xref: /openbmc/qemu/block/qcow2-cluster.c (revision 1770b2f2d3d6fe8f1e2d61692692264cac44340d)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "block/block-io.h"
29 #include "qapi/error.h"
30 #include "qcow2.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
33 #include "trace.h"
34 
35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
36                                        uint64_t exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size, i, ret;
40 
41     if (exact_size >= s->l1_size) {
42         return 0;
43     }
44 
45     new_l1_size = exact_size;
46 
47 #ifdef DEBUG_ALLOC2
48     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
49 #endif
50 
51     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
52     ret = bdrv_co_pwrite_zeroes(bs->file,
53                                 s->l1_table_offset + new_l1_size * L1E_SIZE,
54                                 (s->l1_size - new_l1_size) * L1E_SIZE, 0);
55     if (ret < 0) {
56         goto fail;
57     }
58 
59     ret = bdrv_co_flush(bs->file->bs);
60     if (ret < 0) {
61         goto fail;
62     }
63 
64     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
65     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
66         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
67             continue;
68         }
69         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
70                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
71         s->l1_table[i] = 0;
72     }
73     return 0;
74 
75 fail:
76     /*
77      * If the write in the l1_table failed the image may contain a partially
78      * overwritten l1_table. In this case it would be better to clear the
79      * l1_table in memory to avoid possible image corruption.
80      */
81     memset(s->l1_table + new_l1_size, 0,
82            (s->l1_size - new_l1_size) * L1E_SIZE);
83     return ret;
84 }
85 
86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
87                         bool exact_size)
88 {
89     BDRVQcow2State *s = bs->opaque;
90     int new_l1_size2, ret, i;
91     uint64_t *new_l1_table;
92     int64_t old_l1_table_offset, old_l1_size;
93     int64_t new_l1_table_offset, new_l1_size;
94     uint8_t data[12];
95 
96     if (min_size <= s->l1_size)
97         return 0;
98 
99     /* Do a sanity check on min_size before trying to calculate new_l1_size
100      * (this prevents overflows during the while loop for the calculation of
101      * new_l1_size) */
102     if (min_size > INT_MAX / L1E_SIZE) {
103         return -EFBIG;
104     }
105 
106     if (exact_size) {
107         new_l1_size = min_size;
108     } else {
109         /* Bump size up to reduce the number of times we have to grow */
110         new_l1_size = s->l1_size;
111         if (new_l1_size == 0) {
112             new_l1_size = 1;
113         }
114         while (min_size > new_l1_size) {
115             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
116         }
117     }
118 
119     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
120     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
121         return -EFBIG;
122     }
123 
124 #ifdef DEBUG_ALLOC2
125     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
126             s->l1_size, new_l1_size);
127 #endif
128 
129     new_l1_size2 = L1E_SIZE * new_l1_size;
130     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
131     if (new_l1_table == NULL) {
132         return -ENOMEM;
133     }
134     memset(new_l1_table, 0, new_l1_size2);
135 
136     if (s->l1_size) {
137         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
138     }
139 
140     /* write new table (align to cluster) */
141     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143     if (new_l1_table_offset < 0) {
144         qemu_vfree(new_l1_table);
145         return new_l1_table_offset;
146     }
147 
148     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149     if (ret < 0) {
150         goto fail;
151     }
152 
153     /* the L1 position has not yet been updated, so these clusters must
154      * indeed be completely free */
155     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156                                         new_l1_size2, false);
157     if (ret < 0) {
158         goto fail;
159     }
160 
161     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162     for(i = 0; i < s->l1_size; i++)
163         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
165                            new_l1_table, 0);
166     if (ret < 0)
167         goto fail;
168     for(i = 0; i < s->l1_size; i++)
169         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170 
171     /* set new table */
172     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173     stl_be_p(data, new_l1_size);
174     stq_be_p(data + 4, new_l1_table_offset);
175     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176                            sizeof(data), data, 0);
177     if (ret < 0) {
178         goto fail;
179     }
180     qemu_vfree(s->l1_table);
181     old_l1_table_offset = s->l1_table_offset;
182     s->l1_table_offset = new_l1_table_offset;
183     s->l1_table = new_l1_table;
184     old_l1_size = s->l1_size;
185     s->l1_size = new_l1_size;
186     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
187                         QCOW2_DISCARD_OTHER);
188     return 0;
189  fail:
190     qemu_vfree(new_l1_table);
191     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192                         QCOW2_DISCARD_OTHER);
193     return ret;
194 }
195 
196 /*
197  * l2_load
198  *
199  * @bs: The BlockDriverState
200  * @offset: A guest offset, used to calculate what slice of the L2
201  *          table to load.
202  * @l2_offset: Offset to the L2 table in the image file.
203  * @l2_slice: Location to store the pointer to the L2 slice.
204  *
205  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206  * that are loaded by the qcow2 cache). If the slice is in the cache,
207  * the cache is used; otherwise the L2 slice is loaded from the image
208  * file.
209  */
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211                    uint64_t l2_offset, uint64_t **l2_slice)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     int start_of_slice = l2_entry_size(s) *
215         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
216 
217     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218                            (void **)l2_slice);
219 }
220 
221 /*
222  * Writes an L1 entry to disk (note that depending on the alignment
223  * requirements this function may write more that just one entry in
224  * order to prevent bdrv_pwrite from performing a read-modify-write)
225  */
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
227 {
228     BDRVQcow2State *s = bs->opaque;
229     int l1_start_index;
230     int i, ret;
231     int bufsize = MAX(L1E_SIZE,
232                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
233     int nentries = bufsize / L1E_SIZE;
234     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
235 
236     if (buf == NULL) {
237         return -ENOMEM;
238     }
239 
240     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
241     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
242         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
243     }
244 
245     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
246             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
247     if (ret < 0) {
248         return ret;
249     }
250 
251     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
252     ret = bdrv_pwrite_sync(bs->file,
253                            s->l1_table_offset + L1E_SIZE * l1_start_index,
254                            bufsize, buf, 0);
255     if (ret < 0) {
256         return ret;
257     }
258 
259     return 0;
260 }
261 
262 /*
263  * l2_allocate
264  *
265  * Allocate a new l2 entry in the file. If l1_index points to an already
266  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
267  * table) copy the contents of the old L2 table into the newly allocated one.
268  * Otherwise the new table is initialized with zeros.
269  *
270  */
271 
272 static int l2_allocate(BlockDriverState *bs, int l1_index)
273 {
274     BDRVQcow2State *s = bs->opaque;
275     uint64_t old_l2_offset;
276     uint64_t *l2_slice = NULL;
277     unsigned slice, slice_size2, n_slices;
278     int64_t l2_offset;
279     int ret;
280 
281     old_l2_offset = s->l1_table[l1_index];
282 
283     trace_qcow2_l2_allocate(bs, l1_index);
284 
285     /* allocate a new l2 entry */
286 
287     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
288     if (l2_offset < 0) {
289         ret = l2_offset;
290         goto fail;
291     }
292 
293     /* The offset must fit in the offset field of the L1 table entry */
294     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
295 
296     /* If we're allocating the table at offset 0 then something is wrong */
297     if (l2_offset == 0) {
298         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
299                                 "allocation of L2 table at offset 0");
300         ret = -EIO;
301         goto fail;
302     }
303 
304     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
305     if (ret < 0) {
306         goto fail;
307     }
308 
309     /* allocate a new entry in the l2 cache */
310 
311     slice_size2 = s->l2_slice_size * l2_entry_size(s);
312     n_slices = s->cluster_size / slice_size2;
313 
314     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
315     for (slice = 0; slice < n_slices; slice++) {
316         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
317                                     l2_offset + slice * slice_size2,
318                                     (void **) &l2_slice);
319         if (ret < 0) {
320             goto fail;
321         }
322 
323         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
324             /* if there was no old l2 table, clear the new slice */
325             memset(l2_slice, 0, slice_size2);
326         } else {
327             uint64_t *old_slice;
328             uint64_t old_l2_slice_offset =
329                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
330 
331             /* if there was an old l2 table, read a slice from the disk */
332             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
333             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
334                                   (void **) &old_slice);
335             if (ret < 0) {
336                 goto fail;
337             }
338 
339             memcpy(l2_slice, old_slice, slice_size2);
340 
341             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
342         }
343 
344         /* write the l2 slice to the file */
345         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
346 
347         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
348         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
349         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
350     }
351 
352     ret = qcow2_cache_flush(bs, s->l2_table_cache);
353     if (ret < 0) {
354         goto fail;
355     }
356 
357     /* update the L1 entry */
358     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
359     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
360     ret = qcow2_write_l1_entry(bs, l1_index);
361     if (ret < 0) {
362         goto fail;
363     }
364 
365     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
366     return 0;
367 
368 fail:
369     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
370     if (l2_slice != NULL) {
371         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
372     }
373     s->l1_table[l1_index] = old_l2_offset;
374     if (l2_offset > 0) {
375         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
376                             QCOW2_DISCARD_ALWAYS);
377     }
378     return ret;
379 }
380 
381 /*
382  * For a given L2 entry, count the number of contiguous subclusters of
383  * the same type starting from @sc_from. Compressed clusters are
384  * treated as if they were divided into subclusters of size
385  * s->subcluster_size.
386  *
387  * Return the number of contiguous subclusters and set @type to the
388  * subcluster type.
389  *
390  * If the L2 entry is invalid return -errno and set @type to
391  * QCOW2_SUBCLUSTER_INVALID.
392  */
393 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
394                                            uint64_t l2_entry,
395                                            uint64_t l2_bitmap,
396                                            unsigned sc_from,
397                                            QCow2SubclusterType *type)
398 {
399     BDRVQcow2State *s = bs->opaque;
400     uint32_t val;
401 
402     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
403 
404     if (*type == QCOW2_SUBCLUSTER_INVALID) {
405         return -EINVAL;
406     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
407         return s->subclusters_per_cluster - sc_from;
408     }
409 
410     switch (*type) {
411     case QCOW2_SUBCLUSTER_NORMAL:
412         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
413         return cto32(val) - sc_from;
414 
415     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
416     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
417         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
418         return cto32(val) - sc_from;
419 
420     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
421     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
422         val = ((l2_bitmap >> 32) | l2_bitmap)
423             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
424         return ctz32(val) - sc_from;
425 
426     default:
427         g_assert_not_reached();
428     }
429 }
430 
431 /*
432  * Return the number of contiguous subclusters of the exact same type
433  * in a given L2 slice, starting from cluster @l2_index, subcluster
434  * @sc_index. Allocated subclusters are required to be contiguous in
435  * the image file.
436  * At most @nb_clusters are checked (note that this means clusters,
437  * not subclusters).
438  * Compressed clusters are always processed one by one but for the
439  * purpose of this count they are treated as if they were divided into
440  * subclusters of size s->subcluster_size.
441  * On failure return -errno and update @l2_index to point to the
442  * invalid entry.
443  */
444 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
445                                         unsigned sc_index, uint64_t *l2_slice,
446                                         unsigned *l2_index)
447 {
448     BDRVQcow2State *s = bs->opaque;
449     int i, count = 0;
450     bool check_offset = false;
451     uint64_t expected_offset = 0;
452     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
453 
454     assert(*l2_index + nb_clusters <= s->l2_slice_size);
455 
456     for (i = 0; i < nb_clusters; i++) {
457         unsigned first_sc = (i == 0) ? sc_index : 0;
458         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
459         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
460         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
461                                                   first_sc, &type);
462         if (ret < 0) {
463             *l2_index += i; /* Point to the invalid entry */
464             return -EIO;
465         }
466         if (i == 0) {
467             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
468                 /* Compressed clusters are always processed one by one */
469                 return ret;
470             }
471             expected_type = type;
472             expected_offset = l2_entry & L2E_OFFSET_MASK;
473             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
474                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
475                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
476         } else if (type != expected_type) {
477             break;
478         } else if (check_offset) {
479             expected_offset += s->cluster_size;
480             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
481                 break;
482             }
483         }
484         count += ret;
485         /* Stop if there are type changes before the end of the cluster */
486         if (first_sc + ret < s->subclusters_per_cluster) {
487             break;
488         }
489     }
490 
491     return count;
492 }
493 
494 static int coroutine_fn GRAPH_RDLOCK
495 do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset,
496                     unsigned offset_in_cluster, QEMUIOVector *qiov)
497 {
498     int ret;
499 
500     if (qiov->size == 0) {
501         return 0;
502     }
503 
504     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
505 
506     if (!bs->drv) {
507         return -ENOMEDIUM;
508     }
509 
510     /*
511      * We never deal with requests that don't satisfy
512      * bdrv_check_qiov_request(), and aligning requests to clusters never
513      * breaks this condition. So, do some assertions before calling
514      * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
515      */
516     assert(src_cluster_offset <= INT64_MAX);
517     assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
518     /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
519     assert((uint64_t)qiov->size <= INT64_MAX);
520     bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
521                             qiov, 0, &error_abort);
522     /*
523      * Call .bdrv_co_readv() directly instead of using the public block-layer
524      * interface.  This avoids double I/O throttling and request tracking,
525      * which can lead to deadlock when block layer copy-on-read is enabled.
526      */
527     ret = bs->drv->bdrv_co_preadv_part(bs,
528                                        src_cluster_offset + offset_in_cluster,
529                                        qiov->size, qiov, 0, 0);
530     if (ret < 0) {
531         return ret;
532     }
533 
534     return 0;
535 }
536 
537 static int coroutine_fn GRAPH_RDLOCK
538 do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset,
539                      unsigned offset_in_cluster, QEMUIOVector *qiov)
540 {
541     BDRVQcow2State *s = bs->opaque;
542     int ret;
543 
544     if (qiov->size == 0) {
545         return 0;
546     }
547 
548     ret = qcow2_pre_write_overlap_check(bs, 0,
549             cluster_offset + offset_in_cluster, qiov->size, true);
550     if (ret < 0) {
551         return ret;
552     }
553 
554     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
555     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
556                           qiov->size, qiov, 0);
557     if (ret < 0) {
558         return ret;
559     }
560 
561     return 0;
562 }
563 
564 
565 /*
566  * get_host_offset
567  *
568  * For a given offset of the virtual disk find the equivalent host
569  * offset in the qcow2 file and store it in *host_offset. Neither
570  * offset needs to be aligned to a cluster boundary.
571  *
572  * If the cluster is unallocated then *host_offset will be 0.
573  * If the cluster is compressed then *host_offset will contain the l2 entry.
574  *
575  * On entry, *bytes is the maximum number of contiguous bytes starting at
576  * offset that we are interested in.
577  *
578  * On exit, *bytes is the number of bytes starting at offset that have the same
579  * subcluster type and (if applicable) are stored contiguously in the image
580  * file. The subcluster type is stored in *subcluster_type.
581  * Compressed clusters are always processed one by one.
582  *
583  * Returns 0 on success, -errno in error cases.
584  */
585 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
586                           unsigned int *bytes, uint64_t *host_offset,
587                           QCow2SubclusterType *subcluster_type)
588 {
589     BDRVQcow2State *s = bs->opaque;
590     unsigned int l2_index, sc_index;
591     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
592     int sc;
593     unsigned int offset_in_cluster;
594     uint64_t bytes_available, bytes_needed, nb_clusters;
595     QCow2SubclusterType type;
596     int ret;
597 
598     offset_in_cluster = offset_into_cluster(s, offset);
599     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
600 
601     /* compute how many bytes there are between the start of the cluster
602      * containing offset and the end of the l2 slice that contains
603      * the entry pointing to it */
604     bytes_available =
605         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
606         << s->cluster_bits;
607 
608     if (bytes_needed > bytes_available) {
609         bytes_needed = bytes_available;
610     }
611 
612     *host_offset = 0;
613 
614     /* seek to the l2 offset in the l1 table */
615 
616     l1_index = offset_to_l1_index(s, offset);
617     if (l1_index >= s->l1_size) {
618         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
619         goto out;
620     }
621 
622     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
623     if (!l2_offset) {
624         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
625         goto out;
626     }
627 
628     if (offset_into_cluster(s, l2_offset)) {
629         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
630                                 " unaligned (L1 index: %#" PRIx64 ")",
631                                 l2_offset, l1_index);
632         return -EIO;
633     }
634 
635     /* load the l2 slice in memory */
636 
637     ret = l2_load(bs, offset, l2_offset, &l2_slice);
638     if (ret < 0) {
639         return ret;
640     }
641 
642     /* find the cluster offset for the given disk offset */
643 
644     l2_index = offset_to_l2_slice_index(s, offset);
645     sc_index = offset_to_sc_index(s, offset);
646     l2_entry = get_l2_entry(s, l2_slice, l2_index);
647     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
648 
649     nb_clusters = size_to_clusters(s, bytes_needed);
650     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
651      * integers; the minimum cluster size is 512, so this assertion is always
652      * true */
653     assert(nb_clusters <= INT_MAX);
654 
655     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
656     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
657                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
658         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
659                                 " in pre-v3 image (L2 offset: %#" PRIx64
660                                 ", L2 index: %#x)", l2_offset, l2_index);
661         ret = -EIO;
662         goto fail;
663     }
664     switch (type) {
665     case QCOW2_SUBCLUSTER_INVALID:
666         break; /* This is handled by count_contiguous_subclusters() below */
667     case QCOW2_SUBCLUSTER_COMPRESSED:
668         if (has_data_file(bs)) {
669             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
670                                     "entry found in image with external data "
671                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
672                                     "%#x)", l2_offset, l2_index);
673             ret = -EIO;
674             goto fail;
675         }
676         *host_offset = l2_entry;
677         break;
678     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
679     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
680         break;
681     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
682     case QCOW2_SUBCLUSTER_NORMAL:
683     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
684         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
685         *host_offset = host_cluster_offset + offset_in_cluster;
686         if (offset_into_cluster(s, host_cluster_offset)) {
687             qcow2_signal_corruption(bs, true, -1, -1,
688                                     "Cluster allocation offset %#"
689                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
690                                     ", L2 index: %#x)", host_cluster_offset,
691                                     l2_offset, l2_index);
692             ret = -EIO;
693             goto fail;
694         }
695         if (has_data_file(bs) && *host_offset != offset) {
696             qcow2_signal_corruption(bs, true, -1, -1,
697                                     "External data file host cluster offset %#"
698                                     PRIx64 " does not match guest cluster "
699                                     "offset: %#" PRIx64
700                                     ", L2 index: %#x)", host_cluster_offset,
701                                     offset - offset_in_cluster, l2_index);
702             ret = -EIO;
703             goto fail;
704         }
705         break;
706     }
707     default:
708         abort();
709     }
710 
711     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
712                                       l2_slice, &l2_index);
713     if (sc < 0) {
714         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
715                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
716                                 l2_offset, l2_index);
717         ret = -EIO;
718         goto fail;
719     }
720     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
721 
722     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
723 
724 out:
725     if (bytes_available > bytes_needed) {
726         bytes_available = bytes_needed;
727     }
728 
729     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
730      * subtracting offset_in_cluster will therefore definitely yield something
731      * not exceeding UINT_MAX */
732     assert(bytes_available - offset_in_cluster <= UINT_MAX);
733     *bytes = bytes_available - offset_in_cluster;
734 
735     *subcluster_type = type;
736 
737     return 0;
738 
739 fail:
740     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
741     return ret;
742 }
743 
744 /*
745  * get_cluster_table
746  *
747  * for a given disk offset, load (and allocate if needed)
748  * the appropriate slice of its l2 table.
749  *
750  * the cluster index in the l2 slice is given to the caller.
751  *
752  * Returns 0 on success, -errno in failure case
753  */
754 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
755                              uint64_t **new_l2_slice,
756                              int *new_l2_index)
757 {
758     BDRVQcow2State *s = bs->opaque;
759     unsigned int l2_index;
760     uint64_t l1_index, l2_offset;
761     uint64_t *l2_slice = NULL;
762     int ret;
763 
764     /* seek to the l2 offset in the l1 table */
765 
766     l1_index = offset_to_l1_index(s, offset);
767     if (l1_index >= s->l1_size) {
768         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
769         if (ret < 0) {
770             return ret;
771         }
772     }
773 
774     assert(l1_index < s->l1_size);
775     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
776     if (offset_into_cluster(s, l2_offset)) {
777         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
778                                 " unaligned (L1 index: %#" PRIx64 ")",
779                                 l2_offset, l1_index);
780         return -EIO;
781     }
782 
783     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
784         /* First allocate a new L2 table (and do COW if needed) */
785         ret = l2_allocate(bs, l1_index);
786         if (ret < 0) {
787             return ret;
788         }
789 
790         /* Then decrease the refcount of the old table */
791         if (l2_offset) {
792             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
793                                 QCOW2_DISCARD_OTHER);
794         }
795 
796         /* Get the offset of the newly-allocated l2 table */
797         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
798         assert(offset_into_cluster(s, l2_offset) == 0);
799     }
800 
801     /* load the l2 slice in memory */
802     ret = l2_load(bs, offset, l2_offset, &l2_slice);
803     if (ret < 0) {
804         return ret;
805     }
806 
807     /* find the cluster offset for the given disk offset */
808 
809     l2_index = offset_to_l2_slice_index(s, offset);
810 
811     *new_l2_slice = l2_slice;
812     *new_l2_index = l2_index;
813 
814     return 0;
815 }
816 
817 /*
818  * alloc_compressed_cluster_offset
819  *
820  * For a given offset on the virtual disk, allocate a new compressed cluster
821  * and put the host offset of the cluster into *host_offset. If a cluster is
822  * already allocated at the offset, return an error.
823  *
824  * Return 0 on success and -errno in error cases
825  */
826 int coroutine_fn qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
827                                                        uint64_t offset,
828                                                        int compressed_size,
829                                                        uint64_t *host_offset)
830 {
831     BDRVQcow2State *s = bs->opaque;
832     int l2_index, ret;
833     uint64_t *l2_slice;
834     int64_t cluster_offset;
835     int nb_csectors;
836 
837     if (has_data_file(bs)) {
838         return 0;
839     }
840 
841     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
842     if (ret < 0) {
843         return ret;
844     }
845 
846     /* Compression can't overwrite anything. Fail if the cluster was already
847      * allocated. */
848     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
849     if (cluster_offset & L2E_OFFSET_MASK) {
850         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
851         return -EIO;
852     }
853 
854     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
855     if (cluster_offset < 0) {
856         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
857         return cluster_offset;
858     }
859 
860     nb_csectors =
861         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
862         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
863 
864     /* The offset and size must fit in their fields of the L2 table entry */
865     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
866     assert((nb_csectors & s->csize_mask) == nb_csectors);
867 
868     cluster_offset |= QCOW_OFLAG_COMPRESSED |
869                       ((uint64_t)nb_csectors << s->csize_shift);
870 
871     /* update L2 table */
872 
873     /* compressed clusters never have the copied flag */
874 
875     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
876     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
877     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
878     if (has_subclusters(s)) {
879         set_l2_bitmap(s, l2_slice, l2_index, 0);
880     }
881     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
882 
883     *host_offset = cluster_offset & s->cluster_offset_mask;
884     return 0;
885 }
886 
887 static int coroutine_fn GRAPH_RDLOCK
888 perform_cow(BlockDriverState *bs, QCowL2Meta *m)
889 {
890     BDRVQcow2State *s = bs->opaque;
891     Qcow2COWRegion *start = &m->cow_start;
892     Qcow2COWRegion *end = &m->cow_end;
893     unsigned buffer_size;
894     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
895     bool merge_reads;
896     uint8_t *start_buffer, *end_buffer;
897     QEMUIOVector qiov;
898     int ret;
899 
900     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
901     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
902     assert(start->offset + start->nb_bytes <= end->offset);
903 
904     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
905         return 0;
906     }
907 
908     /* If we have to read both the start and end COW regions and the
909      * middle region is not too large then perform just one read
910      * operation */
911     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
912     if (merge_reads) {
913         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
914     } else {
915         /* If we have to do two reads, add some padding in the middle
916          * if necessary to make sure that the end region is optimally
917          * aligned. */
918         size_t align = bdrv_opt_mem_align(bs);
919         assert(align > 0 && align <= UINT_MAX);
920         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
921                UINT_MAX - end->nb_bytes);
922         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
923     }
924 
925     /* Reserve a buffer large enough to store all the data that we're
926      * going to read */
927     start_buffer = qemu_try_blockalign(bs, buffer_size);
928     if (start_buffer == NULL) {
929         return -ENOMEM;
930     }
931     /* The part of the buffer where the end region is located */
932     end_buffer = start_buffer + buffer_size - end->nb_bytes;
933 
934     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
935                                 qemu_iovec_subvec_niov(m->data_qiov,
936                                                        m->data_qiov_offset,
937                                                        data_bytes)
938                                 : 0));
939 
940     qemu_co_mutex_unlock(&s->lock);
941     /* First we read the existing data from both COW regions. We
942      * either read the whole region in one go, or the start and end
943      * regions separately. */
944     if (merge_reads) {
945         qemu_iovec_add(&qiov, start_buffer, buffer_size);
946         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
947     } else {
948         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
949         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
950         if (ret < 0) {
951             goto fail;
952         }
953 
954         qemu_iovec_reset(&qiov);
955         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
956         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
957     }
958     if (ret < 0) {
959         goto fail;
960     }
961 
962     /* Encrypt the data if necessary before writing it */
963     if (bs->encrypted) {
964         ret = qcow2_co_encrypt(bs,
965                                m->alloc_offset + start->offset,
966                                m->offset + start->offset,
967                                start_buffer, start->nb_bytes);
968         if (ret < 0) {
969             goto fail;
970         }
971 
972         ret = qcow2_co_encrypt(bs,
973                                m->alloc_offset + end->offset,
974                                m->offset + end->offset,
975                                end_buffer, end->nb_bytes);
976         if (ret < 0) {
977             goto fail;
978         }
979     }
980 
981     /* And now we can write everything. If we have the guest data we
982      * can write everything in one single operation */
983     if (m->data_qiov) {
984         qemu_iovec_reset(&qiov);
985         if (start->nb_bytes) {
986             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
987         }
988         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
989         if (end->nb_bytes) {
990             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
991         }
992         /* NOTE: we have a write_aio blkdebug event here followed by
993          * a cow_write one in do_perform_cow_write(), but there's only
994          * one single I/O operation */
995         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
996         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
997     } else {
998         /* If there's no guest data then write both COW regions separately */
999         qemu_iovec_reset(&qiov);
1000         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1001         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1002         if (ret < 0) {
1003             goto fail;
1004         }
1005 
1006         qemu_iovec_reset(&qiov);
1007         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1008         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1009     }
1010 
1011 fail:
1012     qemu_co_mutex_lock(&s->lock);
1013 
1014     /*
1015      * Before we update the L2 table to actually point to the new cluster, we
1016      * need to be sure that the refcounts have been increased and COW was
1017      * handled.
1018      */
1019     if (ret == 0) {
1020         qcow2_cache_depends_on_flush(s->l2_table_cache);
1021     }
1022 
1023     qemu_vfree(start_buffer);
1024     qemu_iovec_destroy(&qiov);
1025     return ret;
1026 }
1027 
1028 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
1029                                              QCowL2Meta *m)
1030 {
1031     BDRVQcow2State *s = bs->opaque;
1032     int i, j = 0, l2_index, ret;
1033     uint64_t *old_cluster, *l2_slice;
1034     uint64_t cluster_offset = m->alloc_offset;
1035 
1036     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1037     assert(m->nb_clusters > 0);
1038 
1039     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1040     if (old_cluster == NULL) {
1041         ret = -ENOMEM;
1042         goto err;
1043     }
1044 
1045     /* copy content of unmodified sectors */
1046     ret = perform_cow(bs, m);
1047     if (ret < 0) {
1048         goto err;
1049     }
1050 
1051     /* Update L2 table. */
1052     if (s->use_lazy_refcounts) {
1053         qcow2_mark_dirty(bs);
1054     }
1055     if (qcow2_need_accurate_refcounts(s)) {
1056         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1057                                    s->refcount_block_cache);
1058     }
1059 
1060     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1061     if (ret < 0) {
1062         goto err;
1063     }
1064     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1065 
1066     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1067     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1068            m->nb_clusters << s->cluster_bits);
1069     for (i = 0; i < m->nb_clusters; i++) {
1070         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1071         /* if two concurrent writes happen to the same unallocated cluster
1072          * each write allocates separate cluster and writes data concurrently.
1073          * The first one to complete updates l2 table with pointer to its
1074          * cluster the second one has to do RMW (which is done above by
1075          * perform_cow()), update l2 table with its cluster pointer and free
1076          * old cluster. This is what this loop does */
1077         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1078             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1079         }
1080 
1081         /* The offset must fit in the offset field of the L2 table entry */
1082         assert((offset & L2E_OFFSET_MASK) == offset);
1083 
1084         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1085 
1086         /* Update bitmap with the subclusters that were just written */
1087         if (has_subclusters(s) && !m->prealloc) {
1088             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1089             unsigned written_from = m->cow_start.offset;
1090             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1091             int first_sc, last_sc;
1092             /* Narrow written_from and written_to down to the current cluster */
1093             written_from = MAX(written_from, i << s->cluster_bits);
1094             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1095             assert(written_from < written_to);
1096             first_sc = offset_to_sc_index(s, written_from);
1097             last_sc  = offset_to_sc_index(s, written_to - 1);
1098             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1099             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1100             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1101         }
1102      }
1103 
1104 
1105     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1106 
1107     /*
1108      * If this was a COW, we need to decrease the refcount of the old cluster.
1109      *
1110      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1111      * clusters), the next write will reuse them anyway.
1112      */
1113     if (!m->keep_old_clusters && j != 0) {
1114         for (i = 0; i < j; i++) {
1115             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1116         }
1117     }
1118 
1119     ret = 0;
1120 err:
1121     g_free(old_cluster);
1122     return ret;
1123  }
1124 
1125 /**
1126  * Frees the allocated clusters because the request failed and they won't
1127  * actually be linked.
1128  */
1129 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1130 {
1131     BDRVQcow2State *s = bs->opaque;
1132     if (!has_data_file(bs) && !m->keep_old_clusters) {
1133         qcow2_free_clusters(bs, m->alloc_offset,
1134                             m->nb_clusters << s->cluster_bits,
1135                             QCOW2_DISCARD_NEVER);
1136     }
1137 }
1138 
1139 /*
1140  * For a given write request, create a new QCowL2Meta structure, add
1141  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1142  * request does not need copy-on-write or changes to the L2 metadata
1143  * then this function does nothing.
1144  *
1145  * @host_cluster_offset points to the beginning of the first cluster.
1146  *
1147  * @guest_offset and @bytes indicate the offset and length of the
1148  * request.
1149  *
1150  * @l2_slice contains the L2 entries of all clusters involved in this
1151  * write request.
1152  *
1153  * If @keep_old is true it means that the clusters were already
1154  * allocated and will be overwritten. If false then the clusters are
1155  * new and we have to decrease the reference count of the old ones.
1156  *
1157  * Returns 0 on success, -errno on failure.
1158  */
1159 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1160                              uint64_t guest_offset, unsigned bytes,
1161                              uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1162 {
1163     BDRVQcow2State *s = bs->opaque;
1164     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1165     uint64_t l2_entry, l2_bitmap;
1166     unsigned cow_start_from, cow_end_to;
1167     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1168     unsigned cow_end_from = cow_start_to + bytes;
1169     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1170     QCowL2Meta *old_m = *m;
1171     QCow2SubclusterType type;
1172     int i;
1173     bool skip_cow = keep_old;
1174 
1175     assert(nb_clusters <= s->l2_slice_size - l2_index);
1176 
1177     /* Check the type of all affected subclusters */
1178     for (i = 0; i < nb_clusters; i++) {
1179         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1180         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1181         if (skip_cow) {
1182             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1183             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1184             int first_sc = offset_to_sc_index(s, write_from);
1185             int last_sc = offset_to_sc_index(s, write_to - 1);
1186             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1187                                                       first_sc, &type);
1188             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1189             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1190                 skip_cow = false;
1191             }
1192         } else {
1193             /* If we can't skip the cow we can still look for invalid entries */
1194             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1195         }
1196         if (type == QCOW2_SUBCLUSTER_INVALID) {
1197             int l1_index = offset_to_l1_index(s, guest_offset);
1198             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1199             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1200                                     "entry found (L2 offset: %#" PRIx64
1201                                     ", L2 index: %#x)",
1202                                     l2_offset, l2_index + i);
1203             return -EIO;
1204         }
1205     }
1206 
1207     if (skip_cow) {
1208         return 0;
1209     }
1210 
1211     /* Get the L2 entry of the first cluster */
1212     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1213     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1214     sc_index = offset_to_sc_index(s, guest_offset);
1215     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1216 
1217     if (!keep_old) {
1218         switch (type) {
1219         case QCOW2_SUBCLUSTER_COMPRESSED:
1220             cow_start_from = 0;
1221             break;
1222         case QCOW2_SUBCLUSTER_NORMAL:
1223         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1224         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1225             if (has_subclusters(s)) {
1226                 /* Skip all leading zero and unallocated subclusters */
1227                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1228                 cow_start_from =
1229                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1230             } else {
1231                 cow_start_from = 0;
1232             }
1233             break;
1234         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1235         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1236             cow_start_from = sc_index << s->subcluster_bits;
1237             break;
1238         default:
1239             g_assert_not_reached();
1240         }
1241     } else {
1242         switch (type) {
1243         case QCOW2_SUBCLUSTER_NORMAL:
1244             cow_start_from = cow_start_to;
1245             break;
1246         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1247         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1248             cow_start_from = sc_index << s->subcluster_bits;
1249             break;
1250         default:
1251             g_assert_not_reached();
1252         }
1253     }
1254 
1255     /* Get the L2 entry of the last cluster */
1256     l2_index += nb_clusters - 1;
1257     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1258     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1259     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1260     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1261 
1262     if (!keep_old) {
1263         switch (type) {
1264         case QCOW2_SUBCLUSTER_COMPRESSED:
1265             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1266             break;
1267         case QCOW2_SUBCLUSTER_NORMAL:
1268         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1269         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1270             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1271             if (has_subclusters(s)) {
1272                 /* Skip all trailing zero and unallocated subclusters */
1273                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1274                 cow_end_to -=
1275                     MIN(s->subclusters_per_cluster - sc_index - 1,
1276                         clz32(alloc_bitmap)) << s->subcluster_bits;
1277             }
1278             break;
1279         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1280         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1281             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1282             break;
1283         default:
1284             g_assert_not_reached();
1285         }
1286     } else {
1287         switch (type) {
1288         case QCOW2_SUBCLUSTER_NORMAL:
1289             cow_end_to = cow_end_from;
1290             break;
1291         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1292         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1293             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1294             break;
1295         default:
1296             g_assert_not_reached();
1297         }
1298     }
1299 
1300     *m = g_malloc0(sizeof(**m));
1301     **m = (QCowL2Meta) {
1302         .next           = old_m,
1303 
1304         .alloc_offset   = host_cluster_offset,
1305         .offset         = start_of_cluster(s, guest_offset),
1306         .nb_clusters    = nb_clusters,
1307 
1308         .keep_old_clusters = keep_old,
1309 
1310         .cow_start = {
1311             .offset     = cow_start_from,
1312             .nb_bytes   = cow_start_to - cow_start_from,
1313         },
1314         .cow_end = {
1315             .offset     = cow_end_from,
1316             .nb_bytes   = cow_end_to - cow_end_from,
1317         },
1318     };
1319 
1320     qemu_co_queue_init(&(*m)->dependent_requests);
1321     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1322 
1323     return 0;
1324 }
1325 
1326 /*
1327  * Returns true if writing to the cluster pointed to by @l2_entry
1328  * requires a new allocation (that is, if the cluster is unallocated
1329  * or has refcount > 1 and therefore cannot be written in-place).
1330  */
1331 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1332 {
1333     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1334     case QCOW2_CLUSTER_NORMAL:
1335     case QCOW2_CLUSTER_ZERO_ALLOC:
1336         if (l2_entry & QCOW_OFLAG_COPIED) {
1337             return false;
1338         }
1339         /* fallthrough */
1340     case QCOW2_CLUSTER_UNALLOCATED:
1341     case QCOW2_CLUSTER_COMPRESSED:
1342     case QCOW2_CLUSTER_ZERO_PLAIN:
1343         return true;
1344     default:
1345         abort();
1346     }
1347 }
1348 
1349 /*
1350  * Returns the number of contiguous clusters that can be written to
1351  * using one single write request, starting from @l2_index.
1352  * At most @nb_clusters are checked.
1353  *
1354  * If @new_alloc is true this counts clusters that are either
1355  * unallocated, or allocated but with refcount > 1 (so they need to be
1356  * newly allocated and COWed).
1357  *
1358  * If @new_alloc is false this counts clusters that are already
1359  * allocated and can be overwritten in-place (this includes clusters
1360  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1361  */
1362 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1363                                        uint64_t *l2_slice, int l2_index,
1364                                        bool new_alloc)
1365 {
1366     BDRVQcow2State *s = bs->opaque;
1367     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1368     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1369     int i;
1370 
1371     for (i = 0; i < nb_clusters; i++) {
1372         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1373         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1374             break;
1375         }
1376         if (!new_alloc) {
1377             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1378                 break;
1379             }
1380             expected_offset += s->cluster_size;
1381         }
1382     }
1383 
1384     assert(i <= nb_clusters);
1385     return i;
1386 }
1387 
1388 /*
1389  * Check if there already is an AIO write request in flight which allocates
1390  * the same cluster. In this case we need to wait until the previous
1391  * request has completed and updated the L2 table accordingly.
1392  *
1393  * Returns:
1394  *   0       if there was no dependency. *cur_bytes indicates the number of
1395  *           bytes from guest_offset that can be read before the next
1396  *           dependency must be processed (or the request is complete)
1397  *
1398  *   -EAGAIN if we had to wait for another request, previously gathered
1399  *           information on cluster allocation may be invalid now. The caller
1400  *           must start over anyway, so consider *cur_bytes undefined.
1401  */
1402 static int coroutine_fn handle_dependencies(BlockDriverState *bs,
1403                                             uint64_t guest_offset,
1404                                             uint64_t *cur_bytes, QCowL2Meta **m)
1405 {
1406     BDRVQcow2State *s = bs->opaque;
1407     QCowL2Meta *old_alloc;
1408     uint64_t bytes = *cur_bytes;
1409 
1410     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1411 
1412         uint64_t start = guest_offset;
1413         uint64_t end = start + bytes;
1414         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1415         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1416 
1417         if (end <= old_start || start >= old_end) {
1418             /* No intersection */
1419             continue;
1420         }
1421 
1422         if (old_alloc->keep_old_clusters &&
1423             (end <= l2meta_cow_start(old_alloc) ||
1424              start >= l2meta_cow_end(old_alloc)))
1425         {
1426             /*
1427              * Clusters intersect but COW areas don't. And cluster itself is
1428              * already allocated. So, there is no actual conflict.
1429              */
1430             continue;
1431         }
1432 
1433         /* Conflict */
1434 
1435         if (start < old_start) {
1436             /* Stop at the start of a running allocation */
1437             bytes = old_start - start;
1438         } else {
1439             bytes = 0;
1440         }
1441 
1442         /*
1443          * Stop if an l2meta already exists. After yielding, it wouldn't
1444          * be valid any more, so we'd have to clean up the old L2Metas
1445          * and deal with requests depending on them before starting to
1446          * gather new ones. Not worth the trouble.
1447          */
1448         if (bytes == 0 && *m) {
1449             *cur_bytes = 0;
1450             return 0;
1451         }
1452 
1453         if (bytes == 0) {
1454             /*
1455              * Wait for the dependency to complete. We need to recheck
1456              * the free/allocated clusters when we continue.
1457              */
1458             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1459             return -EAGAIN;
1460         }
1461     }
1462 
1463     /* Make sure that existing clusters and new allocations are only used up to
1464      * the next dependency if we shortened the request above */
1465     *cur_bytes = bytes;
1466 
1467     return 0;
1468 }
1469 
1470 /*
1471  * Checks how many already allocated clusters that don't require a new
1472  * allocation there are at the given guest_offset (up to *bytes).
1473  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1474  * beginning at this host offset are counted.
1475  *
1476  * Note that guest_offset may not be cluster aligned. In this case, the
1477  * returned *host_offset points to exact byte referenced by guest_offset and
1478  * therefore isn't cluster aligned as well.
1479  *
1480  * Returns:
1481  *   0:     if no allocated clusters are available at the given offset.
1482  *          *bytes is normally unchanged. It is set to 0 if the cluster
1483  *          is allocated and can be overwritten in-place but doesn't have
1484  *          the right physical offset.
1485  *
1486  *   1:     if allocated clusters that can be overwritten in place are
1487  *          available at the requested offset. *bytes may have decreased
1488  *          and describes the length of the area that can be written to.
1489  *
1490  *  -errno: in error cases
1491  */
1492 static int coroutine_fn handle_copied(BlockDriverState *bs,
1493     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1494     QCowL2Meta **m)
1495 {
1496     BDRVQcow2State *s = bs->opaque;
1497     int l2_index;
1498     uint64_t l2_entry, cluster_offset;
1499     uint64_t *l2_slice;
1500     uint64_t nb_clusters;
1501     unsigned int keep_clusters;
1502     int ret;
1503 
1504     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1505                               *bytes);
1506 
1507     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1508                                       == offset_into_cluster(s, *host_offset));
1509 
1510     /*
1511      * Calculate the number of clusters to look for. We stop at L2 slice
1512      * boundaries to keep things simple.
1513      */
1514     nb_clusters =
1515         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1516 
1517     l2_index = offset_to_l2_slice_index(s, guest_offset);
1518     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1519     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1520     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1521 
1522     /* Find L2 entry for the first involved cluster */
1523     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1524     if (ret < 0) {
1525         return ret;
1526     }
1527 
1528     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1529     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1530 
1531     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1532         if (offset_into_cluster(s, cluster_offset)) {
1533             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1534                                     "%#" PRIx64 " unaligned (guest offset: %#"
1535                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1536                                     "Preallocated zero" : "Data",
1537                                     cluster_offset, guest_offset);
1538             ret = -EIO;
1539             goto out;
1540         }
1541 
1542         /* If a specific host_offset is required, check it */
1543         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1544             *bytes = 0;
1545             ret = 0;
1546             goto out;
1547         }
1548 
1549         /* We keep all QCOW_OFLAG_COPIED clusters */
1550         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1551                                                     l2_index, false);
1552         assert(keep_clusters <= nb_clusters);
1553 
1554         *bytes = MIN(*bytes,
1555                  keep_clusters * s->cluster_size
1556                  - offset_into_cluster(s, guest_offset));
1557         assert(*bytes != 0);
1558 
1559         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1560                                 *bytes, l2_slice, m, true);
1561         if (ret < 0) {
1562             goto out;
1563         }
1564 
1565         ret = 1;
1566     } else {
1567         ret = 0;
1568     }
1569 
1570     /* Cleanup */
1571 out:
1572     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1573 
1574     /* Only return a host offset if we actually made progress. Otherwise we
1575      * would make requirements for handle_alloc() that it can't fulfill */
1576     if (ret > 0) {
1577         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1578     }
1579 
1580     return ret;
1581 }
1582 
1583 /*
1584  * Allocates new clusters for the given guest_offset.
1585  *
1586  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1587  * contain the number of clusters that have been allocated and are contiguous
1588  * in the image file.
1589  *
1590  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1591  * at which the new clusters must start. *nb_clusters can be 0 on return in
1592  * this case if the cluster at host_offset is already in use. If *host_offset
1593  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1594  *
1595  * *host_offset is updated to contain the offset into the image file at which
1596  * the first allocated cluster starts.
1597  *
1598  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1599  * function has been waiting for another request and the allocation must be
1600  * restarted, but the whole request should not be failed.
1601  */
1602 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1603                                    uint64_t *host_offset, uint64_t *nb_clusters)
1604 {
1605     BDRVQcow2State *s = bs->opaque;
1606 
1607     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1608                                          *host_offset, *nb_clusters);
1609 
1610     if (has_data_file(bs)) {
1611         assert(*host_offset == INV_OFFSET ||
1612                *host_offset == start_of_cluster(s, guest_offset));
1613         *host_offset = start_of_cluster(s, guest_offset);
1614         return 0;
1615     }
1616 
1617     /* Allocate new clusters */
1618     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1619     if (*host_offset == INV_OFFSET) {
1620         int64_t cluster_offset =
1621             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1622         if (cluster_offset < 0) {
1623             return cluster_offset;
1624         }
1625         *host_offset = cluster_offset;
1626         return 0;
1627     } else {
1628         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1629         if (ret < 0) {
1630             return ret;
1631         }
1632         *nb_clusters = ret;
1633         return 0;
1634     }
1635 }
1636 
1637 /*
1638  * Allocates new clusters for an area that is either still unallocated or
1639  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1640  * clusters are only allocated if the new allocation can match the specified
1641  * host offset.
1642  *
1643  * Note that guest_offset may not be cluster aligned. In this case, the
1644  * returned *host_offset points to exact byte referenced by guest_offset and
1645  * therefore isn't cluster aligned as well.
1646  *
1647  * Returns:
1648  *   0:     if no clusters could be allocated. *bytes is set to 0,
1649  *          *host_offset is left unchanged.
1650  *
1651  *   1:     if new clusters were allocated. *bytes may be decreased if the
1652  *          new allocation doesn't cover all of the requested area.
1653  *          *host_offset is updated to contain the host offset of the first
1654  *          newly allocated cluster.
1655  *
1656  *  -errno: in error cases
1657  */
1658 static int coroutine_fn handle_alloc(BlockDriverState *bs,
1659     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1660     QCowL2Meta **m)
1661 {
1662     BDRVQcow2State *s = bs->opaque;
1663     int l2_index;
1664     uint64_t *l2_slice;
1665     uint64_t nb_clusters;
1666     int ret;
1667 
1668     uint64_t alloc_cluster_offset;
1669 
1670     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1671                              *bytes);
1672     assert(*bytes > 0);
1673 
1674     /*
1675      * Calculate the number of clusters to look for. We stop at L2 slice
1676      * boundaries to keep things simple.
1677      */
1678     nb_clusters =
1679         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1680 
1681     l2_index = offset_to_l2_slice_index(s, guest_offset);
1682     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1683     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1684     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1685 
1686     /* Find L2 entry for the first involved cluster */
1687     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1688     if (ret < 0) {
1689         return ret;
1690     }
1691 
1692     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1693                                               l2_slice, l2_index, true);
1694 
1695     /* This function is only called when there were no non-COW clusters, so if
1696      * we can't find any unallocated or COW clusters either, something is
1697      * wrong with our code. */
1698     assert(nb_clusters > 0);
1699 
1700     /* Allocate at a given offset in the image file */
1701     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1702         start_of_cluster(s, *host_offset);
1703     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1704                                   &nb_clusters);
1705     if (ret < 0) {
1706         goto out;
1707     }
1708 
1709     /* Can't extend contiguous allocation */
1710     if (nb_clusters == 0) {
1711         *bytes = 0;
1712         ret = 0;
1713         goto out;
1714     }
1715 
1716     assert(alloc_cluster_offset != INV_OFFSET);
1717 
1718     /*
1719      * Save info needed for meta data update.
1720      *
1721      * requested_bytes: Number of bytes from the start of the first
1722      * newly allocated cluster to the end of the (possibly shortened
1723      * before) write request.
1724      *
1725      * avail_bytes: Number of bytes from the start of the first
1726      * newly allocated to the end of the last newly allocated cluster.
1727      *
1728      * nb_bytes: The number of bytes from the start of the first
1729      * newly allocated cluster to the end of the area that the write
1730      * request actually writes to (excluding COW at the end)
1731      */
1732     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1733     int avail_bytes = nb_clusters << s->cluster_bits;
1734     int nb_bytes = MIN(requested_bytes, avail_bytes);
1735 
1736     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1737     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1738     assert(*bytes != 0);
1739 
1740     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1741                             l2_slice, m, false);
1742     if (ret < 0) {
1743         goto out;
1744     }
1745 
1746     ret = 1;
1747 
1748 out:
1749     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1750     return ret;
1751 }
1752 
1753 /*
1754  * For a given area on the virtual disk defined by @offset and @bytes,
1755  * find the corresponding area on the qcow2 image, allocating new
1756  * clusters (or subclusters) if necessary. The result can span a
1757  * combination of allocated and previously unallocated clusters.
1758  *
1759  * Note that offset may not be cluster aligned. In this case, the returned
1760  * *host_offset points to exact byte referenced by offset and therefore
1761  * isn't cluster aligned as well.
1762  *
1763  * On return, @host_offset is set to the beginning of the requested
1764  * area. This area is guaranteed to be contiguous on the qcow2 file
1765  * but it can be smaller than initially requested. In this case @bytes
1766  * is updated with the actual size.
1767  *
1768  * If any clusters or subclusters were allocated then @m contains a
1769  * list with the information of all the affected regions. Note that
1770  * this can happen regardless of whether this function succeeds or
1771  * not. The caller is responsible for updating the L2 metadata of the
1772  * allocated clusters (on success) or freeing them (on failure), and
1773  * for clearing the contents of @m afterwards in both cases.
1774  *
1775  * If the request conflicts with another write request in flight, the coroutine
1776  * is queued and will be reentered when the dependency has completed.
1777  *
1778  * Return 0 on success and -errno in error cases
1779  */
1780 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1781                                          unsigned int *bytes,
1782                                          uint64_t *host_offset,
1783                                          QCowL2Meta **m)
1784 {
1785     BDRVQcow2State *s = bs->opaque;
1786     uint64_t start, remaining;
1787     uint64_t cluster_offset;
1788     uint64_t cur_bytes;
1789     int ret;
1790 
1791     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1792 
1793 again:
1794     start = offset;
1795     remaining = *bytes;
1796     cluster_offset = INV_OFFSET;
1797     *host_offset = INV_OFFSET;
1798     cur_bytes = 0;
1799     *m = NULL;
1800 
1801     while (true) {
1802 
1803         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1804             *host_offset = cluster_offset;
1805         }
1806 
1807         assert(remaining >= cur_bytes);
1808 
1809         start           += cur_bytes;
1810         remaining       -= cur_bytes;
1811 
1812         if (cluster_offset != INV_OFFSET) {
1813             cluster_offset += cur_bytes;
1814         }
1815 
1816         if (remaining == 0) {
1817             break;
1818         }
1819 
1820         cur_bytes = remaining;
1821 
1822         /*
1823          * Now start gathering as many contiguous clusters as possible:
1824          *
1825          * 1. Check for overlaps with in-flight allocations
1826          *
1827          *      a) Overlap not in the first cluster -> shorten this request and
1828          *         let the caller handle the rest in its next loop iteration.
1829          *
1830          *      b) Real overlaps of two requests. Yield and restart the search
1831          *         for contiguous clusters (the situation could have changed
1832          *         while we were sleeping)
1833          *
1834          *      c) TODO: Request starts in the same cluster as the in-flight
1835          *         allocation ends. Shorten the COW of the in-fight allocation,
1836          *         set cluster_offset to write to the same cluster and set up
1837          *         the right synchronisation between the in-flight request and
1838          *         the new one.
1839          */
1840         ret = handle_dependencies(bs, start, &cur_bytes, m);
1841         if (ret == -EAGAIN) {
1842             /* Currently handle_dependencies() doesn't yield if we already had
1843              * an allocation. If it did, we would have to clean up the L2Meta
1844              * structs before starting over. */
1845             assert(*m == NULL);
1846             goto again;
1847         } else if (ret < 0) {
1848             return ret;
1849         } else if (cur_bytes == 0) {
1850             break;
1851         } else {
1852             /* handle_dependencies() may have decreased cur_bytes (shortened
1853              * the allocations below) so that the next dependency is processed
1854              * correctly during the next loop iteration. */
1855         }
1856 
1857         /*
1858          * 2. Count contiguous COPIED clusters.
1859          */
1860         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1861         if (ret < 0) {
1862             return ret;
1863         } else if (ret) {
1864             continue;
1865         } else if (cur_bytes == 0) {
1866             break;
1867         }
1868 
1869         /*
1870          * 3. If the request still hasn't completed, allocate new clusters,
1871          *    considering any cluster_offset of steps 1c or 2.
1872          */
1873         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1874         if (ret < 0) {
1875             return ret;
1876         } else if (ret) {
1877             continue;
1878         } else {
1879             assert(cur_bytes == 0);
1880             break;
1881         }
1882     }
1883 
1884     *bytes -= remaining;
1885     assert(*bytes > 0);
1886     assert(*host_offset != INV_OFFSET);
1887     assert(offset_into_cluster(s, *host_offset) ==
1888            offset_into_cluster(s, offset));
1889 
1890     return 0;
1891 }
1892 
1893 /*
1894  * This discards as many clusters of nb_clusters as possible at once (i.e.
1895  * all clusters in the same L2 slice) and returns the number of discarded
1896  * clusters.
1897  */
1898 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1899                                uint64_t nb_clusters,
1900                                enum qcow2_discard_type type, bool full_discard)
1901 {
1902     BDRVQcow2State *s = bs->opaque;
1903     uint64_t *l2_slice;
1904     int l2_index;
1905     int ret;
1906     int i;
1907 
1908     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1909     if (ret < 0) {
1910         return ret;
1911     }
1912 
1913     /* Limit nb_clusters to one L2 slice */
1914     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1915     assert(nb_clusters <= INT_MAX);
1916 
1917     for (i = 0; i < nb_clusters; i++) {
1918         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1919         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1920         uint64_t new_l2_entry = old_l2_entry;
1921         uint64_t new_l2_bitmap = old_l2_bitmap;
1922         QCow2ClusterType cluster_type =
1923             qcow2_get_cluster_type(bs, old_l2_entry);
1924 
1925         /*
1926          * If full_discard is true, the cluster should not read back as zeroes,
1927          * but rather fall through to the backing file.
1928          *
1929          * If full_discard is false, make sure that a discarded area reads back
1930          * as zeroes for v3 images (we cannot do it for v2 without actually
1931          * writing a zero-filled buffer). We can skip the operation if the
1932          * cluster is already marked as zero, or if it's unallocated and we
1933          * don't have a backing file.
1934          *
1935          * TODO We might want to use bdrv_block_status(bs) here, but we're
1936          * holding s->lock, so that doesn't work today.
1937          */
1938         if (full_discard) {
1939             new_l2_entry = new_l2_bitmap = 0;
1940         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1941             if (has_subclusters(s)) {
1942                 new_l2_entry = 0;
1943                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1944             } else {
1945                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1946             }
1947         }
1948 
1949         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1950             continue;
1951         }
1952 
1953         /* First remove L2 entries */
1954         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1955         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1956         if (has_subclusters(s)) {
1957             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1958         }
1959         /* Then decrease the refcount */
1960         qcow2_free_any_cluster(bs, old_l2_entry, type);
1961     }
1962 
1963     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1964 
1965     return nb_clusters;
1966 }
1967 
1968 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1969                           uint64_t bytes, enum qcow2_discard_type type,
1970                           bool full_discard)
1971 {
1972     BDRVQcow2State *s = bs->opaque;
1973     uint64_t end_offset = offset + bytes;
1974     uint64_t nb_clusters;
1975     int64_t cleared;
1976     int ret;
1977 
1978     /* Caller must pass aligned values, except at image end */
1979     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1980     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1981            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1982 
1983     nb_clusters = size_to_clusters(s, bytes);
1984 
1985     s->cache_discards = true;
1986 
1987     /* Each L2 slice is handled by its own loop iteration */
1988     while (nb_clusters > 0) {
1989         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1990                                       full_discard);
1991         if (cleared < 0) {
1992             ret = cleared;
1993             goto fail;
1994         }
1995 
1996         nb_clusters -= cleared;
1997         offset += (cleared * s->cluster_size);
1998     }
1999 
2000     ret = 0;
2001 fail:
2002     s->cache_discards = false;
2003     qcow2_process_discards(bs, ret);
2004 
2005     return ret;
2006 }
2007 
2008 /*
2009  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2010  * all clusters in the same L2 slice) and returns the number of zeroed
2011  * clusters.
2012  */
2013 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2014                             uint64_t nb_clusters, int flags)
2015 {
2016     BDRVQcow2State *s = bs->opaque;
2017     uint64_t *l2_slice;
2018     int l2_index;
2019     int ret;
2020     int i;
2021 
2022     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2023     if (ret < 0) {
2024         return ret;
2025     }
2026 
2027     /* Limit nb_clusters to one L2 slice */
2028     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2029     assert(nb_clusters <= INT_MAX);
2030 
2031     for (i = 0; i < nb_clusters; i++) {
2032         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2033         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2034         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2035         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2036             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2037         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2038         uint64_t new_l2_bitmap = old_l2_bitmap;
2039 
2040         if (has_subclusters(s)) {
2041             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2042         } else {
2043             new_l2_entry |= QCOW_OFLAG_ZERO;
2044         }
2045 
2046         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2047             continue;
2048         }
2049 
2050         /* First update L2 entries */
2051         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2052         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2053         if (has_subclusters(s)) {
2054             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2055         }
2056 
2057         /* Then decrease the refcount */
2058         if (unmap) {
2059             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2060         }
2061     }
2062 
2063     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2064 
2065     return nb_clusters;
2066 }
2067 
2068 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2069                                unsigned nb_subclusters)
2070 {
2071     BDRVQcow2State *s = bs->opaque;
2072     uint64_t *l2_slice;
2073     uint64_t old_l2_bitmap, l2_bitmap;
2074     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2075 
2076     /* For full clusters use zero_in_l2_slice() instead */
2077     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2078     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2079     assert(offset_into_subcluster(s, offset) == 0);
2080 
2081     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2082     if (ret < 0) {
2083         return ret;
2084     }
2085 
2086     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2087     case QCOW2_CLUSTER_COMPRESSED:
2088         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2089         goto out;
2090     case QCOW2_CLUSTER_NORMAL:
2091     case QCOW2_CLUSTER_UNALLOCATED:
2092         break;
2093     default:
2094         g_assert_not_reached();
2095     }
2096 
2097     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2098 
2099     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2100     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2101 
2102     if (old_l2_bitmap != l2_bitmap) {
2103         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2104         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2105     }
2106 
2107     ret = 0;
2108 out:
2109     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2110 
2111     return ret;
2112 }
2113 
2114 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2115                                           uint64_t bytes, int flags)
2116 {
2117     BDRVQcow2State *s = bs->opaque;
2118     uint64_t end_offset = offset + bytes;
2119     uint64_t nb_clusters;
2120     unsigned head, tail;
2121     int64_t cleared;
2122     int ret;
2123 
2124     /* If we have to stay in sync with an external data file, zero out
2125      * s->data_file first. */
2126     if (data_file_is_raw(bs)) {
2127         assert(has_data_file(bs));
2128         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2129         if (ret < 0) {
2130             return ret;
2131         }
2132     }
2133 
2134     /* Caller must pass aligned values, except at image end */
2135     assert(offset_into_subcluster(s, offset) == 0);
2136     assert(offset_into_subcluster(s, end_offset) == 0 ||
2137            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2138 
2139     /*
2140      * The zero flag is only supported by version 3 and newer. However, if we
2141      * have no backing file, we can resort to discard in version 2.
2142      */
2143     if (s->qcow_version < 3) {
2144         if (!bs->backing) {
2145             return qcow2_cluster_discard(bs, offset, bytes,
2146                                          QCOW2_DISCARD_REQUEST, false);
2147         }
2148         return -ENOTSUP;
2149     }
2150 
2151     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2152     offset += head;
2153 
2154     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2155         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2156     end_offset -= tail;
2157 
2158     s->cache_discards = true;
2159 
2160     if (head) {
2161         ret = zero_l2_subclusters(bs, offset - head,
2162                                   size_to_subclusters(s, head));
2163         if (ret < 0) {
2164             goto fail;
2165         }
2166     }
2167 
2168     /* Each L2 slice is handled by its own loop iteration */
2169     nb_clusters = size_to_clusters(s, end_offset - offset);
2170 
2171     while (nb_clusters > 0) {
2172         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2173         if (cleared < 0) {
2174             ret = cleared;
2175             goto fail;
2176         }
2177 
2178         nb_clusters -= cleared;
2179         offset += (cleared * s->cluster_size);
2180     }
2181 
2182     if (tail) {
2183         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2184         if (ret < 0) {
2185             goto fail;
2186         }
2187     }
2188 
2189     ret = 0;
2190 fail:
2191     s->cache_discards = false;
2192     qcow2_process_discards(bs, ret);
2193 
2194     return ret;
2195 }
2196 
2197 /*
2198  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2199  * non-backed non-pre-allocated zero clusters).
2200  *
2201  * l1_entries and *visited_l1_entries are used to keep track of progress for
2202  * status_cb(). l1_entries contains the total number of L1 entries and
2203  * *visited_l1_entries counts all visited L1 entries.
2204  */
2205 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2206                                       int l1_size, int64_t *visited_l1_entries,
2207                                       int64_t l1_entries,
2208                                       BlockDriverAmendStatusCB *status_cb,
2209                                       void *cb_opaque)
2210 {
2211     BDRVQcow2State *s = bs->opaque;
2212     bool is_active_l1 = (l1_table == s->l1_table);
2213     uint64_t *l2_slice = NULL;
2214     unsigned slice, slice_size2, n_slices;
2215     int ret;
2216     int i, j;
2217 
2218     /* qcow2_downgrade() is not allowed in images with subclusters */
2219     assert(!has_subclusters(s));
2220 
2221     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2222     n_slices = s->cluster_size / slice_size2;
2223 
2224     if (!is_active_l1) {
2225         /* inactive L2 tables require a buffer to be stored in when loading
2226          * them from disk */
2227         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2228         if (l2_slice == NULL) {
2229             return -ENOMEM;
2230         }
2231     }
2232 
2233     for (i = 0; i < l1_size; i++) {
2234         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2235         uint64_t l2_refcount;
2236 
2237         if (!l2_offset) {
2238             /* unallocated */
2239             (*visited_l1_entries)++;
2240             if (status_cb) {
2241                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2242             }
2243             continue;
2244         }
2245 
2246         if (offset_into_cluster(s, l2_offset)) {
2247             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2248                                     PRIx64 " unaligned (L1 index: %#x)",
2249                                     l2_offset, i);
2250             ret = -EIO;
2251             goto fail;
2252         }
2253 
2254         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2255                                  &l2_refcount);
2256         if (ret < 0) {
2257             goto fail;
2258         }
2259 
2260         for (slice = 0; slice < n_slices; slice++) {
2261             uint64_t slice_offset = l2_offset + slice * slice_size2;
2262             bool l2_dirty = false;
2263             if (is_active_l1) {
2264                 /* get active L2 tables from cache */
2265                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2266                                       (void **)&l2_slice);
2267             } else {
2268                 /* load inactive L2 tables from disk */
2269                 ret = bdrv_pread(bs->file, slice_offset, slice_size2,
2270                                  l2_slice, 0);
2271             }
2272             if (ret < 0) {
2273                 goto fail;
2274             }
2275 
2276             for (j = 0; j < s->l2_slice_size; j++) {
2277                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2278                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2279                 QCow2ClusterType cluster_type =
2280                     qcow2_get_cluster_type(bs, l2_entry);
2281 
2282                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2283                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2284                     continue;
2285                 }
2286 
2287                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2288                     if (!bs->backing) {
2289                         /*
2290                          * not backed; therefore we can simply deallocate the
2291                          * cluster. No need to call set_l2_bitmap(), this
2292                          * function doesn't support images with subclusters.
2293                          */
2294                         set_l2_entry(s, l2_slice, j, 0);
2295                         l2_dirty = true;
2296                         continue;
2297                     }
2298 
2299                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2300                     if (offset < 0) {
2301                         ret = offset;
2302                         goto fail;
2303                     }
2304 
2305                     /* The offset must fit in the offset field */
2306                     assert((offset & L2E_OFFSET_MASK) == offset);
2307 
2308                     if (l2_refcount > 1) {
2309                         /* For shared L2 tables, set the refcount accordingly
2310                          * (it is already 1 and needs to be l2_refcount) */
2311                         ret = qcow2_update_cluster_refcount(
2312                             bs, offset >> s->cluster_bits,
2313                             refcount_diff(1, l2_refcount), false,
2314                             QCOW2_DISCARD_OTHER);
2315                         if (ret < 0) {
2316                             qcow2_free_clusters(bs, offset, s->cluster_size,
2317                                                 QCOW2_DISCARD_OTHER);
2318                             goto fail;
2319                         }
2320                     }
2321                 }
2322 
2323                 if (offset_into_cluster(s, offset)) {
2324                     int l2_index = slice * s->l2_slice_size + j;
2325                     qcow2_signal_corruption(
2326                         bs, true, -1, -1,
2327                         "Cluster allocation offset "
2328                         "%#" PRIx64 " unaligned (L2 offset: %#"
2329                         PRIx64 ", L2 index: %#x)", offset,
2330                         l2_offset, l2_index);
2331                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2332                         qcow2_free_clusters(bs, offset, s->cluster_size,
2333                                             QCOW2_DISCARD_ALWAYS);
2334                     }
2335                     ret = -EIO;
2336                     goto fail;
2337                 }
2338 
2339                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2340                                                     s->cluster_size, true);
2341                 if (ret < 0) {
2342                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2343                         qcow2_free_clusters(bs, offset, s->cluster_size,
2344                                             QCOW2_DISCARD_ALWAYS);
2345                     }
2346                     goto fail;
2347                 }
2348 
2349                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2350                                          s->cluster_size, 0);
2351                 if (ret < 0) {
2352                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2353                         qcow2_free_clusters(bs, offset, s->cluster_size,
2354                                             QCOW2_DISCARD_ALWAYS);
2355                     }
2356                     goto fail;
2357                 }
2358 
2359                 if (l2_refcount == 1) {
2360                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2361                 } else {
2362                     set_l2_entry(s, l2_slice, j, offset);
2363                 }
2364                 /*
2365                  * No need to call set_l2_bitmap() after set_l2_entry() because
2366                  * this function doesn't support images with subclusters.
2367                  */
2368                 l2_dirty = true;
2369             }
2370 
2371             if (is_active_l1) {
2372                 if (l2_dirty) {
2373                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2374                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2375                 }
2376                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2377             } else {
2378                 if (l2_dirty) {
2379                     ret = qcow2_pre_write_overlap_check(
2380                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2381                         slice_offset, slice_size2, false);
2382                     if (ret < 0) {
2383                         goto fail;
2384                     }
2385 
2386                     ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
2387                                       l2_slice, 0);
2388                     if (ret < 0) {
2389                         goto fail;
2390                     }
2391                 }
2392             }
2393         }
2394 
2395         (*visited_l1_entries)++;
2396         if (status_cb) {
2397             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2398         }
2399     }
2400 
2401     ret = 0;
2402 
2403 fail:
2404     if (l2_slice) {
2405         if (!is_active_l1) {
2406             qemu_vfree(l2_slice);
2407         } else {
2408             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2409         }
2410     }
2411     return ret;
2412 }
2413 
2414 /*
2415  * For backed images, expands all zero clusters on the image. For non-backed
2416  * images, deallocates all non-pre-allocated zero clusters (and claims the
2417  * allocation for pre-allocated ones). This is important for downgrading to a
2418  * qcow2 version which doesn't yet support metadata zero clusters.
2419  */
2420 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2421                                BlockDriverAmendStatusCB *status_cb,
2422                                void *cb_opaque)
2423 {
2424     BDRVQcow2State *s = bs->opaque;
2425     uint64_t *l1_table = NULL;
2426     int64_t l1_entries = 0, visited_l1_entries = 0;
2427     int ret;
2428     int i, j;
2429 
2430     if (status_cb) {
2431         l1_entries = s->l1_size;
2432         for (i = 0; i < s->nb_snapshots; i++) {
2433             l1_entries += s->snapshots[i].l1_size;
2434         }
2435     }
2436 
2437     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2438                                      &visited_l1_entries, l1_entries,
2439                                      status_cb, cb_opaque);
2440     if (ret < 0) {
2441         goto fail;
2442     }
2443 
2444     /* Inactive L1 tables may point to active L2 tables - therefore it is
2445      * necessary to flush the L2 table cache before trying to access the L2
2446      * tables pointed to by inactive L1 entries (else we might try to expand
2447      * zero clusters that have already been expanded); furthermore, it is also
2448      * necessary to empty the L2 table cache, since it may contain tables which
2449      * are now going to be modified directly on disk, bypassing the cache.
2450      * qcow2_cache_empty() does both for us. */
2451     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2452     if (ret < 0) {
2453         goto fail;
2454     }
2455 
2456     for (i = 0; i < s->nb_snapshots; i++) {
2457         int l1_size2;
2458         uint64_t *new_l1_table;
2459         Error *local_err = NULL;
2460 
2461         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2462                                    s->snapshots[i].l1_size, L1E_SIZE,
2463                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2464                                    &local_err);
2465         if (ret < 0) {
2466             error_report_err(local_err);
2467             goto fail;
2468         }
2469 
2470         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2471         new_l1_table = g_try_realloc(l1_table, l1_size2);
2472 
2473         if (!new_l1_table) {
2474             ret = -ENOMEM;
2475             goto fail;
2476         }
2477 
2478         l1_table = new_l1_table;
2479 
2480         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
2481                          l1_table, 0);
2482         if (ret < 0) {
2483             goto fail;
2484         }
2485 
2486         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2487             be64_to_cpus(&l1_table[j]);
2488         }
2489 
2490         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2491                                          &visited_l1_entries, l1_entries,
2492                                          status_cb, cb_opaque);
2493         if (ret < 0) {
2494             goto fail;
2495         }
2496     }
2497 
2498     ret = 0;
2499 
2500 fail:
2501     g_free(l1_table);
2502     return ret;
2503 }
2504 
2505 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2506                                      uint64_t *coffset, int *csize)
2507 {
2508     BDRVQcow2State *s = bs->opaque;
2509     int nb_csectors;
2510 
2511     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2512 
2513     *coffset = l2_entry & s->cluster_offset_mask;
2514 
2515     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2516     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2517         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2518 }
2519