xref: /openbmc/qemu/block/qcow2-refcount.c (revision 0221d73ce6a8e075adaa0a35a6ef853d2652b855)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qcow2.h"
28 #include "qemu/range.h"
29 #include "qemu/bswap.h"
30 #include "qemu/cutils.h"
31 #include "trace.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
34                                     uint64_t max);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38 
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61 
62 
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72 
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82 
83 
84 /*********************************************************/
85 /* refcount handling */
86 
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96 
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102 
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104 
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107 
108     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111 
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131 
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137 
138 
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143 
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151 
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157 
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165 
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171 
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179 
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184 
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191 
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196 
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203 
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208 
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215 
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220 
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226 
227 
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233 
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238 
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251 
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263 
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270 
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276 
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279 
280     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
281 
282     return 0;
283 }
284 
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291 
292     return (block_a == block_b);
293 }
294 
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307 
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309 
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312 
313     if (refcount_table_index < s->refcount_table_size) {
314 
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317 
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327 
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332 
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355 
356     *refcount_block = NULL;
357 
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363 
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
366     if (new_block < 0) {
367         return new_block;
368     }
369 
370     /* The offset must fit in the offset field of the refcount table entry */
371     assert((new_block & REFT_OFFSET_MASK) == new_block);
372 
373     /* If we're allocating the block at offset 0 then something is wrong */
374     if (new_block == 0) {
375         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
376                                 "allocation of refcount block at offset 0");
377         return -EIO;
378     }
379 
380 #ifdef DEBUG_ALLOC2
381     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
382         " at %" PRIx64 "\n",
383         refcount_table_index, cluster_index << s->cluster_bits, new_block);
384 #endif
385 
386     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
387         /* Zero the new refcount block before updating it */
388         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
389                                     refcount_block);
390         if (ret < 0) {
391             goto fail;
392         }
393 
394         memset(*refcount_block, 0, s->cluster_size);
395 
396         /* The block describes itself, need to update the cache */
397         int block_index = (new_block >> s->cluster_bits) &
398             (s->refcount_block_size - 1);
399         s->set_refcount(*refcount_block, block_index, 1);
400     } else {
401         /* Described somewhere else. This can recurse at most twice before we
402          * arrive at a block that describes itself. */
403         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
404                               QCOW2_DISCARD_NEVER);
405         if (ret < 0) {
406             goto fail;
407         }
408 
409         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
410         if (ret < 0) {
411             goto fail;
412         }
413 
414         /* Initialize the new refcount block only after updating its refcount,
415          * update_refcount uses the refcount cache itself */
416         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
417                                     refcount_block);
418         if (ret < 0) {
419             goto fail;
420         }
421 
422         memset(*refcount_block, 0, s->cluster_size);
423     }
424 
425     /* Now the new refcount block needs to be written to disk */
426     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
427     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
428     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
429     if (ret < 0) {
430         goto fail;
431     }
432 
433     /* If the refcount table is big enough, just hook the block up there */
434     if (refcount_table_index < s->refcount_table_size) {
435         uint64_t data64 = cpu_to_be64(new_block);
436         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
437         ret = bdrv_pwrite_sync(bs->file,
438             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
439             &data64, sizeof(data64));
440         if (ret < 0) {
441             goto fail;
442         }
443 
444         s->refcount_table[refcount_table_index] = new_block;
445         /* If there's a hole in s->refcount_table then it can happen
446          * that refcount_table_index < s->max_refcount_table_index */
447         s->max_refcount_table_index =
448             MAX(s->max_refcount_table_index, refcount_table_index);
449 
450         /* The new refcount block may be where the caller intended to put its
451          * data, so let it restart the search. */
452         return -EAGAIN;
453     }
454 
455     qcow2_cache_put(s->refcount_block_cache, refcount_block);
456 
457     /*
458      * If we come here, we need to grow the refcount table. Again, a new
459      * refcount table needs some space and we can't simply allocate to avoid
460      * endless recursion.
461      *
462      * Therefore let's grab new refcount blocks at the end of the image, which
463      * will describe themselves and the new refcount table. This way we can
464      * reference them only in the new table and do the switch to the new
465      * refcount table at once without producing an inconsistent state in
466      * between.
467      */
468     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
469 
470     /* Calculate the number of refcount blocks needed so far; this will be the
471      * basis for calculating the index of the first cluster used for the
472      * self-describing refcount structures which we are about to create.
473      *
474      * Because we reached this point, there cannot be any refcount entries for
475      * cluster_index or higher indices yet. However, because new_block has been
476      * allocated to describe that cluster (and it will assume this role later
477      * on), we cannot use that index; also, new_block may actually have a higher
478      * cluster index than cluster_index, so it needs to be taken into account
479      * here (and 1 needs to be added to its value because that cluster is used).
480      */
481     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
482                                             (new_block >> s->cluster_bits) + 1),
483                                         s->refcount_block_size);
484 
485     /* Create the new refcount table and blocks */
486     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
487         s->cluster_size;
488 
489     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
490                               refcount_table_index, new_block);
491     if (ret < 0) {
492         return ret;
493     }
494 
495     ret = load_refcount_block(bs, new_block, refcount_block);
496     if (ret < 0) {
497         return ret;
498     }
499 
500     /* If we were trying to do the initial refcount update for some cluster
501      * allocation, we might have used the same clusters to store newly
502      * allocated metadata. Make the caller search some new space. */
503     return -EAGAIN;
504 
505 fail:
506     if (*refcount_block != NULL) {
507         qcow2_cache_put(s->refcount_block_cache, refcount_block);
508     }
509     return ret;
510 }
511 
512 /*
513  * Starting at @start_offset, this function creates new self-covering refcount
514  * structures: A new refcount table and refcount blocks which cover all of
515  * themselves, and a number of @additional_clusters beyond their end.
516  * @start_offset must be at the end of the image file, that is, there must be
517  * only empty space beyond it.
518  * If @exact_size is false, the refcount table will have 50 % more entries than
519  * necessary so it will not need to grow again soon.
520  * If @new_refblock_offset is not zero, it contains the offset of a refcount
521  * block that should be entered into the new refcount table at index
522  * @new_refblock_index.
523  *
524  * Returns: The offset after the new refcount structures (i.e. where the
525  *          @additional_clusters may be placed) on success, -errno on error.
526  */
527 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
528                             uint64_t additional_clusters, bool exact_size,
529                             int new_refblock_index,
530                             uint64_t new_refblock_offset)
531 {
532     BDRVQcow2State *s = bs->opaque;
533     uint64_t total_refblock_count_u64, additional_refblock_count;
534     int total_refblock_count, table_size, area_reftable_index, table_clusters;
535     int i;
536     uint64_t table_offset, block_offset, end_offset;
537     int ret;
538     uint64_t *new_table;
539 
540     assert(!(start_offset % s->cluster_size));
541 
542     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
543                                  additional_clusters,
544                                  s->cluster_size, s->refcount_order,
545                                  !exact_size, &total_refblock_count_u64);
546     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
547         return -EFBIG;
548     }
549     total_refblock_count = total_refblock_count_u64;
550 
551     /* Index in the refcount table of the first refcount block to cover the area
552      * of refcount structures we are about to create; we know that
553      * @total_refblock_count can cover @start_offset, so this will definitely
554      * fit into an int. */
555     area_reftable_index = (start_offset / s->cluster_size) /
556                           s->refcount_block_size;
557 
558     if (exact_size) {
559         table_size = total_refblock_count;
560     } else {
561         table_size = total_refblock_count +
562                      DIV_ROUND_UP(total_refblock_count, 2);
563     }
564     /* The qcow2 file can only store the reftable size in number of clusters */
565     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
566     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
567 
568     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
569         return -EFBIG;
570     }
571 
572     new_table = g_try_new0(uint64_t, table_size);
573 
574     assert(table_size > 0);
575     if (new_table == NULL) {
576         ret = -ENOMEM;
577         goto fail;
578     }
579 
580     /* Fill the new refcount table */
581     if (table_size > s->max_refcount_table_index) {
582         /* We're actually growing the reftable */
583         memcpy(new_table, s->refcount_table,
584                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
585     } else {
586         /* Improbable case: We're shrinking the reftable. However, the caller
587          * has assured us that there is only empty space beyond @start_offset,
588          * so we can simply drop all of the refblocks that won't fit into the
589          * new reftable. */
590         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
591     }
592 
593     if (new_refblock_offset) {
594         assert(new_refblock_index < total_refblock_count);
595         new_table[new_refblock_index] = new_refblock_offset;
596     }
597 
598     /* Count how many new refblocks we have to create */
599     additional_refblock_count = 0;
600     for (i = area_reftable_index; i < total_refblock_count; i++) {
601         if (!new_table[i]) {
602             additional_refblock_count++;
603         }
604     }
605 
606     table_offset = start_offset + additional_refblock_count * s->cluster_size;
607     end_offset = table_offset + table_clusters * s->cluster_size;
608 
609     /* Fill the refcount blocks, and create new ones, if necessary */
610     block_offset = start_offset;
611     for (i = area_reftable_index; i < total_refblock_count; i++) {
612         void *refblock_data;
613         uint64_t first_offset_covered;
614 
615         /* Reuse an existing refblock if possible, create a new one otherwise */
616         if (new_table[i]) {
617             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
618                                   &refblock_data);
619             if (ret < 0) {
620                 goto fail;
621             }
622         } else {
623             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
624                                         block_offset, &refblock_data);
625             if (ret < 0) {
626                 goto fail;
627             }
628             memset(refblock_data, 0, s->cluster_size);
629             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
630                                          refblock_data);
631 
632             new_table[i] = block_offset;
633             block_offset += s->cluster_size;
634         }
635 
636         /* First host offset covered by this refblock */
637         first_offset_covered = (uint64_t)i * s->refcount_block_size *
638                                s->cluster_size;
639         if (first_offset_covered < end_offset) {
640             int j, end_index;
641 
642             /* Set the refcount of all of the new refcount structures to 1 */
643 
644             if (first_offset_covered < start_offset) {
645                 assert(i == area_reftable_index);
646                 j = (start_offset - first_offset_covered) / s->cluster_size;
647                 assert(j < s->refcount_block_size);
648             } else {
649                 j = 0;
650             }
651 
652             end_index = MIN((end_offset - first_offset_covered) /
653                             s->cluster_size,
654                             s->refcount_block_size);
655 
656             for (; j < end_index; j++) {
657                 /* The caller guaranteed us this space would be empty */
658                 assert(s->get_refcount(refblock_data, j) == 0);
659                 s->set_refcount(refblock_data, j, 1);
660             }
661 
662             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
663                                          refblock_data);
664         }
665 
666         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
667     }
668 
669     assert(block_offset == table_offset);
670 
671     /* Write refcount blocks to disk */
672     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
673     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
674     if (ret < 0) {
675         goto fail;
676     }
677 
678     /* Write refcount table to disk */
679     for (i = 0; i < total_refblock_count; i++) {
680         cpu_to_be64s(&new_table[i]);
681     }
682 
683     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
684     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
685         table_size * sizeof(uint64_t));
686     if (ret < 0) {
687         goto fail;
688     }
689 
690     for (i = 0; i < total_refblock_count; i++) {
691         be64_to_cpus(&new_table[i]);
692     }
693 
694     /* Hook up the new refcount table in the qcow2 header */
695     struct QEMU_PACKED {
696         uint64_t d64;
697         uint32_t d32;
698     } data;
699     data.d64 = cpu_to_be64(table_offset);
700     data.d32 = cpu_to_be32(table_clusters);
701     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
702     ret = bdrv_pwrite_sync(bs->file,
703                            offsetof(QCowHeader, refcount_table_offset),
704                            &data, sizeof(data));
705     if (ret < 0) {
706         goto fail;
707     }
708 
709     /* And switch it in memory */
710     uint64_t old_table_offset = s->refcount_table_offset;
711     uint64_t old_table_size = s->refcount_table_size;
712 
713     g_free(s->refcount_table);
714     s->refcount_table = new_table;
715     s->refcount_table_size = table_size;
716     s->refcount_table_offset = table_offset;
717     update_max_refcount_table_index(s);
718 
719     /* Free old table. */
720     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
721                         QCOW2_DISCARD_OTHER);
722 
723     return end_offset;
724 
725 fail:
726     g_free(new_table);
727     return ret;
728 }
729 
730 void qcow2_process_discards(BlockDriverState *bs, int ret)
731 {
732     BDRVQcow2State *s = bs->opaque;
733     Qcow2DiscardRegion *d, *next;
734 
735     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
736         QTAILQ_REMOVE(&s->discards, d, next);
737 
738         /* Discard is optional, ignore the return value */
739         if (ret >= 0) {
740             int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes);
741             if (r2 < 0) {
742                 trace_qcow2_process_discards_failed_region(d->offset, d->bytes,
743                                                            r2);
744             }
745         }
746 
747         g_free(d);
748     }
749 }
750 
751 static void update_refcount_discard(BlockDriverState *bs,
752                                     uint64_t offset, uint64_t length)
753 {
754     BDRVQcow2State *s = bs->opaque;
755     Qcow2DiscardRegion *d, *p, *next;
756 
757     QTAILQ_FOREACH(d, &s->discards, next) {
758         uint64_t new_start = MIN(offset, d->offset);
759         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
760 
761         if (new_end - new_start <= length + d->bytes) {
762             /* There can't be any overlap, areas ending up here have no
763              * references any more and therefore shouldn't get freed another
764              * time. */
765             assert(d->bytes + length == new_end - new_start);
766             d->offset = new_start;
767             d->bytes = new_end - new_start;
768             goto found;
769         }
770     }
771 
772     d = g_malloc(sizeof(*d));
773     *d = (Qcow2DiscardRegion) {
774         .bs     = bs,
775         .offset = offset,
776         .bytes  = length,
777     };
778     QTAILQ_INSERT_TAIL(&s->discards, d, next);
779 
780 found:
781     /* Merge discard requests if they are adjacent now */
782     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
783         if (p == d
784             || p->offset > d->offset + d->bytes
785             || d->offset > p->offset + p->bytes)
786         {
787             continue;
788         }
789 
790         /* Still no overlap possible */
791         assert(p->offset == d->offset + d->bytes
792             || d->offset == p->offset + p->bytes);
793 
794         QTAILQ_REMOVE(&s->discards, p, next);
795         d->offset = MIN(d->offset, p->offset);
796         d->bytes += p->bytes;
797         g_free(p);
798     }
799 }
800 
801 /* XXX: cache several refcount block clusters ? */
802 /* @addend is the absolute value of the addend; if @decrease is set, @addend
803  * will be subtracted from the current refcount, otherwise it will be added */
804 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
805                                                    int64_t offset,
806                                                    int64_t length,
807                                                    uint64_t addend,
808                                                    bool decrease,
809                                                    enum qcow2_discard_type type)
810 {
811     BDRVQcow2State *s = bs->opaque;
812     int64_t start, last, cluster_offset;
813     void *refcount_block = NULL;
814     int64_t old_table_index = -1;
815     int ret;
816 
817 #ifdef DEBUG_ALLOC2
818     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
819             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
820             addend);
821 #endif
822     if (length < 0) {
823         return -EINVAL;
824     } else if (length == 0) {
825         return 0;
826     }
827 
828     if (decrease) {
829         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
830             s->l2_table_cache);
831     }
832 
833     start = start_of_cluster(s, offset);
834     last = start_of_cluster(s, offset + length - 1);
835     for(cluster_offset = start; cluster_offset <= last;
836         cluster_offset += s->cluster_size)
837     {
838         int block_index;
839         uint64_t refcount;
840         int64_t cluster_index = cluster_offset >> s->cluster_bits;
841         int64_t table_index = cluster_index >> s->refcount_block_bits;
842 
843         /* Load the refcount block and allocate it if needed */
844         if (table_index != old_table_index) {
845             if (refcount_block) {
846                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
847             }
848             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
849             /* If the caller needs to restart the search for free clusters,
850              * try the same ones first to see if they're still free. */
851             if (ret == -EAGAIN) {
852                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
853                     s->free_cluster_index = (start >> s->cluster_bits);
854                 }
855             }
856             if (ret < 0) {
857                 goto fail;
858             }
859         }
860         old_table_index = table_index;
861 
862         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
863 
864         /* we can update the count and save it */
865         block_index = cluster_index & (s->refcount_block_size - 1);
866 
867         refcount = s->get_refcount(refcount_block, block_index);
868         if (decrease ? (refcount - addend > refcount)
869                      : (refcount + addend < refcount ||
870                         refcount + addend > s->refcount_max))
871         {
872             ret = -EINVAL;
873             goto fail;
874         }
875         if (decrease) {
876             refcount -= addend;
877         } else {
878             refcount += addend;
879         }
880         if (refcount == 0 && cluster_index < s->free_cluster_index) {
881             s->free_cluster_index = cluster_index;
882         }
883         s->set_refcount(refcount_block, block_index, refcount);
884 
885         if (refcount == 0) {
886             void *table;
887 
888             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
889                                                 offset);
890             if (table != NULL) {
891                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
892                 qcow2_cache_discard(s->refcount_block_cache, table);
893             }
894 
895             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
896             if (table != NULL) {
897                 qcow2_cache_discard(s->l2_table_cache, table);
898             }
899 
900             if (s->discard_passthrough[type]) {
901                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
902             }
903         }
904     }
905 
906     ret = 0;
907 fail:
908     if (!s->cache_discards) {
909         qcow2_process_discards(bs, ret);
910     }
911 
912     /* Write last changed block to disk */
913     if (refcount_block) {
914         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
915     }
916 
917     /*
918      * Try do undo any updates if an error is returned (This may succeed in
919      * some cases like ENOSPC for allocating a new refcount block)
920      */
921     if (ret < 0) {
922         int dummy;
923         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
924                                 !decrease, QCOW2_DISCARD_NEVER);
925         (void)dummy;
926     }
927 
928     return ret;
929 }
930 
931 /*
932  * Increases or decreases the refcount of a given cluster.
933  *
934  * @addend is the absolute value of the addend; if @decrease is set, @addend
935  * will be subtracted from the current refcount, otherwise it will be added.
936  *
937  * On success 0 is returned; on failure -errno is returned.
938  */
939 int qcow2_update_cluster_refcount(BlockDriverState *bs,
940                                   int64_t cluster_index,
941                                   uint64_t addend, bool decrease,
942                                   enum qcow2_discard_type type)
943 {
944     BDRVQcow2State *s = bs->opaque;
945     int ret;
946 
947     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
948                           decrease, type);
949     if (ret < 0) {
950         return ret;
951     }
952 
953     return 0;
954 }
955 
956 
957 
958 /*********************************************************/
959 /* cluster allocation functions */
960 
961 
962 
963 /* return < 0 if error */
964 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
965                                     uint64_t max)
966 {
967     BDRVQcow2State *s = bs->opaque;
968     uint64_t i, nb_clusters, refcount;
969     int ret;
970 
971     /* We can't allocate clusters if they may still be queued for discard. */
972     if (s->cache_discards) {
973         qcow2_process_discards(bs, 0);
974     }
975 
976     nb_clusters = size_to_clusters(s, size);
977 retry:
978     for(i = 0; i < nb_clusters; i++) {
979         uint64_t next_cluster_index = s->free_cluster_index++;
980         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
981 
982         if (ret < 0) {
983             return ret;
984         } else if (refcount != 0) {
985             goto retry;
986         }
987     }
988 
989     /* Make sure that all offsets in the "allocated" range are representable
990      * in the requested max */
991     if (s->free_cluster_index > 0 &&
992         s->free_cluster_index - 1 > (max >> s->cluster_bits))
993     {
994         return -EFBIG;
995     }
996 
997 #ifdef DEBUG_ALLOC2
998     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
999             size,
1000             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
1001 #endif
1002     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1003 }
1004 
1005 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1006 {
1007     int64_t offset;
1008     int ret;
1009 
1010     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1011     do {
1012         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1013         if (offset < 0) {
1014             return offset;
1015         }
1016 
1017         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1018     } while (ret == -EAGAIN);
1019 
1020     if (ret < 0) {
1021         return ret;
1022     }
1023 
1024     return offset;
1025 }
1026 
1027 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1028                                 int64_t nb_clusters)
1029 {
1030     BDRVQcow2State *s = bs->opaque;
1031     uint64_t cluster_index, refcount;
1032     uint64_t i;
1033     int ret;
1034 
1035     assert(nb_clusters >= 0);
1036     if (nb_clusters == 0) {
1037         return 0;
1038     }
1039 
1040     do {
1041         /* Check how many clusters there are free */
1042         cluster_index = offset >> s->cluster_bits;
1043         for(i = 0; i < nb_clusters; i++) {
1044             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1045             if (ret < 0) {
1046                 return ret;
1047             } else if (refcount != 0) {
1048                 break;
1049             }
1050         }
1051 
1052         /* And then allocate them */
1053         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1054                               QCOW2_DISCARD_NEVER);
1055     } while (ret == -EAGAIN);
1056 
1057     if (ret < 0) {
1058         return ret;
1059     }
1060 
1061     return i;
1062 }
1063 
1064 /* only used to allocate compressed sectors. We try to allocate
1065    contiguous sectors. size must be <= cluster_size */
1066 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1067 {
1068     BDRVQcow2State *s = bs->opaque;
1069     int64_t offset;
1070     size_t free_in_cluster;
1071     int ret;
1072 
1073     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1074     assert(size > 0 && size <= s->cluster_size);
1075     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1076 
1077     offset = s->free_byte_offset;
1078 
1079     if (offset) {
1080         uint64_t refcount;
1081         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1082         if (ret < 0) {
1083             return ret;
1084         }
1085 
1086         if (refcount == s->refcount_max) {
1087             offset = 0;
1088         }
1089     }
1090 
1091     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1092     do {
1093         if (!offset || free_in_cluster < size) {
1094             int64_t new_cluster;
1095 
1096             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1097                                                MIN(s->cluster_offset_mask,
1098                                                    QCOW_MAX_CLUSTER_OFFSET));
1099             if (new_cluster < 0) {
1100                 return new_cluster;
1101             }
1102 
1103             if (new_cluster == 0) {
1104                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1105                                         "allocation of compressed cluster "
1106                                         "at offset 0");
1107                 return -EIO;
1108             }
1109 
1110             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1111                 offset = new_cluster;
1112                 free_in_cluster = s->cluster_size;
1113             } else {
1114                 free_in_cluster += s->cluster_size;
1115             }
1116         }
1117 
1118         assert(offset);
1119         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1120         if (ret < 0) {
1121             offset = 0;
1122         }
1123     } while (ret == -EAGAIN);
1124     if (ret < 0) {
1125         return ret;
1126     }
1127 
1128     /* The cluster refcount was incremented; refcount blocks must be flushed
1129      * before the caller's L2 table updates. */
1130     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1131 
1132     s->free_byte_offset = offset + size;
1133     if (!offset_into_cluster(s, s->free_byte_offset)) {
1134         s->free_byte_offset = 0;
1135     }
1136 
1137     return offset;
1138 }
1139 
1140 void qcow2_free_clusters(BlockDriverState *bs,
1141                           int64_t offset, int64_t size,
1142                           enum qcow2_discard_type type)
1143 {
1144     int ret;
1145 
1146     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1147     ret = update_refcount(bs, offset, size, 1, true, type);
1148     if (ret < 0) {
1149         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1150         /* TODO Remember the clusters to free them later and avoid leaking */
1151     }
1152 }
1153 
1154 /*
1155  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1156  * normal cluster, compressed cluster, etc.)
1157  */
1158 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1159                              int nb_clusters, enum qcow2_discard_type type)
1160 {
1161     BDRVQcow2State *s = bs->opaque;
1162     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1163 
1164     if (has_data_file(bs)) {
1165         if (s->discard_passthrough[type] &&
1166             (ctype == QCOW2_CLUSTER_NORMAL ||
1167              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1168         {
1169             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1170                           nb_clusters << s->cluster_bits);
1171         }
1172         return;
1173     }
1174 
1175     switch (ctype) {
1176     case QCOW2_CLUSTER_COMPRESSED:
1177         {
1178             int64_t offset = (l2_entry & s->cluster_offset_mask)
1179                 & QCOW2_COMPRESSED_SECTOR_MASK;
1180             int size = QCOW2_COMPRESSED_SECTOR_SIZE *
1181                 (((l2_entry >> s->csize_shift) & s->csize_mask) + 1);
1182             qcow2_free_clusters(bs, offset, size, type);
1183         }
1184         break;
1185     case QCOW2_CLUSTER_NORMAL:
1186     case QCOW2_CLUSTER_ZERO_ALLOC:
1187         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1188             qcow2_signal_corruption(bs, false, -1, -1,
1189                                     "Cannot free unaligned cluster %#llx",
1190                                     l2_entry & L2E_OFFSET_MASK);
1191         } else {
1192             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1193                                 nb_clusters << s->cluster_bits, type);
1194         }
1195         break;
1196     case QCOW2_CLUSTER_ZERO_PLAIN:
1197     case QCOW2_CLUSTER_UNALLOCATED:
1198         break;
1199     default:
1200         abort();
1201     }
1202 }
1203 
1204 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1205 {
1206     BDRVQcow2State *s = bs->opaque;
1207     int ret;
1208 
1209     ret = qcow2_cache_write(bs, s->l2_table_cache);
1210     if (ret < 0) {
1211         return ret;
1212     }
1213 
1214     if (qcow2_need_accurate_refcounts(s)) {
1215         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1216         if (ret < 0) {
1217             return ret;
1218         }
1219     }
1220 
1221     return 0;
1222 }
1223 
1224 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1225 {
1226     int ret = qcow2_write_caches(bs);
1227     if (ret < 0) {
1228         return ret;
1229     }
1230 
1231     return bdrv_flush(bs->file->bs);
1232 }
1233 
1234 /*********************************************************/
1235 /* snapshots and image creation */
1236 
1237 
1238 
1239 /* update the refcounts of snapshots and the copied flag */
1240 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1241     int64_t l1_table_offset, int l1_size, int addend)
1242 {
1243     BDRVQcow2State *s = bs->opaque;
1244     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1245     bool l1_allocated = false;
1246     int64_t old_entry, old_l2_offset;
1247     unsigned slice, slice_size2, n_slices;
1248     int i, j, l1_modified = 0, nb_csectors;
1249     int ret;
1250 
1251     assert(addend >= -1 && addend <= 1);
1252 
1253     l2_slice = NULL;
1254     l1_table = NULL;
1255     l1_size2 = l1_size * sizeof(uint64_t);
1256     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1257     n_slices = s->cluster_size / slice_size2;
1258 
1259     s->cache_discards = true;
1260 
1261     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1262      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1263      * when changing this! */
1264     if (l1_table_offset != s->l1_table_offset) {
1265         l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1266         if (l1_size2 && l1_table == NULL) {
1267             ret = -ENOMEM;
1268             goto fail;
1269         }
1270         l1_allocated = true;
1271 
1272         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1273         if (ret < 0) {
1274             goto fail;
1275         }
1276 
1277         for (i = 0; i < l1_size; i++) {
1278             be64_to_cpus(&l1_table[i]);
1279         }
1280     } else {
1281         assert(l1_size == s->l1_size);
1282         l1_table = s->l1_table;
1283         l1_allocated = false;
1284     }
1285 
1286     for (i = 0; i < l1_size; i++) {
1287         l2_offset = l1_table[i];
1288         if (l2_offset) {
1289             old_l2_offset = l2_offset;
1290             l2_offset &= L1E_OFFSET_MASK;
1291 
1292             if (offset_into_cluster(s, l2_offset)) {
1293                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1294                                         PRIx64 " unaligned (L1 index: %#x)",
1295                                         l2_offset, i);
1296                 ret = -EIO;
1297                 goto fail;
1298             }
1299 
1300             for (slice = 0; slice < n_slices; slice++) {
1301                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1302                                       l2_offset + slice * slice_size2,
1303                                       (void **) &l2_slice);
1304                 if (ret < 0) {
1305                     goto fail;
1306                 }
1307 
1308                 for (j = 0; j < s->l2_slice_size; j++) {
1309                     uint64_t cluster_index;
1310                     uint64_t offset;
1311 
1312                     entry = be64_to_cpu(l2_slice[j]);
1313                     old_entry = entry;
1314                     entry &= ~QCOW_OFLAG_COPIED;
1315                     offset = entry & L2E_OFFSET_MASK;
1316 
1317                     switch (qcow2_get_cluster_type(bs, entry)) {
1318                     case QCOW2_CLUSTER_COMPRESSED:
1319                         nb_csectors = ((entry >> s->csize_shift) &
1320                                        s->csize_mask) + 1;
1321                         if (addend != 0) {
1322                             uint64_t coffset = (entry & s->cluster_offset_mask)
1323                                 & QCOW2_COMPRESSED_SECTOR_MASK;
1324                             ret = update_refcount(
1325                                 bs, coffset,
1326                                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE,
1327                                 abs(addend), addend < 0,
1328                                 QCOW2_DISCARD_SNAPSHOT);
1329                             if (ret < 0) {
1330                                 goto fail;
1331                             }
1332                         }
1333                         /* compressed clusters are never modified */
1334                         refcount = 2;
1335                         break;
1336 
1337                     case QCOW2_CLUSTER_NORMAL:
1338                     case QCOW2_CLUSTER_ZERO_ALLOC:
1339                         if (offset_into_cluster(s, offset)) {
1340                             /* Here l2_index means table (not slice) index */
1341                             int l2_index = slice * s->l2_slice_size + j;
1342                             qcow2_signal_corruption(
1343                                 bs, true, -1, -1, "Cluster "
1344                                 "allocation offset %#" PRIx64
1345                                 " unaligned (L2 offset: %#"
1346                                 PRIx64 ", L2 index: %#x)",
1347                                 offset, l2_offset, l2_index);
1348                             ret = -EIO;
1349                             goto fail;
1350                         }
1351 
1352                         cluster_index = offset >> s->cluster_bits;
1353                         assert(cluster_index);
1354                         if (addend != 0) {
1355                             ret = qcow2_update_cluster_refcount(
1356                                 bs, cluster_index, abs(addend), addend < 0,
1357                                 QCOW2_DISCARD_SNAPSHOT);
1358                             if (ret < 0) {
1359                                 goto fail;
1360                             }
1361                         }
1362 
1363                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1364                         if (ret < 0) {
1365                             goto fail;
1366                         }
1367                         break;
1368 
1369                     case QCOW2_CLUSTER_ZERO_PLAIN:
1370                     case QCOW2_CLUSTER_UNALLOCATED:
1371                         refcount = 0;
1372                         break;
1373 
1374                     default:
1375                         abort();
1376                     }
1377 
1378                     if (refcount == 1) {
1379                         entry |= QCOW_OFLAG_COPIED;
1380                     }
1381                     if (entry != old_entry) {
1382                         if (addend > 0) {
1383                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1384                                                        s->refcount_block_cache);
1385                         }
1386                         l2_slice[j] = cpu_to_be64(entry);
1387                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1388                                                      l2_slice);
1389                     }
1390                 }
1391 
1392                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1393             }
1394 
1395             if (addend != 0) {
1396                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1397                                                         s->cluster_bits,
1398                                                     abs(addend), addend < 0,
1399                                                     QCOW2_DISCARD_SNAPSHOT);
1400                 if (ret < 0) {
1401                     goto fail;
1402                 }
1403             }
1404             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1405                                      &refcount);
1406             if (ret < 0) {
1407                 goto fail;
1408             } else if (refcount == 1) {
1409                 l2_offset |= QCOW_OFLAG_COPIED;
1410             }
1411             if (l2_offset != old_l2_offset) {
1412                 l1_table[i] = l2_offset;
1413                 l1_modified = 1;
1414             }
1415         }
1416     }
1417 
1418     ret = bdrv_flush(bs);
1419 fail:
1420     if (l2_slice) {
1421         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1422     }
1423 
1424     s->cache_discards = false;
1425     qcow2_process_discards(bs, ret);
1426 
1427     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1428     if (ret == 0 && addend >= 0 && l1_modified) {
1429         for (i = 0; i < l1_size; i++) {
1430             cpu_to_be64s(&l1_table[i]);
1431         }
1432 
1433         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1434                                l1_table, l1_size2);
1435 
1436         for (i = 0; i < l1_size; i++) {
1437             be64_to_cpus(&l1_table[i]);
1438         }
1439     }
1440     if (l1_allocated)
1441         g_free(l1_table);
1442     return ret;
1443 }
1444 
1445 
1446 
1447 
1448 /*********************************************************/
1449 /* refcount checking functions */
1450 
1451 
1452 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1453 {
1454     /* This assertion holds because there is no way we can address more than
1455      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1456      * offsets have to be representable in bytes); due to every cluster
1457      * corresponding to one refcount entry, we are well below that limit */
1458     assert(entries < (UINT64_C(1) << (64 - 9)));
1459 
1460     /* Thanks to the assertion this will not overflow, because
1461      * s->refcount_order < 7.
1462      * (note: x << s->refcount_order == x * s->refcount_bits) */
1463     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1464 }
1465 
1466 /**
1467  * Reallocates *array so that it can hold new_size entries. *size must contain
1468  * the current number of entries in *array. If the reallocation fails, *array
1469  * and *size will not be modified and -errno will be returned. If the
1470  * reallocation is successful, *array will be set to the new buffer, *size
1471  * will be set to new_size and 0 will be returned. The size of the reallocated
1472  * refcount array buffer will be aligned to a cluster boundary, and the newly
1473  * allocated area will be zeroed.
1474  */
1475 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1476                                   int64_t *size, int64_t new_size)
1477 {
1478     int64_t old_byte_size, new_byte_size;
1479     void *new_ptr;
1480 
1481     /* Round to clusters so the array can be directly written to disk */
1482     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1483                     * s->cluster_size;
1484     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1485                     * s->cluster_size;
1486 
1487     if (new_byte_size == old_byte_size) {
1488         *size = new_size;
1489         return 0;
1490     }
1491 
1492     assert(new_byte_size > 0);
1493 
1494     if (new_byte_size > SIZE_MAX) {
1495         return -ENOMEM;
1496     }
1497 
1498     new_ptr = g_try_realloc(*array, new_byte_size);
1499     if (!new_ptr) {
1500         return -ENOMEM;
1501     }
1502 
1503     if (new_byte_size > old_byte_size) {
1504         memset((char *)new_ptr + old_byte_size, 0,
1505                new_byte_size - old_byte_size);
1506     }
1507 
1508     *array = new_ptr;
1509     *size  = new_size;
1510 
1511     return 0;
1512 }
1513 
1514 /*
1515  * Increases the refcount for a range of clusters in a given refcount table.
1516  * This is used to construct a temporary refcount table out of L1 and L2 tables
1517  * which can be compared to the refcount table saved in the image.
1518  *
1519  * Modifies the number of errors in res.
1520  */
1521 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1522                              void **refcount_table,
1523                              int64_t *refcount_table_size,
1524                              int64_t offset, int64_t size)
1525 {
1526     BDRVQcow2State *s = bs->opaque;
1527     uint64_t start, last, cluster_offset, k, refcount;
1528     int64_t file_len;
1529     int ret;
1530 
1531     if (size <= 0) {
1532         return 0;
1533     }
1534 
1535     file_len = bdrv_getlength(bs->file->bs);
1536     if (file_len < 0) {
1537         return file_len;
1538     }
1539 
1540     /*
1541      * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1542      * reference some space after file end but it should be less than one
1543      * cluster.
1544      */
1545     if (offset + size - file_len >= s->cluster_size) {
1546         fprintf(stderr, "ERROR: counting reference for region exceeding the "
1547                 "end of the file by one cluster or more: offset 0x%" PRIx64
1548                 " size 0x%" PRIx64 "\n", offset, size);
1549         res->corruptions++;
1550         return 0;
1551     }
1552 
1553     start = start_of_cluster(s, offset);
1554     last = start_of_cluster(s, offset + size - 1);
1555     for(cluster_offset = start; cluster_offset <= last;
1556         cluster_offset += s->cluster_size) {
1557         k = cluster_offset >> s->cluster_bits;
1558         if (k >= *refcount_table_size) {
1559             ret = realloc_refcount_array(s, refcount_table,
1560                                          refcount_table_size, k + 1);
1561             if (ret < 0) {
1562                 res->check_errors++;
1563                 return ret;
1564             }
1565         }
1566 
1567         refcount = s->get_refcount(*refcount_table, k);
1568         if (refcount == s->refcount_max) {
1569             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1570                     "\n", cluster_offset);
1571             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1572                     "width or qemu-img convert to create a clean copy if the "
1573                     "image cannot be opened for writing\n");
1574             res->corruptions++;
1575             continue;
1576         }
1577         s->set_refcount(*refcount_table, k, refcount + 1);
1578     }
1579 
1580     return 0;
1581 }
1582 
1583 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1584 enum {
1585     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1586 };
1587 
1588 /*
1589  * Increases the refcount in the given refcount table for the all clusters
1590  * referenced in the L2 table. While doing so, performs some checks on L2
1591  * entries.
1592  *
1593  * Returns the number of errors found by the checks or -errno if an internal
1594  * error occurred.
1595  */
1596 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1597                               void **refcount_table,
1598                               int64_t *refcount_table_size, int64_t l2_offset,
1599                               int flags, BdrvCheckMode fix, bool active)
1600 {
1601     BDRVQcow2State *s = bs->opaque;
1602     uint64_t *l2_table, l2_entry;
1603     uint64_t next_contiguous_offset = 0;
1604     int i, l2_size, nb_csectors, ret;
1605 
1606     /* Read L2 table from disk */
1607     l2_size = s->l2_size * sizeof(uint64_t);
1608     l2_table = g_malloc(l2_size);
1609 
1610     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1611     if (ret < 0) {
1612         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1613         res->check_errors++;
1614         goto fail;
1615     }
1616 
1617     /* Do the actual checks */
1618     for(i = 0; i < s->l2_size; i++) {
1619         l2_entry = be64_to_cpu(l2_table[i]);
1620 
1621         switch (qcow2_get_cluster_type(bs, l2_entry)) {
1622         case QCOW2_CLUSTER_COMPRESSED:
1623             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1624             if (l2_entry & QCOW_OFLAG_COPIED) {
1625                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1626                     "copied flag must never be set for compressed "
1627                     "clusters\n", l2_entry & s->cluster_offset_mask);
1628                 l2_entry &= ~QCOW_OFLAG_COPIED;
1629                 res->corruptions++;
1630             }
1631 
1632             if (has_data_file(bs)) {
1633                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1634                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1635                 res->corruptions++;
1636                 break;
1637             }
1638 
1639             /* Mark cluster as used */
1640             nb_csectors = ((l2_entry >> s->csize_shift) &
1641                            s->csize_mask) + 1;
1642             l2_entry &= s->cluster_offset_mask;
1643             ret = qcow2_inc_refcounts_imrt(
1644                 bs, res, refcount_table, refcount_table_size,
1645                 l2_entry & QCOW2_COMPRESSED_SECTOR_MASK,
1646                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE);
1647             if (ret < 0) {
1648                 goto fail;
1649             }
1650 
1651             if (flags & CHECK_FRAG_INFO) {
1652                 res->bfi.allocated_clusters++;
1653                 res->bfi.compressed_clusters++;
1654 
1655                 /* Compressed clusters are fragmented by nature.  Since they
1656                  * take up sub-sector space but we only have sector granularity
1657                  * I/O we need to re-read the same sectors even for adjacent
1658                  * compressed clusters.
1659                  */
1660                 res->bfi.fragmented_clusters++;
1661             }
1662             break;
1663 
1664         case QCOW2_CLUSTER_ZERO_ALLOC:
1665         case QCOW2_CLUSTER_NORMAL:
1666         {
1667             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1668 
1669             /* Correct offsets are cluster aligned */
1670             if (offset_into_cluster(s, offset)) {
1671                 res->corruptions++;
1672 
1673                 if (qcow2_get_cluster_type(bs, l2_entry) ==
1674                     QCOW2_CLUSTER_ZERO_ALLOC)
1675                 {
1676                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1677                             "cluster is not properly aligned; L2 entry "
1678                             "corrupted.\n",
1679                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1680                             offset);
1681                     if (fix & BDRV_FIX_ERRORS) {
1682                         uint64_t l2e_offset =
1683                             l2_offset + (uint64_t)i * sizeof(uint64_t);
1684                         int ign = active ? QCOW2_OL_ACTIVE_L2 :
1685                                            QCOW2_OL_INACTIVE_L2;
1686 
1687                         l2_entry = QCOW_OFLAG_ZERO;
1688                         l2_table[i] = cpu_to_be64(l2_entry);
1689                         ret = qcow2_pre_write_overlap_check(bs, ign,
1690                                 l2e_offset, sizeof(uint64_t), false);
1691                         if (ret < 0) {
1692                             fprintf(stderr, "ERROR: Overlap check failed\n");
1693                             res->check_errors++;
1694                             /* Something is seriously wrong, so abort checking
1695                              * this L2 table */
1696                             goto fail;
1697                         }
1698 
1699                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1700                                                &l2_table[i], sizeof(uint64_t));
1701                         if (ret < 0) {
1702                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1703                                     "table entry: %s\n", strerror(-ret));
1704                             res->check_errors++;
1705                             /* Do not abort, continue checking the rest of this
1706                              * L2 table's entries */
1707                         } else {
1708                             res->corruptions--;
1709                             res->corruptions_fixed++;
1710                             /* Skip marking the cluster as used
1711                              * (it is unused now) */
1712                             continue;
1713                         }
1714                     }
1715                 } else {
1716                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1717                         "not properly aligned; L2 entry corrupted.\n", offset);
1718                 }
1719             }
1720 
1721             if (flags & CHECK_FRAG_INFO) {
1722                 res->bfi.allocated_clusters++;
1723                 if (next_contiguous_offset &&
1724                     offset != next_contiguous_offset) {
1725                     res->bfi.fragmented_clusters++;
1726                 }
1727                 next_contiguous_offset = offset + s->cluster_size;
1728             }
1729 
1730             /* Mark cluster as used */
1731             if (!has_data_file(bs)) {
1732                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1733                                                refcount_table_size,
1734                                                offset, s->cluster_size);
1735                 if (ret < 0) {
1736                     goto fail;
1737                 }
1738             }
1739             break;
1740         }
1741 
1742         case QCOW2_CLUSTER_ZERO_PLAIN:
1743         case QCOW2_CLUSTER_UNALLOCATED:
1744             break;
1745 
1746         default:
1747             abort();
1748         }
1749     }
1750 
1751     g_free(l2_table);
1752     return 0;
1753 
1754 fail:
1755     g_free(l2_table);
1756     return ret;
1757 }
1758 
1759 /*
1760  * Increases the refcount for the L1 table, its L2 tables and all referenced
1761  * clusters in the given refcount table. While doing so, performs some checks
1762  * on L1 and L2 entries.
1763  *
1764  * Returns the number of errors found by the checks or -errno if an internal
1765  * error occurred.
1766  */
1767 static int check_refcounts_l1(BlockDriverState *bs,
1768                               BdrvCheckResult *res,
1769                               void **refcount_table,
1770                               int64_t *refcount_table_size,
1771                               int64_t l1_table_offset, int l1_size,
1772                               int flags, BdrvCheckMode fix, bool active)
1773 {
1774     BDRVQcow2State *s = bs->opaque;
1775     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1776     int i, ret;
1777 
1778     l1_size2 = l1_size * sizeof(uint64_t);
1779 
1780     /* Mark L1 table as used */
1781     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1782                                    l1_table_offset, l1_size2);
1783     if (ret < 0) {
1784         goto fail;
1785     }
1786 
1787     /* Read L1 table entries from disk */
1788     if (l1_size2 > 0) {
1789         l1_table = g_try_malloc(l1_size2);
1790         if (l1_table == NULL) {
1791             ret = -ENOMEM;
1792             res->check_errors++;
1793             goto fail;
1794         }
1795         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1796         if (ret < 0) {
1797             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1798             res->check_errors++;
1799             goto fail;
1800         }
1801         for(i = 0;i < l1_size; i++)
1802             be64_to_cpus(&l1_table[i]);
1803     }
1804 
1805     /* Do the actual checks */
1806     for(i = 0; i < l1_size; i++) {
1807         l2_offset = l1_table[i];
1808         if (l2_offset) {
1809             /* Mark L2 table as used */
1810             l2_offset &= L1E_OFFSET_MASK;
1811             ret = qcow2_inc_refcounts_imrt(bs, res,
1812                                            refcount_table, refcount_table_size,
1813                                            l2_offset, s->cluster_size);
1814             if (ret < 0) {
1815                 goto fail;
1816             }
1817 
1818             /* L2 tables are cluster aligned */
1819             if (offset_into_cluster(s, l2_offset)) {
1820                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1821                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1822                 res->corruptions++;
1823             }
1824 
1825             /* Process and check L2 entries */
1826             ret = check_refcounts_l2(bs, res, refcount_table,
1827                                      refcount_table_size, l2_offset, flags,
1828                                      fix, active);
1829             if (ret < 0) {
1830                 goto fail;
1831             }
1832         }
1833     }
1834     g_free(l1_table);
1835     return 0;
1836 
1837 fail:
1838     g_free(l1_table);
1839     return ret;
1840 }
1841 
1842 /*
1843  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1844  *
1845  * This function does not print an error message nor does it increment
1846  * check_errors if qcow2_get_refcount fails (this is because such an error will
1847  * have been already detected and sufficiently signaled by the calling function
1848  * (qcow2_check_refcounts) by the time this function is called).
1849  */
1850 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1851                               BdrvCheckMode fix)
1852 {
1853     BDRVQcow2State *s = bs->opaque;
1854     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1855     int ret;
1856     uint64_t refcount;
1857     int i, j;
1858     bool repair;
1859 
1860     if (fix & BDRV_FIX_ERRORS) {
1861         /* Always repair */
1862         repair = true;
1863     } else if (fix & BDRV_FIX_LEAKS) {
1864         /* Repair only if that seems safe: This function is always
1865          * called after the refcounts have been fixed, so the refcount
1866          * is accurate if that repair was successful */
1867         repair = !res->check_errors && !res->corruptions && !res->leaks;
1868     } else {
1869         repair = false;
1870     }
1871 
1872     for (i = 0; i < s->l1_size; i++) {
1873         uint64_t l1_entry = s->l1_table[i];
1874         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1875         int l2_dirty = 0;
1876 
1877         if (!l2_offset) {
1878             continue;
1879         }
1880 
1881         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1882                                  &refcount);
1883         if (ret < 0) {
1884             /* don't print message nor increment check_errors */
1885             continue;
1886         }
1887         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1888             res->corruptions++;
1889             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1890                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1891                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1892             if (repair) {
1893                 s->l1_table[i] = refcount == 1
1894                                ? l1_entry |  QCOW_OFLAG_COPIED
1895                                : l1_entry & ~QCOW_OFLAG_COPIED;
1896                 ret = qcow2_write_l1_entry(bs, i);
1897                 if (ret < 0) {
1898                     res->check_errors++;
1899                     goto fail;
1900                 }
1901                 res->corruptions--;
1902                 res->corruptions_fixed++;
1903             }
1904         }
1905 
1906         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1907                          s->l2_size * sizeof(uint64_t));
1908         if (ret < 0) {
1909             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1910                     strerror(-ret));
1911             res->check_errors++;
1912             goto fail;
1913         }
1914 
1915         for (j = 0; j < s->l2_size; j++) {
1916             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1917             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1918             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1919 
1920             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1921                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1922                 if (has_data_file(bs)) {
1923                     refcount = 1;
1924                 } else {
1925                     ret = qcow2_get_refcount(bs,
1926                                              data_offset >> s->cluster_bits,
1927                                              &refcount);
1928                     if (ret < 0) {
1929                         /* don't print message nor increment check_errors */
1930                         continue;
1931                     }
1932                 }
1933                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1934                     res->corruptions++;
1935                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1936                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1937                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1938                     if (repair) {
1939                         l2_table[j] = cpu_to_be64(refcount == 1
1940                                     ? l2_entry |  QCOW_OFLAG_COPIED
1941                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1942                         l2_dirty++;
1943                     }
1944                 }
1945             }
1946         }
1947 
1948         if (l2_dirty > 0) {
1949             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1950                                                 l2_offset, s->cluster_size,
1951                                                 false);
1952             if (ret < 0) {
1953                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1954                         "overlap check failed: %s\n", strerror(-ret));
1955                 res->check_errors++;
1956                 goto fail;
1957             }
1958 
1959             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1960                               s->cluster_size);
1961             if (ret < 0) {
1962                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1963                         strerror(-ret));
1964                 res->check_errors++;
1965                 goto fail;
1966             }
1967             res->corruptions -= l2_dirty;
1968             res->corruptions_fixed += l2_dirty;
1969         }
1970     }
1971 
1972     ret = 0;
1973 
1974 fail:
1975     qemu_vfree(l2_table);
1976     return ret;
1977 }
1978 
1979 /*
1980  * Checks consistency of refblocks and accounts for each refblock in
1981  * *refcount_table.
1982  */
1983 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1984                            BdrvCheckMode fix, bool *rebuild,
1985                            void **refcount_table, int64_t *nb_clusters)
1986 {
1987     BDRVQcow2State *s = bs->opaque;
1988     int64_t i, size;
1989     int ret;
1990 
1991     for(i = 0; i < s->refcount_table_size; i++) {
1992         uint64_t offset, cluster;
1993         offset = s->refcount_table[i];
1994         cluster = offset >> s->cluster_bits;
1995 
1996         /* Refcount blocks are cluster aligned */
1997         if (offset_into_cluster(s, offset)) {
1998             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1999                 "cluster aligned; refcount table entry corrupted\n", i);
2000             res->corruptions++;
2001             *rebuild = true;
2002             continue;
2003         }
2004 
2005         if (cluster >= *nb_clusters) {
2006             res->corruptions++;
2007             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2008                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2009 
2010             if (fix & BDRV_FIX_ERRORS) {
2011                 int64_t new_nb_clusters;
2012                 Error *local_err = NULL;
2013 
2014                 if (offset > INT64_MAX - s->cluster_size) {
2015                     ret = -EINVAL;
2016                     goto resize_fail;
2017                 }
2018 
2019                 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false,
2020                                     PREALLOC_MODE_OFF, &local_err);
2021                 if (ret < 0) {
2022                     error_report_err(local_err);
2023                     goto resize_fail;
2024                 }
2025                 size = bdrv_getlength(bs->file->bs);
2026                 if (size < 0) {
2027                     ret = size;
2028                     goto resize_fail;
2029                 }
2030 
2031                 new_nb_clusters = size_to_clusters(s, size);
2032                 assert(new_nb_clusters >= *nb_clusters);
2033 
2034                 ret = realloc_refcount_array(s, refcount_table,
2035                                              nb_clusters, new_nb_clusters);
2036                 if (ret < 0) {
2037                     res->check_errors++;
2038                     return ret;
2039                 }
2040 
2041                 if (cluster >= *nb_clusters) {
2042                     ret = -EINVAL;
2043                     goto resize_fail;
2044                 }
2045 
2046                 res->corruptions--;
2047                 res->corruptions_fixed++;
2048                 ret = qcow2_inc_refcounts_imrt(bs, res,
2049                                                refcount_table, nb_clusters,
2050                                                offset, s->cluster_size);
2051                 if (ret < 0) {
2052                     return ret;
2053                 }
2054                 /* No need to check whether the refcount is now greater than 1:
2055                  * This area was just allocated and zeroed, so it can only be
2056                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2057                 continue;
2058 
2059 resize_fail:
2060                 *rebuild = true;
2061                 fprintf(stderr, "ERROR could not resize image: %s\n",
2062                         strerror(-ret));
2063             }
2064             continue;
2065         }
2066 
2067         if (offset != 0) {
2068             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2069                                            offset, s->cluster_size);
2070             if (ret < 0) {
2071                 return ret;
2072             }
2073             if (s->get_refcount(*refcount_table, cluster) != 1) {
2074                 fprintf(stderr, "ERROR refcount block %" PRId64
2075                         " refcount=%" PRIu64 "\n", i,
2076                         s->get_refcount(*refcount_table, cluster));
2077                 res->corruptions++;
2078                 *rebuild = true;
2079             }
2080         }
2081     }
2082 
2083     return 0;
2084 }
2085 
2086 /*
2087  * Calculates an in-memory refcount table.
2088  */
2089 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2090                                BdrvCheckMode fix, bool *rebuild,
2091                                void **refcount_table, int64_t *nb_clusters)
2092 {
2093     BDRVQcow2State *s = bs->opaque;
2094     int64_t i;
2095     QCowSnapshot *sn;
2096     int ret;
2097 
2098     if (!*refcount_table) {
2099         int64_t old_size = 0;
2100         ret = realloc_refcount_array(s, refcount_table,
2101                                      &old_size, *nb_clusters);
2102         if (ret < 0) {
2103             res->check_errors++;
2104             return ret;
2105         }
2106     }
2107 
2108     /* header */
2109     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2110                                    0, s->cluster_size);
2111     if (ret < 0) {
2112         return ret;
2113     }
2114 
2115     /* current L1 table */
2116     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2117                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2118                              fix, true);
2119     if (ret < 0) {
2120         return ret;
2121     }
2122 
2123     /* snapshots */
2124     if (has_data_file(bs) && s->nb_snapshots) {
2125         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2126                 s->nb_snapshots);
2127         res->corruptions++;
2128     }
2129 
2130     for (i = 0; i < s->nb_snapshots; i++) {
2131         sn = s->snapshots + i;
2132         if (offset_into_cluster(s, sn->l1_table_offset)) {
2133             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2134                     "L1 table is not cluster aligned; snapshot table entry "
2135                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2136             res->corruptions++;
2137             continue;
2138         }
2139         if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2140             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2141                     "L1 table is too large; snapshot table entry corrupted\n",
2142                     sn->id_str, sn->name, sn->l1_size);
2143             res->corruptions++;
2144             continue;
2145         }
2146         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2147                                  sn->l1_table_offset, sn->l1_size, 0, fix,
2148                                  false);
2149         if (ret < 0) {
2150             return ret;
2151         }
2152     }
2153     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2154                                    s->snapshots_offset, s->snapshots_size);
2155     if (ret < 0) {
2156         return ret;
2157     }
2158 
2159     /* refcount data */
2160     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2161                                    s->refcount_table_offset,
2162                                    s->refcount_table_size * sizeof(uint64_t));
2163     if (ret < 0) {
2164         return ret;
2165     }
2166 
2167     /* encryption */
2168     if (s->crypto_header.length) {
2169         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2170                                        s->crypto_header.offset,
2171                                        s->crypto_header.length);
2172         if (ret < 0) {
2173             return ret;
2174         }
2175     }
2176 
2177     /* bitmaps */
2178     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2179     if (ret < 0) {
2180         return ret;
2181     }
2182 
2183     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2184 }
2185 
2186 /*
2187  * Compares the actual reference count for each cluster in the image against the
2188  * refcount as reported by the refcount structures on-disk.
2189  */
2190 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2191                               BdrvCheckMode fix, bool *rebuild,
2192                               int64_t *highest_cluster,
2193                               void *refcount_table, int64_t nb_clusters)
2194 {
2195     BDRVQcow2State *s = bs->opaque;
2196     int64_t i;
2197     uint64_t refcount1, refcount2;
2198     int ret;
2199 
2200     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2201         ret = qcow2_get_refcount(bs, i, &refcount1);
2202         if (ret < 0) {
2203             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2204                     i, strerror(-ret));
2205             res->check_errors++;
2206             continue;
2207         }
2208 
2209         refcount2 = s->get_refcount(refcount_table, i);
2210 
2211         if (refcount1 > 0 || refcount2 > 0) {
2212             *highest_cluster = i;
2213         }
2214 
2215         if (refcount1 != refcount2) {
2216             /* Check if we're allowed to fix the mismatch */
2217             int *num_fixed = NULL;
2218             if (refcount1 == 0) {
2219                 *rebuild = true;
2220             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2221                 num_fixed = &res->leaks_fixed;
2222             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2223                 num_fixed = &res->corruptions_fixed;
2224             }
2225 
2226             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2227                     " reference=%" PRIu64 "\n",
2228                    num_fixed != NULL     ? "Repairing" :
2229                    refcount1 < refcount2 ? "ERROR" :
2230                                            "Leaked",
2231                    i, refcount1, refcount2);
2232 
2233             if (num_fixed) {
2234                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2235                                       refcount_diff(refcount1, refcount2),
2236                                       refcount1 > refcount2,
2237                                       QCOW2_DISCARD_ALWAYS);
2238                 if (ret >= 0) {
2239                     (*num_fixed)++;
2240                     continue;
2241                 }
2242             }
2243 
2244             /* And if we couldn't, print an error */
2245             if (refcount1 < refcount2) {
2246                 res->corruptions++;
2247             } else {
2248                 res->leaks++;
2249             }
2250         }
2251     }
2252 }
2253 
2254 /*
2255  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2256  * the on-disk refcount structures.
2257  *
2258  * On input, *first_free_cluster tells where to start looking, and need not
2259  * actually be a free cluster; the returned offset will not be before that
2260  * cluster.  On output, *first_free_cluster points to the first gap found, even
2261  * if that gap was too small to be used as the returned offset.
2262  *
2263  * Note that *first_free_cluster is a cluster index whereas the return value is
2264  * an offset.
2265  */
2266 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2267                                    int cluster_count,
2268                                    void **refcount_table,
2269                                    int64_t *imrt_nb_clusters,
2270                                    int64_t *first_free_cluster)
2271 {
2272     BDRVQcow2State *s = bs->opaque;
2273     int64_t cluster = *first_free_cluster, i;
2274     bool first_gap = true;
2275     int contiguous_free_clusters;
2276     int ret;
2277 
2278     /* Starting at *first_free_cluster, find a range of at least cluster_count
2279      * continuously free clusters */
2280     for (contiguous_free_clusters = 0;
2281          cluster < *imrt_nb_clusters &&
2282          contiguous_free_clusters < cluster_count;
2283          cluster++)
2284     {
2285         if (!s->get_refcount(*refcount_table, cluster)) {
2286             contiguous_free_clusters++;
2287             if (first_gap) {
2288                 /* If this is the first free cluster found, update
2289                  * *first_free_cluster accordingly */
2290                 *first_free_cluster = cluster;
2291                 first_gap = false;
2292             }
2293         } else if (contiguous_free_clusters) {
2294             contiguous_free_clusters = 0;
2295         }
2296     }
2297 
2298     /* If contiguous_free_clusters is greater than zero, it contains the number
2299      * of continuously free clusters until the current cluster; the first free
2300      * cluster in the current "gap" is therefore
2301      * cluster - contiguous_free_clusters */
2302 
2303     /* If no such range could be found, grow the in-memory refcount table
2304      * accordingly to append free clusters at the end of the image */
2305     if (contiguous_free_clusters < cluster_count) {
2306         /* contiguous_free_clusters clusters are already empty at the image end;
2307          * we need cluster_count clusters; therefore, we have to allocate
2308          * cluster_count - contiguous_free_clusters new clusters at the end of
2309          * the image (which is the current value of cluster; note that cluster
2310          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2311          * the image end) */
2312         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2313                                      cluster + cluster_count
2314                                      - contiguous_free_clusters);
2315         if (ret < 0) {
2316             return ret;
2317         }
2318     }
2319 
2320     /* Go back to the first free cluster */
2321     cluster -= contiguous_free_clusters;
2322     for (i = 0; i < cluster_count; i++) {
2323         s->set_refcount(*refcount_table, cluster + i, 1);
2324     }
2325 
2326     return cluster << s->cluster_bits;
2327 }
2328 
2329 /*
2330  * Creates a new refcount structure based solely on the in-memory information
2331  * given through *refcount_table. All necessary allocations will be reflected
2332  * in that array.
2333  *
2334  * On success, the old refcount structure is leaked (it will be covered by the
2335  * new refcount structure).
2336  */
2337 static int rebuild_refcount_structure(BlockDriverState *bs,
2338                                       BdrvCheckResult *res,
2339                                       void **refcount_table,
2340                                       int64_t *nb_clusters)
2341 {
2342     BDRVQcow2State *s = bs->opaque;
2343     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2344     int64_t refblock_offset, refblock_start, refblock_index;
2345     uint32_t reftable_size = 0;
2346     uint64_t *on_disk_reftable = NULL;
2347     void *on_disk_refblock;
2348     int ret = 0;
2349     struct {
2350         uint64_t reftable_offset;
2351         uint32_t reftable_clusters;
2352     } QEMU_PACKED reftable_offset_and_clusters;
2353 
2354     qcow2_cache_empty(bs, s->refcount_block_cache);
2355 
2356 write_refblocks:
2357     for (; cluster < *nb_clusters; cluster++) {
2358         if (!s->get_refcount(*refcount_table, cluster)) {
2359             continue;
2360         }
2361 
2362         refblock_index = cluster >> s->refcount_block_bits;
2363         refblock_start = refblock_index << s->refcount_block_bits;
2364 
2365         /* Don't allocate a cluster in a refblock already written to disk */
2366         if (first_free_cluster < refblock_start) {
2367             first_free_cluster = refblock_start;
2368         }
2369         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2370                                               nb_clusters, &first_free_cluster);
2371         if (refblock_offset < 0) {
2372             fprintf(stderr, "ERROR allocating refblock: %s\n",
2373                     strerror(-refblock_offset));
2374             res->check_errors++;
2375             ret = refblock_offset;
2376             goto fail;
2377         }
2378 
2379         if (reftable_size <= refblock_index) {
2380             uint32_t old_reftable_size = reftable_size;
2381             uint64_t *new_on_disk_reftable;
2382 
2383             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2384                                      s->cluster_size) / sizeof(uint64_t);
2385             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2386                                                  reftable_size *
2387                                                  sizeof(uint64_t));
2388             if (!new_on_disk_reftable) {
2389                 res->check_errors++;
2390                 ret = -ENOMEM;
2391                 goto fail;
2392             }
2393             on_disk_reftable = new_on_disk_reftable;
2394 
2395             memset(on_disk_reftable + old_reftable_size, 0,
2396                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2397 
2398             /* The offset we have for the reftable is now no longer valid;
2399              * this will leak that range, but we can easily fix that by running
2400              * a leak-fixing check after this rebuild operation */
2401             reftable_offset = -1;
2402         } else {
2403             assert(on_disk_reftable);
2404         }
2405         on_disk_reftable[refblock_index] = refblock_offset;
2406 
2407         /* If this is apparently the last refblock (for now), try to squeeze the
2408          * reftable in */
2409         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2410             reftable_offset < 0)
2411         {
2412             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2413                                                           sizeof(uint64_t));
2414             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2415                                                   refcount_table, nb_clusters,
2416                                                   &first_free_cluster);
2417             if (reftable_offset < 0) {
2418                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2419                         strerror(-reftable_offset));
2420                 res->check_errors++;
2421                 ret = reftable_offset;
2422                 goto fail;
2423             }
2424         }
2425 
2426         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2427                                             s->cluster_size, false);
2428         if (ret < 0) {
2429             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2430             goto fail;
2431         }
2432 
2433         /* The size of *refcount_table is always cluster-aligned, therefore the
2434          * write operation will not overflow */
2435         on_disk_refblock = (void *)((char *) *refcount_table +
2436                                     refblock_index * s->cluster_size);
2437 
2438         ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock,
2439                           s->cluster_size);
2440         if (ret < 0) {
2441             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2442             goto fail;
2443         }
2444 
2445         /* Go to the end of this refblock */
2446         cluster = refblock_start + s->refcount_block_size - 1;
2447     }
2448 
2449     if (reftable_offset < 0) {
2450         uint64_t post_refblock_start, reftable_clusters;
2451 
2452         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2453         reftable_clusters = size_to_clusters(s,
2454                                              reftable_size * sizeof(uint64_t));
2455         /* Not pretty but simple */
2456         if (first_free_cluster < post_refblock_start) {
2457             first_free_cluster = post_refblock_start;
2458         }
2459         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2460                                               refcount_table, nb_clusters,
2461                                               &first_free_cluster);
2462         if (reftable_offset < 0) {
2463             fprintf(stderr, "ERROR allocating reftable: %s\n",
2464                     strerror(-reftable_offset));
2465             res->check_errors++;
2466             ret = reftable_offset;
2467             goto fail;
2468         }
2469 
2470         goto write_refblocks;
2471     }
2472 
2473     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2474         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2475     }
2476 
2477     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2478                                         reftable_size * sizeof(uint64_t),
2479                                         false);
2480     if (ret < 0) {
2481         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2482         goto fail;
2483     }
2484 
2485     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2486     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2487                       reftable_size * sizeof(uint64_t));
2488     if (ret < 0) {
2489         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2490         goto fail;
2491     }
2492 
2493     /* Enter new reftable into the image header */
2494     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2495     reftable_offset_and_clusters.reftable_clusters =
2496         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2497     ret = bdrv_pwrite_sync(bs->file,
2498                            offsetof(QCowHeader, refcount_table_offset),
2499                            &reftable_offset_and_clusters,
2500                            sizeof(reftable_offset_and_clusters));
2501     if (ret < 0) {
2502         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2503         goto fail;
2504     }
2505 
2506     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2507         be64_to_cpus(&on_disk_reftable[refblock_index]);
2508     }
2509     s->refcount_table = on_disk_reftable;
2510     s->refcount_table_offset = reftable_offset;
2511     s->refcount_table_size = reftable_size;
2512     update_max_refcount_table_index(s);
2513 
2514     return 0;
2515 
2516 fail:
2517     g_free(on_disk_reftable);
2518     return ret;
2519 }
2520 
2521 /*
2522  * Checks an image for refcount consistency.
2523  *
2524  * Returns 0 if no errors are found, the number of errors in case the image is
2525  * detected as corrupted, and -errno when an internal error occurred.
2526  */
2527 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2528                           BdrvCheckMode fix)
2529 {
2530     BDRVQcow2State *s = bs->opaque;
2531     BdrvCheckResult pre_compare_res;
2532     int64_t size, highest_cluster, nb_clusters;
2533     void *refcount_table = NULL;
2534     bool rebuild = false;
2535     int ret;
2536 
2537     size = bdrv_getlength(bs->file->bs);
2538     if (size < 0) {
2539         res->check_errors++;
2540         return size;
2541     }
2542 
2543     nb_clusters = size_to_clusters(s, size);
2544     if (nb_clusters > INT_MAX) {
2545         res->check_errors++;
2546         return -EFBIG;
2547     }
2548 
2549     res->bfi.total_clusters =
2550         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2551 
2552     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2553                               &nb_clusters);
2554     if (ret < 0) {
2555         goto fail;
2556     }
2557 
2558     /* In case we don't need to rebuild the refcount structure (but want to fix
2559      * something), this function is immediately called again, in which case the
2560      * result should be ignored */
2561     pre_compare_res = *res;
2562     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2563                       nb_clusters);
2564 
2565     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2566         BdrvCheckResult old_res = *res;
2567         int fresh_leaks = 0;
2568 
2569         fprintf(stderr, "Rebuilding refcount structure\n");
2570         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2571                                          &nb_clusters);
2572         if (ret < 0) {
2573             goto fail;
2574         }
2575 
2576         res->corruptions = 0;
2577         res->leaks = 0;
2578 
2579         /* Because the old reftable has been exchanged for a new one the
2580          * references have to be recalculated */
2581         rebuild = false;
2582         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2583         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2584                                   &nb_clusters);
2585         if (ret < 0) {
2586             goto fail;
2587         }
2588 
2589         if (fix & BDRV_FIX_LEAKS) {
2590             /* The old refcount structures are now leaked, fix it; the result
2591              * can be ignored, aside from leaks which were introduced by
2592              * rebuild_refcount_structure() that could not be fixed */
2593             BdrvCheckResult saved_res = *res;
2594             *res = (BdrvCheckResult){ 0 };
2595 
2596             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2597                               &highest_cluster, refcount_table, nb_clusters);
2598             if (rebuild) {
2599                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2600                         "broken\n");
2601             }
2602 
2603             /* Any leaks accounted for here were introduced by
2604              * rebuild_refcount_structure() because that function has created a
2605              * new refcount structure from scratch */
2606             fresh_leaks = res->leaks;
2607             *res = saved_res;
2608         }
2609 
2610         if (res->corruptions < old_res.corruptions) {
2611             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2612         }
2613         if (res->leaks < old_res.leaks) {
2614             res->leaks_fixed += old_res.leaks - res->leaks;
2615         }
2616         res->leaks += fresh_leaks;
2617     } else if (fix) {
2618         if (rebuild) {
2619             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2620             res->check_errors++;
2621             ret = -EIO;
2622             goto fail;
2623         }
2624 
2625         if (res->leaks || res->corruptions) {
2626             *res = pre_compare_res;
2627             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2628                               refcount_table, nb_clusters);
2629         }
2630     }
2631 
2632     /* check OFLAG_COPIED */
2633     ret = check_oflag_copied(bs, res, fix);
2634     if (ret < 0) {
2635         goto fail;
2636     }
2637 
2638     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2639     ret = 0;
2640 
2641 fail:
2642     g_free(refcount_table);
2643 
2644     return ret;
2645 }
2646 
2647 #define overlaps_with(ofs, sz) \
2648     ranges_overlap(offset, size, ofs, sz)
2649 
2650 /*
2651  * Checks if the given offset into the image file is actually free to use by
2652  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2653  * i.e. a sanity check without relying on the refcount tables.
2654  *
2655  * The ign parameter specifies what checks not to perform (being a bitmask of
2656  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2657  *
2658  * Returns:
2659  * - 0 if writing to this offset will not affect the mentioned metadata
2660  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2661  * - a negative value (-errno) indicating an error while performing a check,
2662  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2663  */
2664 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2665                                  int64_t size)
2666 {
2667     BDRVQcow2State *s = bs->opaque;
2668     int chk = s->overlap_check & ~ign;
2669     int i, j;
2670 
2671     if (!size) {
2672         return 0;
2673     }
2674 
2675     if (chk & QCOW2_OL_MAIN_HEADER) {
2676         if (offset < s->cluster_size) {
2677             return QCOW2_OL_MAIN_HEADER;
2678         }
2679     }
2680 
2681     /* align range to test to cluster boundaries */
2682     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2683     offset = start_of_cluster(s, offset);
2684 
2685     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2686         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2687             return QCOW2_OL_ACTIVE_L1;
2688         }
2689     }
2690 
2691     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2692         if (overlaps_with(s->refcount_table_offset,
2693             s->refcount_table_size * sizeof(uint64_t))) {
2694             return QCOW2_OL_REFCOUNT_TABLE;
2695         }
2696     }
2697 
2698     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2699         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2700             return QCOW2_OL_SNAPSHOT_TABLE;
2701         }
2702     }
2703 
2704     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2705         for (i = 0; i < s->nb_snapshots; i++) {
2706             if (s->snapshots[i].l1_size &&
2707                 overlaps_with(s->snapshots[i].l1_table_offset,
2708                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2709                 return QCOW2_OL_INACTIVE_L1;
2710             }
2711         }
2712     }
2713 
2714     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2715         for (i = 0; i < s->l1_size; i++) {
2716             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2717                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2718                 s->cluster_size)) {
2719                 return QCOW2_OL_ACTIVE_L2;
2720             }
2721         }
2722     }
2723 
2724     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2725         unsigned last_entry = s->max_refcount_table_index;
2726         assert(last_entry < s->refcount_table_size);
2727         assert(last_entry + 1 == s->refcount_table_size ||
2728                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2729         for (i = 0; i <= last_entry; i++) {
2730             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2731                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2732                 s->cluster_size)) {
2733                 return QCOW2_OL_REFCOUNT_BLOCK;
2734             }
2735         }
2736     }
2737 
2738     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2739         for (i = 0; i < s->nb_snapshots; i++) {
2740             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2741             uint32_t l1_sz  = s->snapshots[i].l1_size;
2742             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2743             uint64_t *l1;
2744             int ret;
2745 
2746             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2747                                        QCOW_MAX_L1_SIZE, "", NULL);
2748             if (ret < 0) {
2749                 return ret;
2750             }
2751 
2752             l1 = g_try_malloc(l1_sz2);
2753 
2754             if (l1_sz2 && l1 == NULL) {
2755                 return -ENOMEM;
2756             }
2757 
2758             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2759             if (ret < 0) {
2760                 g_free(l1);
2761                 return ret;
2762             }
2763 
2764             for (j = 0; j < l1_sz; j++) {
2765                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2766                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2767                     g_free(l1);
2768                     return QCOW2_OL_INACTIVE_L2;
2769                 }
2770             }
2771 
2772             g_free(l1);
2773         }
2774     }
2775 
2776     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2777         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2778     {
2779         if (overlaps_with(s->bitmap_directory_offset,
2780                           s->bitmap_directory_size))
2781         {
2782             return QCOW2_OL_BITMAP_DIRECTORY;
2783         }
2784     }
2785 
2786     return 0;
2787 }
2788 
2789 static const char *metadata_ol_names[] = {
2790     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2791     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2792     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2793     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2794     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2795     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2796     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2797     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2798     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2799 };
2800 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2801 
2802 /*
2803  * First performs a check for metadata overlaps (through
2804  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2805  * while performing a check), that value is returned. If an impending overlap
2806  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2807  * and -EIO returned.
2808  *
2809  * Returns 0 if there were neither overlaps nor errors while checking for
2810  * overlaps; or a negative value (-errno) on error.
2811  */
2812 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2813                                   int64_t size, bool data_file)
2814 {
2815     int ret;
2816 
2817     if (data_file && has_data_file(bs)) {
2818         return 0;
2819     }
2820 
2821     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2822     if (ret < 0) {
2823         return ret;
2824     } else if (ret > 0) {
2825         int metadata_ol_bitnr = ctz32(ret);
2826         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2827 
2828         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2829                                 "write on metadata (overlaps with %s)",
2830                                 metadata_ol_names[metadata_ol_bitnr]);
2831         return -EIO;
2832     }
2833 
2834     return 0;
2835 }
2836 
2837 /* A pointer to a function of this type is given to walk_over_reftable(). That
2838  * function will create refblocks and pass them to a RefblockFinishOp once they
2839  * are completed (@refblock). @refblock_empty is set if the refblock is
2840  * completely empty.
2841  *
2842  * Along with the refblock, a corresponding reftable entry is passed, in the
2843  * reftable @reftable (which may be reallocated) at @reftable_index.
2844  *
2845  * @allocated should be set to true if a new cluster has been allocated.
2846  */
2847 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2848                                uint64_t reftable_index, uint64_t *reftable_size,
2849                                void *refblock, bool refblock_empty,
2850                                bool *allocated, Error **errp);
2851 
2852 /**
2853  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2854  * it is not empty) and inserts its offset into the new reftable. The size of
2855  * this new reftable is increased as required.
2856  */
2857 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2858                           uint64_t reftable_index, uint64_t *reftable_size,
2859                           void *refblock, bool refblock_empty, bool *allocated,
2860                           Error **errp)
2861 {
2862     BDRVQcow2State *s = bs->opaque;
2863     int64_t offset;
2864 
2865     if (!refblock_empty && reftable_index >= *reftable_size) {
2866         uint64_t *new_reftable;
2867         uint64_t new_reftable_size;
2868 
2869         new_reftable_size = ROUND_UP(reftable_index + 1,
2870                                      s->cluster_size / sizeof(uint64_t));
2871         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2872             error_setg(errp,
2873                        "This operation would make the refcount table grow "
2874                        "beyond the maximum size supported by QEMU, aborting");
2875             return -ENOTSUP;
2876         }
2877 
2878         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2879                                                 sizeof(uint64_t));
2880         if (!new_reftable) {
2881             error_setg(errp, "Failed to increase reftable buffer size");
2882             return -ENOMEM;
2883         }
2884 
2885         memset(new_reftable + *reftable_size, 0,
2886                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2887 
2888         *reftable      = new_reftable;
2889         *reftable_size = new_reftable_size;
2890     }
2891 
2892     if (!refblock_empty && !(*reftable)[reftable_index]) {
2893         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2894         if (offset < 0) {
2895             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2896             return offset;
2897         }
2898         (*reftable)[reftable_index] = offset;
2899         *allocated = true;
2900     }
2901 
2902     return 0;
2903 }
2904 
2905 /**
2906  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2907  * offset specified by the new reftable's entry. It does not modify the new
2908  * reftable or change any refcounts.
2909  */
2910 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2911                           uint64_t reftable_index, uint64_t *reftable_size,
2912                           void *refblock, bool refblock_empty, bool *allocated,
2913                           Error **errp)
2914 {
2915     BDRVQcow2State *s = bs->opaque;
2916     int64_t offset;
2917     int ret;
2918 
2919     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2920         offset = (*reftable)[reftable_index];
2921 
2922         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
2923                                             false);
2924         if (ret < 0) {
2925             error_setg_errno(errp, -ret, "Overlap check failed");
2926             return ret;
2927         }
2928 
2929         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2930         if (ret < 0) {
2931             error_setg_errno(errp, -ret, "Failed to write refblock");
2932             return ret;
2933         }
2934     } else {
2935         assert(refblock_empty);
2936     }
2937 
2938     return 0;
2939 }
2940 
2941 /**
2942  * This function walks over the existing reftable and every referenced refblock;
2943  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2944  * create an equal new entry in the passed @new_refblock. Once that
2945  * @new_refblock is completely filled, @operation will be called.
2946  *
2947  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2948  * @index is the index of the walk_over_reftable() calls and @total is the total
2949  * number of walk_over_reftable() calls per amend operation. Both are used for
2950  * calculating the parameters for the status callback.
2951  *
2952  * @allocated is set to true if a new cluster has been allocated.
2953  */
2954 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2955                               uint64_t *new_reftable_index,
2956                               uint64_t *new_reftable_size,
2957                               void *new_refblock, int new_refblock_size,
2958                               int new_refcount_bits,
2959                               RefblockFinishOp *operation, bool *allocated,
2960                               Qcow2SetRefcountFunc *new_set_refcount,
2961                               BlockDriverAmendStatusCB *status_cb,
2962                               void *cb_opaque, int index, int total,
2963                               Error **errp)
2964 {
2965     BDRVQcow2State *s = bs->opaque;
2966     uint64_t reftable_index;
2967     bool new_refblock_empty = true;
2968     int refblock_index;
2969     int new_refblock_index = 0;
2970     int ret;
2971 
2972     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2973          reftable_index++)
2974     {
2975         uint64_t refblock_offset = s->refcount_table[reftable_index]
2976                                  & REFT_OFFSET_MASK;
2977 
2978         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2979                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2980 
2981         if (refblock_offset) {
2982             void *refblock;
2983 
2984             if (offset_into_cluster(s, refblock_offset)) {
2985                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2986                                         PRIx64 " unaligned (reftable index: %#"
2987                                         PRIx64 ")", refblock_offset,
2988                                         reftable_index);
2989                 error_setg(errp,
2990                            "Image is corrupt (unaligned refblock offset)");
2991                 return -EIO;
2992             }
2993 
2994             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2995                                   &refblock);
2996             if (ret < 0) {
2997                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2998                 return ret;
2999             }
3000 
3001             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3002                  refblock_index++)
3003             {
3004                 uint64_t refcount;
3005 
3006                 if (new_refblock_index >= new_refblock_size) {
3007                     /* new_refblock is now complete */
3008                     ret = operation(bs, new_reftable, *new_reftable_index,
3009                                     new_reftable_size, new_refblock,
3010                                     new_refblock_empty, allocated, errp);
3011                     if (ret < 0) {
3012                         qcow2_cache_put(s->refcount_block_cache, &refblock);
3013                         return ret;
3014                     }
3015 
3016                     (*new_reftable_index)++;
3017                     new_refblock_index = 0;
3018                     new_refblock_empty = true;
3019                 }
3020 
3021                 refcount = s->get_refcount(refblock, refblock_index);
3022                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3023                     uint64_t offset;
3024 
3025                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3026 
3027                     offset = ((reftable_index << s->refcount_block_bits)
3028                               + refblock_index) << s->cluster_bits;
3029 
3030                     error_setg(errp, "Cannot decrease refcount entry width to "
3031                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3032                                "refcount of %" PRIu64, new_refcount_bits,
3033                                offset, refcount);
3034                     return -EINVAL;
3035                 }
3036 
3037                 if (new_set_refcount) {
3038                     new_set_refcount(new_refblock, new_refblock_index++,
3039                                      refcount);
3040                 } else {
3041                     new_refblock_index++;
3042                 }
3043                 new_refblock_empty = new_refblock_empty && refcount == 0;
3044             }
3045 
3046             qcow2_cache_put(s->refcount_block_cache, &refblock);
3047         } else {
3048             /* No refblock means every refcount is 0 */
3049             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3050                  refblock_index++)
3051             {
3052                 if (new_refblock_index >= new_refblock_size) {
3053                     /* new_refblock is now complete */
3054                     ret = operation(bs, new_reftable, *new_reftable_index,
3055                                     new_reftable_size, new_refblock,
3056                                     new_refblock_empty, allocated, errp);
3057                     if (ret < 0) {
3058                         return ret;
3059                     }
3060 
3061                     (*new_reftable_index)++;
3062                     new_refblock_index = 0;
3063                     new_refblock_empty = true;
3064                 }
3065 
3066                 if (new_set_refcount) {
3067                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3068                 } else {
3069                     new_refblock_index++;
3070                 }
3071             }
3072         }
3073     }
3074 
3075     if (new_refblock_index > 0) {
3076         /* Complete the potentially existing partially filled final refblock */
3077         if (new_set_refcount) {
3078             for (; new_refblock_index < new_refblock_size;
3079                  new_refblock_index++)
3080             {
3081                 new_set_refcount(new_refblock, new_refblock_index, 0);
3082             }
3083         }
3084 
3085         ret = operation(bs, new_reftable, *new_reftable_index,
3086                         new_reftable_size, new_refblock, new_refblock_empty,
3087                         allocated, errp);
3088         if (ret < 0) {
3089             return ret;
3090         }
3091 
3092         (*new_reftable_index)++;
3093     }
3094 
3095     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3096               (uint64_t)total * s->refcount_table_size, cb_opaque);
3097 
3098     return 0;
3099 }
3100 
3101 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3102                                 BlockDriverAmendStatusCB *status_cb,
3103                                 void *cb_opaque, Error **errp)
3104 {
3105     BDRVQcow2State *s = bs->opaque;
3106     Qcow2GetRefcountFunc *new_get_refcount;
3107     Qcow2SetRefcountFunc *new_set_refcount;
3108     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3109     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3110     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3111     uint64_t new_reftable_index = 0;
3112     uint64_t i;
3113     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3114     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3115     int old_refcount_order;
3116     int walk_index = 0;
3117     int ret;
3118     bool new_allocation;
3119 
3120     assert(s->qcow_version >= 3);
3121     assert(refcount_order >= 0 && refcount_order <= 6);
3122 
3123     /* see qcow2_open() */
3124     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3125 
3126     new_get_refcount = get_refcount_funcs[refcount_order];
3127     new_set_refcount = set_refcount_funcs[refcount_order];
3128 
3129 
3130     do {
3131         int total_walks;
3132 
3133         new_allocation = false;
3134 
3135         /* At least we have to do this walk and the one which writes the
3136          * refblocks; also, at least we have to do this loop here at least
3137          * twice (normally), first to do the allocations, and second to
3138          * determine that everything is correctly allocated, this then makes
3139          * three walks in total */
3140         total_walks = MAX(walk_index + 2, 3);
3141 
3142         /* First, allocate the structures so they are present in the refcount
3143          * structures */
3144         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3145                                  &new_reftable_size, NULL, new_refblock_size,
3146                                  new_refcount_bits, &alloc_refblock,
3147                                  &new_allocation, NULL, status_cb, cb_opaque,
3148                                  walk_index++, total_walks, errp);
3149         if (ret < 0) {
3150             goto done;
3151         }
3152 
3153         new_reftable_index = 0;
3154 
3155         if (new_allocation) {
3156             if (new_reftable_offset) {
3157                 qcow2_free_clusters(bs, new_reftable_offset,
3158                                     allocated_reftable_size * sizeof(uint64_t),
3159                                     QCOW2_DISCARD_NEVER);
3160             }
3161 
3162             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3163                                                            sizeof(uint64_t));
3164             if (new_reftable_offset < 0) {
3165                 error_setg_errno(errp, -new_reftable_offset,
3166                                  "Failed to allocate the new reftable");
3167                 ret = new_reftable_offset;
3168                 goto done;
3169             }
3170             allocated_reftable_size = new_reftable_size;
3171         }
3172     } while (new_allocation);
3173 
3174     /* Second, write the new refblocks */
3175     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3176                              &new_reftable_size, new_refblock,
3177                              new_refblock_size, new_refcount_bits,
3178                              &flush_refblock, &new_allocation, new_set_refcount,
3179                              status_cb, cb_opaque, walk_index, walk_index + 1,
3180                              errp);
3181     if (ret < 0) {
3182         goto done;
3183     }
3184     assert(!new_allocation);
3185 
3186 
3187     /* Write the new reftable */
3188     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3189                                         new_reftable_size * sizeof(uint64_t),
3190                                         false);
3191     if (ret < 0) {
3192         error_setg_errno(errp, -ret, "Overlap check failed");
3193         goto done;
3194     }
3195 
3196     for (i = 0; i < new_reftable_size; i++) {
3197         cpu_to_be64s(&new_reftable[i]);
3198     }
3199 
3200     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3201                       new_reftable_size * sizeof(uint64_t));
3202 
3203     for (i = 0; i < new_reftable_size; i++) {
3204         be64_to_cpus(&new_reftable[i]);
3205     }
3206 
3207     if (ret < 0) {
3208         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3209         goto done;
3210     }
3211 
3212 
3213     /* Empty the refcount cache */
3214     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3215     if (ret < 0) {
3216         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3217         goto done;
3218     }
3219 
3220     /* Update the image header to point to the new reftable; this only updates
3221      * the fields which are relevant to qcow2_update_header(); other fields
3222      * such as s->refcount_table or s->refcount_bits stay stale for now
3223      * (because we have to restore everything if qcow2_update_header() fails) */
3224     old_refcount_order  = s->refcount_order;
3225     old_reftable_size   = s->refcount_table_size;
3226     old_reftable_offset = s->refcount_table_offset;
3227 
3228     s->refcount_order        = refcount_order;
3229     s->refcount_table_size   = new_reftable_size;
3230     s->refcount_table_offset = new_reftable_offset;
3231 
3232     ret = qcow2_update_header(bs);
3233     if (ret < 0) {
3234         s->refcount_order        = old_refcount_order;
3235         s->refcount_table_size   = old_reftable_size;
3236         s->refcount_table_offset = old_reftable_offset;
3237         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3238         goto done;
3239     }
3240 
3241     /* Now update the rest of the in-memory information */
3242     old_reftable = s->refcount_table;
3243     s->refcount_table = new_reftable;
3244     update_max_refcount_table_index(s);
3245 
3246     s->refcount_bits = 1 << refcount_order;
3247     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3248     s->refcount_max += s->refcount_max - 1;
3249 
3250     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3251     s->refcount_block_size = 1 << s->refcount_block_bits;
3252 
3253     s->get_refcount = new_get_refcount;
3254     s->set_refcount = new_set_refcount;
3255 
3256     /* For cleaning up all old refblocks and the old reftable below the "done"
3257      * label */
3258     new_reftable        = old_reftable;
3259     new_reftable_size   = old_reftable_size;
3260     new_reftable_offset = old_reftable_offset;
3261 
3262 done:
3263     if (new_reftable) {
3264         /* On success, new_reftable actually points to the old reftable (and
3265          * new_reftable_size is the old reftable's size); but that is just
3266          * fine */
3267         for (i = 0; i < new_reftable_size; i++) {
3268             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3269             if (offset) {
3270                 qcow2_free_clusters(bs, offset, s->cluster_size,
3271                                     QCOW2_DISCARD_OTHER);
3272             }
3273         }
3274         g_free(new_reftable);
3275 
3276         if (new_reftable_offset > 0) {
3277             qcow2_free_clusters(bs, new_reftable_offset,
3278                                 new_reftable_size * sizeof(uint64_t),
3279                                 QCOW2_DISCARD_OTHER);
3280         }
3281     }
3282 
3283     qemu_vfree(new_refblock);
3284     return ret;
3285 }
3286 
3287 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3288 {
3289     BDRVQcow2State *s = bs->opaque;
3290     uint32_t index = offset_to_reftable_index(s, offset);
3291     int64_t covering_refblock_offset = 0;
3292 
3293     if (index < s->refcount_table_size) {
3294         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3295     }
3296     if (!covering_refblock_offset) {
3297         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3298                                 "not covered by the refcount structures",
3299                                 offset);
3300         return -EIO;
3301     }
3302 
3303     return covering_refblock_offset;
3304 }
3305 
3306 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3307                                         uint64_t discard_block_offs)
3308 {
3309     BDRVQcow2State *s = bs->opaque;
3310     int64_t refblock_offs;
3311     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3312     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3313     void *refblock;
3314     int ret;
3315 
3316     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3317     if (refblock_offs < 0) {
3318         return refblock_offs;
3319     }
3320 
3321     assert(discard_block_offs != 0);
3322 
3323     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3324                           &refblock);
3325     if (ret < 0) {
3326         return ret;
3327     }
3328 
3329     if (s->get_refcount(refblock, block_index) != 1) {
3330         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3331                                 " refblock offset %#" PRIx64
3332                                 ", reftable index %u"
3333                                 ", block offset %#" PRIx64
3334                                 ", refcount %#" PRIx64,
3335                                 refblock_offs,
3336                                 offset_to_reftable_index(s, discard_block_offs),
3337                                 discard_block_offs,
3338                                 s->get_refcount(refblock, block_index));
3339         qcow2_cache_put(s->refcount_block_cache, &refblock);
3340         return -EINVAL;
3341     }
3342     s->set_refcount(refblock, block_index, 0);
3343 
3344     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3345 
3346     qcow2_cache_put(s->refcount_block_cache, &refblock);
3347 
3348     if (cluster_index < s->free_cluster_index) {
3349         s->free_cluster_index = cluster_index;
3350     }
3351 
3352     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3353                                            discard_block_offs);
3354     if (refblock) {
3355         /* discard refblock from the cache if refblock is cached */
3356         qcow2_cache_discard(s->refcount_block_cache, refblock);
3357     }
3358     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3359 
3360     return 0;
3361 }
3362 
3363 int qcow2_shrink_reftable(BlockDriverState *bs)
3364 {
3365     BDRVQcow2State *s = bs->opaque;
3366     uint64_t *reftable_tmp =
3367         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3368     int i, ret;
3369 
3370     for (i = 0; i < s->refcount_table_size; i++) {
3371         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3372         void *refblock;
3373         bool unused_block;
3374 
3375         if (refblock_offs == 0) {
3376             reftable_tmp[i] = 0;
3377             continue;
3378         }
3379         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3380                               &refblock);
3381         if (ret < 0) {
3382             goto out;
3383         }
3384 
3385         /* the refblock has own reference */
3386         if (i == offset_to_reftable_index(s, refblock_offs)) {
3387             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3388                                    (s->refcount_block_size - 1);
3389             uint64_t refcount = s->get_refcount(refblock, block_index);
3390 
3391             s->set_refcount(refblock, block_index, 0);
3392 
3393             unused_block = buffer_is_zero(refblock, s->cluster_size);
3394 
3395             s->set_refcount(refblock, block_index, refcount);
3396         } else {
3397             unused_block = buffer_is_zero(refblock, s->cluster_size);
3398         }
3399         qcow2_cache_put(s->refcount_block_cache, &refblock);
3400 
3401         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3402     }
3403 
3404     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3405                            s->refcount_table_size * sizeof(uint64_t));
3406     /*
3407      * If the write in the reftable failed the image may contain a partially
3408      * overwritten reftable. In this case it would be better to clear the
3409      * reftable in memory to avoid possible image corruption.
3410      */
3411     for (i = 0; i < s->refcount_table_size; i++) {
3412         if (s->refcount_table[i] && !reftable_tmp[i]) {
3413             if (ret == 0) {
3414                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3415                                                        REFT_OFFSET_MASK);
3416             }
3417             s->refcount_table[i] = 0;
3418         }
3419     }
3420 
3421     if (!s->cache_discards) {
3422         qcow2_process_discards(bs, ret);
3423     }
3424 
3425 out:
3426     g_free(reftable_tmp);
3427     return ret;
3428 }
3429 
3430 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3431 {
3432     BDRVQcow2State *s = bs->opaque;
3433     int64_t i;
3434 
3435     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3436         uint64_t refcount;
3437         int ret = qcow2_get_refcount(bs, i, &refcount);
3438         if (ret < 0) {
3439             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3440                     i, strerror(-ret));
3441             return ret;
3442         }
3443         if (refcount > 0) {
3444             return i;
3445         }
3446     }
3447     qcow2_signal_corruption(bs, true, -1, -1,
3448                             "There are no references in the refcount table.");
3449     return -EIO;
3450 }
3451 
3452 int qcow2_detect_metadata_preallocation(BlockDriverState *bs)
3453 {
3454     BDRVQcow2State *s = bs->opaque;
3455     int64_t i, end_cluster, cluster_count = 0, threshold;
3456     int64_t file_length, real_allocation, real_clusters;
3457 
3458     qemu_co_mutex_assert_locked(&s->lock);
3459 
3460     file_length = bdrv_getlength(bs->file->bs);
3461     if (file_length < 0) {
3462         return file_length;
3463     }
3464 
3465     real_allocation = bdrv_get_allocated_file_size(bs->file->bs);
3466     if (real_allocation < 0) {
3467         return real_allocation;
3468     }
3469 
3470     real_clusters = real_allocation / s->cluster_size;
3471     threshold = MAX(real_clusters * 10 / 9, real_clusters + 2);
3472 
3473     end_cluster = size_to_clusters(s, file_length);
3474     for (i = 0; i < end_cluster && cluster_count < threshold; i++) {
3475         uint64_t refcount;
3476         int ret = qcow2_get_refcount(bs, i, &refcount);
3477         if (ret < 0) {
3478             return ret;
3479         }
3480         cluster_count += !!refcount;
3481     }
3482 
3483     return cluster_count >= threshold;
3484 }
3485