1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 GLOBAL_STATE_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 GLOBAL_STATE_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 193 if (c->role & BDRV_CHILD_FILTERED) { 194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 195 } 196 } 197 198 if (!have_limits) { 199 bs->bl.min_mem_alignment = 512; 200 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 201 202 /* Safe default since most protocols use readv()/writev()/etc */ 203 bs->bl.max_iov = IOV_MAX; 204 } 205 206 /* Then let the driver override it */ 207 if (drv->bdrv_refresh_limits) { 208 drv->bdrv_refresh_limits(bs, errp); 209 if (*errp) { 210 return; 211 } 212 } 213 214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 215 error_setg(errp, "Driver requires too large request alignment"); 216 } 217 } 218 219 /** 220 * The copy-on-read flag is actually a reference count so multiple users may 221 * use the feature without worrying about clobbering its previous state. 222 * Copy-on-read stays enabled until all users have called to disable it. 223 */ 224 void bdrv_enable_copy_on_read(BlockDriverState *bs) 225 { 226 IO_CODE(); 227 qatomic_inc(&bs->copy_on_read); 228 } 229 230 void bdrv_disable_copy_on_read(BlockDriverState *bs) 231 { 232 int old = qatomic_fetch_dec(&bs->copy_on_read); 233 IO_CODE(); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool poll; 243 BdrvChild *parent; 244 } BdrvCoDrainData; 245 246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 248 bool ignore_bds_parents) 249 { 250 GLOBAL_STATE_CODE(); 251 252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 253 return true; 254 } 255 256 if (qatomic_read(&bs->in_flight)) { 257 return true; 258 } 259 260 return false; 261 } 262 263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 264 BdrvChild *ignore_parent) 265 { 266 return bdrv_drain_poll(bs, ignore_parent, false); 267 } 268 269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 270 bool poll); 271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 272 273 static void bdrv_co_drain_bh_cb(void *opaque) 274 { 275 BdrvCoDrainData *data = opaque; 276 Coroutine *co = data->co; 277 BlockDriverState *bs = data->bs; 278 279 if (bs) { 280 AioContext *ctx = bdrv_get_aio_context(bs); 281 aio_context_acquire(ctx); 282 bdrv_dec_in_flight(bs); 283 if (data->begin) { 284 bdrv_do_drained_begin(bs, data->parent, data->poll); 285 } else { 286 assert(!data->poll); 287 bdrv_do_drained_end(bs, data->parent); 288 } 289 aio_context_release(ctx); 290 } else { 291 assert(data->begin); 292 bdrv_drain_all_begin(); 293 } 294 295 data->done = true; 296 aio_co_wake(co); 297 } 298 299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 300 bool begin, 301 BdrvChild *parent, 302 bool poll) 303 { 304 BdrvCoDrainData data; 305 Coroutine *self = qemu_coroutine_self(); 306 AioContext *ctx = bdrv_get_aio_context(bs); 307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 308 309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 310 * other coroutines run if they were queued by aio_co_enter(). */ 311 312 assert(qemu_in_coroutine()); 313 data = (BdrvCoDrainData) { 314 .co = self, 315 .bs = bs, 316 .done = false, 317 .begin = begin, 318 .parent = parent, 319 .poll = poll, 320 }; 321 322 if (bs) { 323 bdrv_inc_in_flight(bs); 324 } 325 326 /* 327 * Temporarily drop the lock across yield or we would get deadlocks. 328 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 329 * 330 * When we yield below, the lock for the current context will be 331 * released, so if this is actually the lock that protects bs, don't drop 332 * it a second time. 333 */ 334 if (ctx != co_ctx) { 335 aio_context_release(ctx); 336 } 337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 338 bdrv_co_drain_bh_cb, &data); 339 340 qemu_coroutine_yield(); 341 /* If we are resumed from some other event (such as an aio completion or a 342 * timer callback), it is a bug in the caller that should be fixed. */ 343 assert(data.done); 344 345 /* Reacquire the AioContext of bs if we dropped it */ 346 if (ctx != co_ctx) { 347 aio_context_acquire(ctx); 348 } 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 bdrv_parent_drained_begin(bs, parent); 366 if (bs->drv && bs->drv->bdrv_drain_begin) { 367 bs->drv->bdrv_drain_begin(bs); 368 } 369 } 370 371 /* 372 * Wait for drained requests to finish. 373 * 374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 375 * call is needed so things in this AioContext can make progress even 376 * though we don't return to the main AioContext loop - this automatically 377 * includes other nodes in the same AioContext and therefore all child 378 * nodes. 379 */ 380 if (poll) { 381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 382 } 383 } 384 385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 386 { 387 bdrv_do_drained_begin(bs, parent, false); 388 } 389 390 void bdrv_drained_begin(BlockDriverState *bs) 391 { 392 IO_OR_GS_CODE(); 393 bdrv_do_drained_begin(bs, NULL, true); 394 } 395 396 /** 397 * This function does not poll, nor must any of its recursively called 398 * functions. 399 */ 400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 401 { 402 int old_quiesce_counter; 403 404 IO_OR_GS_CODE(); 405 406 if (qemu_in_coroutine()) { 407 bdrv_co_yield_to_drain(bs, false, parent, false); 408 return; 409 } 410 assert(bs->quiesce_counter > 0); 411 GLOBAL_STATE_CODE(); 412 413 /* Re-enable things in child-to-parent order */ 414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 415 if (old_quiesce_counter == 1) { 416 if (bs->drv && bs->drv->bdrv_drain_end) { 417 bs->drv->bdrv_drain_end(bs); 418 } 419 bdrv_parent_drained_end(bs, parent); 420 } 421 } 422 423 void bdrv_drained_end(BlockDriverState *bs) 424 { 425 IO_OR_GS_CODE(); 426 bdrv_do_drained_end(bs, NULL); 427 } 428 429 void bdrv_drain(BlockDriverState *bs) 430 { 431 IO_OR_GS_CODE(); 432 bdrv_drained_begin(bs); 433 bdrv_drained_end(bs); 434 } 435 436 static void bdrv_drain_assert_idle(BlockDriverState *bs) 437 { 438 BdrvChild *child, *next; 439 440 assert(qatomic_read(&bs->in_flight) == 0); 441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 442 bdrv_drain_assert_idle(child->bs); 443 } 444 } 445 446 unsigned int bdrv_drain_all_count = 0; 447 448 static bool bdrv_drain_all_poll(void) 449 { 450 BlockDriverState *bs = NULL; 451 bool result = false; 452 GLOBAL_STATE_CODE(); 453 454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 456 while ((bs = bdrv_next_all_states(bs))) { 457 AioContext *aio_context = bdrv_get_aio_context(bs); 458 aio_context_acquire(aio_context); 459 result |= bdrv_drain_poll(bs, NULL, true); 460 aio_context_release(aio_context); 461 } 462 463 return result; 464 } 465 466 /* 467 * Wait for pending requests to complete across all BlockDriverStates 468 * 469 * This function does not flush data to disk, use bdrv_flush_all() for that 470 * after calling this function. 471 * 472 * This pauses all block jobs and disables external clients. It must 473 * be paired with bdrv_drain_all_end(). 474 * 475 * NOTE: no new block jobs or BlockDriverStates can be created between 476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 477 */ 478 void bdrv_drain_all_begin_nopoll(void) 479 { 480 BlockDriverState *bs = NULL; 481 GLOBAL_STATE_CODE(); 482 483 /* 484 * bdrv queue is managed by record/replay, 485 * waiting for finishing the I/O requests may 486 * be infinite 487 */ 488 if (replay_events_enabled()) { 489 return; 490 } 491 492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 493 * loop AioContext, so make sure we're in the main context. */ 494 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 495 assert(bdrv_drain_all_count < INT_MAX); 496 bdrv_drain_all_count++; 497 498 /* Quiesce all nodes, without polling in-flight requests yet. The graph 499 * cannot change during this loop. */ 500 while ((bs = bdrv_next_all_states(bs))) { 501 AioContext *aio_context = bdrv_get_aio_context(bs); 502 503 aio_context_acquire(aio_context); 504 bdrv_do_drained_begin(bs, NULL, false); 505 aio_context_release(aio_context); 506 } 507 } 508 509 void bdrv_drain_all_begin(void) 510 { 511 BlockDriverState *bs = NULL; 512 513 if (qemu_in_coroutine()) { 514 bdrv_co_yield_to_drain(NULL, true, NULL, true); 515 return; 516 } 517 518 /* 519 * bdrv queue is managed by record/replay, 520 * waiting for finishing the I/O requests may 521 * be infinite 522 */ 523 if (replay_events_enabled()) { 524 return; 525 } 526 527 bdrv_drain_all_begin_nopoll(); 528 529 /* Now poll the in-flight requests */ 530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 531 532 while ((bs = bdrv_next_all_states(bs))) { 533 bdrv_drain_assert_idle(bs); 534 } 535 } 536 537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 538 { 539 GLOBAL_STATE_CODE(); 540 541 g_assert(bs->quiesce_counter > 0); 542 g_assert(!bs->refcnt); 543 544 while (bs->quiesce_counter) { 545 bdrv_do_drained_end(bs, NULL); 546 } 547 } 548 549 void bdrv_drain_all_end(void) 550 { 551 BlockDriverState *bs = NULL; 552 GLOBAL_STATE_CODE(); 553 554 /* 555 * bdrv queue is managed by record/replay, 556 * waiting for finishing the I/O requests may 557 * be endless 558 */ 559 if (replay_events_enabled()) { 560 return; 561 } 562 563 while ((bs = bdrv_next_all_states(bs))) { 564 AioContext *aio_context = bdrv_get_aio_context(bs); 565 566 aio_context_acquire(aio_context); 567 bdrv_do_drained_end(bs, NULL); 568 aio_context_release(aio_context); 569 } 570 571 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 572 assert(bdrv_drain_all_count > 0); 573 bdrv_drain_all_count--; 574 } 575 576 void bdrv_drain_all(void) 577 { 578 GLOBAL_STATE_CODE(); 579 bdrv_drain_all_begin(); 580 bdrv_drain_all_end(); 581 } 582 583 /** 584 * Remove an active request from the tracked requests list 585 * 586 * This function should be called when a tracked request is completing. 587 */ 588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 589 { 590 if (req->serialising) { 591 qatomic_dec(&req->bs->serialising_in_flight); 592 } 593 594 qemu_mutex_lock(&req->bs->reqs_lock); 595 QLIST_REMOVE(req, list); 596 qemu_mutex_unlock(&req->bs->reqs_lock); 597 598 /* 599 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 600 * anymore because the request has been removed from the list, so it's safe 601 * to restart the queue outside reqs_lock to minimize the critical section. 602 */ 603 qemu_co_queue_restart_all(&req->wait_queue); 604 } 605 606 /** 607 * Add an active request to the tracked requests list 608 */ 609 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 610 BlockDriverState *bs, 611 int64_t offset, 612 int64_t bytes, 613 enum BdrvTrackedRequestType type) 614 { 615 bdrv_check_request(offset, bytes, &error_abort); 616 617 *req = (BdrvTrackedRequest){ 618 .bs = bs, 619 .offset = offset, 620 .bytes = bytes, 621 .type = type, 622 .co = qemu_coroutine_self(), 623 .serialising = false, 624 .overlap_offset = offset, 625 .overlap_bytes = bytes, 626 }; 627 628 qemu_co_queue_init(&req->wait_queue); 629 630 qemu_mutex_lock(&bs->reqs_lock); 631 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 632 qemu_mutex_unlock(&bs->reqs_lock); 633 } 634 635 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 636 int64_t offset, int64_t bytes) 637 { 638 bdrv_check_request(offset, bytes, &error_abort); 639 640 /* aaaa bbbb */ 641 if (offset >= req->overlap_offset + req->overlap_bytes) { 642 return false; 643 } 644 /* bbbb aaaa */ 645 if (req->overlap_offset >= offset + bytes) { 646 return false; 647 } 648 return true; 649 } 650 651 /* Called with self->bs->reqs_lock held */ 652 static coroutine_fn BdrvTrackedRequest * 653 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 654 { 655 BdrvTrackedRequest *req; 656 657 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 658 if (req == self || (!req->serialising && !self->serialising)) { 659 continue; 660 } 661 if (tracked_request_overlaps(req, self->overlap_offset, 662 self->overlap_bytes)) 663 { 664 /* 665 * Hitting this means there was a reentrant request, for 666 * example, a block driver issuing nested requests. This must 667 * never happen since it means deadlock. 668 */ 669 assert(qemu_coroutine_self() != req->co); 670 671 /* 672 * If the request is already (indirectly) waiting for us, or 673 * will wait for us as soon as it wakes up, then just go on 674 * (instead of producing a deadlock in the former case). 675 */ 676 if (!req->waiting_for) { 677 return req; 678 } 679 } 680 } 681 682 return NULL; 683 } 684 685 /* Called with self->bs->reqs_lock held */ 686 static void coroutine_fn 687 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 688 { 689 BdrvTrackedRequest *req; 690 691 while ((req = bdrv_find_conflicting_request(self))) { 692 self->waiting_for = req; 693 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 694 self->waiting_for = NULL; 695 } 696 } 697 698 /* Called with req->bs->reqs_lock held */ 699 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 700 uint64_t align) 701 { 702 int64_t overlap_offset = req->offset & ~(align - 1); 703 int64_t overlap_bytes = 704 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 705 706 bdrv_check_request(req->offset, req->bytes, &error_abort); 707 708 if (!req->serialising) { 709 qatomic_inc(&req->bs->serialising_in_flight); 710 req->serialising = true; 711 } 712 713 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 714 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 715 } 716 717 /** 718 * Return the tracked request on @bs for the current coroutine, or 719 * NULL if there is none. 720 */ 721 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 722 { 723 BdrvTrackedRequest *req; 724 Coroutine *self = qemu_coroutine_self(); 725 IO_CODE(); 726 727 QLIST_FOREACH(req, &bs->tracked_requests, list) { 728 if (req->co == self) { 729 return req; 730 } 731 } 732 733 return NULL; 734 } 735 736 /** 737 * Round a region to subcluster (if supported) or cluster boundaries 738 */ 739 void coroutine_fn GRAPH_RDLOCK 740 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 741 int64_t *align_offset, int64_t *align_bytes) 742 { 743 BlockDriverInfo bdi; 744 IO_CODE(); 745 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 746 *align_offset = offset; 747 *align_bytes = bytes; 748 } else { 749 int64_t c = bdi.subcluster_size; 750 *align_offset = QEMU_ALIGN_DOWN(offset, c); 751 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 752 } 753 } 754 755 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 756 { 757 BlockDriverInfo bdi; 758 int ret; 759 760 ret = bdrv_co_get_info(bs, &bdi); 761 if (ret < 0 || bdi.cluster_size == 0) { 762 return bs->bl.request_alignment; 763 } else { 764 return bdi.cluster_size; 765 } 766 } 767 768 void bdrv_inc_in_flight(BlockDriverState *bs) 769 { 770 IO_CODE(); 771 qatomic_inc(&bs->in_flight); 772 } 773 774 void bdrv_wakeup(BlockDriverState *bs) 775 { 776 IO_CODE(); 777 aio_wait_kick(); 778 } 779 780 void bdrv_dec_in_flight(BlockDriverState *bs) 781 { 782 IO_CODE(); 783 qatomic_dec(&bs->in_flight); 784 bdrv_wakeup(bs); 785 } 786 787 static void coroutine_fn 788 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 789 { 790 BlockDriverState *bs = self->bs; 791 792 if (!qatomic_read(&bs->serialising_in_flight)) { 793 return; 794 } 795 796 qemu_mutex_lock(&bs->reqs_lock); 797 bdrv_wait_serialising_requests_locked(self); 798 qemu_mutex_unlock(&bs->reqs_lock); 799 } 800 801 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 802 uint64_t align) 803 { 804 IO_CODE(); 805 806 qemu_mutex_lock(&req->bs->reqs_lock); 807 808 tracked_request_set_serialising(req, align); 809 bdrv_wait_serialising_requests_locked(req); 810 811 qemu_mutex_unlock(&req->bs->reqs_lock); 812 } 813 814 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 815 QEMUIOVector *qiov, size_t qiov_offset, 816 Error **errp) 817 { 818 /* 819 * Check generic offset/bytes correctness 820 */ 821 822 if (offset < 0) { 823 error_setg(errp, "offset is negative: %" PRIi64, offset); 824 return -EIO; 825 } 826 827 if (bytes < 0) { 828 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 829 return -EIO; 830 } 831 832 if (bytes > BDRV_MAX_LENGTH) { 833 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 834 bytes, BDRV_MAX_LENGTH); 835 return -EIO; 836 } 837 838 if (offset > BDRV_MAX_LENGTH) { 839 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 840 offset, BDRV_MAX_LENGTH); 841 return -EIO; 842 } 843 844 if (offset > BDRV_MAX_LENGTH - bytes) { 845 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 846 "exceeds maximum(%" PRIi64 ")", offset, bytes, 847 BDRV_MAX_LENGTH); 848 return -EIO; 849 } 850 851 if (!qiov) { 852 return 0; 853 } 854 855 /* 856 * Check qiov and qiov_offset 857 */ 858 859 if (qiov_offset > qiov->size) { 860 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 861 qiov_offset, qiov->size); 862 return -EIO; 863 } 864 865 if (bytes > qiov->size - qiov_offset) { 866 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 867 "vector size(%zu)", bytes, qiov_offset, qiov->size); 868 return -EIO; 869 } 870 871 return 0; 872 } 873 874 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 875 { 876 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 877 } 878 879 static int bdrv_check_request32(int64_t offset, int64_t bytes, 880 QEMUIOVector *qiov, size_t qiov_offset) 881 { 882 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 883 if (ret < 0) { 884 return ret; 885 } 886 887 if (bytes > BDRV_REQUEST_MAX_BYTES) { 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 /* 895 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 896 * The operation is sped up by checking the block status and only writing 897 * zeroes to the device if they currently do not return zeroes. Optional 898 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 899 * BDRV_REQ_FUA). 900 * 901 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 902 */ 903 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 904 { 905 int ret; 906 int64_t target_size, bytes, offset = 0; 907 BlockDriverState *bs = child->bs; 908 IO_CODE(); 909 910 target_size = bdrv_getlength(bs); 911 if (target_size < 0) { 912 return target_size; 913 } 914 915 for (;;) { 916 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 917 if (bytes <= 0) { 918 return 0; 919 } 920 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 921 if (ret < 0) { 922 return ret; 923 } 924 if (ret & BDRV_BLOCK_ZERO) { 925 offset += bytes; 926 continue; 927 } 928 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 929 if (ret < 0) { 930 return ret; 931 } 932 offset += bytes; 933 } 934 } 935 936 /* 937 * Writes to the file and ensures that no writes are reordered across this 938 * request (acts as a barrier) 939 * 940 * Returns 0 on success, -errno in error cases. 941 */ 942 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 943 int64_t bytes, const void *buf, 944 BdrvRequestFlags flags) 945 { 946 int ret; 947 IO_CODE(); 948 assert_bdrv_graph_readable(); 949 950 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 951 if (ret < 0) { 952 return ret; 953 } 954 955 ret = bdrv_co_flush(child->bs); 956 if (ret < 0) { 957 return ret; 958 } 959 960 return 0; 961 } 962 963 typedef struct CoroutineIOCompletion { 964 Coroutine *coroutine; 965 int ret; 966 } CoroutineIOCompletion; 967 968 static void bdrv_co_io_em_complete(void *opaque, int ret) 969 { 970 CoroutineIOCompletion *co = opaque; 971 972 co->ret = ret; 973 aio_co_wake(co->coroutine); 974 } 975 976 static int coroutine_fn GRAPH_RDLOCK 977 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 978 QEMUIOVector *qiov, size_t qiov_offset, int flags) 979 { 980 BlockDriver *drv = bs->drv; 981 int64_t sector_num; 982 unsigned int nb_sectors; 983 QEMUIOVector local_qiov; 984 int ret; 985 assert_bdrv_graph_readable(); 986 987 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 988 assert(!(flags & ~bs->supported_read_flags)); 989 990 if (!drv) { 991 return -ENOMEDIUM; 992 } 993 994 if (drv->bdrv_co_preadv_part) { 995 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 996 flags); 997 } 998 999 if (qiov_offset > 0 || bytes != qiov->size) { 1000 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1001 qiov = &local_qiov; 1002 } 1003 1004 if (drv->bdrv_co_preadv) { 1005 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1006 goto out; 1007 } 1008 1009 if (drv->bdrv_aio_preadv) { 1010 BlockAIOCB *acb; 1011 CoroutineIOCompletion co = { 1012 .coroutine = qemu_coroutine_self(), 1013 }; 1014 1015 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1016 bdrv_co_io_em_complete, &co); 1017 if (acb == NULL) { 1018 ret = -EIO; 1019 goto out; 1020 } else { 1021 qemu_coroutine_yield(); 1022 ret = co.ret; 1023 goto out; 1024 } 1025 } 1026 1027 sector_num = offset >> BDRV_SECTOR_BITS; 1028 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1029 1030 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1031 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1032 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1033 assert(drv->bdrv_co_readv); 1034 1035 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1036 1037 out: 1038 if (qiov == &local_qiov) { 1039 qemu_iovec_destroy(&local_qiov); 1040 } 1041 1042 return ret; 1043 } 1044 1045 static int coroutine_fn GRAPH_RDLOCK 1046 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1047 QEMUIOVector *qiov, size_t qiov_offset, 1048 BdrvRequestFlags flags) 1049 { 1050 BlockDriver *drv = bs->drv; 1051 bool emulate_fua = false; 1052 int64_t sector_num; 1053 unsigned int nb_sectors; 1054 QEMUIOVector local_qiov; 1055 int ret; 1056 assert_bdrv_graph_readable(); 1057 1058 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1059 1060 if (!drv) { 1061 return -ENOMEDIUM; 1062 } 1063 1064 if ((flags & BDRV_REQ_FUA) && 1065 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1066 flags &= ~BDRV_REQ_FUA; 1067 emulate_fua = true; 1068 } 1069 1070 flags &= bs->supported_write_flags; 1071 1072 if (drv->bdrv_co_pwritev_part) { 1073 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1074 flags); 1075 goto emulate_flags; 1076 } 1077 1078 if (qiov_offset > 0 || bytes != qiov->size) { 1079 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1080 qiov = &local_qiov; 1081 } 1082 1083 if (drv->bdrv_co_pwritev) { 1084 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1085 goto emulate_flags; 1086 } 1087 1088 if (drv->bdrv_aio_pwritev) { 1089 BlockAIOCB *acb; 1090 CoroutineIOCompletion co = { 1091 .coroutine = qemu_coroutine_self(), 1092 }; 1093 1094 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1095 bdrv_co_io_em_complete, &co); 1096 if (acb == NULL) { 1097 ret = -EIO; 1098 } else { 1099 qemu_coroutine_yield(); 1100 ret = co.ret; 1101 } 1102 goto emulate_flags; 1103 } 1104 1105 sector_num = offset >> BDRV_SECTOR_BITS; 1106 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1107 1108 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1109 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1110 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1111 1112 assert(drv->bdrv_co_writev); 1113 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1114 1115 emulate_flags: 1116 if (ret == 0 && emulate_fua) { 1117 ret = bdrv_co_flush(bs); 1118 } 1119 1120 if (qiov == &local_qiov) { 1121 qemu_iovec_destroy(&local_qiov); 1122 } 1123 1124 return ret; 1125 } 1126 1127 static int coroutine_fn GRAPH_RDLOCK 1128 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1129 int64_t bytes, QEMUIOVector *qiov, 1130 size_t qiov_offset) 1131 { 1132 BlockDriver *drv = bs->drv; 1133 QEMUIOVector local_qiov; 1134 int ret; 1135 assert_bdrv_graph_readable(); 1136 1137 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1138 1139 if (!drv) { 1140 return -ENOMEDIUM; 1141 } 1142 1143 if (!block_driver_can_compress(drv)) { 1144 return -ENOTSUP; 1145 } 1146 1147 if (drv->bdrv_co_pwritev_compressed_part) { 1148 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1149 qiov, qiov_offset); 1150 } 1151 1152 if (qiov_offset == 0) { 1153 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1154 } 1155 1156 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1157 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1158 qemu_iovec_destroy(&local_qiov); 1159 1160 return ret; 1161 } 1162 1163 static int coroutine_fn GRAPH_RDLOCK 1164 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1165 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1166 { 1167 BlockDriverState *bs = child->bs; 1168 1169 /* Perform I/O through a temporary buffer so that users who scribble over 1170 * their read buffer while the operation is in progress do not end up 1171 * modifying the image file. This is critical for zero-copy guest I/O 1172 * where anything might happen inside guest memory. 1173 */ 1174 void *bounce_buffer = NULL; 1175 1176 BlockDriver *drv = bs->drv; 1177 int64_t align_offset; 1178 int64_t align_bytes; 1179 int64_t skip_bytes; 1180 int ret; 1181 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1182 BDRV_REQUEST_MAX_BYTES); 1183 int64_t progress = 0; 1184 bool skip_write; 1185 1186 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1187 1188 if (!drv) { 1189 return -ENOMEDIUM; 1190 } 1191 1192 /* 1193 * Do not write anything when the BDS is inactive. That is not 1194 * allowed, and it would not help. 1195 */ 1196 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1197 1198 /* FIXME We cannot require callers to have write permissions when all they 1199 * are doing is a read request. If we did things right, write permissions 1200 * would be obtained anyway, but internally by the copy-on-read code. As 1201 * long as it is implemented here rather than in a separate filter driver, 1202 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1203 * it could request permissions. Therefore we have to bypass the permission 1204 * system for the moment. */ 1205 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1206 1207 /* Cover entire cluster so no additional backing file I/O is required when 1208 * allocating cluster in the image file. Note that this value may exceed 1209 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1210 * is one reason we loop rather than doing it all at once. 1211 */ 1212 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1213 skip_bytes = offset - align_offset; 1214 1215 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1216 align_offset, align_bytes); 1217 1218 while (align_bytes) { 1219 int64_t pnum; 1220 1221 if (skip_write) { 1222 ret = 1; /* "already allocated", so nothing will be copied */ 1223 pnum = MIN(align_bytes, max_transfer); 1224 } else { 1225 ret = bdrv_is_allocated(bs, align_offset, 1226 MIN(align_bytes, max_transfer), &pnum); 1227 if (ret < 0) { 1228 /* 1229 * Safe to treat errors in querying allocation as if 1230 * unallocated; we'll probably fail again soon on the 1231 * read, but at least that will set a decent errno. 1232 */ 1233 pnum = MIN(align_bytes, max_transfer); 1234 } 1235 1236 /* Stop at EOF if the image ends in the middle of the cluster */ 1237 if (ret == 0 && pnum == 0) { 1238 assert(progress >= bytes); 1239 break; 1240 } 1241 1242 assert(skip_bytes < pnum); 1243 } 1244 1245 if (ret <= 0) { 1246 QEMUIOVector local_qiov; 1247 1248 /* Must copy-on-read; use the bounce buffer */ 1249 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1250 if (!bounce_buffer) { 1251 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1252 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1253 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1254 1255 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1256 if (!bounce_buffer) { 1257 ret = -ENOMEM; 1258 goto err; 1259 } 1260 } 1261 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1262 1263 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1264 &local_qiov, 0, 0); 1265 if (ret < 0) { 1266 goto err; 1267 } 1268 1269 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1270 if (drv->bdrv_co_pwrite_zeroes && 1271 buffer_is_zero(bounce_buffer, pnum)) { 1272 /* FIXME: Should we (perhaps conditionally) be setting 1273 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1274 * that still correctly reads as zero? */ 1275 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1276 BDRV_REQ_WRITE_UNCHANGED); 1277 } else { 1278 /* This does not change the data on the disk, it is not 1279 * necessary to flush even in cache=writethrough mode. 1280 */ 1281 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1282 &local_qiov, 0, 1283 BDRV_REQ_WRITE_UNCHANGED); 1284 } 1285 1286 if (ret < 0) { 1287 /* It might be okay to ignore write errors for guest 1288 * requests. If this is a deliberate copy-on-read 1289 * then we don't want to ignore the error. Simply 1290 * report it in all cases. 1291 */ 1292 goto err; 1293 } 1294 1295 if (!(flags & BDRV_REQ_PREFETCH)) { 1296 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1297 bounce_buffer + skip_bytes, 1298 MIN(pnum - skip_bytes, bytes - progress)); 1299 } 1300 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1301 /* Read directly into the destination */ 1302 ret = bdrv_driver_preadv(bs, offset + progress, 1303 MIN(pnum - skip_bytes, bytes - progress), 1304 qiov, qiov_offset + progress, 0); 1305 if (ret < 0) { 1306 goto err; 1307 } 1308 } 1309 1310 align_offset += pnum; 1311 align_bytes -= pnum; 1312 progress += pnum - skip_bytes; 1313 skip_bytes = 0; 1314 } 1315 ret = 0; 1316 1317 err: 1318 qemu_vfree(bounce_buffer); 1319 return ret; 1320 } 1321 1322 /* 1323 * Forwards an already correctly aligned request to the BlockDriver. This 1324 * handles copy on read, zeroing after EOF, and fragmentation of large 1325 * reads; any other features must be implemented by the caller. 1326 */ 1327 static int coroutine_fn GRAPH_RDLOCK 1328 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1329 int64_t offset, int64_t bytes, int64_t align, 1330 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1331 { 1332 BlockDriverState *bs = child->bs; 1333 int64_t total_bytes, max_bytes; 1334 int ret = 0; 1335 int64_t bytes_remaining = bytes; 1336 int max_transfer; 1337 1338 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1339 assert(is_power_of_2(align)); 1340 assert((offset & (align - 1)) == 0); 1341 assert((bytes & (align - 1)) == 0); 1342 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1343 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1344 align); 1345 1346 /* 1347 * TODO: We would need a per-BDS .supported_read_flags and 1348 * potential fallback support, if we ever implement any read flags 1349 * to pass through to drivers. For now, there aren't any 1350 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1351 */ 1352 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1353 BDRV_REQ_REGISTERED_BUF))); 1354 1355 /* Handle Copy on Read and associated serialisation */ 1356 if (flags & BDRV_REQ_COPY_ON_READ) { 1357 /* If we touch the same cluster it counts as an overlap. This 1358 * guarantees that allocating writes will be serialized and not race 1359 * with each other for the same cluster. For example, in copy-on-read 1360 * it ensures that the CoR read and write operations are atomic and 1361 * guest writes cannot interleave between them. */ 1362 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1363 } else { 1364 bdrv_wait_serialising_requests(req); 1365 } 1366 1367 if (flags & BDRV_REQ_COPY_ON_READ) { 1368 int64_t pnum; 1369 1370 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1371 flags &= ~BDRV_REQ_COPY_ON_READ; 1372 1373 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1374 if (ret < 0) { 1375 goto out; 1376 } 1377 1378 if (!ret || pnum != bytes) { 1379 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1380 qiov, qiov_offset, flags); 1381 goto out; 1382 } else if (flags & BDRV_REQ_PREFETCH) { 1383 goto out; 1384 } 1385 } 1386 1387 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1388 total_bytes = bdrv_co_getlength(bs); 1389 if (total_bytes < 0) { 1390 ret = total_bytes; 1391 goto out; 1392 } 1393 1394 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1395 1396 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1397 if (bytes <= max_bytes && bytes <= max_transfer) { 1398 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1399 goto out; 1400 } 1401 1402 while (bytes_remaining) { 1403 int64_t num; 1404 1405 if (max_bytes) { 1406 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1407 assert(num); 1408 1409 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1410 num, qiov, 1411 qiov_offset + bytes - bytes_remaining, 1412 flags); 1413 max_bytes -= num; 1414 } else { 1415 num = bytes_remaining; 1416 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1417 0, bytes_remaining); 1418 } 1419 if (ret < 0) { 1420 goto out; 1421 } 1422 bytes_remaining -= num; 1423 } 1424 1425 out: 1426 return ret < 0 ? ret : 0; 1427 } 1428 1429 /* 1430 * Request padding 1431 * 1432 * |<---- align ----->| |<----- align ---->| 1433 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1434 * | | | | | | 1435 * -*----------$-------*-------- ... --------*-----$------------*--- 1436 * | | | | | | 1437 * | offset | | end | 1438 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1439 * [buf ... ) [tail_buf ) 1440 * 1441 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1442 * is placed at the beginning of @buf and @tail at the @end. 1443 * 1444 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1445 * around tail, if tail exists. 1446 * 1447 * @merge_reads is true for small requests, 1448 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1449 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1450 * 1451 * @write is true for write requests, false for read requests. 1452 * 1453 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1454 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1455 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1456 * I/O vector elements so for read requests, the data can be copied back after 1457 * the read is done. 1458 */ 1459 typedef struct BdrvRequestPadding { 1460 uint8_t *buf; 1461 size_t buf_len; 1462 uint8_t *tail_buf; 1463 size_t head; 1464 size_t tail; 1465 bool merge_reads; 1466 bool write; 1467 QEMUIOVector local_qiov; 1468 1469 uint8_t *collapse_bounce_buf; 1470 size_t collapse_len; 1471 QEMUIOVector pre_collapse_qiov; 1472 } BdrvRequestPadding; 1473 1474 static bool bdrv_init_padding(BlockDriverState *bs, 1475 int64_t offset, int64_t bytes, 1476 bool write, 1477 BdrvRequestPadding *pad) 1478 { 1479 int64_t align = bs->bl.request_alignment; 1480 int64_t sum; 1481 1482 bdrv_check_request(offset, bytes, &error_abort); 1483 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1484 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1485 1486 memset(pad, 0, sizeof(*pad)); 1487 1488 pad->head = offset & (align - 1); 1489 pad->tail = ((offset + bytes) & (align - 1)); 1490 if (pad->tail) { 1491 pad->tail = align - pad->tail; 1492 } 1493 1494 if (!pad->head && !pad->tail) { 1495 return false; 1496 } 1497 1498 assert(bytes); /* Nothing good in aligning zero-length requests */ 1499 1500 sum = pad->head + bytes + pad->tail; 1501 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1502 pad->buf = qemu_blockalign(bs, pad->buf_len); 1503 pad->merge_reads = sum == pad->buf_len; 1504 if (pad->tail) { 1505 pad->tail_buf = pad->buf + pad->buf_len - align; 1506 } 1507 1508 pad->write = write; 1509 1510 return true; 1511 } 1512 1513 static int coroutine_fn GRAPH_RDLOCK 1514 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1515 BdrvRequestPadding *pad, bool zero_middle) 1516 { 1517 QEMUIOVector local_qiov; 1518 BlockDriverState *bs = child->bs; 1519 uint64_t align = bs->bl.request_alignment; 1520 int ret; 1521 1522 assert(req->serialising && pad->buf); 1523 1524 if (pad->head || pad->merge_reads) { 1525 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1526 1527 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1528 1529 if (pad->head) { 1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1531 } 1532 if (pad->merge_reads && pad->tail) { 1533 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1534 } 1535 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1536 align, &local_qiov, 0, 0); 1537 if (ret < 0) { 1538 return ret; 1539 } 1540 if (pad->head) { 1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1542 } 1543 if (pad->merge_reads && pad->tail) { 1544 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1545 } 1546 1547 if (pad->merge_reads) { 1548 goto zero_mem; 1549 } 1550 } 1551 1552 if (pad->tail) { 1553 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1554 1555 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1556 ret = bdrv_aligned_preadv( 1557 child, req, 1558 req->overlap_offset + req->overlap_bytes - align, 1559 align, align, &local_qiov, 0, 0); 1560 if (ret < 0) { 1561 return ret; 1562 } 1563 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1564 } 1565 1566 zero_mem: 1567 if (zero_middle) { 1568 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1569 } 1570 1571 return 0; 1572 } 1573 1574 /** 1575 * Free *pad's associated buffers, and perform any necessary finalization steps. 1576 */ 1577 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1578 { 1579 if (pad->collapse_bounce_buf) { 1580 if (!pad->write) { 1581 /* 1582 * If padding required elements in the vector to be collapsed into a 1583 * bounce buffer, copy the bounce buffer content back 1584 */ 1585 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1586 pad->collapse_bounce_buf, pad->collapse_len); 1587 } 1588 qemu_vfree(pad->collapse_bounce_buf); 1589 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1590 } 1591 if (pad->buf) { 1592 qemu_vfree(pad->buf); 1593 qemu_iovec_destroy(&pad->local_qiov); 1594 } 1595 memset(pad, 0, sizeof(*pad)); 1596 } 1597 1598 /* 1599 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1600 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1601 * 1602 * To ensure this, when necessary, the first two or three elements of @iov are 1603 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1604 * bounce buffer in pad->local_qiov. 1605 * 1606 * After performing a read request, the data from the bounce buffer must be 1607 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1608 */ 1609 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1610 BdrvRequestPadding *pad, 1611 struct iovec *iov, int niov, 1612 size_t iov_offset, size_t bytes) 1613 { 1614 int padded_niov, surplus_count, collapse_count; 1615 1616 /* Assert this invariant */ 1617 assert(niov <= IOV_MAX); 1618 1619 /* 1620 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1621 * to the guest is not ideal, but there is little else we can do. At least 1622 * this will practically never happen on 64-bit systems. 1623 */ 1624 if (SIZE_MAX - pad->head < bytes || 1625 SIZE_MAX - pad->head - bytes < pad->tail) 1626 { 1627 return -EINVAL; 1628 } 1629 1630 /* Length of the resulting IOV if we just concatenated everything */ 1631 padded_niov = !!pad->head + niov + !!pad->tail; 1632 1633 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1634 1635 if (pad->head) { 1636 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1637 } 1638 1639 /* 1640 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1641 * Instead, merge the first two or three elements of @iov to reduce the 1642 * number of vector elements as necessary. 1643 */ 1644 if (padded_niov > IOV_MAX) { 1645 /* 1646 * Only head and tail can have lead to the number of entries exceeding 1647 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1648 * to reduce the number of elements by `surplus_count`, so we merge that 1649 * many elements plus one into one element. 1650 */ 1651 surplus_count = padded_niov - IOV_MAX; 1652 assert(surplus_count <= !!pad->head + !!pad->tail); 1653 collapse_count = surplus_count + 1; 1654 1655 /* 1656 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1657 * advance `iov` (and associated variables) by those elements. 1658 */ 1659 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1660 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1661 collapse_count, iov_offset, SIZE_MAX); 1662 iov += collapse_count; 1663 iov_offset = 0; 1664 niov -= collapse_count; 1665 bytes -= pad->pre_collapse_qiov.size; 1666 1667 /* 1668 * Construct the bounce buffer to match the length of the to-collapse 1669 * vector elements, and for write requests, initialize it with the data 1670 * from those elements. Then add it to `pad->local_qiov`. 1671 */ 1672 pad->collapse_len = pad->pre_collapse_qiov.size; 1673 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1674 if (pad->write) { 1675 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1676 pad->collapse_bounce_buf, pad->collapse_len); 1677 } 1678 qemu_iovec_add(&pad->local_qiov, 1679 pad->collapse_bounce_buf, pad->collapse_len); 1680 } 1681 1682 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1683 1684 if (pad->tail) { 1685 qemu_iovec_add(&pad->local_qiov, 1686 pad->buf + pad->buf_len - pad->tail, pad->tail); 1687 } 1688 1689 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1690 return 0; 1691 } 1692 1693 /* 1694 * bdrv_pad_request 1695 * 1696 * Exchange request parameters with padded request if needed. Don't include RMW 1697 * read of padding, bdrv_padding_rmw_read() should be called separately if 1698 * needed. 1699 * 1700 * @write is true for write requests, false for read requests. 1701 * 1702 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1703 * - on function start they represent original request 1704 * - on failure or when padding is not needed they are unchanged 1705 * - on success when padding is needed they represent padded request 1706 */ 1707 static int bdrv_pad_request(BlockDriverState *bs, 1708 QEMUIOVector **qiov, size_t *qiov_offset, 1709 int64_t *offset, int64_t *bytes, 1710 bool write, 1711 BdrvRequestPadding *pad, bool *padded, 1712 BdrvRequestFlags *flags) 1713 { 1714 int ret; 1715 struct iovec *sliced_iov; 1716 int sliced_niov; 1717 size_t sliced_head, sliced_tail; 1718 1719 /* Should have been checked by the caller already */ 1720 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1721 if (ret < 0) { 1722 return ret; 1723 } 1724 1725 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1726 if (padded) { 1727 *padded = false; 1728 } 1729 return 0; 1730 } 1731 1732 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1733 &sliced_head, &sliced_tail, 1734 &sliced_niov); 1735 1736 /* Guaranteed by bdrv_check_request32() */ 1737 assert(*bytes <= SIZE_MAX); 1738 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1739 sliced_head, *bytes); 1740 if (ret < 0) { 1741 bdrv_padding_finalize(pad); 1742 return ret; 1743 } 1744 *bytes += pad->head + pad->tail; 1745 *offset -= pad->head; 1746 *qiov = &pad->local_qiov; 1747 *qiov_offset = 0; 1748 if (padded) { 1749 *padded = true; 1750 } 1751 if (flags) { 1752 /* Can't use optimization hint with bounce buffer */ 1753 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1754 } 1755 1756 return 0; 1757 } 1758 1759 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1760 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1761 BdrvRequestFlags flags) 1762 { 1763 IO_CODE(); 1764 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1765 } 1766 1767 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1768 int64_t offset, int64_t bytes, 1769 QEMUIOVector *qiov, size_t qiov_offset, 1770 BdrvRequestFlags flags) 1771 { 1772 BlockDriverState *bs = child->bs; 1773 BdrvTrackedRequest req; 1774 BdrvRequestPadding pad; 1775 int ret; 1776 IO_CODE(); 1777 1778 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1779 1780 if (!bdrv_co_is_inserted(bs)) { 1781 return -ENOMEDIUM; 1782 } 1783 1784 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1785 if (ret < 0) { 1786 return ret; 1787 } 1788 1789 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1790 /* 1791 * Aligning zero request is nonsense. Even if driver has special meaning 1792 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1793 * it to driver due to request_alignment. 1794 * 1795 * Still, no reason to return an error if someone do unaligned 1796 * zero-length read occasionally. 1797 */ 1798 return 0; 1799 } 1800 1801 bdrv_inc_in_flight(bs); 1802 1803 /* Don't do copy-on-read if we read data before write operation */ 1804 if (qatomic_read(&bs->copy_on_read)) { 1805 flags |= BDRV_REQ_COPY_ON_READ; 1806 } 1807 1808 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1809 &pad, NULL, &flags); 1810 if (ret < 0) { 1811 goto fail; 1812 } 1813 1814 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1815 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1816 bs->bl.request_alignment, 1817 qiov, qiov_offset, flags); 1818 tracked_request_end(&req); 1819 bdrv_padding_finalize(&pad); 1820 1821 fail: 1822 bdrv_dec_in_flight(bs); 1823 1824 return ret; 1825 } 1826 1827 static int coroutine_fn GRAPH_RDLOCK 1828 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1829 BdrvRequestFlags flags) 1830 { 1831 BlockDriver *drv = bs->drv; 1832 QEMUIOVector qiov; 1833 void *buf = NULL; 1834 int ret = 0; 1835 bool need_flush = false; 1836 int head = 0; 1837 int tail = 0; 1838 1839 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1840 INT64_MAX); 1841 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1842 bs->bl.request_alignment); 1843 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1844 1845 assert_bdrv_graph_readable(); 1846 bdrv_check_request(offset, bytes, &error_abort); 1847 1848 if (!drv) { 1849 return -ENOMEDIUM; 1850 } 1851 1852 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1853 return -ENOTSUP; 1854 } 1855 1856 /* By definition there is no user buffer so this flag doesn't make sense */ 1857 if (flags & BDRV_REQ_REGISTERED_BUF) { 1858 return -EINVAL; 1859 } 1860 1861 /* Invalidate the cached block-status data range if this write overlaps */ 1862 bdrv_bsc_invalidate_range(bs, offset, bytes); 1863 1864 assert(alignment % bs->bl.request_alignment == 0); 1865 head = offset % alignment; 1866 tail = (offset + bytes) % alignment; 1867 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1868 assert(max_write_zeroes >= bs->bl.request_alignment); 1869 1870 while (bytes > 0 && !ret) { 1871 int64_t num = bytes; 1872 1873 /* Align request. Block drivers can expect the "bulk" of the request 1874 * to be aligned, and that unaligned requests do not cross cluster 1875 * boundaries. 1876 */ 1877 if (head) { 1878 /* Make a small request up to the first aligned sector. For 1879 * convenience, limit this request to max_transfer even if 1880 * we don't need to fall back to writes. */ 1881 num = MIN(MIN(bytes, max_transfer), alignment - head); 1882 head = (head + num) % alignment; 1883 assert(num < max_write_zeroes); 1884 } else if (tail && num > alignment) { 1885 /* Shorten the request to the last aligned sector. */ 1886 num -= tail; 1887 } 1888 1889 /* limit request size */ 1890 if (num > max_write_zeroes) { 1891 num = max_write_zeroes; 1892 } 1893 1894 ret = -ENOTSUP; 1895 /* First try the efficient write zeroes operation */ 1896 if (drv->bdrv_co_pwrite_zeroes) { 1897 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1898 flags & bs->supported_zero_flags); 1899 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1900 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1901 need_flush = true; 1902 } 1903 } else { 1904 assert(!bs->supported_zero_flags); 1905 } 1906 1907 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1908 /* Fall back to bounce buffer if write zeroes is unsupported */ 1909 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1910 1911 if ((flags & BDRV_REQ_FUA) && 1912 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1913 /* No need for bdrv_driver_pwrite() to do a fallback 1914 * flush on each chunk; use just one at the end */ 1915 write_flags &= ~BDRV_REQ_FUA; 1916 need_flush = true; 1917 } 1918 num = MIN(num, max_transfer); 1919 if (buf == NULL) { 1920 buf = qemu_try_blockalign0(bs, num); 1921 if (buf == NULL) { 1922 ret = -ENOMEM; 1923 goto fail; 1924 } 1925 } 1926 qemu_iovec_init_buf(&qiov, buf, num); 1927 1928 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1929 1930 /* Keep bounce buffer around if it is big enough for all 1931 * all future requests. 1932 */ 1933 if (num < max_transfer) { 1934 qemu_vfree(buf); 1935 buf = NULL; 1936 } 1937 } 1938 1939 offset += num; 1940 bytes -= num; 1941 } 1942 1943 fail: 1944 if (ret == 0 && need_flush) { 1945 ret = bdrv_co_flush(bs); 1946 } 1947 qemu_vfree(buf); 1948 return ret; 1949 } 1950 1951 static inline int coroutine_fn GRAPH_RDLOCK 1952 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1953 BdrvTrackedRequest *req, int flags) 1954 { 1955 BlockDriverState *bs = child->bs; 1956 1957 bdrv_check_request(offset, bytes, &error_abort); 1958 1959 if (bdrv_is_read_only(bs)) { 1960 return -EPERM; 1961 } 1962 1963 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1964 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1965 assert(!(flags & ~BDRV_REQ_MASK)); 1966 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1967 1968 if (flags & BDRV_REQ_SERIALISING) { 1969 QEMU_LOCK_GUARD(&bs->reqs_lock); 1970 1971 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1972 1973 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1974 return -EBUSY; 1975 } 1976 1977 bdrv_wait_serialising_requests_locked(req); 1978 } else { 1979 bdrv_wait_serialising_requests(req); 1980 } 1981 1982 assert(req->overlap_offset <= offset); 1983 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1984 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1985 child->perm & BLK_PERM_RESIZE); 1986 1987 switch (req->type) { 1988 case BDRV_TRACKED_WRITE: 1989 case BDRV_TRACKED_DISCARD: 1990 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1991 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1992 } else { 1993 assert(child->perm & BLK_PERM_WRITE); 1994 } 1995 bdrv_write_threshold_check_write(bs, offset, bytes); 1996 return 0; 1997 case BDRV_TRACKED_TRUNCATE: 1998 assert(child->perm & BLK_PERM_RESIZE); 1999 return 0; 2000 default: 2001 abort(); 2002 } 2003 } 2004 2005 static inline void coroutine_fn 2006 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2007 BdrvTrackedRequest *req, int ret) 2008 { 2009 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2010 BlockDriverState *bs = child->bs; 2011 2012 bdrv_check_request(offset, bytes, &error_abort); 2013 2014 qatomic_inc(&bs->write_gen); 2015 2016 /* 2017 * Discard cannot extend the image, but in error handling cases, such as 2018 * when reverting a qcow2 cluster allocation, the discarded range can pass 2019 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2020 * here. Instead, just skip it, since semantically a discard request 2021 * beyond EOF cannot expand the image anyway. 2022 */ 2023 if (ret == 0 && 2024 (req->type == BDRV_TRACKED_TRUNCATE || 2025 end_sector > bs->total_sectors) && 2026 req->type != BDRV_TRACKED_DISCARD) { 2027 bs->total_sectors = end_sector; 2028 bdrv_parent_cb_resize(bs); 2029 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2030 } 2031 if (req->bytes) { 2032 switch (req->type) { 2033 case BDRV_TRACKED_WRITE: 2034 stat64_max(&bs->wr_highest_offset, offset + bytes); 2035 /* fall through, to set dirty bits */ 2036 case BDRV_TRACKED_DISCARD: 2037 bdrv_set_dirty(bs, offset, bytes); 2038 break; 2039 default: 2040 break; 2041 } 2042 } 2043 } 2044 2045 /* 2046 * Forwards an already correctly aligned write request to the BlockDriver, 2047 * after possibly fragmenting it. 2048 */ 2049 static int coroutine_fn GRAPH_RDLOCK 2050 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2051 int64_t offset, int64_t bytes, int64_t align, 2052 QEMUIOVector *qiov, size_t qiov_offset, 2053 BdrvRequestFlags flags) 2054 { 2055 BlockDriverState *bs = child->bs; 2056 BlockDriver *drv = bs->drv; 2057 int ret; 2058 2059 int64_t bytes_remaining = bytes; 2060 int max_transfer; 2061 2062 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2063 2064 if (!drv) { 2065 return -ENOMEDIUM; 2066 } 2067 2068 if (bdrv_has_readonly_bitmaps(bs)) { 2069 return -EPERM; 2070 } 2071 2072 assert(is_power_of_2(align)); 2073 assert((offset & (align - 1)) == 0); 2074 assert((bytes & (align - 1)) == 0); 2075 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2076 align); 2077 2078 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2079 2080 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2081 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2082 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2083 flags |= BDRV_REQ_ZERO_WRITE; 2084 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2085 flags |= BDRV_REQ_MAY_UNMAP; 2086 } 2087 2088 /* Can't use optimization hint with bufferless zero write */ 2089 flags &= ~BDRV_REQ_REGISTERED_BUF; 2090 } 2091 2092 if (ret < 0) { 2093 /* Do nothing, write notifier decided to fail this request */ 2094 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2095 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2096 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2097 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2098 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2099 qiov, qiov_offset); 2100 } else if (bytes <= max_transfer) { 2101 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2102 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2103 } else { 2104 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2105 while (bytes_remaining) { 2106 int num = MIN(bytes_remaining, max_transfer); 2107 int local_flags = flags; 2108 2109 assert(num); 2110 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2111 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2112 /* If FUA is going to be emulated by flush, we only 2113 * need to flush on the last iteration */ 2114 local_flags &= ~BDRV_REQ_FUA; 2115 } 2116 2117 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2118 num, qiov, 2119 qiov_offset + bytes - bytes_remaining, 2120 local_flags); 2121 if (ret < 0) { 2122 break; 2123 } 2124 bytes_remaining -= num; 2125 } 2126 } 2127 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2128 2129 if (ret >= 0) { 2130 ret = 0; 2131 } 2132 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2133 2134 return ret; 2135 } 2136 2137 static int coroutine_fn GRAPH_RDLOCK 2138 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2139 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2140 { 2141 BlockDriverState *bs = child->bs; 2142 QEMUIOVector local_qiov; 2143 uint64_t align = bs->bl.request_alignment; 2144 int ret = 0; 2145 bool padding; 2146 BdrvRequestPadding pad; 2147 2148 /* This flag doesn't make sense for padding or zero writes */ 2149 flags &= ~BDRV_REQ_REGISTERED_BUF; 2150 2151 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2152 if (padding) { 2153 assert(!(flags & BDRV_REQ_NO_WAIT)); 2154 bdrv_make_request_serialising(req, align); 2155 2156 bdrv_padding_rmw_read(child, req, &pad, true); 2157 2158 if (pad.head || pad.merge_reads) { 2159 int64_t aligned_offset = offset & ~(align - 1); 2160 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2161 2162 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2163 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2164 align, &local_qiov, 0, 2165 flags & ~BDRV_REQ_ZERO_WRITE); 2166 if (ret < 0 || pad.merge_reads) { 2167 /* Error or all work is done */ 2168 goto out; 2169 } 2170 offset += write_bytes - pad.head; 2171 bytes -= write_bytes - pad.head; 2172 } 2173 } 2174 2175 assert(!bytes || (offset & (align - 1)) == 0); 2176 if (bytes >= align) { 2177 /* Write the aligned part in the middle. */ 2178 int64_t aligned_bytes = bytes & ~(align - 1); 2179 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2180 NULL, 0, flags); 2181 if (ret < 0) { 2182 goto out; 2183 } 2184 bytes -= aligned_bytes; 2185 offset += aligned_bytes; 2186 } 2187 2188 assert(!bytes || (offset & (align - 1)) == 0); 2189 if (bytes) { 2190 assert(align == pad.tail + bytes); 2191 2192 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2193 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2194 &local_qiov, 0, 2195 flags & ~BDRV_REQ_ZERO_WRITE); 2196 } 2197 2198 out: 2199 bdrv_padding_finalize(&pad); 2200 2201 return ret; 2202 } 2203 2204 /* 2205 * Handle a write request in coroutine context 2206 */ 2207 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2208 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2209 BdrvRequestFlags flags) 2210 { 2211 IO_CODE(); 2212 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2213 } 2214 2215 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2216 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2217 BdrvRequestFlags flags) 2218 { 2219 BlockDriverState *bs = child->bs; 2220 BdrvTrackedRequest req; 2221 uint64_t align = bs->bl.request_alignment; 2222 BdrvRequestPadding pad; 2223 int ret; 2224 bool padded = false; 2225 IO_CODE(); 2226 2227 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2228 2229 if (!bdrv_co_is_inserted(bs)) { 2230 return -ENOMEDIUM; 2231 } 2232 2233 if (flags & BDRV_REQ_ZERO_WRITE) { 2234 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2235 } else { 2236 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2237 } 2238 if (ret < 0) { 2239 return ret; 2240 } 2241 2242 /* If the request is misaligned then we can't make it efficient */ 2243 if ((flags & BDRV_REQ_NO_FALLBACK) && 2244 !QEMU_IS_ALIGNED(offset | bytes, align)) 2245 { 2246 return -ENOTSUP; 2247 } 2248 2249 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2250 /* 2251 * Aligning zero request is nonsense. Even if driver has special meaning 2252 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2253 * it to driver due to request_alignment. 2254 * 2255 * Still, no reason to return an error if someone do unaligned 2256 * zero-length write occasionally. 2257 */ 2258 return 0; 2259 } 2260 2261 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2262 /* 2263 * Pad request for following read-modify-write cycle. 2264 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2265 * alignment only if there is no ZERO flag. 2266 */ 2267 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2268 &pad, &padded, &flags); 2269 if (ret < 0) { 2270 return ret; 2271 } 2272 } 2273 2274 bdrv_inc_in_flight(bs); 2275 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2276 2277 if (flags & BDRV_REQ_ZERO_WRITE) { 2278 assert(!padded); 2279 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2280 goto out; 2281 } 2282 2283 if (padded) { 2284 /* 2285 * Request was unaligned to request_alignment and therefore 2286 * padded. We are going to do read-modify-write, and must 2287 * serialize the request to prevent interactions of the 2288 * widened region with other transactions. 2289 */ 2290 assert(!(flags & BDRV_REQ_NO_WAIT)); 2291 bdrv_make_request_serialising(&req, align); 2292 bdrv_padding_rmw_read(child, &req, &pad, false); 2293 } 2294 2295 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2296 qiov, qiov_offset, flags); 2297 2298 bdrv_padding_finalize(&pad); 2299 2300 out: 2301 tracked_request_end(&req); 2302 bdrv_dec_in_flight(bs); 2303 2304 return ret; 2305 } 2306 2307 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2308 int64_t bytes, BdrvRequestFlags flags) 2309 { 2310 IO_CODE(); 2311 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2312 assert_bdrv_graph_readable(); 2313 2314 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2315 flags &= ~BDRV_REQ_MAY_UNMAP; 2316 } 2317 2318 return bdrv_co_pwritev(child, offset, bytes, NULL, 2319 BDRV_REQ_ZERO_WRITE | flags); 2320 } 2321 2322 /* 2323 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2324 */ 2325 int bdrv_flush_all(void) 2326 { 2327 BdrvNextIterator it; 2328 BlockDriverState *bs = NULL; 2329 int result = 0; 2330 2331 GLOBAL_STATE_CODE(); 2332 2333 /* 2334 * bdrv queue is managed by record/replay, 2335 * creating new flush request for stopping 2336 * the VM may break the determinism 2337 */ 2338 if (replay_events_enabled()) { 2339 return result; 2340 } 2341 2342 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2343 AioContext *aio_context = bdrv_get_aio_context(bs); 2344 int ret; 2345 2346 aio_context_acquire(aio_context); 2347 ret = bdrv_flush(bs); 2348 if (ret < 0 && !result) { 2349 result = ret; 2350 } 2351 aio_context_release(aio_context); 2352 } 2353 2354 return result; 2355 } 2356 2357 /* 2358 * Returns the allocation status of the specified sectors. 2359 * Drivers not implementing the functionality are assumed to not support 2360 * backing files, hence all their sectors are reported as allocated. 2361 * 2362 * If 'want_zero' is true, the caller is querying for mapping 2363 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2364 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2365 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2366 * 2367 * If 'offset' is beyond the end of the disk image the return value is 2368 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2369 * 2370 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2371 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2372 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2373 * 2374 * 'pnum' is set to the number of bytes (including and immediately 2375 * following the specified offset) that are easily known to be in the 2376 * same allocated/unallocated state. Note that a second call starting 2377 * at the original offset plus returned pnum may have the same status. 2378 * The returned value is non-zero on success except at end-of-file. 2379 * 2380 * Returns negative errno on failure. Otherwise, if the 2381 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2382 * set to the host mapping and BDS corresponding to the guest offset. 2383 */ 2384 static int coroutine_fn GRAPH_RDLOCK 2385 bdrv_co_block_status(BlockDriverState *bs, bool want_zero, 2386 int64_t offset, int64_t bytes, 2387 int64_t *pnum, int64_t *map, BlockDriverState **file) 2388 { 2389 int64_t total_size; 2390 int64_t n; /* bytes */ 2391 int ret; 2392 int64_t local_map = 0; 2393 BlockDriverState *local_file = NULL; 2394 int64_t aligned_offset, aligned_bytes; 2395 uint32_t align; 2396 bool has_filtered_child; 2397 2398 assert(pnum); 2399 assert_bdrv_graph_readable(); 2400 *pnum = 0; 2401 total_size = bdrv_co_getlength(bs); 2402 if (total_size < 0) { 2403 ret = total_size; 2404 goto early_out; 2405 } 2406 2407 if (offset >= total_size) { 2408 ret = BDRV_BLOCK_EOF; 2409 goto early_out; 2410 } 2411 if (!bytes) { 2412 ret = 0; 2413 goto early_out; 2414 } 2415 2416 n = total_size - offset; 2417 if (n < bytes) { 2418 bytes = n; 2419 } 2420 2421 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2422 assert(bs->drv); 2423 has_filtered_child = bdrv_filter_child(bs); 2424 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2425 *pnum = bytes; 2426 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2427 if (offset + bytes == total_size) { 2428 ret |= BDRV_BLOCK_EOF; 2429 } 2430 if (bs->drv->protocol_name) { 2431 ret |= BDRV_BLOCK_OFFSET_VALID; 2432 local_map = offset; 2433 local_file = bs; 2434 } 2435 goto early_out; 2436 } 2437 2438 bdrv_inc_in_flight(bs); 2439 2440 /* Round out to request_alignment boundaries */ 2441 align = bs->bl.request_alignment; 2442 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2443 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2444 2445 if (bs->drv->bdrv_co_block_status) { 2446 /* 2447 * Use the block-status cache only for protocol nodes: Format 2448 * drivers are generally quick to inquire the status, but protocol 2449 * drivers often need to get information from outside of qemu, so 2450 * we do not have control over the actual implementation. There 2451 * have been cases where inquiring the status took an unreasonably 2452 * long time, and we can do nothing in qemu to fix it. 2453 * This is especially problematic for images with large data areas, 2454 * because finding the few holes in them and giving them special 2455 * treatment does not gain much performance. Therefore, we try to 2456 * cache the last-identified data region. 2457 * 2458 * Second, limiting ourselves to protocol nodes allows us to assume 2459 * the block status for data regions to be DATA | OFFSET_VALID, and 2460 * that the host offset is the same as the guest offset. 2461 * 2462 * Note that it is possible that external writers zero parts of 2463 * the cached regions without the cache being invalidated, and so 2464 * we may report zeroes as data. This is not catastrophic, 2465 * however, because reporting zeroes as data is fine. 2466 */ 2467 if (QLIST_EMPTY(&bs->children) && 2468 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2469 { 2470 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2471 local_file = bs; 2472 local_map = aligned_offset; 2473 } else { 2474 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2475 aligned_bytes, pnum, &local_map, 2476 &local_file); 2477 2478 /* 2479 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2480 * the cache is queried above. Technically, we do not need to check 2481 * it here; the worst that can happen is that we fill the cache for 2482 * non-protocol nodes, and then it is never used. However, filling 2483 * the cache requires an RCU update, so double check here to avoid 2484 * such an update if possible. 2485 * 2486 * Check want_zero, because we only want to update the cache when we 2487 * have accurate information about what is zero and what is data. 2488 */ 2489 if (want_zero && 2490 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2491 QLIST_EMPTY(&bs->children)) 2492 { 2493 /* 2494 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2495 * returned local_map value must be the same as the offset we 2496 * have passed (aligned_offset), and local_bs must be the node 2497 * itself. 2498 * Assert this, because we follow this rule when reading from 2499 * the cache (see the `local_file = bs` and 2500 * `local_map = aligned_offset` assignments above), and the 2501 * result the cache delivers must be the same as the driver 2502 * would deliver. 2503 */ 2504 assert(local_file == bs); 2505 assert(local_map == aligned_offset); 2506 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2507 } 2508 } 2509 } else { 2510 /* Default code for filters */ 2511 2512 local_file = bdrv_filter_bs(bs); 2513 assert(local_file); 2514 2515 *pnum = aligned_bytes; 2516 local_map = aligned_offset; 2517 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2518 } 2519 if (ret < 0) { 2520 *pnum = 0; 2521 goto out; 2522 } 2523 2524 /* 2525 * The driver's result must be a non-zero multiple of request_alignment. 2526 * Clamp pnum and adjust map to original request. 2527 */ 2528 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2529 align > offset - aligned_offset); 2530 if (ret & BDRV_BLOCK_RECURSE) { 2531 assert(ret & BDRV_BLOCK_DATA); 2532 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2533 assert(!(ret & BDRV_BLOCK_ZERO)); 2534 } 2535 2536 *pnum -= offset - aligned_offset; 2537 if (*pnum > bytes) { 2538 *pnum = bytes; 2539 } 2540 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2541 local_map += offset - aligned_offset; 2542 } 2543 2544 if (ret & BDRV_BLOCK_RAW) { 2545 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2546 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2547 *pnum, pnum, &local_map, &local_file); 2548 goto out; 2549 } 2550 2551 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2552 ret |= BDRV_BLOCK_ALLOCATED; 2553 } else if (bs->drv->supports_backing) { 2554 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2555 2556 if (!cow_bs) { 2557 ret |= BDRV_BLOCK_ZERO; 2558 } else if (want_zero) { 2559 int64_t size2 = bdrv_co_getlength(cow_bs); 2560 2561 if (size2 >= 0 && offset >= size2) { 2562 ret |= BDRV_BLOCK_ZERO; 2563 } 2564 } 2565 } 2566 2567 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2568 local_file && local_file != bs && 2569 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2570 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2571 int64_t file_pnum; 2572 int ret2; 2573 2574 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2575 *pnum, &file_pnum, NULL, NULL); 2576 if (ret2 >= 0) { 2577 /* Ignore errors. This is just providing extra information, it 2578 * is useful but not necessary. 2579 */ 2580 if (ret2 & BDRV_BLOCK_EOF && 2581 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2582 /* 2583 * It is valid for the format block driver to read 2584 * beyond the end of the underlying file's current 2585 * size; such areas read as zero. 2586 */ 2587 ret |= BDRV_BLOCK_ZERO; 2588 } else { 2589 /* Limit request to the range reported by the protocol driver */ 2590 *pnum = file_pnum; 2591 ret |= (ret2 & BDRV_BLOCK_ZERO); 2592 } 2593 } 2594 } 2595 2596 out: 2597 bdrv_dec_in_flight(bs); 2598 if (ret >= 0 && offset + *pnum == total_size) { 2599 ret |= BDRV_BLOCK_EOF; 2600 } 2601 early_out: 2602 if (file) { 2603 *file = local_file; 2604 } 2605 if (map) { 2606 *map = local_map; 2607 } 2608 return ret; 2609 } 2610 2611 int coroutine_fn 2612 bdrv_co_common_block_status_above(BlockDriverState *bs, 2613 BlockDriverState *base, 2614 bool include_base, 2615 bool want_zero, 2616 int64_t offset, 2617 int64_t bytes, 2618 int64_t *pnum, 2619 int64_t *map, 2620 BlockDriverState **file, 2621 int *depth) 2622 { 2623 int ret; 2624 BlockDriverState *p; 2625 int64_t eof = 0; 2626 int dummy; 2627 IO_CODE(); 2628 2629 assert(!include_base || base); /* Can't include NULL base */ 2630 assert_bdrv_graph_readable(); 2631 2632 if (!depth) { 2633 depth = &dummy; 2634 } 2635 *depth = 0; 2636 2637 if (!include_base && bs == base) { 2638 *pnum = bytes; 2639 return 0; 2640 } 2641 2642 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2643 ++*depth; 2644 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2645 return ret; 2646 } 2647 2648 if (ret & BDRV_BLOCK_EOF) { 2649 eof = offset + *pnum; 2650 } 2651 2652 assert(*pnum <= bytes); 2653 bytes = *pnum; 2654 2655 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2656 p = bdrv_filter_or_cow_bs(p)) 2657 { 2658 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2659 file); 2660 ++*depth; 2661 if (ret < 0) { 2662 return ret; 2663 } 2664 if (*pnum == 0) { 2665 /* 2666 * The top layer deferred to this layer, and because this layer is 2667 * short, any zeroes that we synthesize beyond EOF behave as if they 2668 * were allocated at this layer. 2669 * 2670 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2671 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2672 * below. 2673 */ 2674 assert(ret & BDRV_BLOCK_EOF); 2675 *pnum = bytes; 2676 if (file) { 2677 *file = p; 2678 } 2679 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2680 break; 2681 } 2682 if (ret & BDRV_BLOCK_ALLOCATED) { 2683 /* 2684 * We've found the node and the status, we must break. 2685 * 2686 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2687 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2688 * below. 2689 */ 2690 ret &= ~BDRV_BLOCK_EOF; 2691 break; 2692 } 2693 2694 if (p == base) { 2695 assert(include_base); 2696 break; 2697 } 2698 2699 /* 2700 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2701 * let's continue the diving. 2702 */ 2703 assert(*pnum <= bytes); 2704 bytes = *pnum; 2705 } 2706 2707 if (offset + *pnum == eof) { 2708 ret |= BDRV_BLOCK_EOF; 2709 } 2710 2711 return ret; 2712 } 2713 2714 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2715 BlockDriverState *base, 2716 int64_t offset, int64_t bytes, 2717 int64_t *pnum, int64_t *map, 2718 BlockDriverState **file) 2719 { 2720 IO_CODE(); 2721 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2722 bytes, pnum, map, file, NULL); 2723 } 2724 2725 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2726 int64_t offset, int64_t bytes, int64_t *pnum, 2727 int64_t *map, BlockDriverState **file) 2728 { 2729 IO_CODE(); 2730 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2731 pnum, map, file, NULL); 2732 } 2733 2734 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2735 int64_t *pnum, int64_t *map, BlockDriverState **file) 2736 { 2737 IO_CODE(); 2738 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2739 offset, bytes, pnum, map, file); 2740 } 2741 2742 /* 2743 * Check @bs (and its backing chain) to see if the range defined 2744 * by @offset and @bytes is known to read as zeroes. 2745 * Return 1 if that is the case, 0 otherwise and -errno on error. 2746 * This test is meant to be fast rather than accurate so returning 0 2747 * does not guarantee non-zero data. 2748 */ 2749 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2750 int64_t bytes) 2751 { 2752 int ret; 2753 int64_t pnum = bytes; 2754 IO_CODE(); 2755 2756 if (!bytes) { 2757 return 1; 2758 } 2759 2760 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2761 bytes, &pnum, NULL, NULL, NULL); 2762 2763 if (ret < 0) { 2764 return ret; 2765 } 2766 2767 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2768 } 2769 2770 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2771 int64_t bytes, int64_t *pnum) 2772 { 2773 int ret; 2774 int64_t dummy; 2775 IO_CODE(); 2776 2777 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2778 bytes, pnum ? pnum : &dummy, NULL, 2779 NULL, NULL); 2780 if (ret < 0) { 2781 return ret; 2782 } 2783 return !!(ret & BDRV_BLOCK_ALLOCATED); 2784 } 2785 2786 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2787 int64_t *pnum) 2788 { 2789 int ret; 2790 int64_t dummy; 2791 IO_CODE(); 2792 2793 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2794 bytes, pnum ? pnum : &dummy, NULL, 2795 NULL, NULL); 2796 if (ret < 0) { 2797 return ret; 2798 } 2799 return !!(ret & BDRV_BLOCK_ALLOCATED); 2800 } 2801 2802 /* See bdrv_is_allocated_above for documentation */ 2803 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2804 BlockDriverState *base, 2805 bool include_base, int64_t offset, 2806 int64_t bytes, int64_t *pnum) 2807 { 2808 int depth; 2809 int ret; 2810 IO_CODE(); 2811 2812 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2813 offset, bytes, pnum, NULL, NULL, 2814 &depth); 2815 if (ret < 0) { 2816 return ret; 2817 } 2818 2819 if (ret & BDRV_BLOCK_ALLOCATED) { 2820 return depth; 2821 } 2822 return 0; 2823 } 2824 2825 /* 2826 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2827 * 2828 * Return a positive depth if (a prefix of) the given range is allocated 2829 * in any image between BASE and TOP (BASE is only included if include_base 2830 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2831 * BASE can be NULL to check if the given offset is allocated in any 2832 * image of the chain. Return 0 otherwise, or negative errno on 2833 * failure. 2834 * 2835 * 'pnum' is set to the number of bytes (including and immediately 2836 * following the specified offset) that are known to be in the same 2837 * allocated/unallocated state. Note that a subsequent call starting 2838 * at 'offset + *pnum' may return the same allocation status (in other 2839 * words, the result is not necessarily the maximum possible range); 2840 * but 'pnum' will only be 0 when end of file is reached. 2841 */ 2842 int bdrv_is_allocated_above(BlockDriverState *top, 2843 BlockDriverState *base, 2844 bool include_base, int64_t offset, 2845 int64_t bytes, int64_t *pnum) 2846 { 2847 int depth; 2848 int ret; 2849 IO_CODE(); 2850 2851 ret = bdrv_common_block_status_above(top, base, include_base, false, 2852 offset, bytes, pnum, NULL, NULL, 2853 &depth); 2854 if (ret < 0) { 2855 return ret; 2856 } 2857 2858 if (ret & BDRV_BLOCK_ALLOCATED) { 2859 return depth; 2860 } 2861 return 0; 2862 } 2863 2864 int coroutine_fn 2865 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2866 { 2867 BlockDriver *drv = bs->drv; 2868 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2869 int ret; 2870 IO_CODE(); 2871 assert_bdrv_graph_readable(); 2872 2873 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2874 if (ret < 0) { 2875 return ret; 2876 } 2877 2878 if (!drv) { 2879 return -ENOMEDIUM; 2880 } 2881 2882 bdrv_inc_in_flight(bs); 2883 2884 if (drv->bdrv_co_load_vmstate) { 2885 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2886 } else if (child_bs) { 2887 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2888 } else { 2889 ret = -ENOTSUP; 2890 } 2891 2892 bdrv_dec_in_flight(bs); 2893 2894 return ret; 2895 } 2896 2897 int coroutine_fn 2898 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2899 { 2900 BlockDriver *drv = bs->drv; 2901 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2902 int ret; 2903 IO_CODE(); 2904 assert_bdrv_graph_readable(); 2905 2906 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2907 if (ret < 0) { 2908 return ret; 2909 } 2910 2911 if (!drv) { 2912 return -ENOMEDIUM; 2913 } 2914 2915 bdrv_inc_in_flight(bs); 2916 2917 if (drv->bdrv_co_save_vmstate) { 2918 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2919 } else if (child_bs) { 2920 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2921 } else { 2922 ret = -ENOTSUP; 2923 } 2924 2925 bdrv_dec_in_flight(bs); 2926 2927 return ret; 2928 } 2929 2930 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2931 int64_t pos, int size) 2932 { 2933 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2934 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2935 IO_CODE(); 2936 2937 return ret < 0 ? ret : size; 2938 } 2939 2940 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2941 int64_t pos, int size) 2942 { 2943 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2944 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2945 IO_CODE(); 2946 2947 return ret < 0 ? ret : size; 2948 } 2949 2950 /**************************************************************/ 2951 /* async I/Os */ 2952 2953 void bdrv_aio_cancel(BlockAIOCB *acb) 2954 { 2955 IO_CODE(); 2956 qemu_aio_ref(acb); 2957 bdrv_aio_cancel_async(acb); 2958 while (acb->refcnt > 1) { 2959 if (acb->aiocb_info->get_aio_context) { 2960 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2961 } else if (acb->bs) { 2962 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2963 * assert that we're not using an I/O thread. Thread-safe 2964 * code should use bdrv_aio_cancel_async exclusively. 2965 */ 2966 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2967 aio_poll(bdrv_get_aio_context(acb->bs), true); 2968 } else { 2969 abort(); 2970 } 2971 } 2972 qemu_aio_unref(acb); 2973 } 2974 2975 /* Async version of aio cancel. The caller is not blocked if the acb implements 2976 * cancel_async, otherwise we do nothing and let the request normally complete. 2977 * In either case the completion callback must be called. */ 2978 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2979 { 2980 IO_CODE(); 2981 if (acb->aiocb_info->cancel_async) { 2982 acb->aiocb_info->cancel_async(acb); 2983 } 2984 } 2985 2986 /**************************************************************/ 2987 /* Coroutine block device emulation */ 2988 2989 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2990 { 2991 BdrvChild *primary_child = bdrv_primary_child(bs); 2992 BdrvChild *child; 2993 int current_gen; 2994 int ret = 0; 2995 IO_CODE(); 2996 2997 assert_bdrv_graph_readable(); 2998 bdrv_inc_in_flight(bs); 2999 3000 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 3001 bdrv_is_sg(bs)) { 3002 goto early_exit; 3003 } 3004 3005 qemu_mutex_lock(&bs->reqs_lock); 3006 current_gen = qatomic_read(&bs->write_gen); 3007 3008 /* Wait until any previous flushes are completed */ 3009 while (bs->active_flush_req) { 3010 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3011 } 3012 3013 /* Flushes reach this point in nondecreasing current_gen order. */ 3014 bs->active_flush_req = true; 3015 qemu_mutex_unlock(&bs->reqs_lock); 3016 3017 /* Write back all layers by calling one driver function */ 3018 if (bs->drv->bdrv_co_flush) { 3019 ret = bs->drv->bdrv_co_flush(bs); 3020 goto out; 3021 } 3022 3023 /* Write back cached data to the OS even with cache=unsafe */ 3024 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3025 if (bs->drv->bdrv_co_flush_to_os) { 3026 ret = bs->drv->bdrv_co_flush_to_os(bs); 3027 if (ret < 0) { 3028 goto out; 3029 } 3030 } 3031 3032 /* But don't actually force it to the disk with cache=unsafe */ 3033 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3034 goto flush_children; 3035 } 3036 3037 /* Check if we really need to flush anything */ 3038 if (bs->flushed_gen == current_gen) { 3039 goto flush_children; 3040 } 3041 3042 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3043 if (!bs->drv) { 3044 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3045 * (even in case of apparent success) */ 3046 ret = -ENOMEDIUM; 3047 goto out; 3048 } 3049 if (bs->drv->bdrv_co_flush_to_disk) { 3050 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3051 } else if (bs->drv->bdrv_aio_flush) { 3052 BlockAIOCB *acb; 3053 CoroutineIOCompletion co = { 3054 .coroutine = qemu_coroutine_self(), 3055 }; 3056 3057 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3058 if (acb == NULL) { 3059 ret = -EIO; 3060 } else { 3061 qemu_coroutine_yield(); 3062 ret = co.ret; 3063 } 3064 } else { 3065 /* 3066 * Some block drivers always operate in either writethrough or unsafe 3067 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3068 * know how the server works (because the behaviour is hardcoded or 3069 * depends on server-side configuration), so we can't ensure that 3070 * everything is safe on disk. Returning an error doesn't work because 3071 * that would break guests even if the server operates in writethrough 3072 * mode. 3073 * 3074 * Let's hope the user knows what he's doing. 3075 */ 3076 ret = 0; 3077 } 3078 3079 if (ret < 0) { 3080 goto out; 3081 } 3082 3083 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3084 * in the case of cache=unsafe, so there are no useless flushes. 3085 */ 3086 flush_children: 3087 ret = 0; 3088 QLIST_FOREACH(child, &bs->children, next) { 3089 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3090 int this_child_ret = bdrv_co_flush(child->bs); 3091 if (!ret) { 3092 ret = this_child_ret; 3093 } 3094 } 3095 } 3096 3097 out: 3098 /* Notify any pending flushes that we have completed */ 3099 if (ret == 0) { 3100 bs->flushed_gen = current_gen; 3101 } 3102 3103 qemu_mutex_lock(&bs->reqs_lock); 3104 bs->active_flush_req = false; 3105 /* Return value is ignored - it's ok if wait queue is empty */ 3106 qemu_co_queue_next(&bs->flush_queue); 3107 qemu_mutex_unlock(&bs->reqs_lock); 3108 3109 early_exit: 3110 bdrv_dec_in_flight(bs); 3111 return ret; 3112 } 3113 3114 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3115 int64_t bytes) 3116 { 3117 BdrvTrackedRequest req; 3118 int ret; 3119 int64_t max_pdiscard; 3120 int head, tail, align; 3121 BlockDriverState *bs = child->bs; 3122 IO_CODE(); 3123 assert_bdrv_graph_readable(); 3124 3125 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3126 return -ENOMEDIUM; 3127 } 3128 3129 if (bdrv_has_readonly_bitmaps(bs)) { 3130 return -EPERM; 3131 } 3132 3133 ret = bdrv_check_request(offset, bytes, NULL); 3134 if (ret < 0) { 3135 return ret; 3136 } 3137 3138 /* Do nothing if disabled. */ 3139 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3140 return 0; 3141 } 3142 3143 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3144 return 0; 3145 } 3146 3147 /* Invalidate the cached block-status data range if this discard overlaps */ 3148 bdrv_bsc_invalidate_range(bs, offset, bytes); 3149 3150 /* Discard is advisory, but some devices track and coalesce 3151 * unaligned requests, so we must pass everything down rather than 3152 * round here. Still, most devices will just silently ignore 3153 * unaligned requests (by returning -ENOTSUP), so we must fragment 3154 * the request accordingly. */ 3155 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3156 assert(align % bs->bl.request_alignment == 0); 3157 head = offset % align; 3158 tail = (offset + bytes) % align; 3159 3160 bdrv_inc_in_flight(bs); 3161 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3162 3163 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3164 if (ret < 0) { 3165 goto out; 3166 } 3167 3168 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3169 align); 3170 assert(max_pdiscard >= bs->bl.request_alignment); 3171 3172 while (bytes > 0) { 3173 int64_t num = bytes; 3174 3175 if (head) { 3176 /* Make small requests to get to alignment boundaries. */ 3177 num = MIN(bytes, align - head); 3178 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3179 num %= bs->bl.request_alignment; 3180 } 3181 head = (head + num) % align; 3182 assert(num < max_pdiscard); 3183 } else if (tail) { 3184 if (num > align) { 3185 /* Shorten the request to the last aligned cluster. */ 3186 num -= tail; 3187 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3188 tail > bs->bl.request_alignment) { 3189 tail %= bs->bl.request_alignment; 3190 num -= tail; 3191 } 3192 } 3193 /* limit request size */ 3194 if (num > max_pdiscard) { 3195 num = max_pdiscard; 3196 } 3197 3198 if (!bs->drv) { 3199 ret = -ENOMEDIUM; 3200 goto out; 3201 } 3202 if (bs->drv->bdrv_co_pdiscard) { 3203 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3204 } else { 3205 BlockAIOCB *acb; 3206 CoroutineIOCompletion co = { 3207 .coroutine = qemu_coroutine_self(), 3208 }; 3209 3210 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3211 bdrv_co_io_em_complete, &co); 3212 if (acb == NULL) { 3213 ret = -EIO; 3214 goto out; 3215 } else { 3216 qemu_coroutine_yield(); 3217 ret = co.ret; 3218 } 3219 } 3220 if (ret && ret != -ENOTSUP) { 3221 goto out; 3222 } 3223 3224 offset += num; 3225 bytes -= num; 3226 } 3227 ret = 0; 3228 out: 3229 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3230 tracked_request_end(&req); 3231 bdrv_dec_in_flight(bs); 3232 return ret; 3233 } 3234 3235 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3236 { 3237 BlockDriver *drv = bs->drv; 3238 CoroutineIOCompletion co = { 3239 .coroutine = qemu_coroutine_self(), 3240 }; 3241 BlockAIOCB *acb; 3242 IO_CODE(); 3243 assert_bdrv_graph_readable(); 3244 3245 bdrv_inc_in_flight(bs); 3246 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3247 co.ret = -ENOTSUP; 3248 goto out; 3249 } 3250 3251 if (drv->bdrv_co_ioctl) { 3252 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3253 } else { 3254 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3255 if (!acb) { 3256 co.ret = -ENOTSUP; 3257 goto out; 3258 } 3259 qemu_coroutine_yield(); 3260 } 3261 out: 3262 bdrv_dec_in_flight(bs); 3263 return co.ret; 3264 } 3265 3266 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3267 unsigned int *nr_zones, 3268 BlockZoneDescriptor *zones) 3269 { 3270 BlockDriver *drv = bs->drv; 3271 CoroutineIOCompletion co = { 3272 .coroutine = qemu_coroutine_self(), 3273 }; 3274 IO_CODE(); 3275 3276 bdrv_inc_in_flight(bs); 3277 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3278 co.ret = -ENOTSUP; 3279 goto out; 3280 } 3281 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3282 out: 3283 bdrv_dec_in_flight(bs); 3284 return co.ret; 3285 } 3286 3287 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3288 int64_t offset, int64_t len) 3289 { 3290 BlockDriver *drv = bs->drv; 3291 CoroutineIOCompletion co = { 3292 .coroutine = qemu_coroutine_self(), 3293 }; 3294 IO_CODE(); 3295 3296 bdrv_inc_in_flight(bs); 3297 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3298 co.ret = -ENOTSUP; 3299 goto out; 3300 } 3301 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3302 out: 3303 bdrv_dec_in_flight(bs); 3304 return co.ret; 3305 } 3306 3307 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3308 QEMUIOVector *qiov, 3309 BdrvRequestFlags flags) 3310 { 3311 int ret; 3312 BlockDriver *drv = bs->drv; 3313 CoroutineIOCompletion co = { 3314 .coroutine = qemu_coroutine_self(), 3315 }; 3316 IO_CODE(); 3317 3318 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3319 if (ret < 0) { 3320 return ret; 3321 } 3322 3323 bdrv_inc_in_flight(bs); 3324 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3325 co.ret = -ENOTSUP; 3326 goto out; 3327 } 3328 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3329 out: 3330 bdrv_dec_in_flight(bs); 3331 return co.ret; 3332 } 3333 3334 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3335 { 3336 IO_CODE(); 3337 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3338 } 3339 3340 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3341 { 3342 IO_CODE(); 3343 return memset(qemu_blockalign(bs, size), 0, size); 3344 } 3345 3346 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3347 { 3348 size_t align = bdrv_opt_mem_align(bs); 3349 IO_CODE(); 3350 3351 /* Ensure that NULL is never returned on success */ 3352 assert(align > 0); 3353 if (size == 0) { 3354 size = align; 3355 } 3356 3357 return qemu_try_memalign(align, size); 3358 } 3359 3360 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3361 { 3362 void *mem = qemu_try_blockalign(bs, size); 3363 IO_CODE(); 3364 3365 if (mem) { 3366 memset(mem, 0, size); 3367 } 3368 3369 return mem; 3370 } 3371 3372 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3373 static void GRAPH_RDLOCK 3374 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3375 BdrvChild *final_child) 3376 { 3377 BdrvChild *child; 3378 3379 GLOBAL_STATE_CODE(); 3380 assert_bdrv_graph_readable(); 3381 3382 QLIST_FOREACH(child, &bs->children, next) { 3383 if (child == final_child) { 3384 break; 3385 } 3386 3387 bdrv_unregister_buf(child->bs, host, size); 3388 } 3389 3390 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3391 bs->drv->bdrv_unregister_buf(bs, host, size); 3392 } 3393 } 3394 3395 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3396 Error **errp) 3397 { 3398 BdrvChild *child; 3399 3400 GLOBAL_STATE_CODE(); 3401 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3402 3403 if (bs->drv && bs->drv->bdrv_register_buf) { 3404 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3405 return false; 3406 } 3407 } 3408 QLIST_FOREACH(child, &bs->children, next) { 3409 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3410 bdrv_register_buf_rollback(bs, host, size, child); 3411 return false; 3412 } 3413 } 3414 return true; 3415 } 3416 3417 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3418 { 3419 BdrvChild *child; 3420 3421 GLOBAL_STATE_CODE(); 3422 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3423 3424 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3425 bs->drv->bdrv_unregister_buf(bs, host, size); 3426 } 3427 QLIST_FOREACH(child, &bs->children, next) { 3428 bdrv_unregister_buf(child->bs, host, size); 3429 } 3430 } 3431 3432 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3433 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3434 int64_t dst_offset, int64_t bytes, 3435 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3436 bool recurse_src) 3437 { 3438 BdrvTrackedRequest req; 3439 int ret; 3440 assert_bdrv_graph_readable(); 3441 3442 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3443 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3444 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3445 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3446 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3447 3448 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3449 return -ENOMEDIUM; 3450 } 3451 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3452 if (ret) { 3453 return ret; 3454 } 3455 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3456 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3457 } 3458 3459 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3460 return -ENOMEDIUM; 3461 } 3462 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3463 if (ret) { 3464 return ret; 3465 } 3466 3467 if (!src->bs->drv->bdrv_co_copy_range_from 3468 || !dst->bs->drv->bdrv_co_copy_range_to 3469 || src->bs->encrypted || dst->bs->encrypted) { 3470 return -ENOTSUP; 3471 } 3472 3473 if (recurse_src) { 3474 bdrv_inc_in_flight(src->bs); 3475 tracked_request_begin(&req, src->bs, src_offset, bytes, 3476 BDRV_TRACKED_READ); 3477 3478 /* BDRV_REQ_SERIALISING is only for write operation */ 3479 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3480 bdrv_wait_serialising_requests(&req); 3481 3482 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3483 src, src_offset, 3484 dst, dst_offset, 3485 bytes, 3486 read_flags, write_flags); 3487 3488 tracked_request_end(&req); 3489 bdrv_dec_in_flight(src->bs); 3490 } else { 3491 bdrv_inc_in_flight(dst->bs); 3492 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3493 BDRV_TRACKED_WRITE); 3494 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3495 write_flags); 3496 if (!ret) { 3497 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3498 src, src_offset, 3499 dst, dst_offset, 3500 bytes, 3501 read_flags, write_flags); 3502 } 3503 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3504 tracked_request_end(&req); 3505 bdrv_dec_in_flight(dst->bs); 3506 } 3507 3508 return ret; 3509 } 3510 3511 /* Copy range from @src to @dst. 3512 * 3513 * See the comment of bdrv_co_copy_range for the parameter and return value 3514 * semantics. */ 3515 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3516 BdrvChild *dst, int64_t dst_offset, 3517 int64_t bytes, 3518 BdrvRequestFlags read_flags, 3519 BdrvRequestFlags write_flags) 3520 { 3521 IO_CODE(); 3522 assert_bdrv_graph_readable(); 3523 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3524 read_flags, write_flags); 3525 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3526 bytes, read_flags, write_flags, true); 3527 } 3528 3529 /* Copy range from @src to @dst. 3530 * 3531 * See the comment of bdrv_co_copy_range for the parameter and return value 3532 * semantics. */ 3533 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3534 BdrvChild *dst, int64_t dst_offset, 3535 int64_t bytes, 3536 BdrvRequestFlags read_flags, 3537 BdrvRequestFlags write_flags) 3538 { 3539 IO_CODE(); 3540 assert_bdrv_graph_readable(); 3541 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3542 read_flags, write_flags); 3543 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3544 bytes, read_flags, write_flags, false); 3545 } 3546 3547 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3548 BdrvChild *dst, int64_t dst_offset, 3549 int64_t bytes, BdrvRequestFlags read_flags, 3550 BdrvRequestFlags write_flags) 3551 { 3552 IO_CODE(); 3553 assert_bdrv_graph_readable(); 3554 3555 return bdrv_co_copy_range_from(src, src_offset, 3556 dst, dst_offset, 3557 bytes, read_flags, write_flags); 3558 } 3559 3560 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3561 { 3562 BdrvChild *c; 3563 QLIST_FOREACH(c, &bs->parents, next_parent) { 3564 if (c->klass->resize) { 3565 c->klass->resize(c); 3566 } 3567 } 3568 } 3569 3570 /** 3571 * Truncate file to 'offset' bytes (needed only for file protocols) 3572 * 3573 * If 'exact' is true, the file must be resized to exactly the given 3574 * 'offset'. Otherwise, it is sufficient for the node to be at least 3575 * 'offset' bytes in length. 3576 */ 3577 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3578 PreallocMode prealloc, BdrvRequestFlags flags, 3579 Error **errp) 3580 { 3581 BlockDriverState *bs = child->bs; 3582 BdrvChild *filtered, *backing; 3583 BlockDriver *drv = bs->drv; 3584 BdrvTrackedRequest req; 3585 int64_t old_size, new_bytes; 3586 int ret; 3587 IO_CODE(); 3588 assert_bdrv_graph_readable(); 3589 3590 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3591 if (!drv) { 3592 error_setg(errp, "No medium inserted"); 3593 return -ENOMEDIUM; 3594 } 3595 if (offset < 0) { 3596 error_setg(errp, "Image size cannot be negative"); 3597 return -EINVAL; 3598 } 3599 3600 ret = bdrv_check_request(offset, 0, errp); 3601 if (ret < 0) { 3602 return ret; 3603 } 3604 3605 old_size = bdrv_co_getlength(bs); 3606 if (old_size < 0) { 3607 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3608 return old_size; 3609 } 3610 3611 if (bdrv_is_read_only(bs)) { 3612 error_setg(errp, "Image is read-only"); 3613 return -EACCES; 3614 } 3615 3616 if (offset > old_size) { 3617 new_bytes = offset - old_size; 3618 } else { 3619 new_bytes = 0; 3620 } 3621 3622 bdrv_inc_in_flight(bs); 3623 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3624 BDRV_TRACKED_TRUNCATE); 3625 3626 /* If we are growing the image and potentially using preallocation for the 3627 * new area, we need to make sure that no write requests are made to it 3628 * concurrently or they might be overwritten by preallocation. */ 3629 if (new_bytes) { 3630 bdrv_make_request_serialising(&req, 1); 3631 } 3632 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3633 0); 3634 if (ret < 0) { 3635 error_setg_errno(errp, -ret, 3636 "Failed to prepare request for truncation"); 3637 goto out; 3638 } 3639 3640 filtered = bdrv_filter_child(bs); 3641 backing = bdrv_cow_child(bs); 3642 3643 /* 3644 * If the image has a backing file that is large enough that it would 3645 * provide data for the new area, we cannot leave it unallocated because 3646 * then the backing file content would become visible. Instead, zero-fill 3647 * the new area. 3648 * 3649 * Note that if the image has a backing file, but was opened without the 3650 * backing file, taking care of keeping things consistent with that backing 3651 * file is the user's responsibility. 3652 */ 3653 if (new_bytes && backing) { 3654 int64_t backing_len; 3655 3656 backing_len = bdrv_co_getlength(backing->bs); 3657 if (backing_len < 0) { 3658 ret = backing_len; 3659 error_setg_errno(errp, -ret, "Could not get backing file size"); 3660 goto out; 3661 } 3662 3663 if (backing_len > old_size) { 3664 flags |= BDRV_REQ_ZERO_WRITE; 3665 } 3666 } 3667 3668 if (drv->bdrv_co_truncate) { 3669 if (flags & ~bs->supported_truncate_flags) { 3670 error_setg(errp, "Block driver does not support requested flags"); 3671 ret = -ENOTSUP; 3672 goto out; 3673 } 3674 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3675 } else if (filtered) { 3676 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3677 } else { 3678 error_setg(errp, "Image format driver does not support resize"); 3679 ret = -ENOTSUP; 3680 goto out; 3681 } 3682 if (ret < 0) { 3683 goto out; 3684 } 3685 3686 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3687 if (ret < 0) { 3688 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3689 } else { 3690 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3691 } 3692 /* 3693 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3694 * failed, but the latter doesn't affect how we should finish the request. 3695 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3696 */ 3697 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3698 3699 out: 3700 tracked_request_end(&req); 3701 bdrv_dec_in_flight(bs); 3702 3703 return ret; 3704 } 3705 3706 void bdrv_cancel_in_flight(BlockDriverState *bs) 3707 { 3708 GLOBAL_STATE_CODE(); 3709 if (!bs || !bs->drv) { 3710 return; 3711 } 3712 3713 if (bs->drv->bdrv_cancel_in_flight) { 3714 bs->drv->bdrv_cancel_in_flight(bs); 3715 } 3716 } 3717 3718 int coroutine_fn 3719 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3720 QEMUIOVector *qiov, size_t qiov_offset) 3721 { 3722 BlockDriverState *bs = child->bs; 3723 BlockDriver *drv = bs->drv; 3724 int ret; 3725 IO_CODE(); 3726 assert_bdrv_graph_readable(); 3727 3728 if (!drv) { 3729 return -ENOMEDIUM; 3730 } 3731 3732 if (!drv->bdrv_co_preadv_snapshot) { 3733 return -ENOTSUP; 3734 } 3735 3736 bdrv_inc_in_flight(bs); 3737 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3738 bdrv_dec_in_flight(bs); 3739 3740 return ret; 3741 } 3742 3743 int coroutine_fn 3744 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3745 bool want_zero, int64_t offset, int64_t bytes, 3746 int64_t *pnum, int64_t *map, 3747 BlockDriverState **file) 3748 { 3749 BlockDriver *drv = bs->drv; 3750 int ret; 3751 IO_CODE(); 3752 assert_bdrv_graph_readable(); 3753 3754 if (!drv) { 3755 return -ENOMEDIUM; 3756 } 3757 3758 if (!drv->bdrv_co_snapshot_block_status) { 3759 return -ENOTSUP; 3760 } 3761 3762 bdrv_inc_in_flight(bs); 3763 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3764 pnum, map, file); 3765 bdrv_dec_in_flight(bs); 3766 3767 return ret; 3768 } 3769 3770 int coroutine_fn 3771 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3772 { 3773 BlockDriver *drv = bs->drv; 3774 int ret; 3775 IO_CODE(); 3776 assert_bdrv_graph_readable(); 3777 3778 if (!drv) { 3779 return -ENOMEDIUM; 3780 } 3781 3782 if (!drv->bdrv_co_pdiscard_snapshot) { 3783 return -ENOTSUP; 3784 } 3785 3786 bdrv_inc_in_flight(bs); 3787 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3788 bdrv_dec_in_flight(bs); 3789 3790 return ret; 3791 } 3792