xref: /openbmc/qemu/block/qcow2-cluster.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32 
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size, i, ret;
37 
38     if (exact_size >= s->l1_size) {
39         return 0;
40     }
41 
42     new_l1_size = exact_size;
43 
44 #ifdef DEBUG_ALLOC2
45     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47 
48     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50                                        new_l1_size * L1E_SIZE,
51                              (s->l1_size - new_l1_size) * L1E_SIZE, 0);
52     if (ret < 0) {
53         goto fail;
54     }
55 
56     ret = bdrv_flush(bs->file->bs);
57     if (ret < 0) {
58         goto fail;
59     }
60 
61     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64             continue;
65         }
66         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
68         s->l1_table[i] = 0;
69     }
70     return 0;
71 
72 fail:
73     /*
74      * If the write in the l1_table failed the image may contain a partially
75      * overwritten l1_table. In this case it would be better to clear the
76      * l1_table in memory to avoid possible image corruption.
77      */
78     memset(s->l1_table + new_l1_size, 0,
79            (s->l1_size - new_l1_size) * L1E_SIZE);
80     return ret;
81 }
82 
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84                         bool exact_size)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     int new_l1_size2, ret, i;
88     uint64_t *new_l1_table;
89     int64_t old_l1_table_offset, old_l1_size;
90     int64_t new_l1_table_offset, new_l1_size;
91     uint8_t data[12];
92 
93     if (min_size <= s->l1_size)
94         return 0;
95 
96     /* Do a sanity check on min_size before trying to calculate new_l1_size
97      * (this prevents overflows during the while loop for the calculation of
98      * new_l1_size) */
99     if (min_size > INT_MAX / L1E_SIZE) {
100         return -EFBIG;
101     }
102 
103     if (exact_size) {
104         new_l1_size = min_size;
105     } else {
106         /* Bump size up to reduce the number of times we have to grow */
107         new_l1_size = s->l1_size;
108         if (new_l1_size == 0) {
109             new_l1_size = 1;
110         }
111         while (min_size > new_l1_size) {
112             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113         }
114     }
115 
116     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
118         return -EFBIG;
119     }
120 
121 #ifdef DEBUG_ALLOC2
122     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123             s->l1_size, new_l1_size);
124 #endif
125 
126     new_l1_size2 = L1E_SIZE * new_l1_size;
127     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
128     if (new_l1_table == NULL) {
129         return -ENOMEM;
130     }
131     memset(new_l1_table, 0, new_l1_size2);
132 
133     if (s->l1_size) {
134         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
135     }
136 
137     /* write new table (align to cluster) */
138     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
139     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
140     if (new_l1_table_offset < 0) {
141         qemu_vfree(new_l1_table);
142         return new_l1_table_offset;
143     }
144 
145     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
146     if (ret < 0) {
147         goto fail;
148     }
149 
150     /* the L1 position has not yet been updated, so these clusters must
151      * indeed be completely free */
152     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
153                                         new_l1_size2, false);
154     if (ret < 0) {
155         goto fail;
156     }
157 
158     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
159     for(i = 0; i < s->l1_size; i++)
160         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
161     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
162                            new_l1_table, new_l1_size2);
163     if (ret < 0)
164         goto fail;
165     for(i = 0; i < s->l1_size; i++)
166         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
167 
168     /* set new table */
169     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
170     stl_be_p(data, new_l1_size);
171     stq_be_p(data + 4, new_l1_table_offset);
172     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
173                            data, sizeof(data));
174     if (ret < 0) {
175         goto fail;
176     }
177     qemu_vfree(s->l1_table);
178     old_l1_table_offset = s->l1_table_offset;
179     s->l1_table_offset = new_l1_table_offset;
180     s->l1_table = new_l1_table;
181     old_l1_size = s->l1_size;
182     s->l1_size = new_l1_size;
183     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
184                         QCOW2_DISCARD_OTHER);
185     return 0;
186  fail:
187     qemu_vfree(new_l1_table);
188     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189                         QCOW2_DISCARD_OTHER);
190     return ret;
191 }
192 
193 /*
194  * l2_load
195  *
196  * @bs: The BlockDriverState
197  * @offset: A guest offset, used to calculate what slice of the L2
198  *          table to load.
199  * @l2_offset: Offset to the L2 table in the image file.
200  * @l2_slice: Location to store the pointer to the L2 slice.
201  *
202  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203  * that are loaded by the qcow2 cache). If the slice is in the cache,
204  * the cache is used; otherwise the L2 slice is loaded from the image
205  * file.
206  */
207 static int l2_load(BlockDriverState *bs, uint64_t offset,
208                    uint64_t l2_offset, uint64_t **l2_slice)
209 {
210     BDRVQcow2State *s = bs->opaque;
211     int start_of_slice = l2_entry_size(s) *
212         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
213 
214     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
215                            (void **)l2_slice);
216 }
217 
218 /*
219  * Writes an L1 entry to disk (note that depending on the alignment
220  * requirements this function may write more that just one entry in
221  * order to prevent bdrv_pwrite from performing a read-modify-write)
222  */
223 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
224 {
225     BDRVQcow2State *s = bs->opaque;
226     int l1_start_index;
227     int i, ret;
228     int bufsize = MAX(L1E_SIZE,
229                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230     int nentries = bufsize / L1E_SIZE;
231     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
232 
233     if (buf == NULL) {
234         return -ENOMEM;
235     }
236 
237     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
239         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240     }
241 
242     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
243             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
244     if (ret < 0) {
245         return ret;
246     }
247 
248     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
249     ret = bdrv_pwrite_sync(bs->file,
250                            s->l1_table_offset + L1E_SIZE * l1_start_index,
251                            buf, bufsize);
252     if (ret < 0) {
253         return ret;
254     }
255 
256     return 0;
257 }
258 
259 /*
260  * l2_allocate
261  *
262  * Allocate a new l2 entry in the file. If l1_index points to an already
263  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264  * table) copy the contents of the old L2 table into the newly allocated one.
265  * Otherwise the new table is initialized with zeros.
266  *
267  */
268 
269 static int l2_allocate(BlockDriverState *bs, int l1_index)
270 {
271     BDRVQcow2State *s = bs->opaque;
272     uint64_t old_l2_offset;
273     uint64_t *l2_slice = NULL;
274     unsigned slice, slice_size2, n_slices;
275     int64_t l2_offset;
276     int ret;
277 
278     old_l2_offset = s->l1_table[l1_index];
279 
280     trace_qcow2_l2_allocate(bs, l1_index);
281 
282     /* allocate a new l2 entry */
283 
284     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
285     if (l2_offset < 0) {
286         ret = l2_offset;
287         goto fail;
288     }
289 
290     /* The offset must fit in the offset field of the L1 table entry */
291     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
292 
293     /* If we're allocating the table at offset 0 then something is wrong */
294     if (l2_offset == 0) {
295         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296                                 "allocation of L2 table at offset 0");
297         ret = -EIO;
298         goto fail;
299     }
300 
301     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
302     if (ret < 0) {
303         goto fail;
304     }
305 
306     /* allocate a new entry in the l2 cache */
307 
308     slice_size2 = s->l2_slice_size * l2_entry_size(s);
309     n_slices = s->cluster_size / slice_size2;
310 
311     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
312     for (slice = 0; slice < n_slices; slice++) {
313         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
314                                     l2_offset + slice * slice_size2,
315                                     (void **) &l2_slice);
316         if (ret < 0) {
317             goto fail;
318         }
319 
320         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
321             /* if there was no old l2 table, clear the new slice */
322             memset(l2_slice, 0, slice_size2);
323         } else {
324             uint64_t *old_slice;
325             uint64_t old_l2_slice_offset =
326                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
327 
328             /* if there was an old l2 table, read a slice from the disk */
329             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
330             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331                                   (void **) &old_slice);
332             if (ret < 0) {
333                 goto fail;
334             }
335 
336             memcpy(l2_slice, old_slice, slice_size2);
337 
338             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
339         }
340 
341         /* write the l2 slice to the file */
342         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
343 
344         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
345         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
347     }
348 
349     ret = qcow2_cache_flush(bs, s->l2_table_cache);
350     if (ret < 0) {
351         goto fail;
352     }
353 
354     /* update the L1 entry */
355     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
356     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
357     ret = qcow2_write_l1_entry(bs, l1_index);
358     if (ret < 0) {
359         goto fail;
360     }
361 
362     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
363     return 0;
364 
365 fail:
366     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
367     if (l2_slice != NULL) {
368         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
369     }
370     s->l1_table[l1_index] = old_l2_offset;
371     if (l2_offset > 0) {
372         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
373                             QCOW2_DISCARD_ALWAYS);
374     }
375     return ret;
376 }
377 
378 /*
379  * For a given L2 entry, count the number of contiguous subclusters of
380  * the same type starting from @sc_from. Compressed clusters are
381  * treated as if they were divided into subclusters of size
382  * s->subcluster_size.
383  *
384  * Return the number of contiguous subclusters and set @type to the
385  * subcluster type.
386  *
387  * If the L2 entry is invalid return -errno and set @type to
388  * QCOW2_SUBCLUSTER_INVALID.
389  */
390 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
391                                            uint64_t l2_entry,
392                                            uint64_t l2_bitmap,
393                                            unsigned sc_from,
394                                            QCow2SubclusterType *type)
395 {
396     BDRVQcow2State *s = bs->opaque;
397     uint32_t val;
398 
399     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
400 
401     if (*type == QCOW2_SUBCLUSTER_INVALID) {
402         return -EINVAL;
403     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
404         return s->subclusters_per_cluster - sc_from;
405     }
406 
407     switch (*type) {
408     case QCOW2_SUBCLUSTER_NORMAL:
409         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
410         return cto32(val) - sc_from;
411 
412     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
413     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
414         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
415         return cto32(val) - sc_from;
416 
417     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
418     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
419         val = ((l2_bitmap >> 32) | l2_bitmap)
420             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
421         return ctz32(val) - sc_from;
422 
423     default:
424         g_assert_not_reached();
425     }
426 }
427 
428 /*
429  * Return the number of contiguous subclusters of the exact same type
430  * in a given L2 slice, starting from cluster @l2_index, subcluster
431  * @sc_index. Allocated subclusters are required to be contiguous in
432  * the image file.
433  * At most @nb_clusters are checked (note that this means clusters,
434  * not subclusters).
435  * Compressed clusters are always processed one by one but for the
436  * purpose of this count they are treated as if they were divided into
437  * subclusters of size s->subcluster_size.
438  * On failure return -errno and update @l2_index to point to the
439  * invalid entry.
440  */
441 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
442                                         unsigned sc_index, uint64_t *l2_slice,
443                                         unsigned *l2_index)
444 {
445     BDRVQcow2State *s = bs->opaque;
446     int i, count = 0;
447     bool check_offset = false;
448     uint64_t expected_offset = 0;
449     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
450 
451     assert(*l2_index + nb_clusters <= s->l2_slice_size);
452 
453     for (i = 0; i < nb_clusters; i++) {
454         unsigned first_sc = (i == 0) ? sc_index : 0;
455         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
456         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
457         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
458                                                   first_sc, &type);
459         if (ret < 0) {
460             *l2_index += i; /* Point to the invalid entry */
461             return -EIO;
462         }
463         if (i == 0) {
464             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
465                 /* Compressed clusters are always processed one by one */
466                 return ret;
467             }
468             expected_type = type;
469             expected_offset = l2_entry & L2E_OFFSET_MASK;
470             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
471                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
472                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
473         } else if (type != expected_type) {
474             break;
475         } else if (check_offset) {
476             expected_offset += s->cluster_size;
477             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
478                 break;
479             }
480         }
481         count += ret;
482         /* Stop if there are type changes before the end of the cluster */
483         if (first_sc + ret < s->subclusters_per_cluster) {
484             break;
485         }
486     }
487 
488     return count;
489 }
490 
491 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
492                                             uint64_t src_cluster_offset,
493                                             unsigned offset_in_cluster,
494                                             QEMUIOVector *qiov)
495 {
496     int ret;
497 
498     if (qiov->size == 0) {
499         return 0;
500     }
501 
502     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
503 
504     if (!bs->drv) {
505         return -ENOMEDIUM;
506     }
507 
508     /*
509      * We never deal with requests that don't satisfy
510      * bdrv_check_qiov_request(), and aligning requests to clusters never
511      * breaks this condition. So, do some assertions before calling
512      * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
513      */
514     assert(src_cluster_offset <= INT64_MAX);
515     assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
516     /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
517     assert((uint64_t)qiov->size <= INT64_MAX);
518     bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
519                             qiov, 0, &error_abort);
520     /*
521      * Call .bdrv_co_readv() directly instead of using the public block-layer
522      * interface.  This avoids double I/O throttling and request tracking,
523      * which can lead to deadlock when block layer copy-on-read is enabled.
524      */
525     ret = bs->drv->bdrv_co_preadv_part(bs,
526                                        src_cluster_offset + offset_in_cluster,
527                                        qiov->size, qiov, 0, 0);
528     if (ret < 0) {
529         return ret;
530     }
531 
532     return 0;
533 }
534 
535 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
536                                              uint64_t cluster_offset,
537                                              unsigned offset_in_cluster,
538                                              QEMUIOVector *qiov)
539 {
540     BDRVQcow2State *s = bs->opaque;
541     int ret;
542 
543     if (qiov->size == 0) {
544         return 0;
545     }
546 
547     ret = qcow2_pre_write_overlap_check(bs, 0,
548             cluster_offset + offset_in_cluster, qiov->size, true);
549     if (ret < 0) {
550         return ret;
551     }
552 
553     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
554     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
555                           qiov->size, qiov, 0);
556     if (ret < 0) {
557         return ret;
558     }
559 
560     return 0;
561 }
562 
563 
564 /*
565  * get_host_offset
566  *
567  * For a given offset of the virtual disk find the equivalent host
568  * offset in the qcow2 file and store it in *host_offset. Neither
569  * offset needs to be aligned to a cluster boundary.
570  *
571  * If the cluster is unallocated then *host_offset will be 0.
572  * If the cluster is compressed then *host_offset will contain the l2 entry.
573  *
574  * On entry, *bytes is the maximum number of contiguous bytes starting at
575  * offset that we are interested in.
576  *
577  * On exit, *bytes is the number of bytes starting at offset that have the same
578  * subcluster type and (if applicable) are stored contiguously in the image
579  * file. The subcluster type is stored in *subcluster_type.
580  * Compressed clusters are always processed one by one.
581  *
582  * Returns 0 on success, -errno in error cases.
583  */
584 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
585                           unsigned int *bytes, uint64_t *host_offset,
586                           QCow2SubclusterType *subcluster_type)
587 {
588     BDRVQcow2State *s = bs->opaque;
589     unsigned int l2_index, sc_index;
590     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
591     int sc;
592     unsigned int offset_in_cluster;
593     uint64_t bytes_available, bytes_needed, nb_clusters;
594     QCow2SubclusterType type;
595     int ret;
596 
597     offset_in_cluster = offset_into_cluster(s, offset);
598     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
599 
600     /* compute how many bytes there are between the start of the cluster
601      * containing offset and the end of the l2 slice that contains
602      * the entry pointing to it */
603     bytes_available =
604         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
605         << s->cluster_bits;
606 
607     if (bytes_needed > bytes_available) {
608         bytes_needed = bytes_available;
609     }
610 
611     *host_offset = 0;
612 
613     /* seek to the l2 offset in the l1 table */
614 
615     l1_index = offset_to_l1_index(s, offset);
616     if (l1_index >= s->l1_size) {
617         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
618         goto out;
619     }
620 
621     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
622     if (!l2_offset) {
623         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
624         goto out;
625     }
626 
627     if (offset_into_cluster(s, l2_offset)) {
628         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
629                                 " unaligned (L1 index: %#" PRIx64 ")",
630                                 l2_offset, l1_index);
631         return -EIO;
632     }
633 
634     /* load the l2 slice in memory */
635 
636     ret = l2_load(bs, offset, l2_offset, &l2_slice);
637     if (ret < 0) {
638         return ret;
639     }
640 
641     /* find the cluster offset for the given disk offset */
642 
643     l2_index = offset_to_l2_slice_index(s, offset);
644     sc_index = offset_to_sc_index(s, offset);
645     l2_entry = get_l2_entry(s, l2_slice, l2_index);
646     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
647 
648     nb_clusters = size_to_clusters(s, bytes_needed);
649     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
650      * integers; the minimum cluster size is 512, so this assertion is always
651      * true */
652     assert(nb_clusters <= INT_MAX);
653 
654     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
655     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
656                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
657         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
658                                 " in pre-v3 image (L2 offset: %#" PRIx64
659                                 ", L2 index: %#x)", l2_offset, l2_index);
660         ret = -EIO;
661         goto fail;
662     }
663     switch (type) {
664     case QCOW2_SUBCLUSTER_INVALID:
665         break; /* This is handled by count_contiguous_subclusters() below */
666     case QCOW2_SUBCLUSTER_COMPRESSED:
667         if (has_data_file(bs)) {
668             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
669                                     "entry found in image with external data "
670                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
671                                     "%#x)", l2_offset, l2_index);
672             ret = -EIO;
673             goto fail;
674         }
675         *host_offset = l2_entry;
676         break;
677     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
678     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
679         break;
680     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
681     case QCOW2_SUBCLUSTER_NORMAL:
682     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
683         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
684         *host_offset = host_cluster_offset + offset_in_cluster;
685         if (offset_into_cluster(s, host_cluster_offset)) {
686             qcow2_signal_corruption(bs, true, -1, -1,
687                                     "Cluster allocation offset %#"
688                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
689                                     ", L2 index: %#x)", host_cluster_offset,
690                                     l2_offset, l2_index);
691             ret = -EIO;
692             goto fail;
693         }
694         if (has_data_file(bs) && *host_offset != offset) {
695             qcow2_signal_corruption(bs, true, -1, -1,
696                                     "External data file host cluster offset %#"
697                                     PRIx64 " does not match guest cluster "
698                                     "offset: %#" PRIx64
699                                     ", L2 index: %#x)", host_cluster_offset,
700                                     offset - offset_in_cluster, l2_index);
701             ret = -EIO;
702             goto fail;
703         }
704         break;
705     }
706     default:
707         abort();
708     }
709 
710     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
711                                       l2_slice, &l2_index);
712     if (sc < 0) {
713         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
714                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
715                                 l2_offset, l2_index);
716         ret = -EIO;
717         goto fail;
718     }
719     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
720 
721     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
722 
723 out:
724     if (bytes_available > bytes_needed) {
725         bytes_available = bytes_needed;
726     }
727 
728     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
729      * subtracting offset_in_cluster will therefore definitely yield something
730      * not exceeding UINT_MAX */
731     assert(bytes_available - offset_in_cluster <= UINT_MAX);
732     *bytes = bytes_available - offset_in_cluster;
733 
734     *subcluster_type = type;
735 
736     return 0;
737 
738 fail:
739     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
740     return ret;
741 }
742 
743 /*
744  * get_cluster_table
745  *
746  * for a given disk offset, load (and allocate if needed)
747  * the appropriate slice of its l2 table.
748  *
749  * the cluster index in the l2 slice is given to the caller.
750  *
751  * Returns 0 on success, -errno in failure case
752  */
753 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
754                              uint64_t **new_l2_slice,
755                              int *new_l2_index)
756 {
757     BDRVQcow2State *s = bs->opaque;
758     unsigned int l2_index;
759     uint64_t l1_index, l2_offset;
760     uint64_t *l2_slice = NULL;
761     int ret;
762 
763     /* seek to the l2 offset in the l1 table */
764 
765     l1_index = offset_to_l1_index(s, offset);
766     if (l1_index >= s->l1_size) {
767         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
768         if (ret < 0) {
769             return ret;
770         }
771     }
772 
773     assert(l1_index < s->l1_size);
774     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
775     if (offset_into_cluster(s, l2_offset)) {
776         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
777                                 " unaligned (L1 index: %#" PRIx64 ")",
778                                 l2_offset, l1_index);
779         return -EIO;
780     }
781 
782     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
783         /* First allocate a new L2 table (and do COW if needed) */
784         ret = l2_allocate(bs, l1_index);
785         if (ret < 0) {
786             return ret;
787         }
788 
789         /* Then decrease the refcount of the old table */
790         if (l2_offset) {
791             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
792                                 QCOW2_DISCARD_OTHER);
793         }
794 
795         /* Get the offset of the newly-allocated l2 table */
796         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
797         assert(offset_into_cluster(s, l2_offset) == 0);
798     }
799 
800     /* load the l2 slice in memory */
801     ret = l2_load(bs, offset, l2_offset, &l2_slice);
802     if (ret < 0) {
803         return ret;
804     }
805 
806     /* find the cluster offset for the given disk offset */
807 
808     l2_index = offset_to_l2_slice_index(s, offset);
809 
810     *new_l2_slice = l2_slice;
811     *new_l2_index = l2_index;
812 
813     return 0;
814 }
815 
816 /*
817  * alloc_compressed_cluster_offset
818  *
819  * For a given offset on the virtual disk, allocate a new compressed cluster
820  * and put the host offset of the cluster into *host_offset. If a cluster is
821  * already allocated at the offset, return an error.
822  *
823  * Return 0 on success and -errno in error cases
824  */
825 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
826                                           uint64_t offset,
827                                           int compressed_size,
828                                           uint64_t *host_offset)
829 {
830     BDRVQcow2State *s = bs->opaque;
831     int l2_index, ret;
832     uint64_t *l2_slice;
833     int64_t cluster_offset;
834     int nb_csectors;
835 
836     if (has_data_file(bs)) {
837         return 0;
838     }
839 
840     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
841     if (ret < 0) {
842         return ret;
843     }
844 
845     /* Compression can't overwrite anything. Fail if the cluster was already
846      * allocated. */
847     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
848     if (cluster_offset & L2E_OFFSET_MASK) {
849         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
850         return -EIO;
851     }
852 
853     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
854     if (cluster_offset < 0) {
855         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
856         return cluster_offset;
857     }
858 
859     nb_csectors =
860         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
861         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
862 
863     /* The offset and size must fit in their fields of the L2 table entry */
864     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
865     assert((nb_csectors & s->csize_mask) == nb_csectors);
866 
867     cluster_offset |= QCOW_OFLAG_COMPRESSED |
868                       ((uint64_t)nb_csectors << s->csize_shift);
869 
870     /* update L2 table */
871 
872     /* compressed clusters never have the copied flag */
873 
874     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
875     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
876     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
877     if (has_subclusters(s)) {
878         set_l2_bitmap(s, l2_slice, l2_index, 0);
879     }
880     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
881 
882     *host_offset = cluster_offset & s->cluster_offset_mask;
883     return 0;
884 }
885 
886 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
887 {
888     BDRVQcow2State *s = bs->opaque;
889     Qcow2COWRegion *start = &m->cow_start;
890     Qcow2COWRegion *end = &m->cow_end;
891     unsigned buffer_size;
892     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
893     bool merge_reads;
894     uint8_t *start_buffer, *end_buffer;
895     QEMUIOVector qiov;
896     int ret;
897 
898     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
899     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
900     assert(start->offset + start->nb_bytes <= end->offset);
901 
902     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
903         return 0;
904     }
905 
906     /* If we have to read both the start and end COW regions and the
907      * middle region is not too large then perform just one read
908      * operation */
909     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
910     if (merge_reads) {
911         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
912     } else {
913         /* If we have to do two reads, add some padding in the middle
914          * if necessary to make sure that the end region is optimally
915          * aligned. */
916         size_t align = bdrv_opt_mem_align(bs);
917         assert(align > 0 && align <= UINT_MAX);
918         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
919                UINT_MAX - end->nb_bytes);
920         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
921     }
922 
923     /* Reserve a buffer large enough to store all the data that we're
924      * going to read */
925     start_buffer = qemu_try_blockalign(bs, buffer_size);
926     if (start_buffer == NULL) {
927         return -ENOMEM;
928     }
929     /* The part of the buffer where the end region is located */
930     end_buffer = start_buffer + buffer_size - end->nb_bytes;
931 
932     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
933                                 qemu_iovec_subvec_niov(m->data_qiov,
934                                                        m->data_qiov_offset,
935                                                        data_bytes)
936                                 : 0));
937 
938     qemu_co_mutex_unlock(&s->lock);
939     /* First we read the existing data from both COW regions. We
940      * either read the whole region in one go, or the start and end
941      * regions separately. */
942     if (merge_reads) {
943         qemu_iovec_add(&qiov, start_buffer, buffer_size);
944         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
945     } else {
946         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
947         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
948         if (ret < 0) {
949             goto fail;
950         }
951 
952         qemu_iovec_reset(&qiov);
953         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
954         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
955     }
956     if (ret < 0) {
957         goto fail;
958     }
959 
960     /* Encrypt the data if necessary before writing it */
961     if (bs->encrypted) {
962         ret = qcow2_co_encrypt(bs,
963                                m->alloc_offset + start->offset,
964                                m->offset + start->offset,
965                                start_buffer, start->nb_bytes);
966         if (ret < 0) {
967             goto fail;
968         }
969 
970         ret = qcow2_co_encrypt(bs,
971                                m->alloc_offset + end->offset,
972                                m->offset + end->offset,
973                                end_buffer, end->nb_bytes);
974         if (ret < 0) {
975             goto fail;
976         }
977     }
978 
979     /* And now we can write everything. If we have the guest data we
980      * can write everything in one single operation */
981     if (m->data_qiov) {
982         qemu_iovec_reset(&qiov);
983         if (start->nb_bytes) {
984             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
985         }
986         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
987         if (end->nb_bytes) {
988             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
989         }
990         /* NOTE: we have a write_aio blkdebug event here followed by
991          * a cow_write one in do_perform_cow_write(), but there's only
992          * one single I/O operation */
993         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
994         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
995     } else {
996         /* If there's no guest data then write both COW regions separately */
997         qemu_iovec_reset(&qiov);
998         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
999         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1000         if (ret < 0) {
1001             goto fail;
1002         }
1003 
1004         qemu_iovec_reset(&qiov);
1005         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1006         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1007     }
1008 
1009 fail:
1010     qemu_co_mutex_lock(&s->lock);
1011 
1012     /*
1013      * Before we update the L2 table to actually point to the new cluster, we
1014      * need to be sure that the refcounts have been increased and COW was
1015      * handled.
1016      */
1017     if (ret == 0) {
1018         qcow2_cache_depends_on_flush(s->l2_table_cache);
1019     }
1020 
1021     qemu_vfree(start_buffer);
1022     qemu_iovec_destroy(&qiov);
1023     return ret;
1024 }
1025 
1026 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1027 {
1028     BDRVQcow2State *s = bs->opaque;
1029     int i, j = 0, l2_index, ret;
1030     uint64_t *old_cluster, *l2_slice;
1031     uint64_t cluster_offset = m->alloc_offset;
1032 
1033     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1034     assert(m->nb_clusters > 0);
1035 
1036     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1037     if (old_cluster == NULL) {
1038         ret = -ENOMEM;
1039         goto err;
1040     }
1041 
1042     /* copy content of unmodified sectors */
1043     ret = perform_cow(bs, m);
1044     if (ret < 0) {
1045         goto err;
1046     }
1047 
1048     /* Update L2 table. */
1049     if (s->use_lazy_refcounts) {
1050         qcow2_mark_dirty(bs);
1051     }
1052     if (qcow2_need_accurate_refcounts(s)) {
1053         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1054                                    s->refcount_block_cache);
1055     }
1056 
1057     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1058     if (ret < 0) {
1059         goto err;
1060     }
1061     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1062 
1063     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1064     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1065            m->nb_clusters << s->cluster_bits);
1066     for (i = 0; i < m->nb_clusters; i++) {
1067         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1068         /* if two concurrent writes happen to the same unallocated cluster
1069          * each write allocates separate cluster and writes data concurrently.
1070          * The first one to complete updates l2 table with pointer to its
1071          * cluster the second one has to do RMW (which is done above by
1072          * perform_cow()), update l2 table with its cluster pointer and free
1073          * old cluster. This is what this loop does */
1074         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1075             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1076         }
1077 
1078         /* The offset must fit in the offset field of the L2 table entry */
1079         assert((offset & L2E_OFFSET_MASK) == offset);
1080 
1081         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1082 
1083         /* Update bitmap with the subclusters that were just written */
1084         if (has_subclusters(s) && !m->prealloc) {
1085             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1086             unsigned written_from = m->cow_start.offset;
1087             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1088             int first_sc, last_sc;
1089             /* Narrow written_from and written_to down to the current cluster */
1090             written_from = MAX(written_from, i << s->cluster_bits);
1091             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1092             assert(written_from < written_to);
1093             first_sc = offset_to_sc_index(s, written_from);
1094             last_sc  = offset_to_sc_index(s, written_to - 1);
1095             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1096             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1097             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1098         }
1099      }
1100 
1101 
1102     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1103 
1104     /*
1105      * If this was a COW, we need to decrease the refcount of the old cluster.
1106      *
1107      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1108      * clusters), the next write will reuse them anyway.
1109      */
1110     if (!m->keep_old_clusters && j != 0) {
1111         for (i = 0; i < j; i++) {
1112             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1113         }
1114     }
1115 
1116     ret = 0;
1117 err:
1118     g_free(old_cluster);
1119     return ret;
1120  }
1121 
1122 /**
1123  * Frees the allocated clusters because the request failed and they won't
1124  * actually be linked.
1125  */
1126 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1127 {
1128     BDRVQcow2State *s = bs->opaque;
1129     if (!has_data_file(bs) && !m->keep_old_clusters) {
1130         qcow2_free_clusters(bs, m->alloc_offset,
1131                             m->nb_clusters << s->cluster_bits,
1132                             QCOW2_DISCARD_NEVER);
1133     }
1134 }
1135 
1136 /*
1137  * For a given write request, create a new QCowL2Meta structure, add
1138  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1139  * request does not need copy-on-write or changes to the L2 metadata
1140  * then this function does nothing.
1141  *
1142  * @host_cluster_offset points to the beginning of the first cluster.
1143  *
1144  * @guest_offset and @bytes indicate the offset and length of the
1145  * request.
1146  *
1147  * @l2_slice contains the L2 entries of all clusters involved in this
1148  * write request.
1149  *
1150  * If @keep_old is true it means that the clusters were already
1151  * allocated and will be overwritten. If false then the clusters are
1152  * new and we have to decrease the reference count of the old ones.
1153  *
1154  * Returns 0 on success, -errno on failure.
1155  */
1156 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1157                              uint64_t guest_offset, unsigned bytes,
1158                              uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1159 {
1160     BDRVQcow2State *s = bs->opaque;
1161     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1162     uint64_t l2_entry, l2_bitmap;
1163     unsigned cow_start_from, cow_end_to;
1164     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1165     unsigned cow_end_from = cow_start_to + bytes;
1166     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1167     QCowL2Meta *old_m = *m;
1168     QCow2SubclusterType type;
1169     int i;
1170     bool skip_cow = keep_old;
1171 
1172     assert(nb_clusters <= s->l2_slice_size - l2_index);
1173 
1174     /* Check the type of all affected subclusters */
1175     for (i = 0; i < nb_clusters; i++) {
1176         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1177         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1178         if (skip_cow) {
1179             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1180             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1181             int first_sc = offset_to_sc_index(s, write_from);
1182             int last_sc = offset_to_sc_index(s, write_to - 1);
1183             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1184                                                       first_sc, &type);
1185             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1186             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1187                 skip_cow = false;
1188             }
1189         } else {
1190             /* If we can't skip the cow we can still look for invalid entries */
1191             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1192         }
1193         if (type == QCOW2_SUBCLUSTER_INVALID) {
1194             int l1_index = offset_to_l1_index(s, guest_offset);
1195             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1196             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1197                                     "entry found (L2 offset: %#" PRIx64
1198                                     ", L2 index: %#x)",
1199                                     l2_offset, l2_index + i);
1200             return -EIO;
1201         }
1202     }
1203 
1204     if (skip_cow) {
1205         return 0;
1206     }
1207 
1208     /* Get the L2 entry of the first cluster */
1209     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1210     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1211     sc_index = offset_to_sc_index(s, guest_offset);
1212     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1213 
1214     if (!keep_old) {
1215         switch (type) {
1216         case QCOW2_SUBCLUSTER_COMPRESSED:
1217             cow_start_from = 0;
1218             break;
1219         case QCOW2_SUBCLUSTER_NORMAL:
1220         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1221         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1222             if (has_subclusters(s)) {
1223                 /* Skip all leading zero and unallocated subclusters */
1224                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1225                 cow_start_from =
1226                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1227             } else {
1228                 cow_start_from = 0;
1229             }
1230             break;
1231         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1232         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1233             cow_start_from = sc_index << s->subcluster_bits;
1234             break;
1235         default:
1236             g_assert_not_reached();
1237         }
1238     } else {
1239         switch (type) {
1240         case QCOW2_SUBCLUSTER_NORMAL:
1241             cow_start_from = cow_start_to;
1242             break;
1243         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1244         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1245             cow_start_from = sc_index << s->subcluster_bits;
1246             break;
1247         default:
1248             g_assert_not_reached();
1249         }
1250     }
1251 
1252     /* Get the L2 entry of the last cluster */
1253     l2_index += nb_clusters - 1;
1254     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1255     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1256     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1257     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1258 
1259     if (!keep_old) {
1260         switch (type) {
1261         case QCOW2_SUBCLUSTER_COMPRESSED:
1262             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1263             break;
1264         case QCOW2_SUBCLUSTER_NORMAL:
1265         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1266         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1267             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1268             if (has_subclusters(s)) {
1269                 /* Skip all trailing zero and unallocated subclusters */
1270                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1271                 cow_end_to -=
1272                     MIN(s->subclusters_per_cluster - sc_index - 1,
1273                         clz32(alloc_bitmap)) << s->subcluster_bits;
1274             }
1275             break;
1276         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1277         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1278             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1279             break;
1280         default:
1281             g_assert_not_reached();
1282         }
1283     } else {
1284         switch (type) {
1285         case QCOW2_SUBCLUSTER_NORMAL:
1286             cow_end_to = cow_end_from;
1287             break;
1288         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1289         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1290             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1291             break;
1292         default:
1293             g_assert_not_reached();
1294         }
1295     }
1296 
1297     *m = g_malloc0(sizeof(**m));
1298     **m = (QCowL2Meta) {
1299         .next           = old_m,
1300 
1301         .alloc_offset   = host_cluster_offset,
1302         .offset         = start_of_cluster(s, guest_offset),
1303         .nb_clusters    = nb_clusters,
1304 
1305         .keep_old_clusters = keep_old,
1306 
1307         .cow_start = {
1308             .offset     = cow_start_from,
1309             .nb_bytes   = cow_start_to - cow_start_from,
1310         },
1311         .cow_end = {
1312             .offset     = cow_end_from,
1313             .nb_bytes   = cow_end_to - cow_end_from,
1314         },
1315     };
1316 
1317     qemu_co_queue_init(&(*m)->dependent_requests);
1318     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1319 
1320     return 0;
1321 }
1322 
1323 /*
1324  * Returns true if writing to the cluster pointed to by @l2_entry
1325  * requires a new allocation (that is, if the cluster is unallocated
1326  * or has refcount > 1 and therefore cannot be written in-place).
1327  */
1328 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1329 {
1330     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1331     case QCOW2_CLUSTER_NORMAL:
1332     case QCOW2_CLUSTER_ZERO_ALLOC:
1333         if (l2_entry & QCOW_OFLAG_COPIED) {
1334             return false;
1335         }
1336         /* fallthrough */
1337     case QCOW2_CLUSTER_UNALLOCATED:
1338     case QCOW2_CLUSTER_COMPRESSED:
1339     case QCOW2_CLUSTER_ZERO_PLAIN:
1340         return true;
1341     default:
1342         abort();
1343     }
1344 }
1345 
1346 /*
1347  * Returns the number of contiguous clusters that can be written to
1348  * using one single write request, starting from @l2_index.
1349  * At most @nb_clusters are checked.
1350  *
1351  * If @new_alloc is true this counts clusters that are either
1352  * unallocated, or allocated but with refcount > 1 (so they need to be
1353  * newly allocated and COWed).
1354  *
1355  * If @new_alloc is false this counts clusters that are already
1356  * allocated and can be overwritten in-place (this includes clusters
1357  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1358  */
1359 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1360                                        uint64_t *l2_slice, int l2_index,
1361                                        bool new_alloc)
1362 {
1363     BDRVQcow2State *s = bs->opaque;
1364     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1365     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1366     int i;
1367 
1368     for (i = 0; i < nb_clusters; i++) {
1369         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1370         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1371             break;
1372         }
1373         if (!new_alloc) {
1374             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1375                 break;
1376             }
1377             expected_offset += s->cluster_size;
1378         }
1379     }
1380 
1381     assert(i <= nb_clusters);
1382     return i;
1383 }
1384 
1385 /*
1386  * Check if there already is an AIO write request in flight which allocates
1387  * the same cluster. In this case we need to wait until the previous
1388  * request has completed and updated the L2 table accordingly.
1389  *
1390  * Returns:
1391  *   0       if there was no dependency. *cur_bytes indicates the number of
1392  *           bytes from guest_offset that can be read before the next
1393  *           dependency must be processed (or the request is complete)
1394  *
1395  *   -EAGAIN if we had to wait for another request, previously gathered
1396  *           information on cluster allocation may be invalid now. The caller
1397  *           must start over anyway, so consider *cur_bytes undefined.
1398  */
1399 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1400     uint64_t *cur_bytes, QCowL2Meta **m)
1401 {
1402     BDRVQcow2State *s = bs->opaque;
1403     QCowL2Meta *old_alloc;
1404     uint64_t bytes = *cur_bytes;
1405 
1406     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1407 
1408         uint64_t start = guest_offset;
1409         uint64_t end = start + bytes;
1410         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1411         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1412 
1413         if (end <= old_start || start >= old_end) {
1414             /* No intersection */
1415             continue;
1416         }
1417 
1418         if (old_alloc->keep_old_clusters &&
1419             (end <= l2meta_cow_start(old_alloc) ||
1420              start >= l2meta_cow_end(old_alloc)))
1421         {
1422             /*
1423              * Clusters intersect but COW areas don't. And cluster itself is
1424              * already allocated. So, there is no actual conflict.
1425              */
1426             continue;
1427         }
1428 
1429         /* Conflict */
1430 
1431         if (start < old_start) {
1432             /* Stop at the start of a running allocation */
1433             bytes = old_start - start;
1434         } else {
1435             bytes = 0;
1436         }
1437 
1438         /*
1439          * Stop if an l2meta already exists. After yielding, it wouldn't
1440          * be valid any more, so we'd have to clean up the old L2Metas
1441          * and deal with requests depending on them before starting to
1442          * gather new ones. Not worth the trouble.
1443          */
1444         if (bytes == 0 && *m) {
1445             *cur_bytes = 0;
1446             return 0;
1447         }
1448 
1449         if (bytes == 0) {
1450             /*
1451              * Wait for the dependency to complete. We need to recheck
1452              * the free/allocated clusters when we continue.
1453              */
1454             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1455             return -EAGAIN;
1456         }
1457     }
1458 
1459     /* Make sure that existing clusters and new allocations are only used up to
1460      * the next dependency if we shortened the request above */
1461     *cur_bytes = bytes;
1462 
1463     return 0;
1464 }
1465 
1466 /*
1467  * Checks how many already allocated clusters that don't require a new
1468  * allocation there are at the given guest_offset (up to *bytes).
1469  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1470  * beginning at this host offset are counted.
1471  *
1472  * Note that guest_offset may not be cluster aligned. In this case, the
1473  * returned *host_offset points to exact byte referenced by guest_offset and
1474  * therefore isn't cluster aligned as well.
1475  *
1476  * Returns:
1477  *   0:     if no allocated clusters are available at the given offset.
1478  *          *bytes is normally unchanged. It is set to 0 if the cluster
1479  *          is allocated and can be overwritten in-place but doesn't have
1480  *          the right physical offset.
1481  *
1482  *   1:     if allocated clusters that can be overwritten in place are
1483  *          available at the requested offset. *bytes may have decreased
1484  *          and describes the length of the area that can be written to.
1485  *
1486  *  -errno: in error cases
1487  */
1488 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1489     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1490 {
1491     BDRVQcow2State *s = bs->opaque;
1492     int l2_index;
1493     uint64_t l2_entry, cluster_offset;
1494     uint64_t *l2_slice;
1495     uint64_t nb_clusters;
1496     unsigned int keep_clusters;
1497     int ret;
1498 
1499     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1500                               *bytes);
1501 
1502     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1503                                       == offset_into_cluster(s, *host_offset));
1504 
1505     /*
1506      * Calculate the number of clusters to look for. We stop at L2 slice
1507      * boundaries to keep things simple.
1508      */
1509     nb_clusters =
1510         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1511 
1512     l2_index = offset_to_l2_slice_index(s, guest_offset);
1513     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1514     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1515     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1516 
1517     /* Find L2 entry for the first involved cluster */
1518     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1519     if (ret < 0) {
1520         return ret;
1521     }
1522 
1523     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1524     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1525 
1526     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1527         if (offset_into_cluster(s, cluster_offset)) {
1528             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1529                                     "%#" PRIx64 " unaligned (guest offset: %#"
1530                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1531                                     "Preallocated zero" : "Data",
1532                                     cluster_offset, guest_offset);
1533             ret = -EIO;
1534             goto out;
1535         }
1536 
1537         /* If a specific host_offset is required, check it */
1538         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1539             *bytes = 0;
1540             ret = 0;
1541             goto out;
1542         }
1543 
1544         /* We keep all QCOW_OFLAG_COPIED clusters */
1545         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1546                                                     l2_index, false);
1547         assert(keep_clusters <= nb_clusters);
1548 
1549         *bytes = MIN(*bytes,
1550                  keep_clusters * s->cluster_size
1551                  - offset_into_cluster(s, guest_offset));
1552         assert(*bytes != 0);
1553 
1554         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1555                                 *bytes, l2_slice, m, true);
1556         if (ret < 0) {
1557             goto out;
1558         }
1559 
1560         ret = 1;
1561     } else {
1562         ret = 0;
1563     }
1564 
1565     /* Cleanup */
1566 out:
1567     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1568 
1569     /* Only return a host offset if we actually made progress. Otherwise we
1570      * would make requirements for handle_alloc() that it can't fulfill */
1571     if (ret > 0) {
1572         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1573     }
1574 
1575     return ret;
1576 }
1577 
1578 /*
1579  * Allocates new clusters for the given guest_offset.
1580  *
1581  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1582  * contain the number of clusters that have been allocated and are contiguous
1583  * in the image file.
1584  *
1585  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1586  * at which the new clusters must start. *nb_clusters can be 0 on return in
1587  * this case if the cluster at host_offset is already in use. If *host_offset
1588  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1589  *
1590  * *host_offset is updated to contain the offset into the image file at which
1591  * the first allocated cluster starts.
1592  *
1593  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1594  * function has been waiting for another request and the allocation must be
1595  * restarted, but the whole request should not be failed.
1596  */
1597 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1598                                    uint64_t *host_offset, uint64_t *nb_clusters)
1599 {
1600     BDRVQcow2State *s = bs->opaque;
1601 
1602     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1603                                          *host_offset, *nb_clusters);
1604 
1605     if (has_data_file(bs)) {
1606         assert(*host_offset == INV_OFFSET ||
1607                *host_offset == start_of_cluster(s, guest_offset));
1608         *host_offset = start_of_cluster(s, guest_offset);
1609         return 0;
1610     }
1611 
1612     /* Allocate new clusters */
1613     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1614     if (*host_offset == INV_OFFSET) {
1615         int64_t cluster_offset =
1616             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1617         if (cluster_offset < 0) {
1618             return cluster_offset;
1619         }
1620         *host_offset = cluster_offset;
1621         return 0;
1622     } else {
1623         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1624         if (ret < 0) {
1625             return ret;
1626         }
1627         *nb_clusters = ret;
1628         return 0;
1629     }
1630 }
1631 
1632 /*
1633  * Allocates new clusters for an area that is either still unallocated or
1634  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1635  * clusters are only allocated if the new allocation can match the specified
1636  * host offset.
1637  *
1638  * Note that guest_offset may not be cluster aligned. In this case, the
1639  * returned *host_offset points to exact byte referenced by guest_offset and
1640  * therefore isn't cluster aligned as well.
1641  *
1642  * Returns:
1643  *   0:     if no clusters could be allocated. *bytes is set to 0,
1644  *          *host_offset is left unchanged.
1645  *
1646  *   1:     if new clusters were allocated. *bytes may be decreased if the
1647  *          new allocation doesn't cover all of the requested area.
1648  *          *host_offset is updated to contain the host offset of the first
1649  *          newly allocated cluster.
1650  *
1651  *  -errno: in error cases
1652  */
1653 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1654     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1655 {
1656     BDRVQcow2State *s = bs->opaque;
1657     int l2_index;
1658     uint64_t *l2_slice;
1659     uint64_t nb_clusters;
1660     int ret;
1661 
1662     uint64_t alloc_cluster_offset;
1663 
1664     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1665                              *bytes);
1666     assert(*bytes > 0);
1667 
1668     /*
1669      * Calculate the number of clusters to look for. We stop at L2 slice
1670      * boundaries to keep things simple.
1671      */
1672     nb_clusters =
1673         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1674 
1675     l2_index = offset_to_l2_slice_index(s, guest_offset);
1676     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1677     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1678     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1679 
1680     /* Find L2 entry for the first involved cluster */
1681     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1682     if (ret < 0) {
1683         return ret;
1684     }
1685 
1686     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1687                                               l2_slice, l2_index, true);
1688 
1689     /* This function is only called when there were no non-COW clusters, so if
1690      * we can't find any unallocated or COW clusters either, something is
1691      * wrong with our code. */
1692     assert(nb_clusters > 0);
1693 
1694     /* Allocate at a given offset in the image file */
1695     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1696         start_of_cluster(s, *host_offset);
1697     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1698                                   &nb_clusters);
1699     if (ret < 0) {
1700         goto out;
1701     }
1702 
1703     /* Can't extend contiguous allocation */
1704     if (nb_clusters == 0) {
1705         *bytes = 0;
1706         ret = 0;
1707         goto out;
1708     }
1709 
1710     assert(alloc_cluster_offset != INV_OFFSET);
1711 
1712     /*
1713      * Save info needed for meta data update.
1714      *
1715      * requested_bytes: Number of bytes from the start of the first
1716      * newly allocated cluster to the end of the (possibly shortened
1717      * before) write request.
1718      *
1719      * avail_bytes: Number of bytes from the start of the first
1720      * newly allocated to the end of the last newly allocated cluster.
1721      *
1722      * nb_bytes: The number of bytes from the start of the first
1723      * newly allocated cluster to the end of the area that the write
1724      * request actually writes to (excluding COW at the end)
1725      */
1726     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1727     int avail_bytes = nb_clusters << s->cluster_bits;
1728     int nb_bytes = MIN(requested_bytes, avail_bytes);
1729 
1730     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1731     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1732     assert(*bytes != 0);
1733 
1734     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1735                             l2_slice, m, false);
1736     if (ret < 0) {
1737         goto out;
1738     }
1739 
1740     ret = 1;
1741 
1742 out:
1743     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1744     return ret;
1745 }
1746 
1747 /*
1748  * For a given area on the virtual disk defined by @offset and @bytes,
1749  * find the corresponding area on the qcow2 image, allocating new
1750  * clusters (or subclusters) if necessary. The result can span a
1751  * combination of allocated and previously unallocated clusters.
1752  *
1753  * Note that offset may not be cluster aligned. In this case, the returned
1754  * *host_offset points to exact byte referenced by offset and therefore
1755  * isn't cluster aligned as well.
1756  *
1757  * On return, @host_offset is set to the beginning of the requested
1758  * area. This area is guaranteed to be contiguous on the qcow2 file
1759  * but it can be smaller than initially requested. In this case @bytes
1760  * is updated with the actual size.
1761  *
1762  * If any clusters or subclusters were allocated then @m contains a
1763  * list with the information of all the affected regions. Note that
1764  * this can happen regardless of whether this function succeeds or
1765  * not. The caller is responsible for updating the L2 metadata of the
1766  * allocated clusters (on success) or freeing them (on failure), and
1767  * for clearing the contents of @m afterwards in both cases.
1768  *
1769  * If the request conflicts with another write request in flight, the coroutine
1770  * is queued and will be reentered when the dependency has completed.
1771  *
1772  * Return 0 on success and -errno in error cases
1773  */
1774 int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1775                             unsigned int *bytes, uint64_t *host_offset,
1776                             QCowL2Meta **m)
1777 {
1778     BDRVQcow2State *s = bs->opaque;
1779     uint64_t start, remaining;
1780     uint64_t cluster_offset;
1781     uint64_t cur_bytes;
1782     int ret;
1783 
1784     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1785 
1786 again:
1787     start = offset;
1788     remaining = *bytes;
1789     cluster_offset = INV_OFFSET;
1790     *host_offset = INV_OFFSET;
1791     cur_bytes = 0;
1792     *m = NULL;
1793 
1794     while (true) {
1795 
1796         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1797             *host_offset = cluster_offset;
1798         }
1799 
1800         assert(remaining >= cur_bytes);
1801 
1802         start           += cur_bytes;
1803         remaining       -= cur_bytes;
1804 
1805         if (cluster_offset != INV_OFFSET) {
1806             cluster_offset += cur_bytes;
1807         }
1808 
1809         if (remaining == 0) {
1810             break;
1811         }
1812 
1813         cur_bytes = remaining;
1814 
1815         /*
1816          * Now start gathering as many contiguous clusters as possible:
1817          *
1818          * 1. Check for overlaps with in-flight allocations
1819          *
1820          *      a) Overlap not in the first cluster -> shorten this request and
1821          *         let the caller handle the rest in its next loop iteration.
1822          *
1823          *      b) Real overlaps of two requests. Yield and restart the search
1824          *         for contiguous clusters (the situation could have changed
1825          *         while we were sleeping)
1826          *
1827          *      c) TODO: Request starts in the same cluster as the in-flight
1828          *         allocation ends. Shorten the COW of the in-fight allocation,
1829          *         set cluster_offset to write to the same cluster and set up
1830          *         the right synchronisation between the in-flight request and
1831          *         the new one.
1832          */
1833         ret = handle_dependencies(bs, start, &cur_bytes, m);
1834         if (ret == -EAGAIN) {
1835             /* Currently handle_dependencies() doesn't yield if we already had
1836              * an allocation. If it did, we would have to clean up the L2Meta
1837              * structs before starting over. */
1838             assert(*m == NULL);
1839             goto again;
1840         } else if (ret < 0) {
1841             return ret;
1842         } else if (cur_bytes == 0) {
1843             break;
1844         } else {
1845             /* handle_dependencies() may have decreased cur_bytes (shortened
1846              * the allocations below) so that the next dependency is processed
1847              * correctly during the next loop iteration. */
1848         }
1849 
1850         /*
1851          * 2. Count contiguous COPIED clusters.
1852          */
1853         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1854         if (ret < 0) {
1855             return ret;
1856         } else if (ret) {
1857             continue;
1858         } else if (cur_bytes == 0) {
1859             break;
1860         }
1861 
1862         /*
1863          * 3. If the request still hasn't completed, allocate new clusters,
1864          *    considering any cluster_offset of steps 1c or 2.
1865          */
1866         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1867         if (ret < 0) {
1868             return ret;
1869         } else if (ret) {
1870             continue;
1871         } else {
1872             assert(cur_bytes == 0);
1873             break;
1874         }
1875     }
1876 
1877     *bytes -= remaining;
1878     assert(*bytes > 0);
1879     assert(*host_offset != INV_OFFSET);
1880     assert(offset_into_cluster(s, *host_offset) ==
1881            offset_into_cluster(s, offset));
1882 
1883     return 0;
1884 }
1885 
1886 /*
1887  * This discards as many clusters of nb_clusters as possible at once (i.e.
1888  * all clusters in the same L2 slice) and returns the number of discarded
1889  * clusters.
1890  */
1891 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1892                                uint64_t nb_clusters,
1893                                enum qcow2_discard_type type, bool full_discard)
1894 {
1895     BDRVQcow2State *s = bs->opaque;
1896     uint64_t *l2_slice;
1897     int l2_index;
1898     int ret;
1899     int i;
1900 
1901     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1902     if (ret < 0) {
1903         return ret;
1904     }
1905 
1906     /* Limit nb_clusters to one L2 slice */
1907     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1908     assert(nb_clusters <= INT_MAX);
1909 
1910     for (i = 0; i < nb_clusters; i++) {
1911         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1912         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1913         uint64_t new_l2_entry = old_l2_entry;
1914         uint64_t new_l2_bitmap = old_l2_bitmap;
1915         QCow2ClusterType cluster_type =
1916             qcow2_get_cluster_type(bs, old_l2_entry);
1917 
1918         /*
1919          * If full_discard is true, the cluster should not read back as zeroes,
1920          * but rather fall through to the backing file.
1921          *
1922          * If full_discard is false, make sure that a discarded area reads back
1923          * as zeroes for v3 images (we cannot do it for v2 without actually
1924          * writing a zero-filled buffer). We can skip the operation if the
1925          * cluster is already marked as zero, or if it's unallocated and we
1926          * don't have a backing file.
1927          *
1928          * TODO We might want to use bdrv_block_status(bs) here, but we're
1929          * holding s->lock, so that doesn't work today.
1930          */
1931         if (full_discard) {
1932             new_l2_entry = new_l2_bitmap = 0;
1933         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1934             if (has_subclusters(s)) {
1935                 new_l2_entry = 0;
1936                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1937             } else {
1938                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1939             }
1940         }
1941 
1942         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1943             continue;
1944         }
1945 
1946         /* First remove L2 entries */
1947         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1948         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1949         if (has_subclusters(s)) {
1950             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1951         }
1952         /* Then decrease the refcount */
1953         qcow2_free_any_cluster(bs, old_l2_entry, type);
1954     }
1955 
1956     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1957 
1958     return nb_clusters;
1959 }
1960 
1961 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1962                           uint64_t bytes, enum qcow2_discard_type type,
1963                           bool full_discard)
1964 {
1965     BDRVQcow2State *s = bs->opaque;
1966     uint64_t end_offset = offset + bytes;
1967     uint64_t nb_clusters;
1968     int64_t cleared;
1969     int ret;
1970 
1971     /* Caller must pass aligned values, except at image end */
1972     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1973     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1974            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1975 
1976     nb_clusters = size_to_clusters(s, bytes);
1977 
1978     s->cache_discards = true;
1979 
1980     /* Each L2 slice is handled by its own loop iteration */
1981     while (nb_clusters > 0) {
1982         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1983                                       full_discard);
1984         if (cleared < 0) {
1985             ret = cleared;
1986             goto fail;
1987         }
1988 
1989         nb_clusters -= cleared;
1990         offset += (cleared * s->cluster_size);
1991     }
1992 
1993     ret = 0;
1994 fail:
1995     s->cache_discards = false;
1996     qcow2_process_discards(bs, ret);
1997 
1998     return ret;
1999 }
2000 
2001 /*
2002  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2003  * all clusters in the same L2 slice) and returns the number of zeroed
2004  * clusters.
2005  */
2006 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2007                             uint64_t nb_clusters, int flags)
2008 {
2009     BDRVQcow2State *s = bs->opaque;
2010     uint64_t *l2_slice;
2011     int l2_index;
2012     int ret;
2013     int i;
2014 
2015     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2016     if (ret < 0) {
2017         return ret;
2018     }
2019 
2020     /* Limit nb_clusters to one L2 slice */
2021     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2022     assert(nb_clusters <= INT_MAX);
2023 
2024     for (i = 0; i < nb_clusters; i++) {
2025         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2026         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2027         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2028         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2029             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2030         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2031         uint64_t new_l2_bitmap = old_l2_bitmap;
2032 
2033         if (has_subclusters(s)) {
2034             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2035         } else {
2036             new_l2_entry |= QCOW_OFLAG_ZERO;
2037         }
2038 
2039         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2040             continue;
2041         }
2042 
2043         /* First update L2 entries */
2044         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2045         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2046         if (has_subclusters(s)) {
2047             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2048         }
2049 
2050         /* Then decrease the refcount */
2051         if (unmap) {
2052             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2053         }
2054     }
2055 
2056     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2057 
2058     return nb_clusters;
2059 }
2060 
2061 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2062                                unsigned nb_subclusters)
2063 {
2064     BDRVQcow2State *s = bs->opaque;
2065     uint64_t *l2_slice;
2066     uint64_t old_l2_bitmap, l2_bitmap;
2067     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2068 
2069     /* For full clusters use zero_in_l2_slice() instead */
2070     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2071     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2072     assert(offset_into_subcluster(s, offset) == 0);
2073 
2074     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2075     if (ret < 0) {
2076         return ret;
2077     }
2078 
2079     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2080     case QCOW2_CLUSTER_COMPRESSED:
2081         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2082         goto out;
2083     case QCOW2_CLUSTER_NORMAL:
2084     case QCOW2_CLUSTER_UNALLOCATED:
2085         break;
2086     default:
2087         g_assert_not_reached();
2088     }
2089 
2090     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2091 
2092     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2093     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2094 
2095     if (old_l2_bitmap != l2_bitmap) {
2096         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2097         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2098     }
2099 
2100     ret = 0;
2101 out:
2102     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2103 
2104     return ret;
2105 }
2106 
2107 int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2108                              uint64_t bytes, int flags)
2109 {
2110     BDRVQcow2State *s = bs->opaque;
2111     uint64_t end_offset = offset + bytes;
2112     uint64_t nb_clusters;
2113     unsigned head, tail;
2114     int64_t cleared;
2115     int ret;
2116 
2117     /* If we have to stay in sync with an external data file, zero out
2118      * s->data_file first. */
2119     if (data_file_is_raw(bs)) {
2120         assert(has_data_file(bs));
2121         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2122         if (ret < 0) {
2123             return ret;
2124         }
2125     }
2126 
2127     /* Caller must pass aligned values, except at image end */
2128     assert(offset_into_subcluster(s, offset) == 0);
2129     assert(offset_into_subcluster(s, end_offset) == 0 ||
2130            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2131 
2132     /*
2133      * The zero flag is only supported by version 3 and newer. However, if we
2134      * have no backing file, we can resort to discard in version 2.
2135      */
2136     if (s->qcow_version < 3) {
2137         if (!bs->backing) {
2138             return qcow2_cluster_discard(bs, offset, bytes,
2139                                          QCOW2_DISCARD_REQUEST, false);
2140         }
2141         return -ENOTSUP;
2142     }
2143 
2144     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2145     offset += head;
2146 
2147     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2148         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2149     end_offset -= tail;
2150 
2151     s->cache_discards = true;
2152 
2153     if (head) {
2154         ret = zero_l2_subclusters(bs, offset - head,
2155                                   size_to_subclusters(s, head));
2156         if (ret < 0) {
2157             goto fail;
2158         }
2159     }
2160 
2161     /* Each L2 slice is handled by its own loop iteration */
2162     nb_clusters = size_to_clusters(s, end_offset - offset);
2163 
2164     while (nb_clusters > 0) {
2165         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2166         if (cleared < 0) {
2167             ret = cleared;
2168             goto fail;
2169         }
2170 
2171         nb_clusters -= cleared;
2172         offset += (cleared * s->cluster_size);
2173     }
2174 
2175     if (tail) {
2176         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2177         if (ret < 0) {
2178             goto fail;
2179         }
2180     }
2181 
2182     ret = 0;
2183 fail:
2184     s->cache_discards = false;
2185     qcow2_process_discards(bs, ret);
2186 
2187     return ret;
2188 }
2189 
2190 /*
2191  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2192  * non-backed non-pre-allocated zero clusters).
2193  *
2194  * l1_entries and *visited_l1_entries are used to keep track of progress for
2195  * status_cb(). l1_entries contains the total number of L1 entries and
2196  * *visited_l1_entries counts all visited L1 entries.
2197  */
2198 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2199                                       int l1_size, int64_t *visited_l1_entries,
2200                                       int64_t l1_entries,
2201                                       BlockDriverAmendStatusCB *status_cb,
2202                                       void *cb_opaque)
2203 {
2204     BDRVQcow2State *s = bs->opaque;
2205     bool is_active_l1 = (l1_table == s->l1_table);
2206     uint64_t *l2_slice = NULL;
2207     unsigned slice, slice_size2, n_slices;
2208     int ret;
2209     int i, j;
2210 
2211     /* qcow2_downgrade() is not allowed in images with subclusters */
2212     assert(!has_subclusters(s));
2213 
2214     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2215     n_slices = s->cluster_size / slice_size2;
2216 
2217     if (!is_active_l1) {
2218         /* inactive L2 tables require a buffer to be stored in when loading
2219          * them from disk */
2220         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2221         if (l2_slice == NULL) {
2222             return -ENOMEM;
2223         }
2224     }
2225 
2226     for (i = 0; i < l1_size; i++) {
2227         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2228         uint64_t l2_refcount;
2229 
2230         if (!l2_offset) {
2231             /* unallocated */
2232             (*visited_l1_entries)++;
2233             if (status_cb) {
2234                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2235             }
2236             continue;
2237         }
2238 
2239         if (offset_into_cluster(s, l2_offset)) {
2240             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2241                                     PRIx64 " unaligned (L1 index: %#x)",
2242                                     l2_offset, i);
2243             ret = -EIO;
2244             goto fail;
2245         }
2246 
2247         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2248                                  &l2_refcount);
2249         if (ret < 0) {
2250             goto fail;
2251         }
2252 
2253         for (slice = 0; slice < n_slices; slice++) {
2254             uint64_t slice_offset = l2_offset + slice * slice_size2;
2255             bool l2_dirty = false;
2256             if (is_active_l1) {
2257                 /* get active L2 tables from cache */
2258                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2259                                       (void **)&l2_slice);
2260             } else {
2261                 /* load inactive L2 tables from disk */
2262                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2263             }
2264             if (ret < 0) {
2265                 goto fail;
2266             }
2267 
2268             for (j = 0; j < s->l2_slice_size; j++) {
2269                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2270                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2271                 QCow2ClusterType cluster_type =
2272                     qcow2_get_cluster_type(bs, l2_entry);
2273 
2274                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2275                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2276                     continue;
2277                 }
2278 
2279                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2280                     if (!bs->backing) {
2281                         /*
2282                          * not backed; therefore we can simply deallocate the
2283                          * cluster. No need to call set_l2_bitmap(), this
2284                          * function doesn't support images with subclusters.
2285                          */
2286                         set_l2_entry(s, l2_slice, j, 0);
2287                         l2_dirty = true;
2288                         continue;
2289                     }
2290 
2291                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2292                     if (offset < 0) {
2293                         ret = offset;
2294                         goto fail;
2295                     }
2296 
2297                     /* The offset must fit in the offset field */
2298                     assert((offset & L2E_OFFSET_MASK) == offset);
2299 
2300                     if (l2_refcount > 1) {
2301                         /* For shared L2 tables, set the refcount accordingly
2302                          * (it is already 1 and needs to be l2_refcount) */
2303                         ret = qcow2_update_cluster_refcount(
2304                             bs, offset >> s->cluster_bits,
2305                             refcount_diff(1, l2_refcount), false,
2306                             QCOW2_DISCARD_OTHER);
2307                         if (ret < 0) {
2308                             qcow2_free_clusters(bs, offset, s->cluster_size,
2309                                                 QCOW2_DISCARD_OTHER);
2310                             goto fail;
2311                         }
2312                     }
2313                 }
2314 
2315                 if (offset_into_cluster(s, offset)) {
2316                     int l2_index = slice * s->l2_slice_size + j;
2317                     qcow2_signal_corruption(
2318                         bs, true, -1, -1,
2319                         "Cluster allocation offset "
2320                         "%#" PRIx64 " unaligned (L2 offset: %#"
2321                         PRIx64 ", L2 index: %#x)", offset,
2322                         l2_offset, l2_index);
2323                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2324                         qcow2_free_clusters(bs, offset, s->cluster_size,
2325                                             QCOW2_DISCARD_ALWAYS);
2326                     }
2327                     ret = -EIO;
2328                     goto fail;
2329                 }
2330 
2331                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2332                                                     s->cluster_size, true);
2333                 if (ret < 0) {
2334                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2335                         qcow2_free_clusters(bs, offset, s->cluster_size,
2336                                             QCOW2_DISCARD_ALWAYS);
2337                     }
2338                     goto fail;
2339                 }
2340 
2341                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2342                                          s->cluster_size, 0);
2343                 if (ret < 0) {
2344                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2345                         qcow2_free_clusters(bs, offset, s->cluster_size,
2346                                             QCOW2_DISCARD_ALWAYS);
2347                     }
2348                     goto fail;
2349                 }
2350 
2351                 if (l2_refcount == 1) {
2352                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2353                 } else {
2354                     set_l2_entry(s, l2_slice, j, offset);
2355                 }
2356                 /*
2357                  * No need to call set_l2_bitmap() after set_l2_entry() because
2358                  * this function doesn't support images with subclusters.
2359                  */
2360                 l2_dirty = true;
2361             }
2362 
2363             if (is_active_l1) {
2364                 if (l2_dirty) {
2365                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2366                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2367                 }
2368                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2369             } else {
2370                 if (l2_dirty) {
2371                     ret = qcow2_pre_write_overlap_check(
2372                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2373                         slice_offset, slice_size2, false);
2374                     if (ret < 0) {
2375                         goto fail;
2376                     }
2377 
2378                     ret = bdrv_pwrite(bs->file, slice_offset,
2379                                       l2_slice, slice_size2);
2380                     if (ret < 0) {
2381                         goto fail;
2382                     }
2383                 }
2384             }
2385         }
2386 
2387         (*visited_l1_entries)++;
2388         if (status_cb) {
2389             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2390         }
2391     }
2392 
2393     ret = 0;
2394 
2395 fail:
2396     if (l2_slice) {
2397         if (!is_active_l1) {
2398             qemu_vfree(l2_slice);
2399         } else {
2400             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2401         }
2402     }
2403     return ret;
2404 }
2405 
2406 /*
2407  * For backed images, expands all zero clusters on the image. For non-backed
2408  * images, deallocates all non-pre-allocated zero clusters (and claims the
2409  * allocation for pre-allocated ones). This is important for downgrading to a
2410  * qcow2 version which doesn't yet support metadata zero clusters.
2411  */
2412 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2413                                BlockDriverAmendStatusCB *status_cb,
2414                                void *cb_opaque)
2415 {
2416     BDRVQcow2State *s = bs->opaque;
2417     uint64_t *l1_table = NULL;
2418     int64_t l1_entries = 0, visited_l1_entries = 0;
2419     int ret;
2420     int i, j;
2421 
2422     if (status_cb) {
2423         l1_entries = s->l1_size;
2424         for (i = 0; i < s->nb_snapshots; i++) {
2425             l1_entries += s->snapshots[i].l1_size;
2426         }
2427     }
2428 
2429     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2430                                      &visited_l1_entries, l1_entries,
2431                                      status_cb, cb_opaque);
2432     if (ret < 0) {
2433         goto fail;
2434     }
2435 
2436     /* Inactive L1 tables may point to active L2 tables - therefore it is
2437      * necessary to flush the L2 table cache before trying to access the L2
2438      * tables pointed to by inactive L1 entries (else we might try to expand
2439      * zero clusters that have already been expanded); furthermore, it is also
2440      * necessary to empty the L2 table cache, since it may contain tables which
2441      * are now going to be modified directly on disk, bypassing the cache.
2442      * qcow2_cache_empty() does both for us. */
2443     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2444     if (ret < 0) {
2445         goto fail;
2446     }
2447 
2448     for (i = 0; i < s->nb_snapshots; i++) {
2449         int l1_size2;
2450         uint64_t *new_l1_table;
2451         Error *local_err = NULL;
2452 
2453         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2454                                    s->snapshots[i].l1_size, L1E_SIZE,
2455                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2456                                    &local_err);
2457         if (ret < 0) {
2458             error_report_err(local_err);
2459             goto fail;
2460         }
2461 
2462         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2463         new_l1_table = g_try_realloc(l1_table, l1_size2);
2464 
2465         if (!new_l1_table) {
2466             ret = -ENOMEM;
2467             goto fail;
2468         }
2469 
2470         l1_table = new_l1_table;
2471 
2472         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2473                          l1_table, l1_size2);
2474         if (ret < 0) {
2475             goto fail;
2476         }
2477 
2478         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2479             be64_to_cpus(&l1_table[j]);
2480         }
2481 
2482         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2483                                          &visited_l1_entries, l1_entries,
2484                                          status_cb, cb_opaque);
2485         if (ret < 0) {
2486             goto fail;
2487         }
2488     }
2489 
2490     ret = 0;
2491 
2492 fail:
2493     g_free(l1_table);
2494     return ret;
2495 }
2496 
2497 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2498                                      uint64_t *coffset, int *csize)
2499 {
2500     BDRVQcow2State *s = bs->opaque;
2501     int nb_csectors;
2502 
2503     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2504 
2505     *coffset = l2_entry & s->cluster_offset_mask;
2506 
2507     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2508     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2509         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2510 }
2511