1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "sysemu/replay.h" 37 38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->role->drained_end) { 66 c->role->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 75 } 76 77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 78 bool ignore_bds_parents, 79 int *drained_end_counter) 80 { 81 BdrvChild *c; 82 83 QLIST_FOREACH(c, &bs->parents, next_parent) { 84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 85 continue; 86 } 87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 88 } 89 } 90 91 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 92 { 93 if (c->role->drained_poll) { 94 return c->role->drained_poll(c); 95 } 96 return false; 97 } 98 99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 100 bool ignore_bds_parents) 101 { 102 BdrvChild *c, *next; 103 bool busy = false; 104 105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 107 continue; 108 } 109 busy |= bdrv_parent_drained_poll_single(c); 110 } 111 112 return busy; 113 } 114 115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 116 { 117 c->parent_quiesce_counter++; 118 if (c->role->drained_begin) { 119 c->role->drained_begin(c); 120 } 121 if (poll) { 122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 123 } 124 } 125 126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 127 { 128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 131 src->opt_mem_alignment); 132 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 133 src->min_mem_alignment); 134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 135 } 136 137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 138 { 139 BlockDriver *drv = bs->drv; 140 Error *local_err = NULL; 141 142 memset(&bs->bl, 0, sizeof(bs->bl)); 143 144 if (!drv) { 145 return; 146 } 147 148 /* Default alignment based on whether driver has byte interface */ 149 bs->bl.request_alignment = (drv->bdrv_co_preadv || 150 drv->bdrv_aio_preadv || 151 drv->bdrv_co_preadv_part) ? 1 : 512; 152 153 /* Take some limits from the children as a default */ 154 if (bs->file) { 155 bdrv_refresh_limits(bs->file->bs, &local_err); 156 if (local_err) { 157 error_propagate(errp, local_err); 158 return; 159 } 160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 161 } else { 162 bs->bl.min_mem_alignment = 512; 163 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 164 165 /* Safe default since most protocols use readv()/writev()/etc */ 166 bs->bl.max_iov = IOV_MAX; 167 } 168 169 if (bs->backing) { 170 bdrv_refresh_limits(bs->backing->bs, &local_err); 171 if (local_err) { 172 error_propagate(errp, local_err); 173 return; 174 } 175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 176 } 177 178 /* Then let the driver override it */ 179 if (drv->bdrv_refresh_limits) { 180 drv->bdrv_refresh_limits(bs, errp); 181 } 182 } 183 184 /** 185 * The copy-on-read flag is actually a reference count so multiple users may 186 * use the feature without worrying about clobbering its previous state. 187 * Copy-on-read stays enabled until all users have called to disable it. 188 */ 189 void bdrv_enable_copy_on_read(BlockDriverState *bs) 190 { 191 atomic_inc(&bs->copy_on_read); 192 } 193 194 void bdrv_disable_copy_on_read(BlockDriverState *bs) 195 { 196 int old = atomic_fetch_dec(&bs->copy_on_read); 197 assert(old >= 1); 198 } 199 200 typedef struct { 201 Coroutine *co; 202 BlockDriverState *bs; 203 bool done; 204 bool begin; 205 bool recursive; 206 bool poll; 207 BdrvChild *parent; 208 bool ignore_bds_parents; 209 int *drained_end_counter; 210 } BdrvCoDrainData; 211 212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 213 { 214 BdrvCoDrainData *data = opaque; 215 BlockDriverState *bs = data->bs; 216 217 if (data->begin) { 218 bs->drv->bdrv_co_drain_begin(bs); 219 } else { 220 bs->drv->bdrv_co_drain_end(bs); 221 } 222 223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 224 atomic_mb_set(&data->done, true); 225 if (!data->begin) { 226 atomic_dec(data->drained_end_counter); 227 } 228 bdrv_dec_in_flight(bs); 229 230 g_free(data); 231 } 232 233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 235 int *drained_end_counter) 236 { 237 BdrvCoDrainData *data; 238 239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 240 (!begin && !bs->drv->bdrv_co_drain_end)) { 241 return; 242 } 243 244 data = g_new(BdrvCoDrainData, 1); 245 *data = (BdrvCoDrainData) { 246 .bs = bs, 247 .done = false, 248 .begin = begin, 249 .drained_end_counter = drained_end_counter, 250 }; 251 252 if (!begin) { 253 atomic_inc(drained_end_counter); 254 } 255 256 /* Make sure the driver callback completes during the polling phase for 257 * drain_begin. */ 258 bdrv_inc_in_flight(bs); 259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 260 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 261 } 262 263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 265 BdrvChild *ignore_parent, bool ignore_bds_parents) 266 { 267 BdrvChild *child, *next; 268 269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 270 return true; 271 } 272 273 if (atomic_read(&bs->in_flight)) { 274 return true; 275 } 276 277 if (recursive) { 278 assert(!ignore_bds_parents); 279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 280 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 281 return true; 282 } 283 } 284 } 285 286 return false; 287 } 288 289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 290 BdrvChild *ignore_parent) 291 { 292 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 293 } 294 295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 296 BdrvChild *parent, bool ignore_bds_parents, 297 bool poll); 298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 299 BdrvChild *parent, bool ignore_bds_parents, 300 int *drained_end_counter); 301 302 static void bdrv_co_drain_bh_cb(void *opaque) 303 { 304 BdrvCoDrainData *data = opaque; 305 Coroutine *co = data->co; 306 BlockDriverState *bs = data->bs; 307 308 if (bs) { 309 AioContext *ctx = bdrv_get_aio_context(bs); 310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 311 312 /* 313 * When the coroutine yielded, the lock for its home context was 314 * released, so we need to re-acquire it here. If it explicitly 315 * acquired a different context, the lock is still held and we don't 316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 317 */ 318 if (ctx == co_ctx) { 319 aio_context_acquire(ctx); 320 } 321 bdrv_dec_in_flight(bs); 322 if (data->begin) { 323 assert(!data->drained_end_counter); 324 bdrv_do_drained_begin(bs, data->recursive, data->parent, 325 data->ignore_bds_parents, data->poll); 326 } else { 327 assert(!data->poll); 328 bdrv_do_drained_end(bs, data->recursive, data->parent, 329 data->ignore_bds_parents, 330 data->drained_end_counter); 331 } 332 if (ctx == co_ctx) { 333 aio_context_release(ctx); 334 } 335 } else { 336 assert(data->begin); 337 bdrv_drain_all_begin(); 338 } 339 340 data->done = true; 341 aio_co_wake(co); 342 } 343 344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 345 bool begin, bool recursive, 346 BdrvChild *parent, 347 bool ignore_bds_parents, 348 bool poll, 349 int *drained_end_counter) 350 { 351 BdrvCoDrainData data; 352 353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 354 * other coroutines run if they were queued by aio_co_enter(). */ 355 356 assert(qemu_in_coroutine()); 357 data = (BdrvCoDrainData) { 358 .co = qemu_coroutine_self(), 359 .bs = bs, 360 .done = false, 361 .begin = begin, 362 .recursive = recursive, 363 .parent = parent, 364 .ignore_bds_parents = ignore_bds_parents, 365 .poll = poll, 366 .drained_end_counter = drained_end_counter, 367 }; 368 369 if (bs) { 370 bdrv_inc_in_flight(bs); 371 } 372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs), 373 bdrv_co_drain_bh_cb, &data); 374 375 qemu_coroutine_yield(); 376 /* If we are resumed from some other event (such as an aio completion or a 377 * timer callback), it is a bug in the caller that should be fixed. */ 378 assert(data.done); 379 } 380 381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 382 BdrvChild *parent, bool ignore_bds_parents) 383 { 384 assert(!qemu_in_coroutine()); 385 386 /* Stop things in parent-to-child order */ 387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 388 aio_disable_external(bdrv_get_aio_context(bs)); 389 } 390 391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 392 bdrv_drain_invoke(bs, true, NULL); 393 } 394 395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 396 BdrvChild *parent, bool ignore_bds_parents, 397 bool poll) 398 { 399 BdrvChild *child, *next; 400 401 if (qemu_in_coroutine()) { 402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 403 poll, NULL); 404 return; 405 } 406 407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 408 409 if (recursive) { 410 assert(!ignore_bds_parents); 411 bs->recursive_quiesce_counter++; 412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 414 false); 415 } 416 } 417 418 /* 419 * Wait for drained requests to finish. 420 * 421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 422 * call is needed so things in this AioContext can make progress even 423 * though we don't return to the main AioContext loop - this automatically 424 * includes other nodes in the same AioContext and therefore all child 425 * nodes. 426 */ 427 if (poll) { 428 assert(!ignore_bds_parents); 429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 430 } 431 } 432 433 void bdrv_drained_begin(BlockDriverState *bs) 434 { 435 bdrv_do_drained_begin(bs, false, NULL, false, true); 436 } 437 438 void bdrv_subtree_drained_begin(BlockDriverState *bs) 439 { 440 bdrv_do_drained_begin(bs, true, NULL, false, true); 441 } 442 443 /** 444 * This function does not poll, nor must any of its recursively called 445 * functions. The *drained_end_counter pointee will be incremented 446 * once for every background operation scheduled, and decremented once 447 * the operation settles. Therefore, the pointer must remain valid 448 * until the pointee reaches 0. That implies that whoever sets up the 449 * pointee has to poll until it is 0. 450 * 451 * We use atomic operations to access *drained_end_counter, because 452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 453 * @bs may contain nodes in different AioContexts, 454 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 455 * regardless of which AioContext they are in. 456 */ 457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 458 BdrvChild *parent, bool ignore_bds_parents, 459 int *drained_end_counter) 460 { 461 BdrvChild *child; 462 int old_quiesce_counter; 463 464 assert(drained_end_counter != NULL); 465 466 if (qemu_in_coroutine()) { 467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 468 false, drained_end_counter); 469 return; 470 } 471 assert(bs->quiesce_counter > 0); 472 473 /* Re-enable things in child-to-parent order */ 474 bdrv_drain_invoke(bs, false, drained_end_counter); 475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 476 drained_end_counter); 477 478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 479 if (old_quiesce_counter == 1) { 480 aio_enable_external(bdrv_get_aio_context(bs)); 481 } 482 483 if (recursive) { 484 assert(!ignore_bds_parents); 485 bs->recursive_quiesce_counter--; 486 QLIST_FOREACH(child, &bs->children, next) { 487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 488 drained_end_counter); 489 } 490 } 491 } 492 493 void bdrv_drained_end(BlockDriverState *bs) 494 { 495 int drained_end_counter = 0; 496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 498 } 499 500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 501 { 502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 503 } 504 505 void bdrv_subtree_drained_end(BlockDriverState *bs) 506 { 507 int drained_end_counter = 0; 508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 510 } 511 512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 513 { 514 int i; 515 516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 517 bdrv_do_drained_begin(child->bs, true, child, false, true); 518 } 519 } 520 521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 522 { 523 int drained_end_counter = 0; 524 int i; 525 526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 527 bdrv_do_drained_end(child->bs, true, child, false, 528 &drained_end_counter); 529 } 530 531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 532 } 533 534 /* 535 * Wait for pending requests to complete on a single BlockDriverState subtree, 536 * and suspend block driver's internal I/O until next request arrives. 537 * 538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 539 * AioContext. 540 */ 541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 542 { 543 assert(qemu_in_coroutine()); 544 bdrv_drained_begin(bs); 545 bdrv_drained_end(bs); 546 } 547 548 void bdrv_drain(BlockDriverState *bs) 549 { 550 bdrv_drained_begin(bs); 551 bdrv_drained_end(bs); 552 } 553 554 static void bdrv_drain_assert_idle(BlockDriverState *bs) 555 { 556 BdrvChild *child, *next; 557 558 assert(atomic_read(&bs->in_flight) == 0); 559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 560 bdrv_drain_assert_idle(child->bs); 561 } 562 } 563 564 unsigned int bdrv_drain_all_count = 0; 565 566 static bool bdrv_drain_all_poll(void) 567 { 568 BlockDriverState *bs = NULL; 569 bool result = false; 570 571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 573 while ((bs = bdrv_next_all_states(bs))) { 574 AioContext *aio_context = bdrv_get_aio_context(bs); 575 aio_context_acquire(aio_context); 576 result |= bdrv_drain_poll(bs, false, NULL, true); 577 aio_context_release(aio_context); 578 } 579 580 return result; 581 } 582 583 /* 584 * Wait for pending requests to complete across all BlockDriverStates 585 * 586 * This function does not flush data to disk, use bdrv_flush_all() for that 587 * after calling this function. 588 * 589 * This pauses all block jobs and disables external clients. It must 590 * be paired with bdrv_drain_all_end(). 591 * 592 * NOTE: no new block jobs or BlockDriverStates can be created between 593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 594 */ 595 void bdrv_drain_all_begin(void) 596 { 597 BlockDriverState *bs = NULL; 598 599 if (qemu_in_coroutine()) { 600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 601 return; 602 } 603 604 /* 605 * bdrv queue is managed by record/replay, 606 * waiting for finishing the I/O requests may 607 * be infinite 608 */ 609 if (replay_events_enabled()) { 610 return; 611 } 612 613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 614 * loop AioContext, so make sure we're in the main context. */ 615 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 616 assert(bdrv_drain_all_count < INT_MAX); 617 bdrv_drain_all_count++; 618 619 /* Quiesce all nodes, without polling in-flight requests yet. The graph 620 * cannot change during this loop. */ 621 while ((bs = bdrv_next_all_states(bs))) { 622 AioContext *aio_context = bdrv_get_aio_context(bs); 623 624 aio_context_acquire(aio_context); 625 bdrv_do_drained_begin(bs, false, NULL, true, false); 626 aio_context_release(aio_context); 627 } 628 629 /* Now poll the in-flight requests */ 630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 631 632 while ((bs = bdrv_next_all_states(bs))) { 633 bdrv_drain_assert_idle(bs); 634 } 635 } 636 637 void bdrv_drain_all_end(void) 638 { 639 BlockDriverState *bs = NULL; 640 int drained_end_counter = 0; 641 642 /* 643 * bdrv queue is managed by record/replay, 644 * waiting for finishing the I/O requests may 645 * be endless 646 */ 647 if (replay_events_enabled()) { 648 return; 649 } 650 651 while ((bs = bdrv_next_all_states(bs))) { 652 AioContext *aio_context = bdrv_get_aio_context(bs); 653 654 aio_context_acquire(aio_context); 655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 656 aio_context_release(aio_context); 657 } 658 659 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 661 662 assert(bdrv_drain_all_count > 0); 663 bdrv_drain_all_count--; 664 } 665 666 void bdrv_drain_all(void) 667 { 668 bdrv_drain_all_begin(); 669 bdrv_drain_all_end(); 670 } 671 672 /** 673 * Remove an active request from the tracked requests list 674 * 675 * This function should be called when a tracked request is completing. 676 */ 677 static void tracked_request_end(BdrvTrackedRequest *req) 678 { 679 if (req->serialising) { 680 atomic_dec(&req->bs->serialising_in_flight); 681 } 682 683 qemu_co_mutex_lock(&req->bs->reqs_lock); 684 QLIST_REMOVE(req, list); 685 qemu_co_queue_restart_all(&req->wait_queue); 686 qemu_co_mutex_unlock(&req->bs->reqs_lock); 687 } 688 689 /** 690 * Add an active request to the tracked requests list 691 */ 692 static void tracked_request_begin(BdrvTrackedRequest *req, 693 BlockDriverState *bs, 694 int64_t offset, 695 uint64_t bytes, 696 enum BdrvTrackedRequestType type) 697 { 698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 699 700 *req = (BdrvTrackedRequest){ 701 .bs = bs, 702 .offset = offset, 703 .bytes = bytes, 704 .type = type, 705 .co = qemu_coroutine_self(), 706 .serialising = false, 707 .overlap_offset = offset, 708 .overlap_bytes = bytes, 709 }; 710 711 qemu_co_queue_init(&req->wait_queue); 712 713 qemu_co_mutex_lock(&bs->reqs_lock); 714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 715 qemu_co_mutex_unlock(&bs->reqs_lock); 716 } 717 718 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 719 int64_t offset, uint64_t bytes) 720 { 721 /* aaaa bbbb */ 722 if (offset >= req->overlap_offset + req->overlap_bytes) { 723 return false; 724 } 725 /* bbbb aaaa */ 726 if (req->overlap_offset >= offset + bytes) { 727 return false; 728 } 729 return true; 730 } 731 732 static bool coroutine_fn 733 bdrv_wait_serialising_requests_locked(BlockDriverState *bs, 734 BdrvTrackedRequest *self) 735 { 736 BdrvTrackedRequest *req; 737 bool retry; 738 bool waited = false; 739 740 do { 741 retry = false; 742 QLIST_FOREACH(req, &bs->tracked_requests, list) { 743 if (req == self || (!req->serialising && !self->serialising)) { 744 continue; 745 } 746 if (tracked_request_overlaps(req, self->overlap_offset, 747 self->overlap_bytes)) 748 { 749 /* Hitting this means there was a reentrant request, for 750 * example, a block driver issuing nested requests. This must 751 * never happen since it means deadlock. 752 */ 753 assert(qemu_coroutine_self() != req->co); 754 755 /* If the request is already (indirectly) waiting for us, or 756 * will wait for us as soon as it wakes up, then just go on 757 * (instead of producing a deadlock in the former case). */ 758 if (!req->waiting_for) { 759 self->waiting_for = req; 760 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 761 self->waiting_for = NULL; 762 retry = true; 763 waited = true; 764 break; 765 } 766 } 767 } 768 } while (retry); 769 return waited; 770 } 771 772 bool bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 773 { 774 BlockDriverState *bs = req->bs; 775 int64_t overlap_offset = req->offset & ~(align - 1); 776 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 777 - overlap_offset; 778 bool waited; 779 780 qemu_co_mutex_lock(&bs->reqs_lock); 781 if (!req->serialising) { 782 atomic_inc(&req->bs->serialising_in_flight); 783 req->serialising = true; 784 } 785 786 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 787 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 788 waited = bdrv_wait_serialising_requests_locked(bs, req); 789 qemu_co_mutex_unlock(&bs->reqs_lock); 790 return waited; 791 } 792 793 /** 794 * Return the tracked request on @bs for the current coroutine, or 795 * NULL if there is none. 796 */ 797 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 798 { 799 BdrvTrackedRequest *req; 800 Coroutine *self = qemu_coroutine_self(); 801 802 QLIST_FOREACH(req, &bs->tracked_requests, list) { 803 if (req->co == self) { 804 return req; 805 } 806 } 807 808 return NULL; 809 } 810 811 /** 812 * Round a region to cluster boundaries 813 */ 814 void bdrv_round_to_clusters(BlockDriverState *bs, 815 int64_t offset, int64_t bytes, 816 int64_t *cluster_offset, 817 int64_t *cluster_bytes) 818 { 819 BlockDriverInfo bdi; 820 821 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 822 *cluster_offset = offset; 823 *cluster_bytes = bytes; 824 } else { 825 int64_t c = bdi.cluster_size; 826 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 827 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 828 } 829 } 830 831 static int bdrv_get_cluster_size(BlockDriverState *bs) 832 { 833 BlockDriverInfo bdi; 834 int ret; 835 836 ret = bdrv_get_info(bs, &bdi); 837 if (ret < 0 || bdi.cluster_size == 0) { 838 return bs->bl.request_alignment; 839 } else { 840 return bdi.cluster_size; 841 } 842 } 843 844 void bdrv_inc_in_flight(BlockDriverState *bs) 845 { 846 atomic_inc(&bs->in_flight); 847 } 848 849 void bdrv_wakeup(BlockDriverState *bs) 850 { 851 aio_wait_kick(); 852 } 853 854 void bdrv_dec_in_flight(BlockDriverState *bs) 855 { 856 atomic_dec(&bs->in_flight); 857 bdrv_wakeup(bs); 858 } 859 860 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 861 { 862 BlockDriverState *bs = self->bs; 863 bool waited = false; 864 865 if (!atomic_read(&bs->serialising_in_flight)) { 866 return false; 867 } 868 869 qemu_co_mutex_lock(&bs->reqs_lock); 870 waited = bdrv_wait_serialising_requests_locked(bs, self); 871 qemu_co_mutex_unlock(&bs->reqs_lock); 872 873 return waited; 874 } 875 876 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 877 size_t size) 878 { 879 if (size > BDRV_REQUEST_MAX_BYTES) { 880 return -EIO; 881 } 882 883 if (!bdrv_is_inserted(bs)) { 884 return -ENOMEDIUM; 885 } 886 887 if (offset < 0) { 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 typedef struct RwCo { 895 BdrvChild *child; 896 int64_t offset; 897 QEMUIOVector *qiov; 898 bool is_write; 899 int ret; 900 BdrvRequestFlags flags; 901 } RwCo; 902 903 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 904 { 905 RwCo *rwco = opaque; 906 907 if (!rwco->is_write) { 908 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 909 rwco->qiov->size, rwco->qiov, 910 rwco->flags); 911 } else { 912 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 913 rwco->qiov->size, rwco->qiov, 914 rwco->flags); 915 } 916 aio_wait_kick(); 917 } 918 919 /* 920 * Process a vectored synchronous request using coroutines 921 */ 922 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 923 QEMUIOVector *qiov, bool is_write, 924 BdrvRequestFlags flags) 925 { 926 Coroutine *co; 927 RwCo rwco = { 928 .child = child, 929 .offset = offset, 930 .qiov = qiov, 931 .is_write = is_write, 932 .ret = NOT_DONE, 933 .flags = flags, 934 }; 935 936 if (qemu_in_coroutine()) { 937 /* Fast-path if already in coroutine context */ 938 bdrv_rw_co_entry(&rwco); 939 } else { 940 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 941 bdrv_coroutine_enter(child->bs, co); 942 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 943 } 944 return rwco.ret; 945 } 946 947 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 948 int bytes, BdrvRequestFlags flags) 949 { 950 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 951 952 return bdrv_prwv_co(child, offset, &qiov, true, 953 BDRV_REQ_ZERO_WRITE | flags); 954 } 955 956 /* 957 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 958 * The operation is sped up by checking the block status and only writing 959 * zeroes to the device if they currently do not return zeroes. Optional 960 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 961 * BDRV_REQ_FUA). 962 * 963 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 964 */ 965 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 966 { 967 int ret; 968 int64_t target_size, bytes, offset = 0; 969 BlockDriverState *bs = child->bs; 970 971 target_size = bdrv_getlength(bs); 972 if (target_size < 0) { 973 return target_size; 974 } 975 976 for (;;) { 977 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 978 if (bytes <= 0) { 979 return 0; 980 } 981 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 982 if (ret < 0) { 983 return ret; 984 } 985 if (ret & BDRV_BLOCK_ZERO) { 986 offset += bytes; 987 continue; 988 } 989 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 990 if (ret < 0) { 991 return ret; 992 } 993 offset += bytes; 994 } 995 } 996 997 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 998 { 999 int ret; 1000 1001 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 1002 if (ret < 0) { 1003 return ret; 1004 } 1005 1006 return qiov->size; 1007 } 1008 1009 /* See bdrv_pwrite() for the return codes */ 1010 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 1011 { 1012 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1013 1014 if (bytes < 0) { 1015 return -EINVAL; 1016 } 1017 1018 return bdrv_preadv(child, offset, &qiov); 1019 } 1020 1021 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 1022 { 1023 int ret; 1024 1025 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 1026 if (ret < 0) { 1027 return ret; 1028 } 1029 1030 return qiov->size; 1031 } 1032 1033 /* Return no. of bytes on success or < 0 on error. Important errors are: 1034 -EIO generic I/O error (may happen for all errors) 1035 -ENOMEDIUM No media inserted. 1036 -EINVAL Invalid offset or number of bytes 1037 -EACCES Trying to write a read-only device 1038 */ 1039 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 1040 { 1041 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1042 1043 if (bytes < 0) { 1044 return -EINVAL; 1045 } 1046 1047 return bdrv_pwritev(child, offset, &qiov); 1048 } 1049 1050 /* 1051 * Writes to the file and ensures that no writes are reordered across this 1052 * request (acts as a barrier) 1053 * 1054 * Returns 0 on success, -errno in error cases. 1055 */ 1056 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1057 const void *buf, int count) 1058 { 1059 int ret; 1060 1061 ret = bdrv_pwrite(child, offset, buf, count); 1062 if (ret < 0) { 1063 return ret; 1064 } 1065 1066 ret = bdrv_flush(child->bs); 1067 if (ret < 0) { 1068 return ret; 1069 } 1070 1071 return 0; 1072 } 1073 1074 typedef struct CoroutineIOCompletion { 1075 Coroutine *coroutine; 1076 int ret; 1077 } CoroutineIOCompletion; 1078 1079 static void bdrv_co_io_em_complete(void *opaque, int ret) 1080 { 1081 CoroutineIOCompletion *co = opaque; 1082 1083 co->ret = ret; 1084 aio_co_wake(co->coroutine); 1085 } 1086 1087 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1088 uint64_t offset, uint64_t bytes, 1089 QEMUIOVector *qiov, 1090 size_t qiov_offset, int flags) 1091 { 1092 BlockDriver *drv = bs->drv; 1093 int64_t sector_num; 1094 unsigned int nb_sectors; 1095 QEMUIOVector local_qiov; 1096 int ret; 1097 1098 assert(!(flags & ~BDRV_REQ_MASK)); 1099 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1100 1101 if (!drv) { 1102 return -ENOMEDIUM; 1103 } 1104 1105 if (drv->bdrv_co_preadv_part) { 1106 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1107 flags); 1108 } 1109 1110 if (qiov_offset > 0 || bytes != qiov->size) { 1111 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1112 qiov = &local_qiov; 1113 } 1114 1115 if (drv->bdrv_co_preadv) { 1116 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1117 goto out; 1118 } 1119 1120 if (drv->bdrv_aio_preadv) { 1121 BlockAIOCB *acb; 1122 CoroutineIOCompletion co = { 1123 .coroutine = qemu_coroutine_self(), 1124 }; 1125 1126 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1127 bdrv_co_io_em_complete, &co); 1128 if (acb == NULL) { 1129 ret = -EIO; 1130 goto out; 1131 } else { 1132 qemu_coroutine_yield(); 1133 ret = co.ret; 1134 goto out; 1135 } 1136 } 1137 1138 sector_num = offset >> BDRV_SECTOR_BITS; 1139 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1140 1141 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1142 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1143 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1144 assert(drv->bdrv_co_readv); 1145 1146 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1147 1148 out: 1149 if (qiov == &local_qiov) { 1150 qemu_iovec_destroy(&local_qiov); 1151 } 1152 1153 return ret; 1154 } 1155 1156 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1157 uint64_t offset, uint64_t bytes, 1158 QEMUIOVector *qiov, 1159 size_t qiov_offset, int flags) 1160 { 1161 BlockDriver *drv = bs->drv; 1162 int64_t sector_num; 1163 unsigned int nb_sectors; 1164 QEMUIOVector local_qiov; 1165 int ret; 1166 1167 assert(!(flags & ~BDRV_REQ_MASK)); 1168 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1169 1170 if (!drv) { 1171 return -ENOMEDIUM; 1172 } 1173 1174 if (drv->bdrv_co_pwritev_part) { 1175 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1176 flags & bs->supported_write_flags); 1177 flags &= ~bs->supported_write_flags; 1178 goto emulate_flags; 1179 } 1180 1181 if (qiov_offset > 0 || bytes != qiov->size) { 1182 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1183 qiov = &local_qiov; 1184 } 1185 1186 if (drv->bdrv_co_pwritev) { 1187 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1188 flags & bs->supported_write_flags); 1189 flags &= ~bs->supported_write_flags; 1190 goto emulate_flags; 1191 } 1192 1193 if (drv->bdrv_aio_pwritev) { 1194 BlockAIOCB *acb; 1195 CoroutineIOCompletion co = { 1196 .coroutine = qemu_coroutine_self(), 1197 }; 1198 1199 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1200 flags & bs->supported_write_flags, 1201 bdrv_co_io_em_complete, &co); 1202 flags &= ~bs->supported_write_flags; 1203 if (acb == NULL) { 1204 ret = -EIO; 1205 } else { 1206 qemu_coroutine_yield(); 1207 ret = co.ret; 1208 } 1209 goto emulate_flags; 1210 } 1211 1212 sector_num = offset >> BDRV_SECTOR_BITS; 1213 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1214 1215 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1216 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1217 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1218 1219 assert(drv->bdrv_co_writev); 1220 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1221 flags & bs->supported_write_flags); 1222 flags &= ~bs->supported_write_flags; 1223 1224 emulate_flags: 1225 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1226 ret = bdrv_co_flush(bs); 1227 } 1228 1229 if (qiov == &local_qiov) { 1230 qemu_iovec_destroy(&local_qiov); 1231 } 1232 1233 return ret; 1234 } 1235 1236 static int coroutine_fn 1237 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1238 uint64_t bytes, QEMUIOVector *qiov, 1239 size_t qiov_offset) 1240 { 1241 BlockDriver *drv = bs->drv; 1242 QEMUIOVector local_qiov; 1243 int ret; 1244 1245 if (!drv) { 1246 return -ENOMEDIUM; 1247 } 1248 1249 if (!block_driver_can_compress(drv)) { 1250 return -ENOTSUP; 1251 } 1252 1253 if (drv->bdrv_co_pwritev_compressed_part) { 1254 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1255 qiov, qiov_offset); 1256 } 1257 1258 if (qiov_offset == 0) { 1259 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1260 } 1261 1262 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1263 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1264 qemu_iovec_destroy(&local_qiov); 1265 1266 return ret; 1267 } 1268 1269 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1270 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1271 size_t qiov_offset, int flags) 1272 { 1273 BlockDriverState *bs = child->bs; 1274 1275 /* Perform I/O through a temporary buffer so that users who scribble over 1276 * their read buffer while the operation is in progress do not end up 1277 * modifying the image file. This is critical for zero-copy guest I/O 1278 * where anything might happen inside guest memory. 1279 */ 1280 void *bounce_buffer = NULL; 1281 1282 BlockDriver *drv = bs->drv; 1283 int64_t cluster_offset; 1284 int64_t cluster_bytes; 1285 size_t skip_bytes; 1286 int ret; 1287 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1288 BDRV_REQUEST_MAX_BYTES); 1289 unsigned int progress = 0; 1290 bool skip_write; 1291 1292 if (!drv) { 1293 return -ENOMEDIUM; 1294 } 1295 1296 /* 1297 * Do not write anything when the BDS is inactive. That is not 1298 * allowed, and it would not help. 1299 */ 1300 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1301 1302 /* FIXME We cannot require callers to have write permissions when all they 1303 * are doing is a read request. If we did things right, write permissions 1304 * would be obtained anyway, but internally by the copy-on-read code. As 1305 * long as it is implemented here rather than in a separate filter driver, 1306 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1307 * it could request permissions. Therefore we have to bypass the permission 1308 * system for the moment. */ 1309 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1310 1311 /* Cover entire cluster so no additional backing file I/O is required when 1312 * allocating cluster in the image file. Note that this value may exceed 1313 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1314 * is one reason we loop rather than doing it all at once. 1315 */ 1316 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1317 skip_bytes = offset - cluster_offset; 1318 1319 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1320 cluster_offset, cluster_bytes); 1321 1322 while (cluster_bytes) { 1323 int64_t pnum; 1324 1325 if (skip_write) { 1326 ret = 1; /* "already allocated", so nothing will be copied */ 1327 pnum = MIN(cluster_bytes, max_transfer); 1328 } else { 1329 ret = bdrv_is_allocated(bs, cluster_offset, 1330 MIN(cluster_bytes, max_transfer), &pnum); 1331 if (ret < 0) { 1332 /* 1333 * Safe to treat errors in querying allocation as if 1334 * unallocated; we'll probably fail again soon on the 1335 * read, but at least that will set a decent errno. 1336 */ 1337 pnum = MIN(cluster_bytes, max_transfer); 1338 } 1339 1340 /* Stop at EOF if the image ends in the middle of the cluster */ 1341 if (ret == 0 && pnum == 0) { 1342 assert(progress >= bytes); 1343 break; 1344 } 1345 1346 assert(skip_bytes < pnum); 1347 } 1348 1349 if (ret <= 0) { 1350 QEMUIOVector local_qiov; 1351 1352 /* Must copy-on-read; use the bounce buffer */ 1353 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1354 if (!bounce_buffer) { 1355 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1356 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1357 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1358 1359 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1360 if (!bounce_buffer) { 1361 ret = -ENOMEM; 1362 goto err; 1363 } 1364 } 1365 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1366 1367 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1368 &local_qiov, 0, 0); 1369 if (ret < 0) { 1370 goto err; 1371 } 1372 1373 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1374 if (drv->bdrv_co_pwrite_zeroes && 1375 buffer_is_zero(bounce_buffer, pnum)) { 1376 /* FIXME: Should we (perhaps conditionally) be setting 1377 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1378 * that still correctly reads as zero? */ 1379 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1380 BDRV_REQ_WRITE_UNCHANGED); 1381 } else { 1382 /* This does not change the data on the disk, it is not 1383 * necessary to flush even in cache=writethrough mode. 1384 */ 1385 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1386 &local_qiov, 0, 1387 BDRV_REQ_WRITE_UNCHANGED); 1388 } 1389 1390 if (ret < 0) { 1391 /* It might be okay to ignore write errors for guest 1392 * requests. If this is a deliberate copy-on-read 1393 * then we don't want to ignore the error. Simply 1394 * report it in all cases. 1395 */ 1396 goto err; 1397 } 1398 1399 if (!(flags & BDRV_REQ_PREFETCH)) { 1400 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1401 bounce_buffer + skip_bytes, 1402 pnum - skip_bytes); 1403 } 1404 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1405 /* Read directly into the destination */ 1406 ret = bdrv_driver_preadv(bs, offset + progress, 1407 MIN(pnum - skip_bytes, bytes - progress), 1408 qiov, qiov_offset + progress, 0); 1409 if (ret < 0) { 1410 goto err; 1411 } 1412 } 1413 1414 cluster_offset += pnum; 1415 cluster_bytes -= pnum; 1416 progress += pnum - skip_bytes; 1417 skip_bytes = 0; 1418 } 1419 ret = 0; 1420 1421 err: 1422 qemu_vfree(bounce_buffer); 1423 return ret; 1424 } 1425 1426 /* 1427 * Forwards an already correctly aligned request to the BlockDriver. This 1428 * handles copy on read, zeroing after EOF, and fragmentation of large 1429 * reads; any other features must be implemented by the caller. 1430 */ 1431 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1432 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1433 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1434 { 1435 BlockDriverState *bs = child->bs; 1436 int64_t total_bytes, max_bytes; 1437 int ret = 0; 1438 uint64_t bytes_remaining = bytes; 1439 int max_transfer; 1440 1441 assert(is_power_of_2(align)); 1442 assert((offset & (align - 1)) == 0); 1443 assert((bytes & (align - 1)) == 0); 1444 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1445 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1446 align); 1447 1448 /* TODO: We would need a per-BDS .supported_read_flags and 1449 * potential fallback support, if we ever implement any read flags 1450 * to pass through to drivers. For now, there aren't any 1451 * passthrough flags. */ 1452 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1453 1454 /* Handle Copy on Read and associated serialisation */ 1455 if (flags & BDRV_REQ_COPY_ON_READ) { 1456 /* If we touch the same cluster it counts as an overlap. This 1457 * guarantees that allocating writes will be serialized and not race 1458 * with each other for the same cluster. For example, in copy-on-read 1459 * it ensures that the CoR read and write operations are atomic and 1460 * guest writes cannot interleave between them. */ 1461 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1462 } else { 1463 bdrv_wait_serialising_requests(req); 1464 } 1465 1466 if (flags & BDRV_REQ_COPY_ON_READ) { 1467 int64_t pnum; 1468 1469 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1470 if (ret < 0) { 1471 goto out; 1472 } 1473 1474 if (!ret || pnum != bytes) { 1475 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1476 qiov, qiov_offset, flags); 1477 goto out; 1478 } else if (flags & BDRV_REQ_PREFETCH) { 1479 goto out; 1480 } 1481 } 1482 1483 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1484 total_bytes = bdrv_getlength(bs); 1485 if (total_bytes < 0) { 1486 ret = total_bytes; 1487 goto out; 1488 } 1489 1490 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1491 if (bytes <= max_bytes && bytes <= max_transfer) { 1492 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0); 1493 goto out; 1494 } 1495 1496 while (bytes_remaining) { 1497 int num; 1498 1499 if (max_bytes) { 1500 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1501 assert(num); 1502 1503 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1504 num, qiov, bytes - bytes_remaining, 0); 1505 max_bytes -= num; 1506 } else { 1507 num = bytes_remaining; 1508 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1509 bytes_remaining); 1510 } 1511 if (ret < 0) { 1512 goto out; 1513 } 1514 bytes_remaining -= num; 1515 } 1516 1517 out: 1518 return ret < 0 ? ret : 0; 1519 } 1520 1521 /* 1522 * Request padding 1523 * 1524 * |<---- align ----->| |<----- align ---->| 1525 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1526 * | | | | | | 1527 * -*----------$-------*-------- ... --------*-----$------------*--- 1528 * | | | | | | 1529 * | offset | | end | 1530 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1531 * [buf ... ) [tail_buf ) 1532 * 1533 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1534 * is placed at the beginning of @buf and @tail at the @end. 1535 * 1536 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1537 * around tail, if tail exists. 1538 * 1539 * @merge_reads is true for small requests, 1540 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1541 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1542 */ 1543 typedef struct BdrvRequestPadding { 1544 uint8_t *buf; 1545 size_t buf_len; 1546 uint8_t *tail_buf; 1547 size_t head; 1548 size_t tail; 1549 bool merge_reads; 1550 QEMUIOVector local_qiov; 1551 } BdrvRequestPadding; 1552 1553 static bool bdrv_init_padding(BlockDriverState *bs, 1554 int64_t offset, int64_t bytes, 1555 BdrvRequestPadding *pad) 1556 { 1557 uint64_t align = bs->bl.request_alignment; 1558 size_t sum; 1559 1560 memset(pad, 0, sizeof(*pad)); 1561 1562 pad->head = offset & (align - 1); 1563 pad->tail = ((offset + bytes) & (align - 1)); 1564 if (pad->tail) { 1565 pad->tail = align - pad->tail; 1566 } 1567 1568 if ((!pad->head && !pad->tail) || !bytes) { 1569 return false; 1570 } 1571 1572 sum = pad->head + bytes + pad->tail; 1573 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1574 pad->buf = qemu_blockalign(bs, pad->buf_len); 1575 pad->merge_reads = sum == pad->buf_len; 1576 if (pad->tail) { 1577 pad->tail_buf = pad->buf + pad->buf_len - align; 1578 } 1579 1580 return true; 1581 } 1582 1583 static int bdrv_padding_rmw_read(BdrvChild *child, 1584 BdrvTrackedRequest *req, 1585 BdrvRequestPadding *pad, 1586 bool zero_middle) 1587 { 1588 QEMUIOVector local_qiov; 1589 BlockDriverState *bs = child->bs; 1590 uint64_t align = bs->bl.request_alignment; 1591 int ret; 1592 1593 assert(req->serialising && pad->buf); 1594 1595 if (pad->head || pad->merge_reads) { 1596 uint64_t bytes = pad->merge_reads ? pad->buf_len : align; 1597 1598 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1599 1600 if (pad->head) { 1601 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1602 } 1603 if (pad->merge_reads && pad->tail) { 1604 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1605 } 1606 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1607 align, &local_qiov, 0, 0); 1608 if (ret < 0) { 1609 return ret; 1610 } 1611 if (pad->head) { 1612 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1613 } 1614 if (pad->merge_reads && pad->tail) { 1615 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1616 } 1617 1618 if (pad->merge_reads) { 1619 goto zero_mem; 1620 } 1621 } 1622 1623 if (pad->tail) { 1624 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1625 1626 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1627 ret = bdrv_aligned_preadv( 1628 child, req, 1629 req->overlap_offset + req->overlap_bytes - align, 1630 align, align, &local_qiov, 0, 0); 1631 if (ret < 0) { 1632 return ret; 1633 } 1634 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1635 } 1636 1637 zero_mem: 1638 if (zero_middle) { 1639 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1640 } 1641 1642 return 0; 1643 } 1644 1645 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1646 { 1647 if (pad->buf) { 1648 qemu_vfree(pad->buf); 1649 qemu_iovec_destroy(&pad->local_qiov); 1650 } 1651 } 1652 1653 /* 1654 * bdrv_pad_request 1655 * 1656 * Exchange request parameters with padded request if needed. Don't include RMW 1657 * read of padding, bdrv_padding_rmw_read() should be called separately if 1658 * needed. 1659 * 1660 * All parameters except @bs are in-out: they represent original request at 1661 * function call and padded (if padding needed) at function finish. 1662 * 1663 * Function always succeeds. 1664 */ 1665 static bool bdrv_pad_request(BlockDriverState *bs, 1666 QEMUIOVector **qiov, size_t *qiov_offset, 1667 int64_t *offset, unsigned int *bytes, 1668 BdrvRequestPadding *pad) 1669 { 1670 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1671 return false; 1672 } 1673 1674 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1675 *qiov, *qiov_offset, *bytes, 1676 pad->buf + pad->buf_len - pad->tail, pad->tail); 1677 *bytes += pad->head + pad->tail; 1678 *offset -= pad->head; 1679 *qiov = &pad->local_qiov; 1680 *qiov_offset = 0; 1681 1682 return true; 1683 } 1684 1685 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1686 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1687 BdrvRequestFlags flags) 1688 { 1689 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1690 } 1691 1692 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1693 int64_t offset, unsigned int bytes, 1694 QEMUIOVector *qiov, size_t qiov_offset, 1695 BdrvRequestFlags flags) 1696 { 1697 BlockDriverState *bs = child->bs; 1698 BdrvTrackedRequest req; 1699 BdrvRequestPadding pad; 1700 int ret; 1701 1702 trace_bdrv_co_preadv(bs, offset, bytes, flags); 1703 1704 ret = bdrv_check_byte_request(bs, offset, bytes); 1705 if (ret < 0) { 1706 return ret; 1707 } 1708 1709 bdrv_inc_in_flight(bs); 1710 1711 /* Don't do copy-on-read if we read data before write operation */ 1712 if (atomic_read(&bs->copy_on_read)) { 1713 flags |= BDRV_REQ_COPY_ON_READ; 1714 } 1715 1716 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad); 1717 1718 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1719 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1720 bs->bl.request_alignment, 1721 qiov, qiov_offset, flags); 1722 tracked_request_end(&req); 1723 bdrv_dec_in_flight(bs); 1724 1725 bdrv_padding_destroy(&pad); 1726 1727 return ret; 1728 } 1729 1730 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1731 int64_t offset, int bytes, BdrvRequestFlags flags) 1732 { 1733 BlockDriver *drv = bs->drv; 1734 QEMUIOVector qiov; 1735 void *buf = NULL; 1736 int ret = 0; 1737 bool need_flush = false; 1738 int head = 0; 1739 int tail = 0; 1740 1741 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1742 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1743 bs->bl.request_alignment); 1744 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1745 1746 if (!drv) { 1747 return -ENOMEDIUM; 1748 } 1749 1750 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1751 return -ENOTSUP; 1752 } 1753 1754 assert(alignment % bs->bl.request_alignment == 0); 1755 head = offset % alignment; 1756 tail = (offset + bytes) % alignment; 1757 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1758 assert(max_write_zeroes >= bs->bl.request_alignment); 1759 1760 while (bytes > 0 && !ret) { 1761 int num = bytes; 1762 1763 /* Align request. Block drivers can expect the "bulk" of the request 1764 * to be aligned, and that unaligned requests do not cross cluster 1765 * boundaries. 1766 */ 1767 if (head) { 1768 /* Make a small request up to the first aligned sector. For 1769 * convenience, limit this request to max_transfer even if 1770 * we don't need to fall back to writes. */ 1771 num = MIN(MIN(bytes, max_transfer), alignment - head); 1772 head = (head + num) % alignment; 1773 assert(num < max_write_zeroes); 1774 } else if (tail && num > alignment) { 1775 /* Shorten the request to the last aligned sector. */ 1776 num -= tail; 1777 } 1778 1779 /* limit request size */ 1780 if (num > max_write_zeroes) { 1781 num = max_write_zeroes; 1782 } 1783 1784 ret = -ENOTSUP; 1785 /* First try the efficient write zeroes operation */ 1786 if (drv->bdrv_co_pwrite_zeroes) { 1787 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1788 flags & bs->supported_zero_flags); 1789 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1790 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1791 need_flush = true; 1792 } 1793 } else { 1794 assert(!bs->supported_zero_flags); 1795 } 1796 1797 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1798 /* Fall back to bounce buffer if write zeroes is unsupported */ 1799 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1800 1801 if ((flags & BDRV_REQ_FUA) && 1802 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1803 /* No need for bdrv_driver_pwrite() to do a fallback 1804 * flush on each chunk; use just one at the end */ 1805 write_flags &= ~BDRV_REQ_FUA; 1806 need_flush = true; 1807 } 1808 num = MIN(num, max_transfer); 1809 if (buf == NULL) { 1810 buf = qemu_try_blockalign0(bs, num); 1811 if (buf == NULL) { 1812 ret = -ENOMEM; 1813 goto fail; 1814 } 1815 } 1816 qemu_iovec_init_buf(&qiov, buf, num); 1817 1818 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1819 1820 /* Keep bounce buffer around if it is big enough for all 1821 * all future requests. 1822 */ 1823 if (num < max_transfer) { 1824 qemu_vfree(buf); 1825 buf = NULL; 1826 } 1827 } 1828 1829 offset += num; 1830 bytes -= num; 1831 } 1832 1833 fail: 1834 if (ret == 0 && need_flush) { 1835 ret = bdrv_co_flush(bs); 1836 } 1837 qemu_vfree(buf); 1838 return ret; 1839 } 1840 1841 static inline int coroutine_fn 1842 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1843 BdrvTrackedRequest *req, int flags) 1844 { 1845 BlockDriverState *bs = child->bs; 1846 bool waited; 1847 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1848 1849 if (bs->read_only) { 1850 return -EPERM; 1851 } 1852 1853 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1854 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1855 assert(!(flags & ~BDRV_REQ_MASK)); 1856 1857 if (flags & BDRV_REQ_SERIALISING) { 1858 waited = bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1859 /* 1860 * For a misaligned request we should have already waited earlier, 1861 * because we come after bdrv_padding_rmw_read which must be called 1862 * with the request already marked as serialising. 1863 */ 1864 assert(!waited || 1865 (req->offset == req->overlap_offset && 1866 req->bytes == req->overlap_bytes)); 1867 } else { 1868 bdrv_wait_serialising_requests(req); 1869 } 1870 1871 assert(req->overlap_offset <= offset); 1872 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1873 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1874 1875 switch (req->type) { 1876 case BDRV_TRACKED_WRITE: 1877 case BDRV_TRACKED_DISCARD: 1878 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1879 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1880 } else { 1881 assert(child->perm & BLK_PERM_WRITE); 1882 } 1883 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1884 req); 1885 case BDRV_TRACKED_TRUNCATE: 1886 assert(child->perm & BLK_PERM_RESIZE); 1887 return 0; 1888 default: 1889 abort(); 1890 } 1891 } 1892 1893 static inline void coroutine_fn 1894 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1895 BdrvTrackedRequest *req, int ret) 1896 { 1897 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1898 BlockDriverState *bs = child->bs; 1899 1900 atomic_inc(&bs->write_gen); 1901 1902 /* 1903 * Discard cannot extend the image, but in error handling cases, such as 1904 * when reverting a qcow2 cluster allocation, the discarded range can pass 1905 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1906 * here. Instead, just skip it, since semantically a discard request 1907 * beyond EOF cannot expand the image anyway. 1908 */ 1909 if (ret == 0 && 1910 (req->type == BDRV_TRACKED_TRUNCATE || 1911 end_sector > bs->total_sectors) && 1912 req->type != BDRV_TRACKED_DISCARD) { 1913 bs->total_sectors = end_sector; 1914 bdrv_parent_cb_resize(bs); 1915 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1916 } 1917 if (req->bytes) { 1918 switch (req->type) { 1919 case BDRV_TRACKED_WRITE: 1920 stat64_max(&bs->wr_highest_offset, offset + bytes); 1921 /* fall through, to set dirty bits */ 1922 case BDRV_TRACKED_DISCARD: 1923 bdrv_set_dirty(bs, offset, bytes); 1924 break; 1925 default: 1926 break; 1927 } 1928 } 1929 } 1930 1931 /* 1932 * Forwards an already correctly aligned write request to the BlockDriver, 1933 * after possibly fragmenting it. 1934 */ 1935 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1936 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1937 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1938 { 1939 BlockDriverState *bs = child->bs; 1940 BlockDriver *drv = bs->drv; 1941 int ret; 1942 1943 uint64_t bytes_remaining = bytes; 1944 int max_transfer; 1945 1946 if (!drv) { 1947 return -ENOMEDIUM; 1948 } 1949 1950 if (bdrv_has_readonly_bitmaps(bs)) { 1951 return -EPERM; 1952 } 1953 1954 assert(is_power_of_2(align)); 1955 assert((offset & (align - 1)) == 0); 1956 assert((bytes & (align - 1)) == 0); 1957 assert(!qiov || qiov_offset + bytes <= qiov->size); 1958 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1959 align); 1960 1961 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1962 1963 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1964 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1965 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1966 flags |= BDRV_REQ_ZERO_WRITE; 1967 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1968 flags |= BDRV_REQ_MAY_UNMAP; 1969 } 1970 } 1971 1972 if (ret < 0) { 1973 /* Do nothing, write notifier decided to fail this request */ 1974 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1975 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1976 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1977 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1978 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1979 qiov, qiov_offset); 1980 } else if (bytes <= max_transfer) { 1981 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1982 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1983 } else { 1984 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1985 while (bytes_remaining) { 1986 int num = MIN(bytes_remaining, max_transfer); 1987 int local_flags = flags; 1988 1989 assert(num); 1990 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1991 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1992 /* If FUA is going to be emulated by flush, we only 1993 * need to flush on the last iteration */ 1994 local_flags &= ~BDRV_REQ_FUA; 1995 } 1996 1997 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1998 num, qiov, bytes - bytes_remaining, 1999 local_flags); 2000 if (ret < 0) { 2001 break; 2002 } 2003 bytes_remaining -= num; 2004 } 2005 } 2006 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2007 2008 if (ret >= 0) { 2009 ret = 0; 2010 } 2011 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2012 2013 return ret; 2014 } 2015 2016 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2017 int64_t offset, 2018 unsigned int bytes, 2019 BdrvRequestFlags flags, 2020 BdrvTrackedRequest *req) 2021 { 2022 BlockDriverState *bs = child->bs; 2023 QEMUIOVector local_qiov; 2024 uint64_t align = bs->bl.request_alignment; 2025 int ret = 0; 2026 bool padding; 2027 BdrvRequestPadding pad; 2028 2029 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2030 if (padding) { 2031 bdrv_mark_request_serialising(req, align); 2032 2033 bdrv_padding_rmw_read(child, req, &pad, true); 2034 2035 if (pad.head || pad.merge_reads) { 2036 int64_t aligned_offset = offset & ~(align - 1); 2037 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2038 2039 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2040 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2041 align, &local_qiov, 0, 2042 flags & ~BDRV_REQ_ZERO_WRITE); 2043 if (ret < 0 || pad.merge_reads) { 2044 /* Error or all work is done */ 2045 goto out; 2046 } 2047 offset += write_bytes - pad.head; 2048 bytes -= write_bytes - pad.head; 2049 } 2050 } 2051 2052 assert(!bytes || (offset & (align - 1)) == 0); 2053 if (bytes >= align) { 2054 /* Write the aligned part in the middle. */ 2055 uint64_t aligned_bytes = bytes & ~(align - 1); 2056 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2057 NULL, 0, flags); 2058 if (ret < 0) { 2059 goto out; 2060 } 2061 bytes -= aligned_bytes; 2062 offset += aligned_bytes; 2063 } 2064 2065 assert(!bytes || (offset & (align - 1)) == 0); 2066 if (bytes) { 2067 assert(align == pad.tail + bytes); 2068 2069 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2070 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2071 &local_qiov, 0, 2072 flags & ~BDRV_REQ_ZERO_WRITE); 2073 } 2074 2075 out: 2076 bdrv_padding_destroy(&pad); 2077 2078 return ret; 2079 } 2080 2081 /* 2082 * Handle a write request in coroutine context 2083 */ 2084 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2085 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 2086 BdrvRequestFlags flags) 2087 { 2088 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2089 } 2090 2091 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2092 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset, 2093 BdrvRequestFlags flags) 2094 { 2095 BlockDriverState *bs = child->bs; 2096 BdrvTrackedRequest req; 2097 uint64_t align = bs->bl.request_alignment; 2098 BdrvRequestPadding pad; 2099 int ret; 2100 2101 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 2102 2103 if (!bs->drv) { 2104 return -ENOMEDIUM; 2105 } 2106 2107 ret = bdrv_check_byte_request(bs, offset, bytes); 2108 if (ret < 0) { 2109 return ret; 2110 } 2111 2112 /* If the request is misaligned then we can't make it efficient */ 2113 if ((flags & BDRV_REQ_NO_FALLBACK) && 2114 !QEMU_IS_ALIGNED(offset | bytes, align)) 2115 { 2116 return -ENOTSUP; 2117 } 2118 2119 bdrv_inc_in_flight(bs); 2120 /* 2121 * Align write if necessary by performing a read-modify-write cycle. 2122 * Pad qiov with the read parts and be sure to have a tracked request not 2123 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 2124 */ 2125 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2126 2127 if (flags & BDRV_REQ_ZERO_WRITE) { 2128 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2129 goto out; 2130 } 2131 2132 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) { 2133 bdrv_mark_request_serialising(&req, align); 2134 bdrv_padding_rmw_read(child, &req, &pad, false); 2135 } 2136 2137 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2138 qiov, qiov_offset, flags); 2139 2140 bdrv_padding_destroy(&pad); 2141 2142 out: 2143 tracked_request_end(&req); 2144 bdrv_dec_in_flight(bs); 2145 2146 return ret; 2147 } 2148 2149 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2150 int bytes, BdrvRequestFlags flags) 2151 { 2152 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2153 2154 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2155 flags &= ~BDRV_REQ_MAY_UNMAP; 2156 } 2157 2158 return bdrv_co_pwritev(child, offset, bytes, NULL, 2159 BDRV_REQ_ZERO_WRITE | flags); 2160 } 2161 2162 /* 2163 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2164 */ 2165 int bdrv_flush_all(void) 2166 { 2167 BdrvNextIterator it; 2168 BlockDriverState *bs = NULL; 2169 int result = 0; 2170 2171 /* 2172 * bdrv queue is managed by record/replay, 2173 * creating new flush request for stopping 2174 * the VM may break the determinism 2175 */ 2176 if (replay_events_enabled()) { 2177 return result; 2178 } 2179 2180 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2181 AioContext *aio_context = bdrv_get_aio_context(bs); 2182 int ret; 2183 2184 aio_context_acquire(aio_context); 2185 ret = bdrv_flush(bs); 2186 if (ret < 0 && !result) { 2187 result = ret; 2188 } 2189 aio_context_release(aio_context); 2190 } 2191 2192 return result; 2193 } 2194 2195 2196 typedef struct BdrvCoBlockStatusData { 2197 BlockDriverState *bs; 2198 BlockDriverState *base; 2199 bool want_zero; 2200 int64_t offset; 2201 int64_t bytes; 2202 int64_t *pnum; 2203 int64_t *map; 2204 BlockDriverState **file; 2205 int ret; 2206 bool done; 2207 } BdrvCoBlockStatusData; 2208 2209 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2210 bool want_zero, 2211 int64_t offset, 2212 int64_t bytes, 2213 int64_t *pnum, 2214 int64_t *map, 2215 BlockDriverState **file) 2216 { 2217 assert(bs->file && bs->file->bs); 2218 *pnum = bytes; 2219 *map = offset; 2220 *file = bs->file->bs; 2221 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2222 } 2223 2224 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2225 bool want_zero, 2226 int64_t offset, 2227 int64_t bytes, 2228 int64_t *pnum, 2229 int64_t *map, 2230 BlockDriverState **file) 2231 { 2232 assert(bs->backing && bs->backing->bs); 2233 *pnum = bytes; 2234 *map = offset; 2235 *file = bs->backing->bs; 2236 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2237 } 2238 2239 /* 2240 * Returns the allocation status of the specified sectors. 2241 * Drivers not implementing the functionality are assumed to not support 2242 * backing files, hence all their sectors are reported as allocated. 2243 * 2244 * If 'want_zero' is true, the caller is querying for mapping 2245 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2246 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2247 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2248 * 2249 * If 'offset' is beyond the end of the disk image the return value is 2250 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2251 * 2252 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2253 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2254 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2255 * 2256 * 'pnum' is set to the number of bytes (including and immediately 2257 * following the specified offset) that are easily known to be in the 2258 * same allocated/unallocated state. Note that a second call starting 2259 * at the original offset plus returned pnum may have the same status. 2260 * The returned value is non-zero on success except at end-of-file. 2261 * 2262 * Returns negative errno on failure. Otherwise, if the 2263 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2264 * set to the host mapping and BDS corresponding to the guest offset. 2265 */ 2266 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2267 bool want_zero, 2268 int64_t offset, int64_t bytes, 2269 int64_t *pnum, int64_t *map, 2270 BlockDriverState **file) 2271 { 2272 int64_t total_size; 2273 int64_t n; /* bytes */ 2274 int ret; 2275 int64_t local_map = 0; 2276 BlockDriverState *local_file = NULL; 2277 int64_t aligned_offset, aligned_bytes; 2278 uint32_t align; 2279 2280 assert(pnum); 2281 *pnum = 0; 2282 total_size = bdrv_getlength(bs); 2283 if (total_size < 0) { 2284 ret = total_size; 2285 goto early_out; 2286 } 2287 2288 if (offset >= total_size) { 2289 ret = BDRV_BLOCK_EOF; 2290 goto early_out; 2291 } 2292 if (!bytes) { 2293 ret = 0; 2294 goto early_out; 2295 } 2296 2297 n = total_size - offset; 2298 if (n < bytes) { 2299 bytes = n; 2300 } 2301 2302 /* Must be non-NULL or bdrv_getlength() would have failed */ 2303 assert(bs->drv); 2304 if (!bs->drv->bdrv_co_block_status) { 2305 *pnum = bytes; 2306 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2307 if (offset + bytes == total_size) { 2308 ret |= BDRV_BLOCK_EOF; 2309 } 2310 if (bs->drv->protocol_name) { 2311 ret |= BDRV_BLOCK_OFFSET_VALID; 2312 local_map = offset; 2313 local_file = bs; 2314 } 2315 goto early_out; 2316 } 2317 2318 bdrv_inc_in_flight(bs); 2319 2320 /* Round out to request_alignment boundaries */ 2321 align = bs->bl.request_alignment; 2322 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2323 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2324 2325 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2326 aligned_bytes, pnum, &local_map, 2327 &local_file); 2328 if (ret < 0) { 2329 *pnum = 0; 2330 goto out; 2331 } 2332 2333 /* 2334 * The driver's result must be a non-zero multiple of request_alignment. 2335 * Clamp pnum and adjust map to original request. 2336 */ 2337 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2338 align > offset - aligned_offset); 2339 if (ret & BDRV_BLOCK_RECURSE) { 2340 assert(ret & BDRV_BLOCK_DATA); 2341 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2342 assert(!(ret & BDRV_BLOCK_ZERO)); 2343 } 2344 2345 *pnum -= offset - aligned_offset; 2346 if (*pnum > bytes) { 2347 *pnum = bytes; 2348 } 2349 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2350 local_map += offset - aligned_offset; 2351 } 2352 2353 if (ret & BDRV_BLOCK_RAW) { 2354 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2355 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2356 *pnum, pnum, &local_map, &local_file); 2357 goto out; 2358 } 2359 2360 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2361 ret |= BDRV_BLOCK_ALLOCATED; 2362 } else if (want_zero) { 2363 if (bdrv_unallocated_blocks_are_zero(bs)) { 2364 ret |= BDRV_BLOCK_ZERO; 2365 } else if (bs->backing) { 2366 BlockDriverState *bs2 = bs->backing->bs; 2367 int64_t size2 = bdrv_getlength(bs2); 2368 2369 if (size2 >= 0 && offset >= size2) { 2370 ret |= BDRV_BLOCK_ZERO; 2371 } 2372 } 2373 } 2374 2375 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2376 local_file && local_file != bs && 2377 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2378 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2379 int64_t file_pnum; 2380 int ret2; 2381 2382 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2383 *pnum, &file_pnum, NULL, NULL); 2384 if (ret2 >= 0) { 2385 /* Ignore errors. This is just providing extra information, it 2386 * is useful but not necessary. 2387 */ 2388 if (ret2 & BDRV_BLOCK_EOF && 2389 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2390 /* 2391 * It is valid for the format block driver to read 2392 * beyond the end of the underlying file's current 2393 * size; such areas read as zero. 2394 */ 2395 ret |= BDRV_BLOCK_ZERO; 2396 } else { 2397 /* Limit request to the range reported by the protocol driver */ 2398 *pnum = file_pnum; 2399 ret |= (ret2 & BDRV_BLOCK_ZERO); 2400 } 2401 } 2402 } 2403 2404 out: 2405 bdrv_dec_in_flight(bs); 2406 if (ret >= 0 && offset + *pnum == total_size) { 2407 ret |= BDRV_BLOCK_EOF; 2408 } 2409 early_out: 2410 if (file) { 2411 *file = local_file; 2412 } 2413 if (map) { 2414 *map = local_map; 2415 } 2416 return ret; 2417 } 2418 2419 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2420 BlockDriverState *base, 2421 bool want_zero, 2422 int64_t offset, 2423 int64_t bytes, 2424 int64_t *pnum, 2425 int64_t *map, 2426 BlockDriverState **file) 2427 { 2428 BlockDriverState *p; 2429 int ret = 0; 2430 bool first = true; 2431 2432 assert(bs != base); 2433 for (p = bs; p != base; p = backing_bs(p)) { 2434 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2435 file); 2436 if (ret < 0) { 2437 break; 2438 } 2439 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2440 /* 2441 * Reading beyond the end of the file continues to read 2442 * zeroes, but we can only widen the result to the 2443 * unallocated length we learned from an earlier 2444 * iteration. 2445 */ 2446 *pnum = bytes; 2447 } 2448 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2449 break; 2450 } 2451 /* [offset, pnum] unallocated on this layer, which could be only 2452 * the first part of [offset, bytes]. */ 2453 bytes = MIN(bytes, *pnum); 2454 first = false; 2455 } 2456 return ret; 2457 } 2458 2459 /* Coroutine wrapper for bdrv_block_status_above() */ 2460 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2461 { 2462 BdrvCoBlockStatusData *data = opaque; 2463 2464 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2465 data->want_zero, 2466 data->offset, data->bytes, 2467 data->pnum, data->map, data->file); 2468 data->done = true; 2469 aio_wait_kick(); 2470 } 2471 2472 /* 2473 * Synchronous wrapper around bdrv_co_block_status_above(). 2474 * 2475 * See bdrv_co_block_status_above() for details. 2476 */ 2477 static int bdrv_common_block_status_above(BlockDriverState *bs, 2478 BlockDriverState *base, 2479 bool want_zero, int64_t offset, 2480 int64_t bytes, int64_t *pnum, 2481 int64_t *map, 2482 BlockDriverState **file) 2483 { 2484 Coroutine *co; 2485 BdrvCoBlockStatusData data = { 2486 .bs = bs, 2487 .base = base, 2488 .want_zero = want_zero, 2489 .offset = offset, 2490 .bytes = bytes, 2491 .pnum = pnum, 2492 .map = map, 2493 .file = file, 2494 .done = false, 2495 }; 2496 2497 if (qemu_in_coroutine()) { 2498 /* Fast-path if already in coroutine context */ 2499 bdrv_block_status_above_co_entry(&data); 2500 } else { 2501 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2502 bdrv_coroutine_enter(bs, co); 2503 BDRV_POLL_WHILE(bs, !data.done); 2504 } 2505 return data.ret; 2506 } 2507 2508 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2509 int64_t offset, int64_t bytes, int64_t *pnum, 2510 int64_t *map, BlockDriverState **file) 2511 { 2512 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2513 pnum, map, file); 2514 } 2515 2516 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2517 int64_t *pnum, int64_t *map, BlockDriverState **file) 2518 { 2519 return bdrv_block_status_above(bs, backing_bs(bs), 2520 offset, bytes, pnum, map, file); 2521 } 2522 2523 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2524 int64_t bytes, int64_t *pnum) 2525 { 2526 int ret; 2527 int64_t dummy; 2528 2529 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2530 bytes, pnum ? pnum : &dummy, NULL, 2531 NULL); 2532 if (ret < 0) { 2533 return ret; 2534 } 2535 return !!(ret & BDRV_BLOCK_ALLOCATED); 2536 } 2537 2538 /* 2539 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2540 * 2541 * Return 1 if (a prefix of) the given range is allocated in any image 2542 * between BASE and TOP (BASE is only included if include_base is set). 2543 * BASE can be NULL to check if the given offset is allocated in any 2544 * image of the chain. Return 0 otherwise, or negative errno on 2545 * failure. 2546 * 2547 * 'pnum' is set to the number of bytes (including and immediately 2548 * following the specified offset) that are known to be in the same 2549 * allocated/unallocated state. Note that a subsequent call starting 2550 * at 'offset + *pnum' may return the same allocation status (in other 2551 * words, the result is not necessarily the maximum possible range); 2552 * but 'pnum' will only be 0 when end of file is reached. 2553 * 2554 */ 2555 int bdrv_is_allocated_above(BlockDriverState *top, 2556 BlockDriverState *base, 2557 bool include_base, int64_t offset, 2558 int64_t bytes, int64_t *pnum) 2559 { 2560 BlockDriverState *intermediate; 2561 int ret; 2562 int64_t n = bytes; 2563 2564 assert(base || !include_base); 2565 2566 intermediate = top; 2567 while (include_base || intermediate != base) { 2568 int64_t pnum_inter; 2569 int64_t size_inter; 2570 2571 assert(intermediate); 2572 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2573 if (ret < 0) { 2574 return ret; 2575 } 2576 if (ret) { 2577 *pnum = pnum_inter; 2578 return 1; 2579 } 2580 2581 size_inter = bdrv_getlength(intermediate); 2582 if (size_inter < 0) { 2583 return size_inter; 2584 } 2585 if (n > pnum_inter && 2586 (intermediate == top || offset + pnum_inter < size_inter)) { 2587 n = pnum_inter; 2588 } 2589 2590 if (intermediate == base) { 2591 break; 2592 } 2593 2594 intermediate = backing_bs(intermediate); 2595 } 2596 2597 *pnum = n; 2598 return 0; 2599 } 2600 2601 typedef struct BdrvVmstateCo { 2602 BlockDriverState *bs; 2603 QEMUIOVector *qiov; 2604 int64_t pos; 2605 bool is_read; 2606 int ret; 2607 } BdrvVmstateCo; 2608 2609 static int coroutine_fn 2610 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2611 bool is_read) 2612 { 2613 BlockDriver *drv = bs->drv; 2614 int ret = -ENOTSUP; 2615 2616 bdrv_inc_in_flight(bs); 2617 2618 if (!drv) { 2619 ret = -ENOMEDIUM; 2620 } else if (drv->bdrv_load_vmstate) { 2621 if (is_read) { 2622 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2623 } else { 2624 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2625 } 2626 } else if (bs->file) { 2627 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2628 } 2629 2630 bdrv_dec_in_flight(bs); 2631 return ret; 2632 } 2633 2634 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2635 { 2636 BdrvVmstateCo *co = opaque; 2637 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2638 aio_wait_kick(); 2639 } 2640 2641 static inline int 2642 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2643 bool is_read) 2644 { 2645 if (qemu_in_coroutine()) { 2646 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2647 } else { 2648 BdrvVmstateCo data = { 2649 .bs = bs, 2650 .qiov = qiov, 2651 .pos = pos, 2652 .is_read = is_read, 2653 .ret = -EINPROGRESS, 2654 }; 2655 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2656 2657 bdrv_coroutine_enter(bs, co); 2658 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2659 return data.ret; 2660 } 2661 } 2662 2663 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2664 int64_t pos, int size) 2665 { 2666 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2667 int ret; 2668 2669 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2670 if (ret < 0) { 2671 return ret; 2672 } 2673 2674 return size; 2675 } 2676 2677 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2678 { 2679 return bdrv_rw_vmstate(bs, qiov, pos, false); 2680 } 2681 2682 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2683 int64_t pos, int size) 2684 { 2685 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2686 int ret; 2687 2688 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2689 if (ret < 0) { 2690 return ret; 2691 } 2692 2693 return size; 2694 } 2695 2696 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2697 { 2698 return bdrv_rw_vmstate(bs, qiov, pos, true); 2699 } 2700 2701 /**************************************************************/ 2702 /* async I/Os */ 2703 2704 void bdrv_aio_cancel(BlockAIOCB *acb) 2705 { 2706 qemu_aio_ref(acb); 2707 bdrv_aio_cancel_async(acb); 2708 while (acb->refcnt > 1) { 2709 if (acb->aiocb_info->get_aio_context) { 2710 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2711 } else if (acb->bs) { 2712 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2713 * assert that we're not using an I/O thread. Thread-safe 2714 * code should use bdrv_aio_cancel_async exclusively. 2715 */ 2716 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2717 aio_poll(bdrv_get_aio_context(acb->bs), true); 2718 } else { 2719 abort(); 2720 } 2721 } 2722 qemu_aio_unref(acb); 2723 } 2724 2725 /* Async version of aio cancel. The caller is not blocked if the acb implements 2726 * cancel_async, otherwise we do nothing and let the request normally complete. 2727 * In either case the completion callback must be called. */ 2728 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2729 { 2730 if (acb->aiocb_info->cancel_async) { 2731 acb->aiocb_info->cancel_async(acb); 2732 } 2733 } 2734 2735 /**************************************************************/ 2736 /* Coroutine block device emulation */ 2737 2738 typedef struct FlushCo { 2739 BlockDriverState *bs; 2740 int ret; 2741 } FlushCo; 2742 2743 2744 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2745 { 2746 FlushCo *rwco = opaque; 2747 2748 rwco->ret = bdrv_co_flush(rwco->bs); 2749 aio_wait_kick(); 2750 } 2751 2752 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2753 { 2754 int current_gen; 2755 int ret = 0; 2756 2757 bdrv_inc_in_flight(bs); 2758 2759 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2760 bdrv_is_sg(bs)) { 2761 goto early_exit; 2762 } 2763 2764 qemu_co_mutex_lock(&bs->reqs_lock); 2765 current_gen = atomic_read(&bs->write_gen); 2766 2767 /* Wait until any previous flushes are completed */ 2768 while (bs->active_flush_req) { 2769 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2770 } 2771 2772 /* Flushes reach this point in nondecreasing current_gen order. */ 2773 bs->active_flush_req = true; 2774 qemu_co_mutex_unlock(&bs->reqs_lock); 2775 2776 /* Write back all layers by calling one driver function */ 2777 if (bs->drv->bdrv_co_flush) { 2778 ret = bs->drv->bdrv_co_flush(bs); 2779 goto out; 2780 } 2781 2782 /* Write back cached data to the OS even with cache=unsafe */ 2783 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2784 if (bs->drv->bdrv_co_flush_to_os) { 2785 ret = bs->drv->bdrv_co_flush_to_os(bs); 2786 if (ret < 0) { 2787 goto out; 2788 } 2789 } 2790 2791 /* But don't actually force it to the disk with cache=unsafe */ 2792 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2793 goto flush_parent; 2794 } 2795 2796 /* Check if we really need to flush anything */ 2797 if (bs->flushed_gen == current_gen) { 2798 goto flush_parent; 2799 } 2800 2801 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2802 if (!bs->drv) { 2803 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2804 * (even in case of apparent success) */ 2805 ret = -ENOMEDIUM; 2806 goto out; 2807 } 2808 if (bs->drv->bdrv_co_flush_to_disk) { 2809 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2810 } else if (bs->drv->bdrv_aio_flush) { 2811 BlockAIOCB *acb; 2812 CoroutineIOCompletion co = { 2813 .coroutine = qemu_coroutine_self(), 2814 }; 2815 2816 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2817 if (acb == NULL) { 2818 ret = -EIO; 2819 } else { 2820 qemu_coroutine_yield(); 2821 ret = co.ret; 2822 } 2823 } else { 2824 /* 2825 * Some block drivers always operate in either writethrough or unsafe 2826 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2827 * know how the server works (because the behaviour is hardcoded or 2828 * depends on server-side configuration), so we can't ensure that 2829 * everything is safe on disk. Returning an error doesn't work because 2830 * that would break guests even if the server operates in writethrough 2831 * mode. 2832 * 2833 * Let's hope the user knows what he's doing. 2834 */ 2835 ret = 0; 2836 } 2837 2838 if (ret < 0) { 2839 goto out; 2840 } 2841 2842 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2843 * in the case of cache=unsafe, so there are no useless flushes. 2844 */ 2845 flush_parent: 2846 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2847 out: 2848 /* Notify any pending flushes that we have completed */ 2849 if (ret == 0) { 2850 bs->flushed_gen = current_gen; 2851 } 2852 2853 qemu_co_mutex_lock(&bs->reqs_lock); 2854 bs->active_flush_req = false; 2855 /* Return value is ignored - it's ok if wait queue is empty */ 2856 qemu_co_queue_next(&bs->flush_queue); 2857 qemu_co_mutex_unlock(&bs->reqs_lock); 2858 2859 early_exit: 2860 bdrv_dec_in_flight(bs); 2861 return ret; 2862 } 2863 2864 int bdrv_flush(BlockDriverState *bs) 2865 { 2866 Coroutine *co; 2867 FlushCo flush_co = { 2868 .bs = bs, 2869 .ret = NOT_DONE, 2870 }; 2871 2872 if (qemu_in_coroutine()) { 2873 /* Fast-path if already in coroutine context */ 2874 bdrv_flush_co_entry(&flush_co); 2875 } else { 2876 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2877 bdrv_coroutine_enter(bs, co); 2878 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2879 } 2880 2881 return flush_co.ret; 2882 } 2883 2884 typedef struct DiscardCo { 2885 BdrvChild *child; 2886 int64_t offset; 2887 int64_t bytes; 2888 int ret; 2889 } DiscardCo; 2890 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2891 { 2892 DiscardCo *rwco = opaque; 2893 2894 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2895 aio_wait_kick(); 2896 } 2897 2898 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2899 int64_t bytes) 2900 { 2901 BdrvTrackedRequest req; 2902 int max_pdiscard, ret; 2903 int head, tail, align; 2904 BlockDriverState *bs = child->bs; 2905 2906 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2907 return -ENOMEDIUM; 2908 } 2909 2910 if (bdrv_has_readonly_bitmaps(bs)) { 2911 return -EPERM; 2912 } 2913 2914 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2915 return -EIO; 2916 } 2917 2918 /* Do nothing if disabled. */ 2919 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2920 return 0; 2921 } 2922 2923 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2924 return 0; 2925 } 2926 2927 /* Discard is advisory, but some devices track and coalesce 2928 * unaligned requests, so we must pass everything down rather than 2929 * round here. Still, most devices will just silently ignore 2930 * unaligned requests (by returning -ENOTSUP), so we must fragment 2931 * the request accordingly. */ 2932 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2933 assert(align % bs->bl.request_alignment == 0); 2934 head = offset % align; 2935 tail = (offset + bytes) % align; 2936 2937 bdrv_inc_in_flight(bs); 2938 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2939 2940 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2941 if (ret < 0) { 2942 goto out; 2943 } 2944 2945 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2946 align); 2947 assert(max_pdiscard >= bs->bl.request_alignment); 2948 2949 while (bytes > 0) { 2950 int64_t num = bytes; 2951 2952 if (head) { 2953 /* Make small requests to get to alignment boundaries. */ 2954 num = MIN(bytes, align - head); 2955 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2956 num %= bs->bl.request_alignment; 2957 } 2958 head = (head + num) % align; 2959 assert(num < max_pdiscard); 2960 } else if (tail) { 2961 if (num > align) { 2962 /* Shorten the request to the last aligned cluster. */ 2963 num -= tail; 2964 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2965 tail > bs->bl.request_alignment) { 2966 tail %= bs->bl.request_alignment; 2967 num -= tail; 2968 } 2969 } 2970 /* limit request size */ 2971 if (num > max_pdiscard) { 2972 num = max_pdiscard; 2973 } 2974 2975 if (!bs->drv) { 2976 ret = -ENOMEDIUM; 2977 goto out; 2978 } 2979 if (bs->drv->bdrv_co_pdiscard) { 2980 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2981 } else { 2982 BlockAIOCB *acb; 2983 CoroutineIOCompletion co = { 2984 .coroutine = qemu_coroutine_self(), 2985 }; 2986 2987 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2988 bdrv_co_io_em_complete, &co); 2989 if (acb == NULL) { 2990 ret = -EIO; 2991 goto out; 2992 } else { 2993 qemu_coroutine_yield(); 2994 ret = co.ret; 2995 } 2996 } 2997 if (ret && ret != -ENOTSUP) { 2998 goto out; 2999 } 3000 3001 offset += num; 3002 bytes -= num; 3003 } 3004 ret = 0; 3005 out: 3006 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3007 tracked_request_end(&req); 3008 bdrv_dec_in_flight(bs); 3009 return ret; 3010 } 3011 3012 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 3013 { 3014 Coroutine *co; 3015 DiscardCo rwco = { 3016 .child = child, 3017 .offset = offset, 3018 .bytes = bytes, 3019 .ret = NOT_DONE, 3020 }; 3021 3022 if (qemu_in_coroutine()) { 3023 /* Fast-path if already in coroutine context */ 3024 bdrv_pdiscard_co_entry(&rwco); 3025 } else { 3026 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 3027 bdrv_coroutine_enter(child->bs, co); 3028 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 3029 } 3030 3031 return rwco.ret; 3032 } 3033 3034 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3035 { 3036 BlockDriver *drv = bs->drv; 3037 CoroutineIOCompletion co = { 3038 .coroutine = qemu_coroutine_self(), 3039 }; 3040 BlockAIOCB *acb; 3041 3042 bdrv_inc_in_flight(bs); 3043 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3044 co.ret = -ENOTSUP; 3045 goto out; 3046 } 3047 3048 if (drv->bdrv_co_ioctl) { 3049 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3050 } else { 3051 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3052 if (!acb) { 3053 co.ret = -ENOTSUP; 3054 goto out; 3055 } 3056 qemu_coroutine_yield(); 3057 } 3058 out: 3059 bdrv_dec_in_flight(bs); 3060 return co.ret; 3061 } 3062 3063 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3064 { 3065 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3066 } 3067 3068 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3069 { 3070 return memset(qemu_blockalign(bs, size), 0, size); 3071 } 3072 3073 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3074 { 3075 size_t align = bdrv_opt_mem_align(bs); 3076 3077 /* Ensure that NULL is never returned on success */ 3078 assert(align > 0); 3079 if (size == 0) { 3080 size = align; 3081 } 3082 3083 return qemu_try_memalign(align, size); 3084 } 3085 3086 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3087 { 3088 void *mem = qemu_try_blockalign(bs, size); 3089 3090 if (mem) { 3091 memset(mem, 0, size); 3092 } 3093 3094 return mem; 3095 } 3096 3097 /* 3098 * Check if all memory in this vector is sector aligned. 3099 */ 3100 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3101 { 3102 int i; 3103 size_t alignment = bdrv_min_mem_align(bs); 3104 3105 for (i = 0; i < qiov->niov; i++) { 3106 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3107 return false; 3108 } 3109 if (qiov->iov[i].iov_len % alignment) { 3110 return false; 3111 } 3112 } 3113 3114 return true; 3115 } 3116 3117 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3118 NotifierWithReturn *notifier) 3119 { 3120 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3121 } 3122 3123 void bdrv_io_plug(BlockDriverState *bs) 3124 { 3125 BdrvChild *child; 3126 3127 QLIST_FOREACH(child, &bs->children, next) { 3128 bdrv_io_plug(child->bs); 3129 } 3130 3131 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 3132 BlockDriver *drv = bs->drv; 3133 if (drv && drv->bdrv_io_plug) { 3134 drv->bdrv_io_plug(bs); 3135 } 3136 } 3137 } 3138 3139 void bdrv_io_unplug(BlockDriverState *bs) 3140 { 3141 BdrvChild *child; 3142 3143 assert(bs->io_plugged); 3144 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 3145 BlockDriver *drv = bs->drv; 3146 if (drv && drv->bdrv_io_unplug) { 3147 drv->bdrv_io_unplug(bs); 3148 } 3149 } 3150 3151 QLIST_FOREACH(child, &bs->children, next) { 3152 bdrv_io_unplug(child->bs); 3153 } 3154 } 3155 3156 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3157 { 3158 BdrvChild *child; 3159 3160 if (bs->drv && bs->drv->bdrv_register_buf) { 3161 bs->drv->bdrv_register_buf(bs, host, size); 3162 } 3163 QLIST_FOREACH(child, &bs->children, next) { 3164 bdrv_register_buf(child->bs, host, size); 3165 } 3166 } 3167 3168 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3169 { 3170 BdrvChild *child; 3171 3172 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3173 bs->drv->bdrv_unregister_buf(bs, host); 3174 } 3175 QLIST_FOREACH(child, &bs->children, next) { 3176 bdrv_unregister_buf(child->bs, host); 3177 } 3178 } 3179 3180 static int coroutine_fn bdrv_co_copy_range_internal( 3181 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3182 uint64_t dst_offset, uint64_t bytes, 3183 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3184 bool recurse_src) 3185 { 3186 BdrvTrackedRequest req; 3187 int ret; 3188 3189 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3190 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3191 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3192 3193 if (!dst || !dst->bs) { 3194 return -ENOMEDIUM; 3195 } 3196 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3197 if (ret) { 3198 return ret; 3199 } 3200 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3201 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3202 } 3203 3204 if (!src || !src->bs) { 3205 return -ENOMEDIUM; 3206 } 3207 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3208 if (ret) { 3209 return ret; 3210 } 3211 3212 if (!src->bs->drv->bdrv_co_copy_range_from 3213 || !dst->bs->drv->bdrv_co_copy_range_to 3214 || src->bs->encrypted || dst->bs->encrypted) { 3215 return -ENOTSUP; 3216 } 3217 3218 if (recurse_src) { 3219 bdrv_inc_in_flight(src->bs); 3220 tracked_request_begin(&req, src->bs, src_offset, bytes, 3221 BDRV_TRACKED_READ); 3222 3223 /* BDRV_REQ_SERIALISING is only for write operation */ 3224 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3225 bdrv_wait_serialising_requests(&req); 3226 3227 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3228 src, src_offset, 3229 dst, dst_offset, 3230 bytes, 3231 read_flags, write_flags); 3232 3233 tracked_request_end(&req); 3234 bdrv_dec_in_flight(src->bs); 3235 } else { 3236 bdrv_inc_in_flight(dst->bs); 3237 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3238 BDRV_TRACKED_WRITE); 3239 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3240 write_flags); 3241 if (!ret) { 3242 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3243 src, src_offset, 3244 dst, dst_offset, 3245 bytes, 3246 read_flags, write_flags); 3247 } 3248 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3249 tracked_request_end(&req); 3250 bdrv_dec_in_flight(dst->bs); 3251 } 3252 3253 return ret; 3254 } 3255 3256 /* Copy range from @src to @dst. 3257 * 3258 * See the comment of bdrv_co_copy_range for the parameter and return value 3259 * semantics. */ 3260 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3261 BdrvChild *dst, uint64_t dst_offset, 3262 uint64_t bytes, 3263 BdrvRequestFlags read_flags, 3264 BdrvRequestFlags write_flags) 3265 { 3266 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3267 read_flags, write_flags); 3268 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3269 bytes, read_flags, write_flags, true); 3270 } 3271 3272 /* Copy range from @src to @dst. 3273 * 3274 * See the comment of bdrv_co_copy_range for the parameter and return value 3275 * semantics. */ 3276 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3277 BdrvChild *dst, uint64_t dst_offset, 3278 uint64_t bytes, 3279 BdrvRequestFlags read_flags, 3280 BdrvRequestFlags write_flags) 3281 { 3282 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3283 read_flags, write_flags); 3284 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3285 bytes, read_flags, write_flags, false); 3286 } 3287 3288 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3289 BdrvChild *dst, uint64_t dst_offset, 3290 uint64_t bytes, BdrvRequestFlags read_flags, 3291 BdrvRequestFlags write_flags) 3292 { 3293 return bdrv_co_copy_range_from(src, src_offset, 3294 dst, dst_offset, 3295 bytes, read_flags, write_flags); 3296 } 3297 3298 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3299 { 3300 BdrvChild *c; 3301 QLIST_FOREACH(c, &bs->parents, next_parent) { 3302 if (c->role->resize) { 3303 c->role->resize(c); 3304 } 3305 } 3306 } 3307 3308 /** 3309 * Truncate file to 'offset' bytes (needed only for file protocols) 3310 * 3311 * If 'exact' is true, the file must be resized to exactly the given 3312 * 'offset'. Otherwise, it is sufficient for the node to be at least 3313 * 'offset' bytes in length. 3314 */ 3315 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3316 PreallocMode prealloc, Error **errp) 3317 { 3318 BlockDriverState *bs = child->bs; 3319 BlockDriver *drv = bs->drv; 3320 BdrvTrackedRequest req; 3321 int64_t old_size, new_bytes; 3322 int ret; 3323 3324 3325 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3326 if (!drv) { 3327 error_setg(errp, "No medium inserted"); 3328 return -ENOMEDIUM; 3329 } 3330 if (offset < 0) { 3331 error_setg(errp, "Image size cannot be negative"); 3332 return -EINVAL; 3333 } 3334 3335 old_size = bdrv_getlength(bs); 3336 if (old_size < 0) { 3337 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3338 return old_size; 3339 } 3340 3341 if (offset > old_size) { 3342 new_bytes = offset - old_size; 3343 } else { 3344 new_bytes = 0; 3345 } 3346 3347 bdrv_inc_in_flight(bs); 3348 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3349 BDRV_TRACKED_TRUNCATE); 3350 3351 /* If we are growing the image and potentially using preallocation for the 3352 * new area, we need to make sure that no write requests are made to it 3353 * concurrently or they might be overwritten by preallocation. */ 3354 if (new_bytes) { 3355 bdrv_mark_request_serialising(&req, 1); 3356 } 3357 if (bs->read_only) { 3358 error_setg(errp, "Image is read-only"); 3359 ret = -EACCES; 3360 goto out; 3361 } 3362 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3363 0); 3364 if (ret < 0) { 3365 error_setg_errno(errp, -ret, 3366 "Failed to prepare request for truncation"); 3367 goto out; 3368 } 3369 3370 if (drv->bdrv_co_truncate) { 3371 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, errp); 3372 } else if (bs->file && drv->is_filter) { 3373 ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, errp); 3374 } else { 3375 error_setg(errp, "Image format driver does not support resize"); 3376 ret = -ENOTSUP; 3377 goto out; 3378 } 3379 if (ret < 0) { 3380 goto out; 3381 } 3382 3383 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3384 if (ret < 0) { 3385 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3386 } else { 3387 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3388 } 3389 /* It's possible that truncation succeeded but refresh_total_sectors 3390 * failed, but the latter doesn't affect how we should finish the request. 3391 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3392 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3393 3394 out: 3395 tracked_request_end(&req); 3396 bdrv_dec_in_flight(bs); 3397 3398 return ret; 3399 } 3400 3401 typedef struct TruncateCo { 3402 BdrvChild *child; 3403 int64_t offset; 3404 bool exact; 3405 PreallocMode prealloc; 3406 Error **errp; 3407 int ret; 3408 } TruncateCo; 3409 3410 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3411 { 3412 TruncateCo *tco = opaque; 3413 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->exact, 3414 tco->prealloc, tco->errp); 3415 aio_wait_kick(); 3416 } 3417 3418 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact, 3419 PreallocMode prealloc, Error **errp) 3420 { 3421 Coroutine *co; 3422 TruncateCo tco = { 3423 .child = child, 3424 .offset = offset, 3425 .exact = exact, 3426 .prealloc = prealloc, 3427 .errp = errp, 3428 .ret = NOT_DONE, 3429 }; 3430 3431 if (qemu_in_coroutine()) { 3432 /* Fast-path if already in coroutine context */ 3433 bdrv_truncate_co_entry(&tco); 3434 } else { 3435 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3436 bdrv_coroutine_enter(child->bs, co); 3437 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3438 } 3439 3440 return tco.ret; 3441 } 3442