996         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
997     } while (ret == -EAGAIN);
998 
999     if (ret < 0) {
1000         return ret;
1001     }
1002 
1003     return offset;
1004 }
1005 
1006 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1007                                 int64_t nb_clusters)
1008 {
1009     BDRVQcow2State *s = bs->opaque;
1010     uint64_t cluster_index, refcount;
1011     uint64_t i;
1012     int ret;
1013 
1014     assert(nb_clusters >= 0);
1015     if (nb_clusters == 0) {
1016         return 0;
1017     }
1018 
1019     do {
1020         /* Check how many clusters there are free */
1021         cluster_index = offset >> s->cluster_bits;
1022         for(i = 0; i < nb_clusters; i++) {
1023             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1024             if (ret < 0) {
1025                 return ret;
1026             } else if (refcount != 0) {
1027                 break;
1028             }
1029         }
1030 
1031         /* And then allocate them */
1032         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1033                               QCOW2_DISCARD_NEVER);
1034     } while (ret == -EAGAIN);
1035 
1036     if (ret < 0) {
1037         return ret;
1038     }
1039 
1040     return i;
1041 }
1042 
1043 /* only used to allocate compressed sectors. We try to allocate
1044    contiguous sectors. size must be <= cluster_size */
1045 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1046 {
1047     BDRVQcow2State *s = bs->opaque;
1048     int64_t offset;
1049     size_t free_in_cluster;
1050     int ret;
1051 
1052     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1053     assert(size > 0 && size <= s->cluster_size);
1054     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1055 
1056     offset = s->free_byte_offset;
1057 
1058     if (offset) {
1059         uint64_t refcount;
1060         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1061         if (ret < 0) {
1062             return ret;
1063         }
1064 
1065         if (refcount == s->refcount_max) {
1066             offset = 0;
1067         }
1068     }
1069 
1070     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1071     do {
1072         if (!offset || free_in_cluster < size) {
1073             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1074             if (new_cluster < 0) {
1075                 return new_cluster;
1076             }
1077 
1078             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1079                 offset = new_cluster;
1080                 free_in_cluster = s->cluster_size;
1081             } else {
1082                 free_in_cluster += s->cluster_size;
1083             }
1084         }
1085 
1086         assert(offset);
1087         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1088         if (ret < 0) {
1089             offset = 0;
1090         }
1091     } while (ret == -EAGAIN);
1092     if (ret < 0) {
1093         return ret;
1094     }
1095 
1096     /* The cluster refcount was incremented; refcount blocks must be flushed
1097      * before the caller's L2 table updates. */
1098     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1099 
1100     s->free_byte_offset = offset + size;
1101     if (!offset_into_cluster(s, s->free_byte_offset)) {
1102         s->free_byte_offset = 0;
1103     }
1104 
1105     return offset;
1106 }
1107 
1108 void qcow2_free_clusters(BlockDriverState *bs,
1109                           int64_t offset, int64_t size,
1110                           enum qcow2_discard_type type)
1111 {
1112     int ret;
1113 
1114     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1115     ret = update_refcount(bs, offset, size, 1, true, type);
1116     if (ret < 0) {
1117         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1118         /* TODO Remember the clusters to free them later and avoid leaking */
1119     }
1120 }
1121 
1122 /*
1123  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1124  * normal cluster, compressed cluster, etc.)
1125  */
1126 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1127                              int nb_clusters, enum qcow2_discard_type type)
1128 {
1129     BDRVQcow2State *s = bs->opaque;
1130 
1131     switch (qcow2_get_cluster_type(l2_entry)) {
1132     case QCOW2_CLUSTER_COMPRESSED:
1133         {
1134             int nb_csectors;
1135             nb_csectors = ((l2_entry >> s->csize_shift) &
1136                            s->csize_mask) + 1;
1137             qcow2_free_clusters(bs,
1138                 (l2_entry & s->cluster_offset_mask) & ~511,
1139                 nb_csectors * 512, type);
1140         }
1141         break;
1142     case QCOW2_CLUSTER_NORMAL:
1143     case QCOW2_CLUSTER_ZERO_ALLOC:
1144         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1145             qcow2_signal_corruption(bs, false, -1, -1,
1146                                     "Cannot free unaligned cluster %#llx",
1147                                     l2_entry & L2E_OFFSET_MASK);
1148         } else {
1149             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1150                                 nb_clusters << s->cluster_bits, type);
1151         }
1152         break;
1153     case QCOW2_CLUSTER_ZERO_PLAIN:
1154     case QCOW2_CLUSTER_UNALLOCATED:
1155         break;
1156     default:
1157         abort();
1158     }
1159 }
1160 
1161 
1162 
1163 /*********************************************************/
1164 /* snapshots and image creation */
1165 
1166 
1167 
1168 /* update the refcounts of snapshots and the copied flag */
1169 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1170     int64_t l1_table_offset, int l1_size, int addend)
1171 {
1172     BDRVQcow2State *s = bs->opaque;
1173     uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
1174     bool l1_allocated = false;
1175     int64_t old_entry, old_l2_offset;
1176     int i, j, l1_modified = 0, nb_csectors;
1177     int ret;
1178 
1179     assert(addend >= -1 && addend <= 1);
1180 
1181     l2_table = NULL;
1182     l1_table = NULL;
1183     l1_size2 = l1_size * sizeof(uint64_t);
1184 
1185     s->cache_discards = true;
1186 
1187     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1188      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1189      * when changing this! */
1190     if (l1_table_offset != s->l1_table_offset) {
1191         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1192         if (l1_size2 && l1_table == NULL) {
1193             ret = -ENOMEM;
1194             goto fail;
1195         }
1196         l1_allocated = true;
1197 
1198         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1199         if (ret < 0) {
1200             goto fail;
1201         }
1202 
1203         for (i = 0; i < l1_size; i++) {
1204             be64_to_cpus(&l1_table[i]);
1205         }
1206     } else {
1207         assert(l1_size == s->l1_size);
1208         l1_table = s->l1_table;
1209         l1_allocated = false;
1210     }
1211 
1212     for (i = 0; i < l1_size; i++) {
1213         l2_offset = l1_table[i];
1214         if (l2_offset) {
1215             old_l2_offset = l2_offset;
1216             l2_offset &= L1E_OFFSET_MASK;
1217 
1218             if (offset_into_cluster(s, l2_offset)) {
1219                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1220                                         PRIx64 " unaligned (L1 index: %#x)",
1221                                         l2_offset, i);
1222                 ret = -EIO;
1223                 goto fail;
1224             }
1225 
1226             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1227                 (void**) &l2_table);
1228             if (ret < 0) {
1229                 goto fail;
1230             }
1231 
1232             for (j = 0; j < s->l2_size; j++) {
1233                 uint64_t cluster_index;
1234                 uint64_t offset;
1235 
1236                 entry = be64_to_cpu(l2_table[j]);
1237                 old_entry = entry;
1238                 entry &= ~QCOW_OFLAG_COPIED;
1239                 offset = entry & L2E_OFFSET_MASK;
1240 
1241                 switch (qcow2_get_cluster_type(entry)) {
1242                 case QCOW2_CLUSTER_COMPRESSED:
1243                     nb_csectors = ((entry >> s->csize_shift) &
1244                                    s->csize_mask) + 1;
1245                     if (addend != 0) {
1246                         ret = update_refcount(bs,
1247                                 (entry & s->cluster_offset_mask) & ~511,
1248                                 nb_csectors * 512, abs(addend), addend < 0,
1249                                 QCOW2_DISCARD_SNAPSHOT);
1250                         if (ret < 0) {
1251                             goto fail;
1252                         }
1253                     }
1254                     /* compressed clusters are never modified */
1255                     refcount = 2;
1256                     break;
1257 
1258                 case QCOW2_CLUSTER_NORMAL:
1259                 case QCOW2_CLUSTER_ZERO_ALLOC:
1260                     if (offset_into_cluster(s, offset)) {
1261                         qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1262                                                 "allocation offset %#" PRIx64
1263                                                 " unaligned (L2 offset: %#"
1264                                                 PRIx64 ", L2 index: %#x)",
1265                                                 offset, l2_offset, j);
1266                         ret = -EIO;
1267                         goto fail;
1268                     }
1269 
1270                     cluster_index = offset >> s->cluster_bits;
1271                     assert(cluster_index);
1272                     if (addend != 0) {
1273                         ret = qcow2_update_cluster_refcount(bs,
1274                                     cluster_index, abs(addend), addend < 0,
1275                                     QCOW2_DISCARD_SNAPSHOT);
1276                         if (ret < 0) {
1277                             goto fail;
1278                         }
1279                     }
1280 
1281                     ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1282                     if (ret < 0) {
1283                         goto fail;
1284                     }
1285                     break;
1286 
1287                 case QCOW2_CLUSTER_ZERO_PLAIN:
1288                 case QCOW2_CLUSTER_UNALLOCATED:
1289                     refcount = 0;
1290                     break;
1291 
1292                 default:
1293                     abort();
1294                 }
1295 
1296                 if (refcount == 1) {
1297                     entry |= QCOW_OFLAG_COPIED;
1298                 }
1299                 if (entry != old_entry) {
1300                     if (addend > 0) {
1301                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1302                             s->refcount_block_cache);
1303                     }
1304                     l2_table[j] = cpu_to_be64(entry);
1305                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1306                                                  l2_table);
1307                 }
1308             }
1309 
1310             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1311 
1312             if (addend != 0) {
1313                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1314                                                         s->cluster_bits,
1315                                                     abs(addend), addend < 0,
1316                                                     QCOW2_DISCARD_SNAPSHOT);
1317                 if (ret < 0) {
1318                     goto fail;
1319                 }
1320             }
1321             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1322                                      &refcount);
1323             if (ret < 0) {
1324                 goto fail;
1325             } else if (refcount == 1) {
1326                 l2_offset |= QCOW_OFLAG_COPIED;
1327             }
1328             if (l2_offset != old_l2_offset) {
1329                 l1_table[i] = l2_offset;
1330                 l1_modified = 1;
1331             }
1332         }
1333     }
1334 
1335     ret = bdrv_flush(bs);
1336 fail:
1337     if (l2_table) {
1338         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1339     }
1340 
1341     s->cache_discards = false;
1342     qcow2_process_discards(bs, ret);
1343 
1344     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1345     if (ret == 0 && addend >= 0 && l1_modified) {
1346         for (i = 0; i < l1_size; i++) {
1347             cpu_to_be64s(&l1_table[i]);
1348         }
1349 
1350         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1351                                l1_table, l1_size2);
1352 
1353         for (i = 0; i < l1_size; i++) {
1354             be64_to_cpus(&l1_table[i]);
1355         }
1356     }
1357     if (l1_allocated)
1358         g_free(l1_table);
1359     return ret;
1360 }
1361 
1362 
1363 
1364 
1365 /*********************************************************/
1366 /* refcount checking functions */
1367 
1368 
1369 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1370 {
1371     /* This assertion holds because there is no way we can address more than
1372      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1373      * offsets have to be representable in bytes); due to every cluster
1374      * corresponding to one refcount entry, we are well below that limit */
1375     assert(entries < (UINT64_C(1) << (64 - 9)));
1376 
1377     /* Thanks to the assertion this will not overflow, because
1378      * s->refcount_order < 7.
1379      * (note: x << s->refcount_order == x * s->refcount_bits) */
1380     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1381 }
1382 
1383 /**
1384  * Reallocates *array so that it can hold new_size entries. *size must contain
1385  * the current number of entries in *array. If the reallocation fails, *array
1386  * and *size will not be modified and -errno will be returned. If the
1387  * reallocation is successful, *array will be set to the new buffer, *size
1388  * will be set to new_size and 0 will be returned. The size of the reallocated
1389  * refcount array buffer will be aligned to a cluster boundary, and the newly
1390  * allocated area will be zeroed.
1391  */
1392 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1393                                   int64_t *size, int64_t new_size)
1394 {
1395     int64_t old_byte_size, new_byte_size;
1396     void *new_ptr;
1397 
1398     /* Round to clusters so the array can be directly written to disk */
1399     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1400                     * s->cluster_size;
1401     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1402                     * s->cluster_size;
1403 
1404     if (new_byte_size == old_byte_size) {
1405         *size = new_size;
1406         return 0;
1407     }
1408 
1409     assert(new_byte_size > 0);
1410 
1411     if (new_byte_size > SIZE_MAX) {
1412         return -ENOMEM;
1413     }
1414 
1415     new_ptr = g_try_realloc(*array, new_byte_size);
1416     if (!new_ptr) {
1417         return -ENOMEM;
1418     }
1419 
1420     if (new_byte_size > old_byte_size) {
1421         memset((char *)new_ptr + old_byte_size, 0,
1422                new_byte_size - old_byte_size);
1423     }
1424 
1425     *array = new_ptr;
1426     *size  = new_size;
1427 
1428     return 0;
1429 }
1430 
1431 /*
1432  * Increases the refcount for a range of clusters in a given refcount table.
1433  * This is used to construct a temporary refcount table out of L1 and L2 tables
1434  * which can be compared to the refcount table saved in the image.
1435  *
1436  * Modifies the number of errors in res.
1437  */
1438 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1439                              void **refcount_table,
1440                              int64_t *refcount_table_size,
1441                              int64_t offset, int64_t size)
1442 {
1443     BDRVQcow2State *s = bs->opaque;
1444     uint64_t start, last, cluster_offset, k, refcount;
1445     int ret;
1446 
1447     if (size <= 0) {
1448         return 0;
1449     }
1450 
1451     start = start_of_cluster(s, offset);
1452     last = start_of_cluster(s, offset + size - 1);
1453     for(cluster_offset = start; cluster_offset <= last;
1454         cluster_offset += s->cluster_size) {
1455         k = cluster_offset >> s->cluster_bits;
1456         if (k >= *refcount_table_size) {
1457             ret = realloc_refcount_array(s, refcount_table,
1458                                          refcount_table_size, k + 1);
1459             if (ret < 0) {
1460                 res->check_errors++;
1461                 return ret;
1462             }
1463         }
1464 
1465         refcount = s->get_refcount(*refcount_table, k);
1466         if (refcount == s->refcount_max) {
1467             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1468                     "\n", cluster_offset);
1469             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1470                     "width or qemu-img convert to create a clean copy if the "
1471                     "image cannot be opened for writing\n");
1472             res->corruptions++;
1473             continue;
1474         }
1475         s->set_refcount(*refcount_table, k, refcount + 1);
1476     }
1477 
1478     return 0;
1479 }
1480 
1481 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1482 enum {
1483     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1484 };
1485 
1486 /*
1487  * Increases the refcount in the given refcount table for the all clusters
1488  * referenced in the L2 table. While doing so, performs some checks on L2
1489  * entries.
1490  *
1491  * Returns the number of errors found by the checks or -errno if an internal
1492  * error occurred.
1493  */
1494 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1495                               void **refcount_table,
1496                               int64_t *refcount_table_size, int64_t l2_offset,
1497                               int flags)
1498 {
1499     BDRVQcow2State *s = bs->opaque;
1500     uint64_t *l2_table, l2_entry;
1501     uint64_t next_contiguous_offset = 0;
1502     int i, l2_size, nb_csectors, ret;
1503 
1504     /* Read L2 table from disk */
1505     l2_size = s->l2_size * sizeof(uint64_t);
1506     l2_table = g_malloc(l2_size);
1507 
1508     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1509     if (ret < 0) {
1510         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1511         res->check_errors++;
1512         goto fail;
1513     }
1514 
1515     /* Do the actual checks */
1516     for(i = 0; i < s->l2_size; i++) {
1517         l2_entry = be64_to_cpu(l2_table[i]);
1518 
1519         switch (qcow2_get_cluster_type(l2_entry)) {
1520         case QCOW2_CLUSTER_COMPRESSED:
1521             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1522             if (l2_entry & QCOW_OFLAG_COPIED) {
1523                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1524                     "copied flag must never be set for compressed "
1525                     "clusters\n", l2_entry >> s->cluster_bits);
1526                 l2_entry &= ~QCOW_OFLAG_COPIED;
1527                 res->corruptions++;
1528             }
1529 
1530             /* Mark cluster as used */
1531             nb_csectors = ((l2_entry >> s->csize_shift) &
1532                            s->csize_mask) + 1;
1533             l2_entry &= s->cluster_offset_mask;
1534             ret = qcow2_inc_refcounts_imrt(bs, res,
1535                                            refcount_table, refcount_table_size,
1536                                            l2_entry & ~511, nb_csectors * 512);
1537             if (ret < 0) {
1538                 goto fail;
1539             }
1540 
1541             if (flags & CHECK_FRAG_INFO) {
1542                 res->bfi.allocated_clusters++;
1543                 res->bfi.compressed_clusters++;
1544 
1545                 /* Compressed clusters are fragmented by nature.  Since they
1546                  * take up sub-sector space but we only have sector granularity
1547                  * I/O we need to re-read the same sectors even for adjacent
1548                  * compressed clusters.
1549                  */
1550                 res->bfi.fragmented_clusters++;
1551             }
1552             break;
1553 
1554         case QCOW2_CLUSTER_ZERO_ALLOC:
1555         case QCOW2_CLUSTER_NORMAL:
1556         {
1557             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1558 
1559             if (flags & CHECK_FRAG_INFO) {
1560                 res->bfi.allocated_clusters++;
1561                 if (next_contiguous_offset &&
1562                     offset != next_contiguous_offset) {
1563                     res->bfi.fragmented_clusters++;
1564                 }
1565                 next_contiguous_offset = offset + s->cluster_size;
1566             }
1567 
1568             /* Mark cluster as used */
1569             ret = qcow2_inc_refcounts_imrt(bs, res,
1570                                            refcount_table, refcount_table_size,
1571                                            offset, s->cluster_size);
1572             if (ret < 0) {
1573                 goto fail;
1574             }
1575 
1576             /* Correct offsets are cluster aligned */
1577             if (offset_into_cluster(s, offset)) {
1578                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1579                     "properly aligned; L2 entry corrupted.\n", offset);
1580                 res->corruptions++;
1581             }
1582             break;
1583         }
1584 
1585         case QCOW2_CLUSTER_ZERO_PLAIN:
1586         case QCOW2_CLUSTER_UNALLOCATED:
1587             break;
1588 
1589         default:
1590             abort();
1591         }
1592     }
1593 
1594     g_free(l2_table);
1595     return 0;
1596 
1597 fail:
1598     g_free(l2_table);
1599     return ret;
1600 }
1601 
1602 /*
1603  * Increases the refcount for the L1 table, its L2 tables and all referenced
1604  * clusters in the given refcount table. While doing so, performs some checks
1605  * on L1 and L2 entries.
1606  *
1607  * Returns the number of errors found by the checks or -errno if an internal
1608  * error occurred.
1609  */
1610 static int check_refcounts_l1(BlockDriverState *bs,
1611                               BdrvCheckResult *res,
1612                               void **refcount_table,
1613                               int64_t *refcount_table_size,
1614                               int64_t l1_table_offset, int l1_size,
1615                               int flags)
1616 {
1617     BDRVQcow2State *s = bs->opaque;
1618     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1619     int i, ret;
1620 
1621     l1_size2 = l1_size * sizeof(uint64_t);
1622 
1623     /* Mark L1 table as used */
1624     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1625                                    l1_table_offset, l1_size2);
1626     if (ret < 0) {
1627         goto fail;
1628     }
1629 
1630     /* Read L1 table entries from disk */
1631     if (l1_size2 > 0) {
1632         l1_table = g_try_malloc(l1_size2);
1633         if (l1_table == NULL) {
1634             ret = -ENOMEM;
1635             res->check_errors++;
1636             goto fail;
1637         }
1638         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1639         if (ret < 0) {
1640             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1641             res->check_errors++;
1642             goto fail;
1643         }
1644         for(i = 0;i < l1_size; i++)
1645             be64_to_cpus(&l1_table[i]);
1646     }
1647 
1648     /* Do the actual checks */
1649     for(i = 0; i < l1_size; i++) {
1650         l2_offset = l1_table[i];
1651         if (l2_offset) {
1652             /* Mark L2 table as used */
1653             l2_offset &= L1E_OFFSET_MASK;
1654             ret = qcow2_inc_refcounts_imrt(bs, res,
1655                                            refcount_table, refcount_table_size,
1656                                            l2_offset, s->cluster_size);
1657             if (ret < 0) {
1658                 goto fail;
1659             }
1660 
1661             /* L2 tables are cluster aligned */
1662             if (offset_into_cluster(s, l2_offset)) {
1663                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1664                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1665                 res->corruptions++;
1666             }
1667 
1668             /* Process and check L2 entries */
1669             ret = check_refcounts_l2(bs, res, refcount_table,
1670                                      refcount_table_size, l2_offset, flags);
1671             if (ret < 0) {
1672                 goto fail;
1673             }
1674         }
1675     }
1676     g_free(l1_table);
1677     return 0;
1678 
1679 fail:
1680     g_free(l1_table);
1681     return ret;
1682 }
1683 
1684 /*
1685  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1686  *
1687  * This function does not print an error message nor does it increment
1688  * check_errors if qcow2_get_refcount fails (this is because such an error will
1689  * have been already detected and sufficiently signaled by the calling function
1690  * (qcow2_check_refcounts) by the time this function is called).
1691  */
1692 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1693                               BdrvCheckMode fix)
1694 {
1695     BDRVQcow2State *s = bs->opaque;
1696     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1697     int ret;
1698     uint64_t refcount;
1699     int i, j;
1700 
1701     for (i = 0; i < s->l1_size; i++) {
1702         uint64_t l1_entry = s->l1_table[i];
1703         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1704         bool l2_dirty = false;
1705 
1706         if (!l2_offset) {
1707             continue;
1708         }
1709 
1710         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1711                                  &refcount);
1712         if (ret < 0) {
1713             /* don't print message nor increment check_errors */
1714             continue;
1715         }
1716         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1717             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1718                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1719                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1720                                             "ERROR",
1721                     i, l1_entry, refcount);
1722             if (fix & BDRV_FIX_ERRORS) {
1723                 s->l1_table[i] = refcount == 1
1724                                ? l1_entry |  QCOW_OFLAG_COPIED
1725                                : l1_entry & ~QCOW_OFLAG_COPIED;
1726                 ret = qcow2_write_l1_entry(bs, i);
1727                 if (ret < 0) {
1728                     res->check_errors++;
1729                     goto fail;
1730                 }
1731                 res->corruptions_fixed++;
1732             } else {
1733                 res->corruptions++;
1734             }
1735         }
1736 
1737         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1738                          s->l2_size * sizeof(uint64_t));
1739         if (ret < 0) {
1740             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1741                     strerror(-ret));
1742             res->check_errors++;
1743             goto fail;
1744         }
1745 
1746         for (j = 0; j < s->l2_size; j++) {
1747             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1748             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1749             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1750 
1751             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1752                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1753                 ret = qcow2_get_refcount(bs,
1754                                          data_offset >> s->cluster_bits,
1755                                          &refcount);
1756                 if (ret < 0) {
1757                     /* don't print message nor increment check_errors */
1758                     continue;
1759                 }
1760                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1761                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1762                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1763                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1764                                                     "ERROR",
1765                             l2_entry, refcount);
1766                     if (fix & BDRV_FIX_ERRORS) {
1767                         l2_table[j] = cpu_to_be64(refcount == 1
1768                                     ? l2_entry |  QCOW_OFLAG_COPIED
1769                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1770                         l2_dirty = true;
1771                         res->corruptions_fixed++;
1772                     } else {
1773                         res->corruptions++;
1774                     }
1775                 }
1776             }
1777         }
1778 
1779         if (l2_dirty) {
1780             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1781                                                 l2_offset, s->cluster_size);
1782             if (ret < 0) {
1783                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1784                         "overlap check failed: %s\n", strerror(-ret));
1785                 res->check_errors++;
1786                 goto fail;
1787             }
1788 
1789             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1790                               s->cluster_size);
1791             if (ret < 0) {
1792                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1793                         strerror(-ret));
1794                 res->check_errors++;
1795                 goto fail;
1796             }
1797         }
1798     }
1799 
1800     ret = 0;
1801 
1802 fail:
1803     qemu_vfree(l2_table);
1804     return ret;
1805 }
1806 
1807 /*
1808  * Checks consistency of refblocks and accounts for each refblock in
1809  * *refcount_table.
1810  */
1811 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1812                            BdrvCheckMode fix, bool *rebuild,
1813                            void **refcount_table, int64_t *nb_clusters)
1814 {
1815     BDRVQcow2State *s = bs->opaque;
1816     int64_t i, size;
1817     int ret;
1818 
1819     for(i = 0; i < s->refcount_table_size; i++) {
1820         uint64_t offset, cluster;
1821         offset = s->refcount_table[i];
1822         cluster = offset >> s->cluster_bits;
1823 
1824         /* Refcount blocks are cluster aligned */
1825         if (offset_into_cluster(s, offset)) {
1826             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1827                 "cluster aligned; refcount table entry corrupted\n", i);
1828             res->corruptions++;
1829             *rebuild = true;
1830             continue;
1831         }
1832 
1833         if (cluster >= *nb_clusters) {
1834             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1835                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1836 
1837             if (fix & BDRV_FIX_ERRORS) {
1838                 int64_t new_nb_clusters;
1839                 Error *local_err = NULL;
1840 
1841                 if (offset > INT64_MAX - s->cluster_size) {
1842                     ret = -EINVAL;
1843                     goto resize_fail;
1844                 }
1845 
1846                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1847                                     PREALLOC_MODE_OFF, &local_err);
1848                 if (ret < 0) {
1849                     error_report_err(local_err);
1850                     goto resize_fail;
1851                 }
1852                 size = bdrv_getlength(bs->file->bs);
1853                 if (size < 0) {
1854                     ret = size;
1855                     goto resize_fail;
1856                 }
1857 
1858                 new_nb_clusters = size_to_clusters(s, size);
1859                 assert(new_nb_clusters >= *nb_clusters);
1860 
1861                 ret = realloc_refcount_array(s, refcount_table,
1862                                              nb_clusters, new_nb_clusters);
1863                 if (ret < 0) {
1864                     res->check_errors++;
1865                     return ret;
1866                 }
1867 
1868                 if (cluster >= *nb_clusters) {
1869                     ret = -EINVAL;
1870                     goto resize_fail;
1871                 }
1872 
1873                 res->corruptions_fixed++;
1874                 ret = qcow2_inc_refcounts_imrt(bs, res,
1875                                                refcount_table, nb_clusters,
1876                                                offset, s->cluster_size);
1877                 if (ret < 0) {
1878                     return ret;
1879                 }
1880                 /* No need to check whether the refcount is now greater than 1:
1881                  * This area was just allocated and zeroed, so it can only be
1882                  * exactly 1 after qcow2_inc_refcounts_imrt() */
1883                 continue;
1884 
1885 resize_fail:
1886                 res->corruptions++;
1887                 *rebuild = true;
1888                 fprintf(stderr, "ERROR could not resize image: %s\n",
1889                         strerror(-ret));
1890             } else {
1891                 res->corruptions++;
1892             }
1893             continue;
1894         }
1895 
1896         if (offset != 0) {
1897             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1898                                            offset, s->cluster_size);
1899             if (ret < 0) {
1900                 return ret;
1901             }
1902             if (s->get_refcount(*refcount_table, cluster) != 1) {
1903                 fprintf(stderr, "ERROR refcount block %" PRId64
1904                         " refcount=%" PRIu64 "\n", i,
1905                         s->get_refcount(*refcount_table, cluster));
1906                 res->corruptions++;
1907                 *rebuild = true;
1908             }
1909         }
1910     }
1911 
1912     return 0;
1913 }
1914 
1915 /*
1916  * Calculates an in-memory refcount table.
1917  */
1918 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1919                                BdrvCheckMode fix, bool *rebuild,
1920                                void **refcount_table, int64_t *nb_clusters)
1921 {
1922     BDRVQcow2State *s = bs->opaque;
1923     int64_t i;
1924     QCowSnapshot *sn;
1925     int ret;
1926 
1927     if (!*refcount_table) {
1928         int64_t old_size = 0;
1929         ret = realloc_refcount_array(s, refcount_table,
1930                                      &old_size, *nb_clusters);
1931         if (ret < 0) {
1932             res->check_errors++;
1933             return ret;
1934         }
1935     }
1936 
1937     /* header */
1938     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1939                                    0, s->cluster_size);
1940     if (ret < 0) {
1941         return ret;
1942     }
1943 
1944     /* current L1 table */
1945     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1946                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1947     if (ret < 0) {
1948         return ret;
1949     }
1950 
1951     /* snapshots */
1952     for (i = 0; i < s->nb_snapshots; i++) {
1953         sn = s->snapshots + i;
1954         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1955                                  sn->l1_table_offset, sn->l1_size, 0);
1956         if (ret < 0) {
1957             return ret;
1958         }
1959     }
1960     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1961                                    s->snapshots_offset, s->snapshots_size);
1962     if (ret < 0) {
1963         return ret;
1964     }
1965 
1966     /* refcount data */
1967     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1968                                    s->refcount_table_offset,
1969                                    s->refcount_table_size * sizeof(uint64_t));
1970     if (ret < 0) {
1971         return ret;
1972     }
1973 
1974     /* encryption */
1975     if (s->crypto_header.length) {
1976         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1977                                        s->crypto_header.offset,
1978                                        s->crypto_header.length);
1979         if (ret < 0) {
1980             return ret;
1981         }
1982     }
1983 
1984     /* bitmaps */
1985     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
1986     if (ret < 0) {
1987         return ret;
1988     }
1989 
1990     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1991 }
1992 
1993 /*
1994  * Compares the actual reference count for each cluster in the image against the
1995  * refcount as reported by the refcount structures on-disk.
1996  */
1997 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1998                               BdrvCheckMode fix, bool *rebuild,
1999                               int64_t *highest_cluster,
2000                               void *refcount_table, int64_t nb_clusters)
2001 {
2002     BDRVQcow2State *s = bs->opaque;
2003     int64_t i;
2004     uint64_t refcount1, refcount2;
2005     int ret;
2006 
2007     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2008         ret = qcow2_get_refcount(bs, i, &refcount1);
2009         if (ret < 0) {
2010             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2011                     i, strerror(-ret));
2012             res->check_errors++;
2013             continue;
2014         }
2015 
2016         refcount2 = s->get_refcount(refcount_table, i);
2017 
2018         if (refcount1 > 0 || refcount2 > 0) {
2019             *highest_cluster = i;
2020         }
2021 
2022         if (refcount1 != refcount2) {
2023             /* Check if we're allowed to fix the mismatch */
2024             int *num_fixed = NULL;
2025             if (refcount1 == 0) {
2026                 *rebuild = true;
2027             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2028                 num_fixed = &res->leaks_fixed;
2029             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2030                 num_fixed = &res->corruptions_fixed;
2031             }
2032 
2033             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2034                     " reference=%" PRIu64 "\n",
2035                    num_fixed != NULL     ? "Repairing" :
2036                    refcount1 < refcount2 ? "ERROR" :
2037                                            "Leaked",
2038                    i, refcount1, refcount2);
2039 
2040             if (num_fixed) {
2041                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2042                                       refcount_diff(refcount1, refcount2),
2043                                       refcount1 > refcount2,
2044                                       QCOW2_DISCARD_ALWAYS);
2045                 if (ret >= 0) {
2046                     (*num_fixed)++;
2047                     continue;
2048                 }
2049             }
2050 
2051             /* And if we couldn't, print an error */
2052             if (refcount1 < refcount2) {
2053                 res->corruptions++;
2054             } else {
2055                 res->leaks++;
2056             }
2057         }
2058     }
2059 }
2060 
2061 /*
2062  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2063  * the on-disk refcount structures.
2064  *
2065  * On input, *first_free_cluster tells where to start looking, and need not
2066  * actually be a free cluster; the returned offset will not be before that
2067  * cluster.  On output, *first_free_cluster points to the first gap found, even
2068  * if that gap was too small to be used as the returned offset.
2069  *
2070  * Note that *first_free_cluster is a cluster index whereas the return value is
2071  * an offset.
2072  */
2073 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2074                                    int cluster_count,
2075                                    void **refcount_table,
2076                                    int64_t *imrt_nb_clusters,
2077                                    int64_t *first_free_cluster)
2078 {
2079     BDRVQcow2State *s = bs->opaque;
2080     int64_t cluster = *first_free_cluster, i;
2081     bool first_gap = true;
2082     int contiguous_free_clusters;
2083     int ret;
2084 
2085     /* Starting at *first_free_cluster, find a range of at least cluster_count
2086      * continuously free clusters */
2087     for (contiguous_free_clusters = 0;
2088          cluster < *imrt_nb_clusters &&
2089          contiguous_free_clusters < cluster_count;
2090          cluster++)
2091     {
2092         if (!s->get_refcount(*refcount_table, cluster)) {
2093             contiguous_free_clusters++;
2094             if (first_gap) {
2095                 /* If this is the first free cluster found, update
2096                  * *first_free_cluster accordingly */
2097                 *first_free_cluster = cluster;
2098                 first_gap = false;
2099             }
2100         } else if (contiguous_free_clusters) {
2101             contiguous_free_clusters = 0;
2102         }
2103     }
2104 
2105     /* If contiguous_free_clusters is greater than zero, it contains the number
2106      * of continuously free clusters until the current cluster; the first free
2107      * cluster in the current "gap" is therefore
2108      * cluster - contiguous_free_clusters */
2109 
2110     /* If no such range could be found, grow the in-memory refcount table
2111      * accordingly to append free clusters at the end of the image */
2112     if (contiguous_free_clusters < cluster_count) {
2113         /* contiguous_free_clusters clusters are already empty at the image end;
2114          * we need cluster_count clusters; therefore, we have to allocate
2115          * cluster_count - contiguous_free_clusters new clusters at the end of
2116          * the image (which is the current value of cluster; note that cluster
2117          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2118          * the image end) */
2119         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2120                                      cluster + cluster_count
2121                                      - contiguous_free_clusters);
2122         if (ret < 0) {
2123             return ret;
2124         }
2125     }
2126 
2127     /* Go back to the first free cluster */
2128     cluster -= contiguous_free_clusters;
2129     for (i = 0; i < cluster_count; i++) {
2130         s->set_refcount(*refcount_table, cluster + i, 1);
2131     }
2132 
2133     return cluster << s->cluster_bits;
2134 }
2135 
2136 /*
2137  * Creates a new refcount structure based solely on the in-memory information
2138  * given through *refcount_table. All necessary allocations will be reflected
2139  * in that array.
2140  *
2141  * On success, the old refcount structure is leaked (it will be covered by the
2142  * new refcount structure).
2143  */
2144 static int rebuild_refcount_structure(BlockDriverState *bs,
2145                                       BdrvCheckResult *res,
2146                                       void **refcount_table,
2147                                       int64_t *nb_clusters)
2148 {
2149     BDRVQcow2State *s = bs->opaque;
2150     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2151     int64_t refblock_offset, refblock_start, refblock_index;
2152     uint32_t reftable_size = 0;
2153     uint64_t *on_disk_reftable = NULL;
2154     void *on_disk_refblock;
2155     int ret = 0;
2156     struct {
2157         uint64_t reftable_offset;
2158         uint32_t reftable_clusters;
2159     } QEMU_PACKED reftable_offset_and_clusters;
2160 
2161     qcow2_cache_empty(bs, s->refcount_block_cache);
2162 
2163 write_refblocks:
2164     for (; cluster < *nb_clusters; cluster++) {
2165         if (!s->get_refcount(*refcount_table, cluster)) {
2166             continue;
2167         }
2168 
2169         refblock_index = cluster >> s->refcount_block_bits;
2170         refblock_start = refblock_index << s->refcount_block_bits;
2171 
2172         /* Don't allocate a cluster in a refblock already written to disk */
2173         if (first_free_cluster < refblock_start) {
2174             first_free_cluster = refblock_start;
2175         }
2176         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2177                                               nb_clusters, &first_free_cluster);
2178         if (refblock_offset < 0) {
2179             fprintf(stderr, "ERROR allocating refblock: %s\n",
2180                     strerror(-refblock_offset));
2181             res->check_errors++;
2182             ret = refblock_offset;
2183             goto fail;
2184         }
2185 
2186         if (reftable_size <= refblock_index) {
2187             uint32_t old_reftable_size = reftable_size;
2188             uint64_t *new_on_disk_reftable;
2189 
2190             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2191                                      s->cluster_size) / sizeof(uint64_t);
2192             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2193                                                  reftable_size *
2194                                                  sizeof(uint64_t));
2195             if (!new_on_disk_reftable) {
2196                 res->check_errors++;
2197                 ret = -ENOMEM;
2198                 goto fail;
2199             }
2200             on_disk_reftable = new_on_disk_reftable;
2201 
2202             memset(on_disk_reftable + old_reftable_size, 0,
2203                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2204 
2205             /* The offset we have for the reftable is now no longer valid;
2206              * this will leak that range, but we can easily fix that by running
2207              * a leak-fixing check after this rebuild operation */
2208             reftable_offset = -1;
2209         } else {
2210             assert(on_disk_reftable);
2211         }
2212         on_disk_reftable[refblock_index] = refblock_offset;
2213 
2214         /* If this is apparently the last refblock (for now), try to squeeze the
2215          * reftable in */
2216         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2217             reftable_offset < 0)
2218         {
2219             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2220                                                           sizeof(uint64_t));
2221             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2222                                                   refcount_table, nb_clusters,
2223                                                   &first_free_cluster);
2224             if (reftable_offset < 0) {
2225                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2226                         strerror(-reftable_offset));
2227                 res->check_errors++;
2228                 ret = reftable_offset;
2229                 goto fail;
2230             }
2231         }
2232 
2233         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2234                                             s->cluster_size);
2235         if (ret < 0) {
2236             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2237             goto fail;
2238         }
2239 
2240         /* The size of *refcount_table is always cluster-aligned, therefore the
2241          * write operation will not overflow */
2242         on_disk_refblock = (void *)((char *) *refcount_table +
2243                                     refblock_index * s->cluster_size);
2244 
2245         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2246                          on_disk_refblock, s->cluster_sectors);
2247         if (ret < 0) {
2248             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2249             goto fail;
2250         }
2251 
2252         /* Go to the end of this refblock */
2253         cluster = refblock_start + s->refcount_block_size - 1;
2254     }
2255 
2256     if (reftable_offset < 0) {
2257         uint64_t post_refblock_start, reftable_clusters;
2258 
2259         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2260         reftable_clusters = size_to_clusters(s,
2261                                              reftable_size * sizeof(uint64_t));
2262         /* Not pretty but simple */
2263         if (first_free_cluster < post_refblock_start) {
2264             first_free_cluster = post_refblock_start;
2265         }
2266         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2267                                               refcount_table, nb_clusters,
2268                                               &first_free_cluster);
2269         if (reftable_offset < 0) {
2270             fprintf(stderr, "ERROR allocating reftable: %s\n",
2271                     strerror(-reftable_offset));
2272             res->check_errors++;
2273             ret = reftable_offset;
2274             goto fail;
2275         }
2276 
2277         goto write_refblocks;
2278     }
2279 
2280     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2281         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2282     }
2283 
2284     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2285                                         reftable_size * sizeof(uint64_t));
2286     if (ret < 0) {
2287         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2288         goto fail;
2289     }
2290 
2291     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2292     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2293                       reftable_size * sizeof(uint64_t));
2294     if (ret < 0) {
2295         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2296         goto fail;
2297     }
2298 
2299     /* Enter new reftable into the image header */
2300     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2301     reftable_offset_and_clusters.reftable_clusters =
2302         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2303     ret = bdrv_pwrite_sync(bs->file,
2304                            offsetof(QCowHeader, refcount_table_offset),
2305                            &reftable_offset_and_clusters,
2306                            sizeof(reftable_offset_and_clusters));
2307     if (ret < 0) {
2308         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2309         goto fail;
2310     }
2311 
2312     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2313         be64_to_cpus(&on_disk_reftable[refblock_index]);
2314     }
2315     s->refcount_table = on_disk_reftable;
2316     s->refcount_table_offset = reftable_offset;
2317     s->refcount_table_size = reftable_size;
2318     update_max_refcount_table_index(s);
2319 
2320     return 0;
2321 
2322 fail:
2323     g_free(on_disk_reftable);
2324     return ret;
2325 }
2326 
2327 /*
2328  * Checks an image for refcount consistency.
2329  *
2330  * Returns 0 if no errors are found, the number of errors in case the image is
2331  * detected as corrupted, and -errno when an internal error occurred.
2332  */
2333 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2334                           BdrvCheckMode fix)
2335 {
2336     BDRVQcow2State *s = bs->opaque;
2337     BdrvCheckResult pre_compare_res;
2338     int64_t size, highest_cluster, nb_clusters;
2339     void *refcount_table = NULL;
2340     bool rebuild = false;
2341     int ret;
2342 
2343     size = bdrv_getlength(bs->file->bs);
2344     if (size < 0) {
2345         res->check_errors++;
2346         return size;
2347     }
2348 
2349     nb_clusters = size_to_clusters(s, size);
2350     if (nb_clusters > INT_MAX) {
2351         res->check_errors++;
2352         return -EFBIG;
2353     }
2354 
2355     res->bfi.total_clusters =
2356         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2357 
2358     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2359                               &nb_clusters);
2360     if (ret < 0) {
2361         goto fail;
2362     }
2363 
2364     /* In case we don't need to rebuild the refcount structure (but want to fix
2365      * something), this function is immediately called again, in which case the
2366      * result should be ignored */
2367     pre_compare_res = *res;
2368     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2369                       nb_clusters);
2370 
2371     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2372         BdrvCheckResult old_res = *res;
2373         int fresh_leaks = 0;
2374 
2375         fprintf(stderr, "Rebuilding refcount structure\n");
2376         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2377                                          &nb_clusters);
2378         if (ret < 0) {
2379             goto fail;
2380         }
2381 
2382         res->corruptions = 0;
2383         res->leaks = 0;
2384 
2385         /* Because the old reftable has been exchanged for a new one the
2386          * references have to be recalculated */
2387         rebuild = false;
2388         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2389         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2390                                   &nb_clusters);
2391         if (ret < 0) {
2392             goto fail;
2393         }
2394 
2395         if (fix & BDRV_FIX_LEAKS) {
2396             /* The old refcount structures are now leaked, fix it; the result
2397              * can be ignored, aside from leaks which were introduced by
2398              * rebuild_refcount_structure() that could not be fixed */
2399             BdrvCheckResult saved_res = *res;
2400             *res = (BdrvCheckResult){ 0 };
2401 
2402             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2403                               &highest_cluster, refcount_table, nb_clusters);
2404             if (rebuild) {
2405                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2406                         "broken\n");
2407             }
2408 
2409             /* Any leaks accounted for here were introduced by
2410              * rebuild_refcount_structure() because that function has created a
2411              * new refcount structure from scratch */
2412             fresh_leaks = res->leaks;
2413             *res = saved_res;
2414         }
2415 
2416         if (res->corruptions < old_res.corruptions) {
2417             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2418         }
2419         if (res->leaks < old_res.leaks) {
2420             res->leaks_fixed += old_res.leaks - res->leaks;
2421         }
2422         res->leaks += fresh_leaks;
2423     } else if (fix) {
2424         if (rebuild) {
2425             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2426             res->check_errors++;
2427             ret = -EIO;
2428             goto fail;
2429         }
2430 
2431         if (res->leaks || res->corruptions) {
2432             *res = pre_compare_res;
2433             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2434                               refcount_table, nb_clusters);
2435         }
2436     }
2437 
2438     /* check OFLAG_COPIED */
2439     ret = check_oflag_copied(bs, res, fix);
2440     if (ret < 0) {
2441         goto fail;
2442     }
2443 
2444     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2445     ret = 0;
2446 
2447 fail:
2448     g_free(refcount_table);
2449 
2450     return ret;
2451 }
2452 
2453 #define overlaps_with(ofs, sz) \
2454     ranges_overlap(offset, size, ofs, sz)
2455 
2456 /*
2457  * Checks if the given offset into the image file is actually free to use by
2458  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2459  * i.e. a sanity check without relying on the refcount tables.
2460  *
2461  * The ign parameter specifies what checks not to perform (being a bitmask of
2462  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2463  *
2464  * Returns:
2465  * - 0 if writing to this offset will not affect the mentioned metadata
2466  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2467  * - a negative value (-errno) indicating an error while performing a check,
2468  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2469  */
2470 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2471                                  int64_t size)
2472 {
2473     BDRVQcow2State *s = bs->opaque;
2474     int chk = s->overlap_check & ~ign;
2475     int i, j;
2476 
2477     if (!size) {
2478         return 0;
2479     }
2480 
2481     if (chk & QCOW2_OL_MAIN_HEADER) {
2482         if (offset < s->cluster_size) {
2483             return QCOW2_OL_MAIN_HEADER;
2484         }
2485     }
2486 
2487     /* align range to test to cluster boundaries */
2488     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2489     offset = start_of_cluster(s, offset);
2490 
2491     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2492         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2493             return QCOW2_OL_ACTIVE_L1;
2494         }
2495     }
2496 
2497     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2498         if (overlaps_with(s->refcount_table_offset,
2499             s->refcount_table_size * sizeof(uint64_t))) {
2500             return QCOW2_OL_REFCOUNT_TABLE;
2501         }
2502     }
2503 
2504     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2505         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2506             return QCOW2_OL_SNAPSHOT_TABLE;
2507         }
2508     }
2509 
2510     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2511         for (i = 0; i < s->nb_snapshots; i++) {
2512             if (s->snapshots[i].l1_size &&
2513                 overlaps_with(s->snapshots[i].l1_table_offset,
2514                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2515                 return QCOW2_OL_INACTIVE_L1;
2516             }
2517         }
2518     }
2519 
2520     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2521         for (i = 0; i < s->l1_size; i++) {
2522             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2523                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2524                 s->cluster_size)) {
2525                 return QCOW2_OL_ACTIVE_L2;
2526             }
2527         }
2528     }
2529 
2530     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2531         unsigned last_entry = s->max_refcount_table_index;
2532         assert(last_entry < s->refcount_table_size);
2533         assert(last_entry + 1 == s->refcount_table_size ||
2534                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2535         for (i = 0; i <= last_entry; i++) {
2536             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2537                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2538                 s->cluster_size)) {
2539                 return QCOW2_OL_REFCOUNT_BLOCK;
2540             }
2541         }
2542     }
2543 
2544     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2545         for (i = 0; i < s->nb_snapshots; i++) {
2546             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2547             uint32_t l1_sz  = s->snapshots[i].l1_size;
2548             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2549             uint64_t *l1 = g_try_malloc(l1_sz2);
2550             int ret;
2551 
2552             if (l1_sz2 && l1 == NULL) {
2553                 return -ENOMEM;
2554             }
2555 
2556             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2557             if (ret < 0) {
2558                 g_free(l1);
2559                 return ret;
2560             }
2561 
2562             for (j = 0; j < l1_sz; j++) {
2563                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2564                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2565                     g_free(l1);
2566                     return QCOW2_OL_INACTIVE_L2;
2567                 }
2568             }
2569 
2570             g_free(l1);
2571         }
2572     }
2573 
2574     return 0;
2575 }
2576 
2577 static const char *metadata_ol_names[] = {
2578     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2579     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2580     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2581     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2582     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2583     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2584     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2585     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2586 };
2587 
2588 /*
2589  * First performs a check for metadata overlaps (through
2590  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2591  * while performing a check), that value is returned. If an impending overlap
2592  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2593  * and -EIO returned.
2594  *
2595  * Returns 0 if there were neither overlaps nor errors while checking for
2596  * overlaps; or a negative value (-errno) on error.
2597  */
2598 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2599                                   int64_t size)
2600 {
2601     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2602 
2603     if (ret < 0) {
2604         return ret;
2605     } else if (ret > 0) {
2606         int metadata_ol_bitnr = ctz32(ret);
2607         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2608 
2609         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2610                                 "write on metadata (overlaps with %s)",
2611                                 metadata_ol_names[metadata_ol_bitnr]);
2612         return -EIO;
2613     }
2614 
2615     return 0;
2616 }
2617 
2618 /* A pointer to a function of this type is given to walk_over_reftable(). That
2619  * function will create refblocks and pass them to a RefblockFinishOp once they
2620  * are completed (@refblock). @refblock_empty is set if the refblock is
2621  * completely empty.
2622  *
2623  * Along with the refblock, a corresponding reftable entry is passed, in the
2624  * reftable @reftable (which may be reallocated) at @reftable_index.
2625  *
2626  * @allocated should be set to true if a new cluster has been allocated.
2627  */
2628 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2629                                uint64_t reftable_index, uint64_t *reftable_size,
2630                                void *refblock, bool refblock_empty,
2631                                bool *allocated, Error **errp);
2632 
2633 /**
2634  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2635  * it is not empty) and inserts its offset into the new reftable. The size of
2636  * this new reftable is increased as required.
2637  */
2638 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2639                           uint64_t reftable_index, uint64_t *reftable_size,
2640                           void *refblock, bool refblock_empty, bool *allocated,
2641                           Error **errp)
2642 {
2643     BDRVQcow2State *s = bs->opaque;
2644     int64_t offset;
2645 
2646     if (!refblock_empty && reftable_index >= *reftable_size) {
2647         uint64_t *new_reftable;
2648         uint64_t new_reftable_size;
2649 
2650         new_reftable_size = ROUND_UP(reftable_index + 1,
2651                                      s->cluster_size / sizeof(uint64_t));
2652         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2653             error_setg(errp,
2654                        "This operation would make the refcount table grow "
2655                        "beyond the maximum size supported by QEMU, aborting");
2656             return -ENOTSUP;
2657         }
2658 
2659         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2660                                                 sizeof(uint64_t));
2661         if (!new_reftable) {
2662             error_setg(errp, "Failed to increase reftable buffer size");
2663             return -ENOMEM;
2664         }
2665 
2666         memset(new_reftable + *reftable_size, 0,
2667                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2668 
2669         *reftable      = new_reftable;
2670         *reftable_size = new_reftable_size;
2671     }
2672 
2673     if (!refblock_empty && !(*reftable)[reftable_index]) {
2674         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2675         if (offset < 0) {
2676             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2677             return offset;
2678         }
2679         (*reftable)[reftable_index] = offset;
2680         *allocated = true;
2681     }
2682 
2683     return 0;
2684 }
2685 
2686 /**
2687  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2688  * offset specified by the new reftable's entry. It does not modify the new
2689  * reftable or change any refcounts.
2690  */
2691 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2692                           uint64_t reftable_index, uint64_t *reftable_size,
2693                           void *refblock, bool refblock_empty, bool *allocated,
2694                           Error **errp)
2695 {
2696     BDRVQcow2State *s = bs->opaque;
2697     int64_t offset;
2698     int ret;
2699 
2700     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2701         offset = (*reftable)[reftable_index];
2702 
2703         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2704         if (ret < 0) {
2705             error_setg_errno(errp, -ret, "Overlap check failed");
2706             return ret;
2707         }
2708 
2709         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2710         if (ret < 0) {
2711             error_setg_errno(errp, -ret, "Failed to write refblock");
2712             return ret;
2713         }
2714     } else {
2715         assert(refblock_empty);
2716     }
2717 
2718     return 0;
2719 }
2720 
2721 /**
2722  * This function walks over the existing reftable and every referenced refblock;
2723  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2724  * create an equal new entry in the passed @new_refblock. Once that
2725  * @new_refblock is completely filled, @operation will be called.
2726  *
2727  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2728  * @index is the index of the walk_over_reftable() calls and @total is the total
2729  * number of walk_over_reftable() calls per amend operation. Both are used for
2730  * calculating the parameters for the status callback.
2731  *
2732  * @allocated is set to true if a new cluster has been allocated.
2733  */
2734 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2735                               uint64_t *new_reftable_index,
2736                               uint64_t *new_reftable_size,
2737                               void *new_refblock, int new_refblock_size,
2738                               int new_refcount_bits,
2739                               RefblockFinishOp *operation, bool *allocated,
2740                               Qcow2SetRefcountFunc *new_set_refcount,
2741                               BlockDriverAmendStatusCB *status_cb,
2742                               void *cb_opaque, int index, int total,
2743                               Error **errp)
2744 {
2745     BDRVQcow2State *s = bs->opaque;
2746     uint64_t reftable_index;
2747     bool new_refblock_empty = true;
2748     int refblock_index;
2749     int new_refblock_index = 0;
2750     int ret;
2751 
2752     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2753          reftable_index++)
2754     {
2755         uint64_t refblock_offset = s->refcount_table[reftable_index]
2756                                  & REFT_OFFSET_MASK;
2757 
2758         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2759                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2760 
2761         if (refblock_offset) {
2762             void *refblock;
2763 
2764             if (offset_into_cluster(s, refblock_offset)) {
2765                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2766                                         PRIx64 " unaligned (reftable index: %#"
2767                                         PRIx64 ")", refblock_offset,
2768                                         reftable_index);
2769                 error_setg(errp,
2770                            "Image is corrupt (unaligned refblock offset)");
2771                 return -EIO;
2772             }
2773 
2774             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2775                                   &refblock);
2776             if (ret < 0) {
2777                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2778                 return ret;
2779             }
2780 
2781             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2782                  refblock_index++)
2783             {
2784                 uint64_t refcount;
2785 
2786                 if (new_refblock_index >= new_refblock_size) {
2787                     /* new_refblock is now complete */
2788                     ret = operation(bs, new_reftable, *new_reftable_index,
2789                                     new_reftable_size, new_refblock,
2790                                     new_refblock_empty, allocated, errp);
2791                     if (ret < 0) {
2792                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2793                         return ret;
2794                     }
2795 
2796                     (*new_reftable_index)++;
2797                     new_refblock_index = 0;
2798                     new_refblock_empty = true;
2799                 }
2800 
2801                 refcount = s->get_refcount(refblock, refblock_index);
2802                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2803                     uint64_t offset;
2804 
2805                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2806 
2807                     offset = ((reftable_index << s->refcount_block_bits)
2808                               + refblock_index) << s->cluster_bits;
2809 
2810                     error_setg(errp, "Cannot decrease refcount entry width to "
2811                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2812                                "refcount of %" PRIu64, new_refcount_bits,
2813                                offset, refcount);
2814                     return -EINVAL;
2815                 }
2816 
2817                 if (new_set_refcount) {
2818                     new_set_refcount(new_refblock, new_refblock_index++,
2819                                      refcount);
2820                 } else {
2821                     new_refblock_index++;
2822                 }
2823                 new_refblock_empty = new_refblock_empty && refcount == 0;
2824             }
2825 
2826             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2827         } else {
2828             /* No refblock means every refcount is 0 */
2829             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2830                  refblock_index++)
2831             {
2832                 if (new_refblock_index >= new_refblock_size) {
2833                     /* new_refblock is now complete */
2834                     ret = operation(bs, new_reftable, *new_reftable_index,
2835                                     new_reftable_size, new_refblock,
2836                                     new_refblock_empty, allocated, errp);
2837                     if (ret < 0) {
2838                         return ret;
2839                     }
2840 
2841                     (*new_reftable_index)++;
2842                     new_refblock_index = 0;
2843                     new_refblock_empty = true;
2844                 }
2845 
2846                 if (new_set_refcount) {
2847                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2848                 } else {
2849                     new_refblock_index++;
2850                 }
2851             }
2852         }
2853     }
2854 
2855     if (new_refblock_index > 0) {
2856         /* Complete the potentially existing partially filled final refblock */
2857         if (new_set_refcount) {
2858             for (; new_refblock_index < new_refblock_size;
2859                  new_refblock_index++)
2860             {
2861                 new_set_refcount(new_refblock, new_refblock_index, 0);
2862             }
2863         }
2864 
2865         ret = operation(bs, new_reftable, *new_reftable_index,
2866                         new_reftable_size, new_refblock, new_refblock_empty,
2867                         allocated, errp);
2868         if (ret < 0) {
2869             return ret;
2870         }
2871 
2872         (*new_reftable_index)++;
2873     }
2874 
2875     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2876               (uint64_t)total * s->refcount_table_size, cb_opaque);
2877 
2878     return 0;
2879 }
2880 
2881 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2882                                 BlockDriverAmendStatusCB *status_cb,
2883                                 void *cb_opaque, Error **errp)
2884 {
2885     BDRVQcow2State *s = bs->opaque;
2886     Qcow2GetRefcountFunc *new_get_refcount;
2887     Qcow2SetRefcountFunc *new_set_refcount;
2888     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2889     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2890     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2891     uint64_t new_reftable_index = 0;
2892     uint64_t i;
2893     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2894     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2895     int old_refcount_order;
2896     int walk_index = 0;
2897     int ret;
2898     bool new_allocation;
2899 
2900     assert(s->qcow_version >= 3);
2901     assert(refcount_order >= 0 && refcount_order <= 6);
2902 
2903     /* see qcow2_open() */
2904     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2905 
2906     new_get_refcount = get_refcount_funcs[refcount_order];
2907     new_set_refcount = set_refcount_funcs[refcount_order];
2908 
2909 
2910     do {
2911         int total_walks;
2912 
2913         new_allocation = false;
2914 
2915         /* At least we have to do this walk and the one which writes the
2916          * refblocks; also, at least we have to do this loop here at least
2917          * twice (normally), first to do the allocations, and second to
2918          * determine that everything is correctly allocated, this then makes
2919          * three walks in total */
2920         total_walks = MAX(walk_index + 2, 3);
2921 
2922         /* First, allocate the structures so they are present in the refcount
2923          * structures */
2924         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2925                                  &new_reftable_size, NULL, new_refblock_size,
2926                                  new_refcount_bits, &alloc_refblock,
2927                                  &new_allocation, NULL, status_cb, cb_opaque,
2928                                  walk_index++, total_walks, errp);
2929         if (ret < 0) {
2930             goto done;
2931         }
2932 
2933         new_reftable_index = 0;
2934 
2935         if (new_allocation) {
2936             if (new_reftable_offset) {
2937                 qcow2_free_clusters(bs, new_reftable_offset,
2938                                     allocated_reftable_size * sizeof(uint64_t),
2939                                     QCOW2_DISCARD_NEVER);
2940             }
2941 
2942             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2943                                                            sizeof(uint64_t));
2944             if (new_reftable_offset < 0) {
2945                 error_setg_errno(errp, -new_reftable_offset,
2946                                  "Failed to allocate the new reftable");
2947                 ret = new_reftable_offset;
2948                 goto done;
2949             }
2950             allocated_reftable_size = new_reftable_size;
2951         }
2952     } while (new_allocation);
2953 
2954     /* Second, write the new refblocks */
2955     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2956                              &new_reftable_size, new_refblock,
2957                              new_refblock_size, new_refcount_bits,
2958                              &flush_refblock, &new_allocation, new_set_refcount,
2959                              status_cb, cb_opaque, walk_index, walk_index + 1,
2960                              errp);
2961     if (ret < 0) {
2962         goto done;
2963     }
2964     assert(!new_allocation);
2965 
2966 
2967     /* Write the new reftable */
2968     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2969                                         new_reftable_size * sizeof(uint64_t));
2970     if (ret < 0) {
2971         error_setg_errno(errp, -ret, "Overlap check failed");
2972         goto done;
2973     }
2974 
2975     for (i = 0; i < new_reftable_size; i++) {
2976         cpu_to_be64s(&new_reftable[i]);
2977     }
2978 
2979     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2980                       new_reftable_size * sizeof(uint64_t));
2981 
2982     for (i = 0; i < new_reftable_size; i++) {
2983         be64_to_cpus(&new_reftable[i]);
2984     }
2985 
2986     if (ret < 0) {
2987         error_setg_errno(errp, -ret, "Failed to write the new reftable");
2988         goto done;
2989     }
2990 
2991 
2992     /* Empty the refcount cache */
2993     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2994     if (ret < 0) {
2995         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2996         goto done;
2997     }
2998 
2999     /* Update the image header to point to the new reftable; this only updates
3000      * the fields which are relevant to qcow2_update_header(); other fields
3001      * such as s->refcount_table or s->refcount_bits stay stale for now
3002      * (because we have to restore everything if qcow2_update_header() fails) */
3003     old_refcount_order  = s->refcount_order;
3004     old_reftable_size   = s->refcount_table_size;
3005     old_reftable_offset = s->refcount_table_offset;
3006 
3007     s->refcount_order        = refcount_order;
3008     s->refcount_table_size   = new_reftable_size;
3009     s->refcount_table_offset = new_reftable_offset;
3010 
3011     ret = qcow2_update_header(bs);
3012     if (ret < 0) {
3013         s->refcount_order        = old_refcount_order;
3014         s->refcount_table_size   = old_reftable_size;
3015         s->refcount_table_offset = old_reftable_offset;
3016         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3017         goto done;
3018     }
3019 
3020     /* Now update the rest of the in-memory information */
3021     old_reftable = s->refcount_table;
3022     s->refcount_table = new_reftable;
3023     update_max_refcount_table_index(s);
3024 
3025     s->refcount_bits = 1 << refcount_order;
3026     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3027     s->refcount_max += s->refcount_max - 1;
3028 
3029     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3030     s->refcount_block_size = 1 << s->refcount_block_bits;
3031 
3032     s->get_refcount = new_get_refcount;
3033     s->set_refcount = new_set_refcount;
3034 
3035     /* For cleaning up all old refblocks and the old reftable below the "done"
3036      * label */
3037     new_reftable        = old_reftable;
3038     new_reftable_size   = old_reftable_size;
3039     new_reftable_offset = old_reftable_offset;
3040 
3041 done:
3042     if (new_reftable) {
3043         /* On success, new_reftable actually points to the old reftable (and
3044          * new_reftable_size is the old reftable's size); but that is just
3045          * fine */
3046         for (i = 0; i < new_reftable_size; i++) {
3047             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3048             if (offset) {
3049                 qcow2_free_clusters(bs, offset, s->cluster_size,
3050                                     QCOW2_DISCARD_OTHER);
3051             }
3052         }
3053         g_free(new_reftable);
3054 
3055         if (new_reftable_offset > 0) {
3056             qcow2_free_clusters(bs, new_reftable_offset,
3057                                 new_reftable_size * sizeof(uint64_t),
3058                                 QCOW2_DISCARD_OTHER);
3059         }
3060     }
3061 
3062     qemu_vfree(new_refblock);
3063     return ret;
3064 }
3065 
3066 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3067                                         uint64_t discard_block_offs)
3068 {
3069     BDRVQcow2State *s = bs->opaque;
3070     uint64_t refblock_offs = get_refblock_offset(s, discard_block_offs);
3071     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3072     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3073     void *refblock;
3074     int ret;
3075 
3076     assert(discard_block_offs != 0);
3077 
3078     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3079                           &refblock);
3080     if (ret < 0) {
3081         return ret;
3082     }
3083 
3084     if (s->get_refcount(refblock, block_index) != 1) {
3085         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3086                                 " refblock offset %#" PRIx64
3087                                 ", reftable index %u"
3088                                 ", block offset %#" PRIx64
3089                                 ", refcount %#" PRIx64,
3090                                 refblock_offs,
3091                                 offset_to_reftable_index(s, discard_block_offs),
3092                                 discard_block_offs,
3093                                 s->get_refcount(refblock, block_index));
3094         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3095         return -EINVAL;
3096     }
3097     s->set_refcount(refblock, block_index, 0);
3098 
3099     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, refblock);
3100 
3101     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3102 
3103     if (cluster_index < s->free_cluster_index) {
3104         s->free_cluster_index = cluster_index;
3105     }
3106 
3107     refblock = qcow2_cache_is_table_offset(bs, s->refcount_block_cache,
3108                                            discard_block_offs);
3109     if (refblock) {
3110         /* discard refblock from the cache if refblock is cached */
3111         qcow2_cache_discard(bs, s->refcount_block_cache, refblock);
3112     }
3113     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3114 
3115     return 0;
3116 }
3117 
3118 int qcow2_shrink_reftable(BlockDriverState *bs)
3119 {
3120     BDRVQcow2State *s = bs->opaque;
3121     uint64_t *reftable_tmp =
3122         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3123     int i, ret;
3124 
3125     for (i = 0; i < s->refcount_table_size; i++) {
3126         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3127         void *refblock;
3128         bool unused_block;
3129 
3130         if (refblock_offs == 0) {
3131             reftable_tmp[i] = 0;
3132             continue;
3133         }
3134         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3135                               &refblock);
3136         if (ret < 0) {
3137             goto out;
3138         }
3139 
3140         /* the refblock has own reference */
3141         if (i == offset_to_reftable_index(s, refblock_offs)) {
3142             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3143                                    (s->refcount_block_size - 1);
3144             uint64_t refcount = s->get_refcount(refblock, block_index);
3145 
3146             s->set_refcount(refblock, block_index, 0);
3147 
3148             unused_block = buffer_is_zero(refblock, s->cluster_size);
3149 
3150             s->set_refcount(refblock, block_index, refcount);
3151         } else {
3152             unused_block = buffer_is_zero(refblock, s->cluster_size);
3153         }
3154         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3155 
3156         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3157     }
3158 
3159     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3160                            s->refcount_table_size * sizeof(uint64_t));
3161     /*
3162      * If the write in the reftable failed the image may contain a partially
3163      * overwritten reftable. In this case it would be better to clear the
3164      * reftable in memory to avoid possible image corruption.
3165      */
3166     for (i = 0; i < s->refcount_table_size; i++) {
3167         if (s->refcount_table[i] && !reftable_tmp[i]) {
3168             if (ret == 0) {
3169                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3170                                                        REFT_OFFSET_MASK);
3171             }
3172             s->refcount_table[i] = 0;
3173         }
3174     }
3175 
3176     if (!s->cache_discards) {
3177         qcow2_process_discards(bs, ret);
3178     }
3179 
3180 out:
3181     g_free(reftable_tmp);
3182     return ret;
3183 }
3184 
3185 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3186 {
3187     BDRVQcow2State *s = bs->opaque;
3188     int64_t i;
3189 
3190     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3191         uint64_t refcount;
3192         int ret = qcow2_get_refcount(bs, i, &refcount);
3193         if (ret < 0) {
3194             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3195                     i, strerror(-ret));
3196             return ret;
3197         }
3198         if (refcount > 0) {
3199             return i;
3200         }
3201     }
3202     qcow2_signal_corruption(bs, true, -1, -1,
3203                             "There are no references in the refcount table.");
3204     return -EIO;
3205 }
3206