1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c); 57 } 58 } 59 60 void bdrv_parent_drained_end_single(BdrvChild *c) 61 { 62 IO_OR_GS_CODE(); 63 64 assert(c->quiesced_parent); 65 c->quiesced_parent = false; 66 67 if (c->klass->drained_end) { 68 c->klass->drained_end(c); 69 } 70 } 71 72 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 73 { 74 BdrvChild *c; 75 76 QLIST_FOREACH(c, &bs->parents, next_parent) { 77 if (c == ignore) { 78 continue; 79 } 80 bdrv_parent_drained_end_single(c); 81 } 82 } 83 84 bool bdrv_parent_drained_poll_single(BdrvChild *c) 85 { 86 if (c->klass->drained_poll) { 87 return c->klass->drained_poll(c); 88 } 89 return false; 90 } 91 92 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 93 bool ignore_bds_parents) 94 { 95 BdrvChild *c, *next; 96 bool busy = false; 97 98 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 99 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 100 continue; 101 } 102 busy |= bdrv_parent_drained_poll_single(c); 103 } 104 105 return busy; 106 } 107 108 void bdrv_parent_drained_begin_single(BdrvChild *c) 109 { 110 IO_OR_GS_CODE(); 111 112 assert(!c->quiesced_parent); 113 c->quiesced_parent = true; 114 115 if (c->klass->drained_begin) { 116 c->klass->drained_begin(c); 117 } 118 } 119 120 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 121 { 122 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 123 src->pdiscard_alignment); 124 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 125 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 126 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 127 src->max_hw_transfer); 128 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 129 src->opt_mem_alignment); 130 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 131 src->min_mem_alignment); 132 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 133 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 134 } 135 136 typedef struct BdrvRefreshLimitsState { 137 BlockDriverState *bs; 138 BlockLimits old_bl; 139 } BdrvRefreshLimitsState; 140 141 static void bdrv_refresh_limits_abort(void *opaque) 142 { 143 BdrvRefreshLimitsState *s = opaque; 144 145 s->bs->bl = s->old_bl; 146 } 147 148 static TransactionActionDrv bdrv_refresh_limits_drv = { 149 .abort = bdrv_refresh_limits_abort, 150 .clean = g_free, 151 }; 152 153 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 154 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 155 { 156 ERRP_GUARD(); 157 BlockDriver *drv = bs->drv; 158 BdrvChild *c; 159 bool have_limits; 160 161 GLOBAL_STATE_CODE(); 162 163 if (tran) { 164 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 165 *s = (BdrvRefreshLimitsState) { 166 .bs = bs, 167 .old_bl = bs->bl, 168 }; 169 tran_add(tran, &bdrv_refresh_limits_drv, s); 170 } 171 172 memset(&bs->bl, 0, sizeof(bs->bl)); 173 174 if (!drv) { 175 return; 176 } 177 178 /* Default alignment based on whether driver has byte interface */ 179 bs->bl.request_alignment = (drv->bdrv_co_preadv || 180 drv->bdrv_aio_preadv || 181 drv->bdrv_co_preadv_part) ? 1 : 512; 182 183 /* Take some limits from the children as a default */ 184 have_limits = false; 185 QLIST_FOREACH(c, &bs->children, next) { 186 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 187 { 188 bdrv_merge_limits(&bs->bl, &c->bs->bl); 189 have_limits = true; 190 } 191 } 192 193 if (!have_limits) { 194 bs->bl.min_mem_alignment = 512; 195 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 196 197 /* Safe default since most protocols use readv()/writev()/etc */ 198 bs->bl.max_iov = IOV_MAX; 199 } 200 201 /* Then let the driver override it */ 202 if (drv->bdrv_refresh_limits) { 203 drv->bdrv_refresh_limits(bs, errp); 204 if (*errp) { 205 return; 206 } 207 } 208 209 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 210 error_setg(errp, "Driver requires too large request alignment"); 211 } 212 } 213 214 /** 215 * The copy-on-read flag is actually a reference count so multiple users may 216 * use the feature without worrying about clobbering its previous state. 217 * Copy-on-read stays enabled until all users have called to disable it. 218 */ 219 void bdrv_enable_copy_on_read(BlockDriverState *bs) 220 { 221 IO_CODE(); 222 qatomic_inc(&bs->copy_on_read); 223 } 224 225 void bdrv_disable_copy_on_read(BlockDriverState *bs) 226 { 227 int old = qatomic_fetch_dec(&bs->copy_on_read); 228 IO_CODE(); 229 assert(old >= 1); 230 } 231 232 typedef struct { 233 Coroutine *co; 234 BlockDriverState *bs; 235 bool done; 236 bool begin; 237 bool poll; 238 BdrvChild *parent; 239 } BdrvCoDrainData; 240 241 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 242 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 243 bool ignore_bds_parents) 244 { 245 IO_OR_GS_CODE(); 246 247 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 248 return true; 249 } 250 251 if (qatomic_read(&bs->in_flight)) { 252 return true; 253 } 254 255 return false; 256 } 257 258 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 259 BdrvChild *ignore_parent) 260 { 261 return bdrv_drain_poll(bs, ignore_parent, false); 262 } 263 264 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 265 bool poll); 266 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 267 268 static void bdrv_co_drain_bh_cb(void *opaque) 269 { 270 BdrvCoDrainData *data = opaque; 271 Coroutine *co = data->co; 272 BlockDriverState *bs = data->bs; 273 274 if (bs) { 275 AioContext *ctx = bdrv_get_aio_context(bs); 276 aio_context_acquire(ctx); 277 bdrv_dec_in_flight(bs); 278 if (data->begin) { 279 bdrv_do_drained_begin(bs, data->parent, data->poll); 280 } else { 281 assert(!data->poll); 282 bdrv_do_drained_end(bs, data->parent); 283 } 284 aio_context_release(ctx); 285 } else { 286 assert(data->begin); 287 bdrv_drain_all_begin(); 288 } 289 290 data->done = true; 291 aio_co_wake(co); 292 } 293 294 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 295 bool begin, 296 BdrvChild *parent, 297 bool poll) 298 { 299 BdrvCoDrainData data; 300 Coroutine *self = qemu_coroutine_self(); 301 AioContext *ctx = bdrv_get_aio_context(bs); 302 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 303 304 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 305 * other coroutines run if they were queued by aio_co_enter(). */ 306 307 assert(qemu_in_coroutine()); 308 data = (BdrvCoDrainData) { 309 .co = self, 310 .bs = bs, 311 .done = false, 312 .begin = begin, 313 .parent = parent, 314 .poll = poll, 315 }; 316 317 if (bs) { 318 bdrv_inc_in_flight(bs); 319 } 320 321 /* 322 * Temporarily drop the lock across yield or we would get deadlocks. 323 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 324 * 325 * When we yield below, the lock for the current context will be 326 * released, so if this is actually the lock that protects bs, don't drop 327 * it a second time. 328 */ 329 if (ctx != co_ctx) { 330 aio_context_release(ctx); 331 } 332 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 333 334 qemu_coroutine_yield(); 335 /* If we are resumed from some other event (such as an aio completion or a 336 * timer callback), it is a bug in the caller that should be fixed. */ 337 assert(data.done); 338 339 /* Reaquire the AioContext of bs if we dropped it */ 340 if (ctx != co_ctx) { 341 aio_context_acquire(ctx); 342 } 343 } 344 345 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 346 bool poll) 347 { 348 IO_OR_GS_CODE(); 349 350 if (qemu_in_coroutine()) { 351 bdrv_co_yield_to_drain(bs, true, parent, poll); 352 return; 353 } 354 355 /* Stop things in parent-to-child order */ 356 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 357 aio_disable_external(bdrv_get_aio_context(bs)); 358 bdrv_parent_drained_begin(bs, parent); 359 if (bs->drv && bs->drv->bdrv_drain_begin) { 360 bs->drv->bdrv_drain_begin(bs); 361 } 362 } 363 364 /* 365 * Wait for drained requests to finish. 366 * 367 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 368 * call is needed so things in this AioContext can make progress even 369 * though we don't return to the main AioContext loop - this automatically 370 * includes other nodes in the same AioContext and therefore all child 371 * nodes. 372 */ 373 if (poll) { 374 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 375 } 376 } 377 378 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 379 { 380 bdrv_do_drained_begin(bs, parent, false); 381 } 382 383 void bdrv_drained_begin(BlockDriverState *bs) 384 { 385 IO_OR_GS_CODE(); 386 bdrv_do_drained_begin(bs, NULL, true); 387 } 388 389 /** 390 * This function does not poll, nor must any of its recursively called 391 * functions. 392 */ 393 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 394 { 395 int old_quiesce_counter; 396 397 if (qemu_in_coroutine()) { 398 bdrv_co_yield_to_drain(bs, false, parent, false); 399 return; 400 } 401 assert(bs->quiesce_counter > 0); 402 403 /* Re-enable things in child-to-parent order */ 404 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 405 if (old_quiesce_counter == 1) { 406 if (bs->drv && bs->drv->bdrv_drain_end) { 407 bs->drv->bdrv_drain_end(bs); 408 } 409 bdrv_parent_drained_end(bs, parent); 410 aio_enable_external(bdrv_get_aio_context(bs)); 411 } 412 } 413 414 void bdrv_drained_end(BlockDriverState *bs) 415 { 416 IO_OR_GS_CODE(); 417 bdrv_do_drained_end(bs, NULL); 418 } 419 420 void bdrv_drain(BlockDriverState *bs) 421 { 422 IO_OR_GS_CODE(); 423 bdrv_drained_begin(bs); 424 bdrv_drained_end(bs); 425 } 426 427 static void bdrv_drain_assert_idle(BlockDriverState *bs) 428 { 429 BdrvChild *child, *next; 430 431 assert(qatomic_read(&bs->in_flight) == 0); 432 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 433 bdrv_drain_assert_idle(child->bs); 434 } 435 } 436 437 unsigned int bdrv_drain_all_count = 0; 438 439 static bool bdrv_drain_all_poll(void) 440 { 441 BlockDriverState *bs = NULL; 442 bool result = false; 443 GLOBAL_STATE_CODE(); 444 445 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 446 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 447 while ((bs = bdrv_next_all_states(bs))) { 448 AioContext *aio_context = bdrv_get_aio_context(bs); 449 aio_context_acquire(aio_context); 450 result |= bdrv_drain_poll(bs, NULL, true); 451 aio_context_release(aio_context); 452 } 453 454 return result; 455 } 456 457 /* 458 * Wait for pending requests to complete across all BlockDriverStates 459 * 460 * This function does not flush data to disk, use bdrv_flush_all() for that 461 * after calling this function. 462 * 463 * This pauses all block jobs and disables external clients. It must 464 * be paired with bdrv_drain_all_end(). 465 * 466 * NOTE: no new block jobs or BlockDriverStates can be created between 467 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 468 */ 469 void bdrv_drain_all_begin(void) 470 { 471 BlockDriverState *bs = NULL; 472 GLOBAL_STATE_CODE(); 473 474 if (qemu_in_coroutine()) { 475 bdrv_co_yield_to_drain(NULL, true, NULL, true); 476 return; 477 } 478 479 /* 480 * bdrv queue is managed by record/replay, 481 * waiting for finishing the I/O requests may 482 * be infinite 483 */ 484 if (replay_events_enabled()) { 485 return; 486 } 487 488 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 489 * loop AioContext, so make sure we're in the main context. */ 490 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 491 assert(bdrv_drain_all_count < INT_MAX); 492 bdrv_drain_all_count++; 493 494 /* Quiesce all nodes, without polling in-flight requests yet. The graph 495 * cannot change during this loop. */ 496 while ((bs = bdrv_next_all_states(bs))) { 497 AioContext *aio_context = bdrv_get_aio_context(bs); 498 499 aio_context_acquire(aio_context); 500 bdrv_do_drained_begin(bs, NULL, false); 501 aio_context_release(aio_context); 502 } 503 504 /* Now poll the in-flight requests */ 505 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 506 507 while ((bs = bdrv_next_all_states(bs))) { 508 bdrv_drain_assert_idle(bs); 509 } 510 } 511 512 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 513 { 514 GLOBAL_STATE_CODE(); 515 516 g_assert(bs->quiesce_counter > 0); 517 g_assert(!bs->refcnt); 518 519 while (bs->quiesce_counter) { 520 bdrv_do_drained_end(bs, NULL); 521 } 522 } 523 524 void bdrv_drain_all_end(void) 525 { 526 BlockDriverState *bs = NULL; 527 GLOBAL_STATE_CODE(); 528 529 /* 530 * bdrv queue is managed by record/replay, 531 * waiting for finishing the I/O requests may 532 * be endless 533 */ 534 if (replay_events_enabled()) { 535 return; 536 } 537 538 while ((bs = bdrv_next_all_states(bs))) { 539 AioContext *aio_context = bdrv_get_aio_context(bs); 540 541 aio_context_acquire(aio_context); 542 bdrv_do_drained_end(bs, NULL); 543 aio_context_release(aio_context); 544 } 545 546 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 547 assert(bdrv_drain_all_count > 0); 548 bdrv_drain_all_count--; 549 } 550 551 void bdrv_drain_all(void) 552 { 553 GLOBAL_STATE_CODE(); 554 bdrv_drain_all_begin(); 555 bdrv_drain_all_end(); 556 } 557 558 /** 559 * Remove an active request from the tracked requests list 560 * 561 * This function should be called when a tracked request is completing. 562 */ 563 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 564 { 565 if (req->serialising) { 566 qatomic_dec(&req->bs->serialising_in_flight); 567 } 568 569 qemu_co_mutex_lock(&req->bs->reqs_lock); 570 QLIST_REMOVE(req, list); 571 qemu_co_queue_restart_all(&req->wait_queue); 572 qemu_co_mutex_unlock(&req->bs->reqs_lock); 573 } 574 575 /** 576 * Add an active request to the tracked requests list 577 */ 578 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 579 BlockDriverState *bs, 580 int64_t offset, 581 int64_t bytes, 582 enum BdrvTrackedRequestType type) 583 { 584 bdrv_check_request(offset, bytes, &error_abort); 585 586 *req = (BdrvTrackedRequest){ 587 .bs = bs, 588 .offset = offset, 589 .bytes = bytes, 590 .type = type, 591 .co = qemu_coroutine_self(), 592 .serialising = false, 593 .overlap_offset = offset, 594 .overlap_bytes = bytes, 595 }; 596 597 qemu_co_queue_init(&req->wait_queue); 598 599 qemu_co_mutex_lock(&bs->reqs_lock); 600 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 601 qemu_co_mutex_unlock(&bs->reqs_lock); 602 } 603 604 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 605 int64_t offset, int64_t bytes) 606 { 607 bdrv_check_request(offset, bytes, &error_abort); 608 609 /* aaaa bbbb */ 610 if (offset >= req->overlap_offset + req->overlap_bytes) { 611 return false; 612 } 613 /* bbbb aaaa */ 614 if (req->overlap_offset >= offset + bytes) { 615 return false; 616 } 617 return true; 618 } 619 620 /* Called with self->bs->reqs_lock held */ 621 static coroutine_fn BdrvTrackedRequest * 622 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 623 { 624 BdrvTrackedRequest *req; 625 626 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 627 if (req == self || (!req->serialising && !self->serialising)) { 628 continue; 629 } 630 if (tracked_request_overlaps(req, self->overlap_offset, 631 self->overlap_bytes)) 632 { 633 /* 634 * Hitting this means there was a reentrant request, for 635 * example, a block driver issuing nested requests. This must 636 * never happen since it means deadlock. 637 */ 638 assert(qemu_coroutine_self() != req->co); 639 640 /* 641 * If the request is already (indirectly) waiting for us, or 642 * will wait for us as soon as it wakes up, then just go on 643 * (instead of producing a deadlock in the former case). 644 */ 645 if (!req->waiting_for) { 646 return req; 647 } 648 } 649 } 650 651 return NULL; 652 } 653 654 /* Called with self->bs->reqs_lock held */ 655 static void coroutine_fn 656 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 657 { 658 BdrvTrackedRequest *req; 659 660 while ((req = bdrv_find_conflicting_request(self))) { 661 self->waiting_for = req; 662 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 663 self->waiting_for = NULL; 664 } 665 } 666 667 /* Called with req->bs->reqs_lock held */ 668 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 669 uint64_t align) 670 { 671 int64_t overlap_offset = req->offset & ~(align - 1); 672 int64_t overlap_bytes = 673 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 674 675 bdrv_check_request(req->offset, req->bytes, &error_abort); 676 677 if (!req->serialising) { 678 qatomic_inc(&req->bs->serialising_in_flight); 679 req->serialising = true; 680 } 681 682 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 683 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 684 } 685 686 /** 687 * Return the tracked request on @bs for the current coroutine, or 688 * NULL if there is none. 689 */ 690 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 691 { 692 BdrvTrackedRequest *req; 693 Coroutine *self = qemu_coroutine_self(); 694 IO_CODE(); 695 696 QLIST_FOREACH(req, &bs->tracked_requests, list) { 697 if (req->co == self) { 698 return req; 699 } 700 } 701 702 return NULL; 703 } 704 705 /** 706 * Round a region to cluster boundaries 707 */ 708 void bdrv_round_to_clusters(BlockDriverState *bs, 709 int64_t offset, int64_t bytes, 710 int64_t *cluster_offset, 711 int64_t *cluster_bytes) 712 { 713 BlockDriverInfo bdi; 714 IO_CODE(); 715 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 716 *cluster_offset = offset; 717 *cluster_bytes = bytes; 718 } else { 719 int64_t c = bdi.cluster_size; 720 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 721 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 722 } 723 } 724 725 static int bdrv_get_cluster_size(BlockDriverState *bs) 726 { 727 BlockDriverInfo bdi; 728 int ret; 729 730 ret = bdrv_get_info(bs, &bdi); 731 if (ret < 0 || bdi.cluster_size == 0) { 732 return bs->bl.request_alignment; 733 } else { 734 return bdi.cluster_size; 735 } 736 } 737 738 void bdrv_inc_in_flight(BlockDriverState *bs) 739 { 740 IO_CODE(); 741 qatomic_inc(&bs->in_flight); 742 } 743 744 void bdrv_wakeup(BlockDriverState *bs) 745 { 746 IO_CODE(); 747 aio_wait_kick(); 748 } 749 750 void bdrv_dec_in_flight(BlockDriverState *bs) 751 { 752 IO_CODE(); 753 qatomic_dec(&bs->in_flight); 754 bdrv_wakeup(bs); 755 } 756 757 static void coroutine_fn 758 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 759 { 760 BlockDriverState *bs = self->bs; 761 762 if (!qatomic_read(&bs->serialising_in_flight)) { 763 return; 764 } 765 766 qemu_co_mutex_lock(&bs->reqs_lock); 767 bdrv_wait_serialising_requests_locked(self); 768 qemu_co_mutex_unlock(&bs->reqs_lock); 769 } 770 771 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 772 uint64_t align) 773 { 774 IO_CODE(); 775 776 qemu_co_mutex_lock(&req->bs->reqs_lock); 777 778 tracked_request_set_serialising(req, align); 779 bdrv_wait_serialising_requests_locked(req); 780 781 qemu_co_mutex_unlock(&req->bs->reqs_lock); 782 } 783 784 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 785 QEMUIOVector *qiov, size_t qiov_offset, 786 Error **errp) 787 { 788 /* 789 * Check generic offset/bytes correctness 790 */ 791 792 if (offset < 0) { 793 error_setg(errp, "offset is negative: %" PRIi64, offset); 794 return -EIO; 795 } 796 797 if (bytes < 0) { 798 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 799 return -EIO; 800 } 801 802 if (bytes > BDRV_MAX_LENGTH) { 803 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 804 bytes, BDRV_MAX_LENGTH); 805 return -EIO; 806 } 807 808 if (offset > BDRV_MAX_LENGTH) { 809 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 810 offset, BDRV_MAX_LENGTH); 811 return -EIO; 812 } 813 814 if (offset > BDRV_MAX_LENGTH - bytes) { 815 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 816 "exceeds maximum(%" PRIi64 ")", offset, bytes, 817 BDRV_MAX_LENGTH); 818 return -EIO; 819 } 820 821 if (!qiov) { 822 return 0; 823 } 824 825 /* 826 * Check qiov and qiov_offset 827 */ 828 829 if (qiov_offset > qiov->size) { 830 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 831 qiov_offset, qiov->size); 832 return -EIO; 833 } 834 835 if (bytes > qiov->size - qiov_offset) { 836 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 837 "vector size(%zu)", bytes, qiov_offset, qiov->size); 838 return -EIO; 839 } 840 841 return 0; 842 } 843 844 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 845 { 846 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 847 } 848 849 static int bdrv_check_request32(int64_t offset, int64_t bytes, 850 QEMUIOVector *qiov, size_t qiov_offset) 851 { 852 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 853 if (ret < 0) { 854 return ret; 855 } 856 857 if (bytes > BDRV_REQUEST_MAX_BYTES) { 858 return -EIO; 859 } 860 861 return 0; 862 } 863 864 /* 865 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 866 * The operation is sped up by checking the block status and only writing 867 * zeroes to the device if they currently do not return zeroes. Optional 868 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 869 * BDRV_REQ_FUA). 870 * 871 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 872 */ 873 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 874 { 875 int ret; 876 int64_t target_size, bytes, offset = 0; 877 BlockDriverState *bs = child->bs; 878 IO_CODE(); 879 880 target_size = bdrv_getlength(bs); 881 if (target_size < 0) { 882 return target_size; 883 } 884 885 for (;;) { 886 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 887 if (bytes <= 0) { 888 return 0; 889 } 890 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 891 if (ret < 0) { 892 return ret; 893 } 894 if (ret & BDRV_BLOCK_ZERO) { 895 offset += bytes; 896 continue; 897 } 898 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 899 if (ret < 0) { 900 return ret; 901 } 902 offset += bytes; 903 } 904 } 905 906 /* 907 * Writes to the file and ensures that no writes are reordered across this 908 * request (acts as a barrier) 909 * 910 * Returns 0 on success, -errno in error cases. 911 */ 912 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 913 int64_t bytes, const void *buf, 914 BdrvRequestFlags flags) 915 { 916 int ret; 917 IO_CODE(); 918 919 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 920 if (ret < 0) { 921 return ret; 922 } 923 924 ret = bdrv_co_flush(child->bs); 925 if (ret < 0) { 926 return ret; 927 } 928 929 return 0; 930 } 931 932 typedef struct CoroutineIOCompletion { 933 Coroutine *coroutine; 934 int ret; 935 } CoroutineIOCompletion; 936 937 static void bdrv_co_io_em_complete(void *opaque, int ret) 938 { 939 CoroutineIOCompletion *co = opaque; 940 941 co->ret = ret; 942 aio_co_wake(co->coroutine); 943 } 944 945 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 946 int64_t offset, int64_t bytes, 947 QEMUIOVector *qiov, 948 size_t qiov_offset, int flags) 949 { 950 BlockDriver *drv = bs->drv; 951 int64_t sector_num; 952 unsigned int nb_sectors; 953 QEMUIOVector local_qiov; 954 int ret; 955 956 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 957 assert(!(flags & ~bs->supported_read_flags)); 958 959 if (!drv) { 960 return -ENOMEDIUM; 961 } 962 963 if (drv->bdrv_co_preadv_part) { 964 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 965 flags); 966 } 967 968 if (qiov_offset > 0 || bytes != qiov->size) { 969 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 970 qiov = &local_qiov; 971 } 972 973 if (drv->bdrv_co_preadv) { 974 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 975 goto out; 976 } 977 978 if (drv->bdrv_aio_preadv) { 979 BlockAIOCB *acb; 980 CoroutineIOCompletion co = { 981 .coroutine = qemu_coroutine_self(), 982 }; 983 984 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 985 bdrv_co_io_em_complete, &co); 986 if (acb == NULL) { 987 ret = -EIO; 988 goto out; 989 } else { 990 qemu_coroutine_yield(); 991 ret = co.ret; 992 goto out; 993 } 994 } 995 996 sector_num = offset >> BDRV_SECTOR_BITS; 997 nb_sectors = bytes >> BDRV_SECTOR_BITS; 998 999 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1000 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1001 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1002 assert(drv->bdrv_co_readv); 1003 1004 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1005 1006 out: 1007 if (qiov == &local_qiov) { 1008 qemu_iovec_destroy(&local_qiov); 1009 } 1010 1011 return ret; 1012 } 1013 1014 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1015 int64_t offset, int64_t bytes, 1016 QEMUIOVector *qiov, 1017 size_t qiov_offset, 1018 BdrvRequestFlags flags) 1019 { 1020 BlockDriver *drv = bs->drv; 1021 bool emulate_fua = false; 1022 int64_t sector_num; 1023 unsigned int nb_sectors; 1024 QEMUIOVector local_qiov; 1025 int ret; 1026 1027 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1028 1029 if (!drv) { 1030 return -ENOMEDIUM; 1031 } 1032 1033 if ((flags & BDRV_REQ_FUA) && 1034 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1035 flags &= ~BDRV_REQ_FUA; 1036 emulate_fua = true; 1037 } 1038 1039 flags &= bs->supported_write_flags; 1040 1041 if (drv->bdrv_co_pwritev_part) { 1042 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1043 flags); 1044 goto emulate_flags; 1045 } 1046 1047 if (qiov_offset > 0 || bytes != qiov->size) { 1048 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1049 qiov = &local_qiov; 1050 } 1051 1052 if (drv->bdrv_co_pwritev) { 1053 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1054 goto emulate_flags; 1055 } 1056 1057 if (drv->bdrv_aio_pwritev) { 1058 BlockAIOCB *acb; 1059 CoroutineIOCompletion co = { 1060 .coroutine = qemu_coroutine_self(), 1061 }; 1062 1063 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1064 bdrv_co_io_em_complete, &co); 1065 if (acb == NULL) { 1066 ret = -EIO; 1067 } else { 1068 qemu_coroutine_yield(); 1069 ret = co.ret; 1070 } 1071 goto emulate_flags; 1072 } 1073 1074 sector_num = offset >> BDRV_SECTOR_BITS; 1075 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1076 1077 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1078 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1079 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1080 1081 assert(drv->bdrv_co_writev); 1082 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1083 1084 emulate_flags: 1085 if (ret == 0 && emulate_fua) { 1086 ret = bdrv_co_flush(bs); 1087 } 1088 1089 if (qiov == &local_qiov) { 1090 qemu_iovec_destroy(&local_qiov); 1091 } 1092 1093 return ret; 1094 } 1095 1096 static int coroutine_fn 1097 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1098 int64_t bytes, QEMUIOVector *qiov, 1099 size_t qiov_offset) 1100 { 1101 BlockDriver *drv = bs->drv; 1102 QEMUIOVector local_qiov; 1103 int ret; 1104 1105 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1106 1107 if (!drv) { 1108 return -ENOMEDIUM; 1109 } 1110 1111 if (!block_driver_can_compress(drv)) { 1112 return -ENOTSUP; 1113 } 1114 1115 if (drv->bdrv_co_pwritev_compressed_part) { 1116 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1117 qiov, qiov_offset); 1118 } 1119 1120 if (qiov_offset == 0) { 1121 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1122 } 1123 1124 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1125 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1126 qemu_iovec_destroy(&local_qiov); 1127 1128 return ret; 1129 } 1130 1131 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1132 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1133 size_t qiov_offset, int flags) 1134 { 1135 BlockDriverState *bs = child->bs; 1136 1137 /* Perform I/O through a temporary buffer so that users who scribble over 1138 * their read buffer while the operation is in progress do not end up 1139 * modifying the image file. This is critical for zero-copy guest I/O 1140 * where anything might happen inside guest memory. 1141 */ 1142 void *bounce_buffer = NULL; 1143 1144 BlockDriver *drv = bs->drv; 1145 int64_t cluster_offset; 1146 int64_t cluster_bytes; 1147 int64_t skip_bytes; 1148 int ret; 1149 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1150 BDRV_REQUEST_MAX_BYTES); 1151 int64_t progress = 0; 1152 bool skip_write; 1153 1154 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1155 1156 if (!drv) { 1157 return -ENOMEDIUM; 1158 } 1159 1160 /* 1161 * Do not write anything when the BDS is inactive. That is not 1162 * allowed, and it would not help. 1163 */ 1164 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1165 1166 /* FIXME We cannot require callers to have write permissions when all they 1167 * are doing is a read request. If we did things right, write permissions 1168 * would be obtained anyway, but internally by the copy-on-read code. As 1169 * long as it is implemented here rather than in a separate filter driver, 1170 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1171 * it could request permissions. Therefore we have to bypass the permission 1172 * system for the moment. */ 1173 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1174 1175 /* Cover entire cluster so no additional backing file I/O is required when 1176 * allocating cluster in the image file. Note that this value may exceed 1177 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1178 * is one reason we loop rather than doing it all at once. 1179 */ 1180 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1181 skip_bytes = offset - cluster_offset; 1182 1183 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1184 cluster_offset, cluster_bytes); 1185 1186 while (cluster_bytes) { 1187 int64_t pnum; 1188 1189 if (skip_write) { 1190 ret = 1; /* "already allocated", so nothing will be copied */ 1191 pnum = MIN(cluster_bytes, max_transfer); 1192 } else { 1193 ret = bdrv_is_allocated(bs, cluster_offset, 1194 MIN(cluster_bytes, max_transfer), &pnum); 1195 if (ret < 0) { 1196 /* 1197 * Safe to treat errors in querying allocation as if 1198 * unallocated; we'll probably fail again soon on the 1199 * read, but at least that will set a decent errno. 1200 */ 1201 pnum = MIN(cluster_bytes, max_transfer); 1202 } 1203 1204 /* Stop at EOF if the image ends in the middle of the cluster */ 1205 if (ret == 0 && pnum == 0) { 1206 assert(progress >= bytes); 1207 break; 1208 } 1209 1210 assert(skip_bytes < pnum); 1211 } 1212 1213 if (ret <= 0) { 1214 QEMUIOVector local_qiov; 1215 1216 /* Must copy-on-read; use the bounce buffer */ 1217 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1218 if (!bounce_buffer) { 1219 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1220 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1221 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1222 1223 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1224 if (!bounce_buffer) { 1225 ret = -ENOMEM; 1226 goto err; 1227 } 1228 } 1229 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1230 1231 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1232 &local_qiov, 0, 0); 1233 if (ret < 0) { 1234 goto err; 1235 } 1236 1237 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1238 if (drv->bdrv_co_pwrite_zeroes && 1239 buffer_is_zero(bounce_buffer, pnum)) { 1240 /* FIXME: Should we (perhaps conditionally) be setting 1241 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1242 * that still correctly reads as zero? */ 1243 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1244 BDRV_REQ_WRITE_UNCHANGED); 1245 } else { 1246 /* This does not change the data on the disk, it is not 1247 * necessary to flush even in cache=writethrough mode. 1248 */ 1249 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1250 &local_qiov, 0, 1251 BDRV_REQ_WRITE_UNCHANGED); 1252 } 1253 1254 if (ret < 0) { 1255 /* It might be okay to ignore write errors for guest 1256 * requests. If this is a deliberate copy-on-read 1257 * then we don't want to ignore the error. Simply 1258 * report it in all cases. 1259 */ 1260 goto err; 1261 } 1262 1263 if (!(flags & BDRV_REQ_PREFETCH)) { 1264 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1265 bounce_buffer + skip_bytes, 1266 MIN(pnum - skip_bytes, bytes - progress)); 1267 } 1268 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1269 /* Read directly into the destination */ 1270 ret = bdrv_driver_preadv(bs, offset + progress, 1271 MIN(pnum - skip_bytes, bytes - progress), 1272 qiov, qiov_offset + progress, 0); 1273 if (ret < 0) { 1274 goto err; 1275 } 1276 } 1277 1278 cluster_offset += pnum; 1279 cluster_bytes -= pnum; 1280 progress += pnum - skip_bytes; 1281 skip_bytes = 0; 1282 } 1283 ret = 0; 1284 1285 err: 1286 qemu_vfree(bounce_buffer); 1287 return ret; 1288 } 1289 1290 /* 1291 * Forwards an already correctly aligned request to the BlockDriver. This 1292 * handles copy on read, zeroing after EOF, and fragmentation of large 1293 * reads; any other features must be implemented by the caller. 1294 */ 1295 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1296 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1297 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1298 { 1299 BlockDriverState *bs = child->bs; 1300 int64_t total_bytes, max_bytes; 1301 int ret = 0; 1302 int64_t bytes_remaining = bytes; 1303 int max_transfer; 1304 1305 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1306 assert(is_power_of_2(align)); 1307 assert((offset & (align - 1)) == 0); 1308 assert((bytes & (align - 1)) == 0); 1309 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1310 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1311 align); 1312 1313 /* 1314 * TODO: We would need a per-BDS .supported_read_flags and 1315 * potential fallback support, if we ever implement any read flags 1316 * to pass through to drivers. For now, there aren't any 1317 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1318 */ 1319 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1320 BDRV_REQ_REGISTERED_BUF))); 1321 1322 /* Handle Copy on Read and associated serialisation */ 1323 if (flags & BDRV_REQ_COPY_ON_READ) { 1324 /* If we touch the same cluster it counts as an overlap. This 1325 * guarantees that allocating writes will be serialized and not race 1326 * with each other for the same cluster. For example, in copy-on-read 1327 * it ensures that the CoR read and write operations are atomic and 1328 * guest writes cannot interleave between them. */ 1329 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1330 } else { 1331 bdrv_wait_serialising_requests(req); 1332 } 1333 1334 if (flags & BDRV_REQ_COPY_ON_READ) { 1335 int64_t pnum; 1336 1337 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1338 flags &= ~BDRV_REQ_COPY_ON_READ; 1339 1340 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1341 if (ret < 0) { 1342 goto out; 1343 } 1344 1345 if (!ret || pnum != bytes) { 1346 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1347 qiov, qiov_offset, flags); 1348 goto out; 1349 } else if (flags & BDRV_REQ_PREFETCH) { 1350 goto out; 1351 } 1352 } 1353 1354 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1355 total_bytes = bdrv_getlength(bs); 1356 if (total_bytes < 0) { 1357 ret = total_bytes; 1358 goto out; 1359 } 1360 1361 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1362 1363 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1364 if (bytes <= max_bytes && bytes <= max_transfer) { 1365 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1366 goto out; 1367 } 1368 1369 while (bytes_remaining) { 1370 int64_t num; 1371 1372 if (max_bytes) { 1373 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1374 assert(num); 1375 1376 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1377 num, qiov, 1378 qiov_offset + bytes - bytes_remaining, 1379 flags); 1380 max_bytes -= num; 1381 } else { 1382 num = bytes_remaining; 1383 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1384 0, bytes_remaining); 1385 } 1386 if (ret < 0) { 1387 goto out; 1388 } 1389 bytes_remaining -= num; 1390 } 1391 1392 out: 1393 return ret < 0 ? ret : 0; 1394 } 1395 1396 /* 1397 * Request padding 1398 * 1399 * |<---- align ----->| |<----- align ---->| 1400 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1401 * | | | | | | 1402 * -*----------$-------*-------- ... --------*-----$------------*--- 1403 * | | | | | | 1404 * | offset | | end | 1405 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1406 * [buf ... ) [tail_buf ) 1407 * 1408 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1409 * is placed at the beginning of @buf and @tail at the @end. 1410 * 1411 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1412 * around tail, if tail exists. 1413 * 1414 * @merge_reads is true for small requests, 1415 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1416 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1417 */ 1418 typedef struct BdrvRequestPadding { 1419 uint8_t *buf; 1420 size_t buf_len; 1421 uint8_t *tail_buf; 1422 size_t head; 1423 size_t tail; 1424 bool merge_reads; 1425 QEMUIOVector local_qiov; 1426 } BdrvRequestPadding; 1427 1428 static bool bdrv_init_padding(BlockDriverState *bs, 1429 int64_t offset, int64_t bytes, 1430 BdrvRequestPadding *pad) 1431 { 1432 int64_t align = bs->bl.request_alignment; 1433 int64_t sum; 1434 1435 bdrv_check_request(offset, bytes, &error_abort); 1436 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1437 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1438 1439 memset(pad, 0, sizeof(*pad)); 1440 1441 pad->head = offset & (align - 1); 1442 pad->tail = ((offset + bytes) & (align - 1)); 1443 if (pad->tail) { 1444 pad->tail = align - pad->tail; 1445 } 1446 1447 if (!pad->head && !pad->tail) { 1448 return false; 1449 } 1450 1451 assert(bytes); /* Nothing good in aligning zero-length requests */ 1452 1453 sum = pad->head + bytes + pad->tail; 1454 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1455 pad->buf = qemu_blockalign(bs, pad->buf_len); 1456 pad->merge_reads = sum == pad->buf_len; 1457 if (pad->tail) { 1458 pad->tail_buf = pad->buf + pad->buf_len - align; 1459 } 1460 1461 return true; 1462 } 1463 1464 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child, 1465 BdrvTrackedRequest *req, 1466 BdrvRequestPadding *pad, 1467 bool zero_middle) 1468 { 1469 QEMUIOVector local_qiov; 1470 BlockDriverState *bs = child->bs; 1471 uint64_t align = bs->bl.request_alignment; 1472 int ret; 1473 1474 assert(req->serialising && pad->buf); 1475 1476 if (pad->head || pad->merge_reads) { 1477 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1478 1479 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1480 1481 if (pad->head) { 1482 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1483 } 1484 if (pad->merge_reads && pad->tail) { 1485 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1486 } 1487 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1488 align, &local_qiov, 0, 0); 1489 if (ret < 0) { 1490 return ret; 1491 } 1492 if (pad->head) { 1493 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1494 } 1495 if (pad->merge_reads && pad->tail) { 1496 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1497 } 1498 1499 if (pad->merge_reads) { 1500 goto zero_mem; 1501 } 1502 } 1503 1504 if (pad->tail) { 1505 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1506 1507 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1508 ret = bdrv_aligned_preadv( 1509 child, req, 1510 req->overlap_offset + req->overlap_bytes - align, 1511 align, align, &local_qiov, 0, 0); 1512 if (ret < 0) { 1513 return ret; 1514 } 1515 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1516 } 1517 1518 zero_mem: 1519 if (zero_middle) { 1520 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1521 } 1522 1523 return 0; 1524 } 1525 1526 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1527 { 1528 if (pad->buf) { 1529 qemu_vfree(pad->buf); 1530 qemu_iovec_destroy(&pad->local_qiov); 1531 } 1532 memset(pad, 0, sizeof(*pad)); 1533 } 1534 1535 /* 1536 * bdrv_pad_request 1537 * 1538 * Exchange request parameters with padded request if needed. Don't include RMW 1539 * read of padding, bdrv_padding_rmw_read() should be called separately if 1540 * needed. 1541 * 1542 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1543 * - on function start they represent original request 1544 * - on failure or when padding is not needed they are unchanged 1545 * - on success when padding is needed they represent padded request 1546 */ 1547 static int bdrv_pad_request(BlockDriverState *bs, 1548 QEMUIOVector **qiov, size_t *qiov_offset, 1549 int64_t *offset, int64_t *bytes, 1550 BdrvRequestPadding *pad, bool *padded, 1551 BdrvRequestFlags *flags) 1552 { 1553 int ret; 1554 1555 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1556 1557 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1558 if (padded) { 1559 *padded = false; 1560 } 1561 return 0; 1562 } 1563 1564 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1565 *qiov, *qiov_offset, *bytes, 1566 pad->buf + pad->buf_len - pad->tail, 1567 pad->tail); 1568 if (ret < 0) { 1569 bdrv_padding_destroy(pad); 1570 return ret; 1571 } 1572 *bytes += pad->head + pad->tail; 1573 *offset -= pad->head; 1574 *qiov = &pad->local_qiov; 1575 *qiov_offset = 0; 1576 if (padded) { 1577 *padded = true; 1578 } 1579 if (flags) { 1580 /* Can't use optimization hint with bounce buffer */ 1581 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1582 } 1583 1584 return 0; 1585 } 1586 1587 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1588 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1589 BdrvRequestFlags flags) 1590 { 1591 IO_CODE(); 1592 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1593 } 1594 1595 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1596 int64_t offset, int64_t bytes, 1597 QEMUIOVector *qiov, size_t qiov_offset, 1598 BdrvRequestFlags flags) 1599 { 1600 BlockDriverState *bs = child->bs; 1601 BdrvTrackedRequest req; 1602 BdrvRequestPadding pad; 1603 int ret; 1604 IO_CODE(); 1605 1606 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1607 1608 if (!bdrv_is_inserted(bs)) { 1609 return -ENOMEDIUM; 1610 } 1611 1612 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1613 if (ret < 0) { 1614 return ret; 1615 } 1616 1617 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1618 /* 1619 * Aligning zero request is nonsense. Even if driver has special meaning 1620 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1621 * it to driver due to request_alignment. 1622 * 1623 * Still, no reason to return an error if someone do unaligned 1624 * zero-length read occasionally. 1625 */ 1626 return 0; 1627 } 1628 1629 bdrv_inc_in_flight(bs); 1630 1631 /* Don't do copy-on-read if we read data before write operation */ 1632 if (qatomic_read(&bs->copy_on_read)) { 1633 flags |= BDRV_REQ_COPY_ON_READ; 1634 } 1635 1636 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1637 NULL, &flags); 1638 if (ret < 0) { 1639 goto fail; 1640 } 1641 1642 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1643 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1644 bs->bl.request_alignment, 1645 qiov, qiov_offset, flags); 1646 tracked_request_end(&req); 1647 bdrv_padding_destroy(&pad); 1648 1649 fail: 1650 bdrv_dec_in_flight(bs); 1651 1652 return ret; 1653 } 1654 1655 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1656 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1657 { 1658 BlockDriver *drv = bs->drv; 1659 QEMUIOVector qiov; 1660 void *buf = NULL; 1661 int ret = 0; 1662 bool need_flush = false; 1663 int head = 0; 1664 int tail = 0; 1665 1666 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1667 INT64_MAX); 1668 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1669 bs->bl.request_alignment); 1670 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1671 1672 bdrv_check_request(offset, bytes, &error_abort); 1673 1674 if (!drv) { 1675 return -ENOMEDIUM; 1676 } 1677 1678 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1679 return -ENOTSUP; 1680 } 1681 1682 /* By definition there is no user buffer so this flag doesn't make sense */ 1683 if (flags & BDRV_REQ_REGISTERED_BUF) { 1684 return -EINVAL; 1685 } 1686 1687 /* Invalidate the cached block-status data range if this write overlaps */ 1688 bdrv_bsc_invalidate_range(bs, offset, bytes); 1689 1690 assert(alignment % bs->bl.request_alignment == 0); 1691 head = offset % alignment; 1692 tail = (offset + bytes) % alignment; 1693 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1694 assert(max_write_zeroes >= bs->bl.request_alignment); 1695 1696 while (bytes > 0 && !ret) { 1697 int64_t num = bytes; 1698 1699 /* Align request. Block drivers can expect the "bulk" of the request 1700 * to be aligned, and that unaligned requests do not cross cluster 1701 * boundaries. 1702 */ 1703 if (head) { 1704 /* Make a small request up to the first aligned sector. For 1705 * convenience, limit this request to max_transfer even if 1706 * we don't need to fall back to writes. */ 1707 num = MIN(MIN(bytes, max_transfer), alignment - head); 1708 head = (head + num) % alignment; 1709 assert(num < max_write_zeroes); 1710 } else if (tail && num > alignment) { 1711 /* Shorten the request to the last aligned sector. */ 1712 num -= tail; 1713 } 1714 1715 /* limit request size */ 1716 if (num > max_write_zeroes) { 1717 num = max_write_zeroes; 1718 } 1719 1720 ret = -ENOTSUP; 1721 /* First try the efficient write zeroes operation */ 1722 if (drv->bdrv_co_pwrite_zeroes) { 1723 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1724 flags & bs->supported_zero_flags); 1725 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1726 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1727 need_flush = true; 1728 } 1729 } else { 1730 assert(!bs->supported_zero_flags); 1731 } 1732 1733 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1734 /* Fall back to bounce buffer if write zeroes is unsupported */ 1735 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1736 1737 if ((flags & BDRV_REQ_FUA) && 1738 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1739 /* No need for bdrv_driver_pwrite() to do a fallback 1740 * flush on each chunk; use just one at the end */ 1741 write_flags &= ~BDRV_REQ_FUA; 1742 need_flush = true; 1743 } 1744 num = MIN(num, max_transfer); 1745 if (buf == NULL) { 1746 buf = qemu_try_blockalign0(bs, num); 1747 if (buf == NULL) { 1748 ret = -ENOMEM; 1749 goto fail; 1750 } 1751 } 1752 qemu_iovec_init_buf(&qiov, buf, num); 1753 1754 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1755 1756 /* Keep bounce buffer around if it is big enough for all 1757 * all future requests. 1758 */ 1759 if (num < max_transfer) { 1760 qemu_vfree(buf); 1761 buf = NULL; 1762 } 1763 } 1764 1765 offset += num; 1766 bytes -= num; 1767 } 1768 1769 fail: 1770 if (ret == 0 && need_flush) { 1771 ret = bdrv_co_flush(bs); 1772 } 1773 qemu_vfree(buf); 1774 return ret; 1775 } 1776 1777 static inline int coroutine_fn 1778 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1779 BdrvTrackedRequest *req, int flags) 1780 { 1781 BlockDriverState *bs = child->bs; 1782 1783 bdrv_check_request(offset, bytes, &error_abort); 1784 1785 if (bdrv_is_read_only(bs)) { 1786 return -EPERM; 1787 } 1788 1789 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1790 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1791 assert(!(flags & ~BDRV_REQ_MASK)); 1792 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1793 1794 if (flags & BDRV_REQ_SERIALISING) { 1795 QEMU_LOCK_GUARD(&bs->reqs_lock); 1796 1797 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1798 1799 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1800 return -EBUSY; 1801 } 1802 1803 bdrv_wait_serialising_requests_locked(req); 1804 } else { 1805 bdrv_wait_serialising_requests(req); 1806 } 1807 1808 assert(req->overlap_offset <= offset); 1809 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1810 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1811 child->perm & BLK_PERM_RESIZE); 1812 1813 switch (req->type) { 1814 case BDRV_TRACKED_WRITE: 1815 case BDRV_TRACKED_DISCARD: 1816 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1817 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1818 } else { 1819 assert(child->perm & BLK_PERM_WRITE); 1820 } 1821 bdrv_write_threshold_check_write(bs, offset, bytes); 1822 return 0; 1823 case BDRV_TRACKED_TRUNCATE: 1824 assert(child->perm & BLK_PERM_RESIZE); 1825 return 0; 1826 default: 1827 abort(); 1828 } 1829 } 1830 1831 static inline void coroutine_fn 1832 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1833 BdrvTrackedRequest *req, int ret) 1834 { 1835 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1836 BlockDriverState *bs = child->bs; 1837 1838 bdrv_check_request(offset, bytes, &error_abort); 1839 1840 qatomic_inc(&bs->write_gen); 1841 1842 /* 1843 * Discard cannot extend the image, but in error handling cases, such as 1844 * when reverting a qcow2 cluster allocation, the discarded range can pass 1845 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1846 * here. Instead, just skip it, since semantically a discard request 1847 * beyond EOF cannot expand the image anyway. 1848 */ 1849 if (ret == 0 && 1850 (req->type == BDRV_TRACKED_TRUNCATE || 1851 end_sector > bs->total_sectors) && 1852 req->type != BDRV_TRACKED_DISCARD) { 1853 bs->total_sectors = end_sector; 1854 bdrv_parent_cb_resize(bs); 1855 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1856 } 1857 if (req->bytes) { 1858 switch (req->type) { 1859 case BDRV_TRACKED_WRITE: 1860 stat64_max(&bs->wr_highest_offset, offset + bytes); 1861 /* fall through, to set dirty bits */ 1862 case BDRV_TRACKED_DISCARD: 1863 bdrv_set_dirty(bs, offset, bytes); 1864 break; 1865 default: 1866 break; 1867 } 1868 } 1869 } 1870 1871 /* 1872 * Forwards an already correctly aligned write request to the BlockDriver, 1873 * after possibly fragmenting it. 1874 */ 1875 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1876 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1877 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 1878 BdrvRequestFlags flags) 1879 { 1880 BlockDriverState *bs = child->bs; 1881 BlockDriver *drv = bs->drv; 1882 int ret; 1883 1884 int64_t bytes_remaining = bytes; 1885 int max_transfer; 1886 1887 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1888 1889 if (!drv) { 1890 return -ENOMEDIUM; 1891 } 1892 1893 if (bdrv_has_readonly_bitmaps(bs)) { 1894 return -EPERM; 1895 } 1896 1897 assert(is_power_of_2(align)); 1898 assert((offset & (align - 1)) == 0); 1899 assert((bytes & (align - 1)) == 0); 1900 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1901 align); 1902 1903 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1904 1905 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1906 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1907 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1908 flags |= BDRV_REQ_ZERO_WRITE; 1909 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1910 flags |= BDRV_REQ_MAY_UNMAP; 1911 } 1912 } 1913 1914 if (ret < 0) { 1915 /* Do nothing, write notifier decided to fail this request */ 1916 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1917 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1918 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1919 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1920 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1921 qiov, qiov_offset); 1922 } else if (bytes <= max_transfer) { 1923 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1924 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1925 } else { 1926 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1927 while (bytes_remaining) { 1928 int num = MIN(bytes_remaining, max_transfer); 1929 int local_flags = flags; 1930 1931 assert(num); 1932 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1933 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1934 /* If FUA is going to be emulated by flush, we only 1935 * need to flush on the last iteration */ 1936 local_flags &= ~BDRV_REQ_FUA; 1937 } 1938 1939 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1940 num, qiov, 1941 qiov_offset + bytes - bytes_remaining, 1942 local_flags); 1943 if (ret < 0) { 1944 break; 1945 } 1946 bytes_remaining -= num; 1947 } 1948 } 1949 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1950 1951 if (ret >= 0) { 1952 ret = 0; 1953 } 1954 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1955 1956 return ret; 1957 } 1958 1959 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1960 int64_t offset, 1961 int64_t bytes, 1962 BdrvRequestFlags flags, 1963 BdrvTrackedRequest *req) 1964 { 1965 BlockDriverState *bs = child->bs; 1966 QEMUIOVector local_qiov; 1967 uint64_t align = bs->bl.request_alignment; 1968 int ret = 0; 1969 bool padding; 1970 BdrvRequestPadding pad; 1971 1972 /* This flag doesn't make sense for padding or zero writes */ 1973 flags &= ~BDRV_REQ_REGISTERED_BUF; 1974 1975 padding = bdrv_init_padding(bs, offset, bytes, &pad); 1976 if (padding) { 1977 assert(!(flags & BDRV_REQ_NO_WAIT)); 1978 bdrv_make_request_serialising(req, align); 1979 1980 bdrv_padding_rmw_read(child, req, &pad, true); 1981 1982 if (pad.head || pad.merge_reads) { 1983 int64_t aligned_offset = offset & ~(align - 1); 1984 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 1985 1986 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 1987 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 1988 align, &local_qiov, 0, 1989 flags & ~BDRV_REQ_ZERO_WRITE); 1990 if (ret < 0 || pad.merge_reads) { 1991 /* Error or all work is done */ 1992 goto out; 1993 } 1994 offset += write_bytes - pad.head; 1995 bytes -= write_bytes - pad.head; 1996 } 1997 } 1998 1999 assert(!bytes || (offset & (align - 1)) == 0); 2000 if (bytes >= align) { 2001 /* Write the aligned part in the middle. */ 2002 int64_t aligned_bytes = bytes & ~(align - 1); 2003 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2004 NULL, 0, flags); 2005 if (ret < 0) { 2006 goto out; 2007 } 2008 bytes -= aligned_bytes; 2009 offset += aligned_bytes; 2010 } 2011 2012 assert(!bytes || (offset & (align - 1)) == 0); 2013 if (bytes) { 2014 assert(align == pad.tail + bytes); 2015 2016 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2017 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2018 &local_qiov, 0, 2019 flags & ~BDRV_REQ_ZERO_WRITE); 2020 } 2021 2022 out: 2023 bdrv_padding_destroy(&pad); 2024 2025 return ret; 2026 } 2027 2028 /* 2029 * Handle a write request in coroutine context 2030 */ 2031 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2032 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2033 BdrvRequestFlags flags) 2034 { 2035 IO_CODE(); 2036 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2037 } 2038 2039 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2040 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2041 BdrvRequestFlags flags) 2042 { 2043 BlockDriverState *bs = child->bs; 2044 BdrvTrackedRequest req; 2045 uint64_t align = bs->bl.request_alignment; 2046 BdrvRequestPadding pad; 2047 int ret; 2048 bool padded = false; 2049 IO_CODE(); 2050 2051 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2052 2053 if (!bdrv_is_inserted(bs)) { 2054 return -ENOMEDIUM; 2055 } 2056 2057 if (flags & BDRV_REQ_ZERO_WRITE) { 2058 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2059 } else { 2060 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2061 } 2062 if (ret < 0) { 2063 return ret; 2064 } 2065 2066 /* If the request is misaligned then we can't make it efficient */ 2067 if ((flags & BDRV_REQ_NO_FALLBACK) && 2068 !QEMU_IS_ALIGNED(offset | bytes, align)) 2069 { 2070 return -ENOTSUP; 2071 } 2072 2073 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2074 /* 2075 * Aligning zero request is nonsense. Even if driver has special meaning 2076 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2077 * it to driver due to request_alignment. 2078 * 2079 * Still, no reason to return an error if someone do unaligned 2080 * zero-length write occasionally. 2081 */ 2082 return 0; 2083 } 2084 2085 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2086 /* 2087 * Pad request for following read-modify-write cycle. 2088 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2089 * alignment only if there is no ZERO flag. 2090 */ 2091 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2092 &padded, &flags); 2093 if (ret < 0) { 2094 return ret; 2095 } 2096 } 2097 2098 bdrv_inc_in_flight(bs); 2099 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2100 2101 if (flags & BDRV_REQ_ZERO_WRITE) { 2102 assert(!padded); 2103 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2104 goto out; 2105 } 2106 2107 if (padded) { 2108 /* 2109 * Request was unaligned to request_alignment and therefore 2110 * padded. We are going to do read-modify-write, and must 2111 * serialize the request to prevent interactions of the 2112 * widened region with other transactions. 2113 */ 2114 assert(!(flags & BDRV_REQ_NO_WAIT)); 2115 bdrv_make_request_serialising(&req, align); 2116 bdrv_padding_rmw_read(child, &req, &pad, false); 2117 } 2118 2119 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2120 qiov, qiov_offset, flags); 2121 2122 bdrv_padding_destroy(&pad); 2123 2124 out: 2125 tracked_request_end(&req); 2126 bdrv_dec_in_flight(bs); 2127 2128 return ret; 2129 } 2130 2131 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2132 int64_t bytes, BdrvRequestFlags flags) 2133 { 2134 IO_CODE(); 2135 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2136 2137 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2138 flags &= ~BDRV_REQ_MAY_UNMAP; 2139 } 2140 2141 return bdrv_co_pwritev(child, offset, bytes, NULL, 2142 BDRV_REQ_ZERO_WRITE | flags); 2143 } 2144 2145 /* 2146 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2147 */ 2148 int bdrv_flush_all(void) 2149 { 2150 BdrvNextIterator it; 2151 BlockDriverState *bs = NULL; 2152 int result = 0; 2153 2154 GLOBAL_STATE_CODE(); 2155 2156 /* 2157 * bdrv queue is managed by record/replay, 2158 * creating new flush request for stopping 2159 * the VM may break the determinism 2160 */ 2161 if (replay_events_enabled()) { 2162 return result; 2163 } 2164 2165 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2166 AioContext *aio_context = bdrv_get_aio_context(bs); 2167 int ret; 2168 2169 aio_context_acquire(aio_context); 2170 ret = bdrv_flush(bs); 2171 if (ret < 0 && !result) { 2172 result = ret; 2173 } 2174 aio_context_release(aio_context); 2175 } 2176 2177 return result; 2178 } 2179 2180 /* 2181 * Returns the allocation status of the specified sectors. 2182 * Drivers not implementing the functionality are assumed to not support 2183 * backing files, hence all their sectors are reported as allocated. 2184 * 2185 * If 'want_zero' is true, the caller is querying for mapping 2186 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2187 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2188 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2189 * 2190 * If 'offset' is beyond the end of the disk image the return value is 2191 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2192 * 2193 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2194 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2195 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2196 * 2197 * 'pnum' is set to the number of bytes (including and immediately 2198 * following the specified offset) that are easily known to be in the 2199 * same allocated/unallocated state. Note that a second call starting 2200 * at the original offset plus returned pnum may have the same status. 2201 * The returned value is non-zero on success except at end-of-file. 2202 * 2203 * Returns negative errno on failure. Otherwise, if the 2204 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2205 * set to the host mapping and BDS corresponding to the guest offset. 2206 */ 2207 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2208 bool want_zero, 2209 int64_t offset, int64_t bytes, 2210 int64_t *pnum, int64_t *map, 2211 BlockDriverState **file) 2212 { 2213 int64_t total_size; 2214 int64_t n; /* bytes */ 2215 int ret; 2216 int64_t local_map = 0; 2217 BlockDriverState *local_file = NULL; 2218 int64_t aligned_offset, aligned_bytes; 2219 uint32_t align; 2220 bool has_filtered_child; 2221 2222 assert(pnum); 2223 *pnum = 0; 2224 total_size = bdrv_getlength(bs); 2225 if (total_size < 0) { 2226 ret = total_size; 2227 goto early_out; 2228 } 2229 2230 if (offset >= total_size) { 2231 ret = BDRV_BLOCK_EOF; 2232 goto early_out; 2233 } 2234 if (!bytes) { 2235 ret = 0; 2236 goto early_out; 2237 } 2238 2239 n = total_size - offset; 2240 if (n < bytes) { 2241 bytes = n; 2242 } 2243 2244 /* Must be non-NULL or bdrv_getlength() would have failed */ 2245 assert(bs->drv); 2246 has_filtered_child = bdrv_filter_child(bs); 2247 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2248 *pnum = bytes; 2249 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2250 if (offset + bytes == total_size) { 2251 ret |= BDRV_BLOCK_EOF; 2252 } 2253 if (bs->drv->protocol_name) { 2254 ret |= BDRV_BLOCK_OFFSET_VALID; 2255 local_map = offset; 2256 local_file = bs; 2257 } 2258 goto early_out; 2259 } 2260 2261 bdrv_inc_in_flight(bs); 2262 2263 /* Round out to request_alignment boundaries */ 2264 align = bs->bl.request_alignment; 2265 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2266 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2267 2268 if (bs->drv->bdrv_co_block_status) { 2269 /* 2270 * Use the block-status cache only for protocol nodes: Format 2271 * drivers are generally quick to inquire the status, but protocol 2272 * drivers often need to get information from outside of qemu, so 2273 * we do not have control over the actual implementation. There 2274 * have been cases where inquiring the status took an unreasonably 2275 * long time, and we can do nothing in qemu to fix it. 2276 * This is especially problematic for images with large data areas, 2277 * because finding the few holes in them and giving them special 2278 * treatment does not gain much performance. Therefore, we try to 2279 * cache the last-identified data region. 2280 * 2281 * Second, limiting ourselves to protocol nodes allows us to assume 2282 * the block status for data regions to be DATA | OFFSET_VALID, and 2283 * that the host offset is the same as the guest offset. 2284 * 2285 * Note that it is possible that external writers zero parts of 2286 * the cached regions without the cache being invalidated, and so 2287 * we may report zeroes as data. This is not catastrophic, 2288 * however, because reporting zeroes as data is fine. 2289 */ 2290 if (QLIST_EMPTY(&bs->children) && 2291 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2292 { 2293 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2294 local_file = bs; 2295 local_map = aligned_offset; 2296 } else { 2297 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2298 aligned_bytes, pnum, &local_map, 2299 &local_file); 2300 2301 /* 2302 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2303 * the cache is queried above. Technically, we do not need to check 2304 * it here; the worst that can happen is that we fill the cache for 2305 * non-protocol nodes, and then it is never used. However, filling 2306 * the cache requires an RCU update, so double check here to avoid 2307 * such an update if possible. 2308 * 2309 * Check want_zero, because we only want to update the cache when we 2310 * have accurate information about what is zero and what is data. 2311 */ 2312 if (want_zero && 2313 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2314 QLIST_EMPTY(&bs->children)) 2315 { 2316 /* 2317 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2318 * returned local_map value must be the same as the offset we 2319 * have passed (aligned_offset), and local_bs must be the node 2320 * itself. 2321 * Assert this, because we follow this rule when reading from 2322 * the cache (see the `local_file = bs` and 2323 * `local_map = aligned_offset` assignments above), and the 2324 * result the cache delivers must be the same as the driver 2325 * would deliver. 2326 */ 2327 assert(local_file == bs); 2328 assert(local_map == aligned_offset); 2329 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2330 } 2331 } 2332 } else { 2333 /* Default code for filters */ 2334 2335 local_file = bdrv_filter_bs(bs); 2336 assert(local_file); 2337 2338 *pnum = aligned_bytes; 2339 local_map = aligned_offset; 2340 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2341 } 2342 if (ret < 0) { 2343 *pnum = 0; 2344 goto out; 2345 } 2346 2347 /* 2348 * The driver's result must be a non-zero multiple of request_alignment. 2349 * Clamp pnum and adjust map to original request. 2350 */ 2351 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2352 align > offset - aligned_offset); 2353 if (ret & BDRV_BLOCK_RECURSE) { 2354 assert(ret & BDRV_BLOCK_DATA); 2355 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2356 assert(!(ret & BDRV_BLOCK_ZERO)); 2357 } 2358 2359 *pnum -= offset - aligned_offset; 2360 if (*pnum > bytes) { 2361 *pnum = bytes; 2362 } 2363 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2364 local_map += offset - aligned_offset; 2365 } 2366 2367 if (ret & BDRV_BLOCK_RAW) { 2368 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2369 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2370 *pnum, pnum, &local_map, &local_file); 2371 goto out; 2372 } 2373 2374 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2375 ret |= BDRV_BLOCK_ALLOCATED; 2376 } else if (bs->drv->supports_backing) { 2377 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2378 2379 if (!cow_bs) { 2380 ret |= BDRV_BLOCK_ZERO; 2381 } else if (want_zero) { 2382 int64_t size2 = bdrv_getlength(cow_bs); 2383 2384 if (size2 >= 0 && offset >= size2) { 2385 ret |= BDRV_BLOCK_ZERO; 2386 } 2387 } 2388 } 2389 2390 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2391 local_file && local_file != bs && 2392 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2393 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2394 int64_t file_pnum; 2395 int ret2; 2396 2397 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2398 *pnum, &file_pnum, NULL, NULL); 2399 if (ret2 >= 0) { 2400 /* Ignore errors. This is just providing extra information, it 2401 * is useful but not necessary. 2402 */ 2403 if (ret2 & BDRV_BLOCK_EOF && 2404 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2405 /* 2406 * It is valid for the format block driver to read 2407 * beyond the end of the underlying file's current 2408 * size; such areas read as zero. 2409 */ 2410 ret |= BDRV_BLOCK_ZERO; 2411 } else { 2412 /* Limit request to the range reported by the protocol driver */ 2413 *pnum = file_pnum; 2414 ret |= (ret2 & BDRV_BLOCK_ZERO); 2415 } 2416 } 2417 } 2418 2419 out: 2420 bdrv_dec_in_flight(bs); 2421 if (ret >= 0 && offset + *pnum == total_size) { 2422 ret |= BDRV_BLOCK_EOF; 2423 } 2424 early_out: 2425 if (file) { 2426 *file = local_file; 2427 } 2428 if (map) { 2429 *map = local_map; 2430 } 2431 return ret; 2432 } 2433 2434 int coroutine_fn 2435 bdrv_co_common_block_status_above(BlockDriverState *bs, 2436 BlockDriverState *base, 2437 bool include_base, 2438 bool want_zero, 2439 int64_t offset, 2440 int64_t bytes, 2441 int64_t *pnum, 2442 int64_t *map, 2443 BlockDriverState **file, 2444 int *depth) 2445 { 2446 int ret; 2447 BlockDriverState *p; 2448 int64_t eof = 0; 2449 int dummy; 2450 IO_CODE(); 2451 2452 assert(!include_base || base); /* Can't include NULL base */ 2453 2454 if (!depth) { 2455 depth = &dummy; 2456 } 2457 *depth = 0; 2458 2459 if (!include_base && bs == base) { 2460 *pnum = bytes; 2461 return 0; 2462 } 2463 2464 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2465 ++*depth; 2466 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2467 return ret; 2468 } 2469 2470 if (ret & BDRV_BLOCK_EOF) { 2471 eof = offset + *pnum; 2472 } 2473 2474 assert(*pnum <= bytes); 2475 bytes = *pnum; 2476 2477 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2478 p = bdrv_filter_or_cow_bs(p)) 2479 { 2480 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2481 file); 2482 ++*depth; 2483 if (ret < 0) { 2484 return ret; 2485 } 2486 if (*pnum == 0) { 2487 /* 2488 * The top layer deferred to this layer, and because this layer is 2489 * short, any zeroes that we synthesize beyond EOF behave as if they 2490 * were allocated at this layer. 2491 * 2492 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2493 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2494 * below. 2495 */ 2496 assert(ret & BDRV_BLOCK_EOF); 2497 *pnum = bytes; 2498 if (file) { 2499 *file = p; 2500 } 2501 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2502 break; 2503 } 2504 if (ret & BDRV_BLOCK_ALLOCATED) { 2505 /* 2506 * We've found the node and the status, we must break. 2507 * 2508 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2509 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2510 * below. 2511 */ 2512 ret &= ~BDRV_BLOCK_EOF; 2513 break; 2514 } 2515 2516 if (p == base) { 2517 assert(include_base); 2518 break; 2519 } 2520 2521 /* 2522 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2523 * let's continue the diving. 2524 */ 2525 assert(*pnum <= bytes); 2526 bytes = *pnum; 2527 } 2528 2529 if (offset + *pnum == eof) { 2530 ret |= BDRV_BLOCK_EOF; 2531 } 2532 2533 return ret; 2534 } 2535 2536 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2537 BlockDriverState *base, 2538 int64_t offset, int64_t bytes, 2539 int64_t *pnum, int64_t *map, 2540 BlockDriverState **file) 2541 { 2542 IO_CODE(); 2543 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2544 bytes, pnum, map, file, NULL); 2545 } 2546 2547 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2548 int64_t offset, int64_t bytes, int64_t *pnum, 2549 int64_t *map, BlockDriverState **file) 2550 { 2551 IO_CODE(); 2552 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2553 pnum, map, file, NULL); 2554 } 2555 2556 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2557 int64_t *pnum, int64_t *map, BlockDriverState **file) 2558 { 2559 IO_CODE(); 2560 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2561 offset, bytes, pnum, map, file); 2562 } 2563 2564 /* 2565 * Check @bs (and its backing chain) to see if the range defined 2566 * by @offset and @bytes is known to read as zeroes. 2567 * Return 1 if that is the case, 0 otherwise and -errno on error. 2568 * This test is meant to be fast rather than accurate so returning 0 2569 * does not guarantee non-zero data. 2570 */ 2571 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2572 int64_t bytes) 2573 { 2574 int ret; 2575 int64_t pnum = bytes; 2576 IO_CODE(); 2577 2578 if (!bytes) { 2579 return 1; 2580 } 2581 2582 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2583 bytes, &pnum, NULL, NULL, NULL); 2584 2585 if (ret < 0) { 2586 return ret; 2587 } 2588 2589 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2590 } 2591 2592 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2593 int64_t bytes, int64_t *pnum) 2594 { 2595 int ret; 2596 int64_t dummy; 2597 IO_CODE(); 2598 2599 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2600 bytes, pnum ? pnum : &dummy, NULL, 2601 NULL, NULL); 2602 if (ret < 0) { 2603 return ret; 2604 } 2605 return !!(ret & BDRV_BLOCK_ALLOCATED); 2606 } 2607 2608 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2609 int64_t *pnum) 2610 { 2611 int ret; 2612 int64_t dummy; 2613 IO_CODE(); 2614 2615 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2616 bytes, pnum ? pnum : &dummy, NULL, 2617 NULL, NULL); 2618 if (ret < 0) { 2619 return ret; 2620 } 2621 return !!(ret & BDRV_BLOCK_ALLOCATED); 2622 } 2623 2624 /* See bdrv_is_allocated_above for documentation */ 2625 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2626 BlockDriverState *base, 2627 bool include_base, int64_t offset, 2628 int64_t bytes, int64_t *pnum) 2629 { 2630 int depth; 2631 int ret; 2632 IO_CODE(); 2633 2634 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2635 offset, bytes, pnum, NULL, NULL, 2636 &depth); 2637 if (ret < 0) { 2638 return ret; 2639 } 2640 2641 if (ret & BDRV_BLOCK_ALLOCATED) { 2642 return depth; 2643 } 2644 return 0; 2645 } 2646 2647 /* 2648 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2649 * 2650 * Return a positive depth if (a prefix of) the given range is allocated 2651 * in any image between BASE and TOP (BASE is only included if include_base 2652 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2653 * BASE can be NULL to check if the given offset is allocated in any 2654 * image of the chain. Return 0 otherwise, or negative errno on 2655 * failure. 2656 * 2657 * 'pnum' is set to the number of bytes (including and immediately 2658 * following the specified offset) that are known to be in the same 2659 * allocated/unallocated state. Note that a subsequent call starting 2660 * at 'offset + *pnum' may return the same allocation status (in other 2661 * words, the result is not necessarily the maximum possible range); 2662 * but 'pnum' will only be 0 when end of file is reached. 2663 */ 2664 int bdrv_is_allocated_above(BlockDriverState *top, 2665 BlockDriverState *base, 2666 bool include_base, int64_t offset, 2667 int64_t bytes, int64_t *pnum) 2668 { 2669 int depth; 2670 int ret; 2671 IO_CODE(); 2672 2673 ret = bdrv_common_block_status_above(top, base, include_base, false, 2674 offset, bytes, pnum, NULL, NULL, 2675 &depth); 2676 if (ret < 0) { 2677 return ret; 2678 } 2679 2680 if (ret & BDRV_BLOCK_ALLOCATED) { 2681 return depth; 2682 } 2683 return 0; 2684 } 2685 2686 int coroutine_fn 2687 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2688 { 2689 BlockDriver *drv = bs->drv; 2690 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2691 int ret; 2692 IO_CODE(); 2693 2694 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2695 if (ret < 0) { 2696 return ret; 2697 } 2698 2699 if (!drv) { 2700 return -ENOMEDIUM; 2701 } 2702 2703 bdrv_inc_in_flight(bs); 2704 2705 if (drv->bdrv_load_vmstate) { 2706 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2707 } else if (child_bs) { 2708 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2709 } else { 2710 ret = -ENOTSUP; 2711 } 2712 2713 bdrv_dec_in_flight(bs); 2714 2715 return ret; 2716 } 2717 2718 int coroutine_fn 2719 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2720 { 2721 BlockDriver *drv = bs->drv; 2722 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2723 int ret; 2724 IO_CODE(); 2725 2726 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2727 if (ret < 0) { 2728 return ret; 2729 } 2730 2731 if (!drv) { 2732 return -ENOMEDIUM; 2733 } 2734 2735 bdrv_inc_in_flight(bs); 2736 2737 if (drv->bdrv_save_vmstate) { 2738 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2739 } else if (child_bs) { 2740 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2741 } else { 2742 ret = -ENOTSUP; 2743 } 2744 2745 bdrv_dec_in_flight(bs); 2746 2747 return ret; 2748 } 2749 2750 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2751 int64_t pos, int size) 2752 { 2753 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2754 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2755 IO_CODE(); 2756 2757 return ret < 0 ? ret : size; 2758 } 2759 2760 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2761 int64_t pos, int size) 2762 { 2763 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2764 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2765 IO_CODE(); 2766 2767 return ret < 0 ? ret : size; 2768 } 2769 2770 /**************************************************************/ 2771 /* async I/Os */ 2772 2773 void bdrv_aio_cancel(BlockAIOCB *acb) 2774 { 2775 IO_CODE(); 2776 qemu_aio_ref(acb); 2777 bdrv_aio_cancel_async(acb); 2778 while (acb->refcnt > 1) { 2779 if (acb->aiocb_info->get_aio_context) { 2780 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2781 } else if (acb->bs) { 2782 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2783 * assert that we're not using an I/O thread. Thread-safe 2784 * code should use bdrv_aio_cancel_async exclusively. 2785 */ 2786 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2787 aio_poll(bdrv_get_aio_context(acb->bs), true); 2788 } else { 2789 abort(); 2790 } 2791 } 2792 qemu_aio_unref(acb); 2793 } 2794 2795 /* Async version of aio cancel. The caller is not blocked if the acb implements 2796 * cancel_async, otherwise we do nothing and let the request normally complete. 2797 * In either case the completion callback must be called. */ 2798 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2799 { 2800 IO_CODE(); 2801 if (acb->aiocb_info->cancel_async) { 2802 acb->aiocb_info->cancel_async(acb); 2803 } 2804 } 2805 2806 /**************************************************************/ 2807 /* Coroutine block device emulation */ 2808 2809 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2810 { 2811 BdrvChild *primary_child = bdrv_primary_child(bs); 2812 BdrvChild *child; 2813 int current_gen; 2814 int ret = 0; 2815 IO_CODE(); 2816 2817 bdrv_inc_in_flight(bs); 2818 2819 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2820 bdrv_is_sg(bs)) { 2821 goto early_exit; 2822 } 2823 2824 qemu_co_mutex_lock(&bs->reqs_lock); 2825 current_gen = qatomic_read(&bs->write_gen); 2826 2827 /* Wait until any previous flushes are completed */ 2828 while (bs->active_flush_req) { 2829 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2830 } 2831 2832 /* Flushes reach this point in nondecreasing current_gen order. */ 2833 bs->active_flush_req = true; 2834 qemu_co_mutex_unlock(&bs->reqs_lock); 2835 2836 /* Write back all layers by calling one driver function */ 2837 if (bs->drv->bdrv_co_flush) { 2838 ret = bs->drv->bdrv_co_flush(bs); 2839 goto out; 2840 } 2841 2842 /* Write back cached data to the OS even with cache=unsafe */ 2843 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2844 if (bs->drv->bdrv_co_flush_to_os) { 2845 ret = bs->drv->bdrv_co_flush_to_os(bs); 2846 if (ret < 0) { 2847 goto out; 2848 } 2849 } 2850 2851 /* But don't actually force it to the disk with cache=unsafe */ 2852 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2853 goto flush_children; 2854 } 2855 2856 /* Check if we really need to flush anything */ 2857 if (bs->flushed_gen == current_gen) { 2858 goto flush_children; 2859 } 2860 2861 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2862 if (!bs->drv) { 2863 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2864 * (even in case of apparent success) */ 2865 ret = -ENOMEDIUM; 2866 goto out; 2867 } 2868 if (bs->drv->bdrv_co_flush_to_disk) { 2869 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2870 } else if (bs->drv->bdrv_aio_flush) { 2871 BlockAIOCB *acb; 2872 CoroutineIOCompletion co = { 2873 .coroutine = qemu_coroutine_self(), 2874 }; 2875 2876 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2877 if (acb == NULL) { 2878 ret = -EIO; 2879 } else { 2880 qemu_coroutine_yield(); 2881 ret = co.ret; 2882 } 2883 } else { 2884 /* 2885 * Some block drivers always operate in either writethrough or unsafe 2886 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2887 * know how the server works (because the behaviour is hardcoded or 2888 * depends on server-side configuration), so we can't ensure that 2889 * everything is safe on disk. Returning an error doesn't work because 2890 * that would break guests even if the server operates in writethrough 2891 * mode. 2892 * 2893 * Let's hope the user knows what he's doing. 2894 */ 2895 ret = 0; 2896 } 2897 2898 if (ret < 0) { 2899 goto out; 2900 } 2901 2902 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2903 * in the case of cache=unsafe, so there are no useless flushes. 2904 */ 2905 flush_children: 2906 ret = 0; 2907 QLIST_FOREACH(child, &bs->children, next) { 2908 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2909 int this_child_ret = bdrv_co_flush(child->bs); 2910 if (!ret) { 2911 ret = this_child_ret; 2912 } 2913 } 2914 } 2915 2916 out: 2917 /* Notify any pending flushes that we have completed */ 2918 if (ret == 0) { 2919 bs->flushed_gen = current_gen; 2920 } 2921 2922 qemu_co_mutex_lock(&bs->reqs_lock); 2923 bs->active_flush_req = false; 2924 /* Return value is ignored - it's ok if wait queue is empty */ 2925 qemu_co_queue_next(&bs->flush_queue); 2926 qemu_co_mutex_unlock(&bs->reqs_lock); 2927 2928 early_exit: 2929 bdrv_dec_in_flight(bs); 2930 return ret; 2931 } 2932 2933 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2934 int64_t bytes) 2935 { 2936 BdrvTrackedRequest req; 2937 int ret; 2938 int64_t max_pdiscard; 2939 int head, tail, align; 2940 BlockDriverState *bs = child->bs; 2941 IO_CODE(); 2942 2943 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2944 return -ENOMEDIUM; 2945 } 2946 2947 if (bdrv_has_readonly_bitmaps(bs)) { 2948 return -EPERM; 2949 } 2950 2951 ret = bdrv_check_request(offset, bytes, NULL); 2952 if (ret < 0) { 2953 return ret; 2954 } 2955 2956 /* Do nothing if disabled. */ 2957 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2958 return 0; 2959 } 2960 2961 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2962 return 0; 2963 } 2964 2965 /* Invalidate the cached block-status data range if this discard overlaps */ 2966 bdrv_bsc_invalidate_range(bs, offset, bytes); 2967 2968 /* Discard is advisory, but some devices track and coalesce 2969 * unaligned requests, so we must pass everything down rather than 2970 * round here. Still, most devices will just silently ignore 2971 * unaligned requests (by returning -ENOTSUP), so we must fragment 2972 * the request accordingly. */ 2973 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2974 assert(align % bs->bl.request_alignment == 0); 2975 head = offset % align; 2976 tail = (offset + bytes) % align; 2977 2978 bdrv_inc_in_flight(bs); 2979 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2980 2981 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2982 if (ret < 0) { 2983 goto out; 2984 } 2985 2986 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 2987 align); 2988 assert(max_pdiscard >= bs->bl.request_alignment); 2989 2990 while (bytes > 0) { 2991 int64_t num = bytes; 2992 2993 if (head) { 2994 /* Make small requests to get to alignment boundaries. */ 2995 num = MIN(bytes, align - head); 2996 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2997 num %= bs->bl.request_alignment; 2998 } 2999 head = (head + num) % align; 3000 assert(num < max_pdiscard); 3001 } else if (tail) { 3002 if (num > align) { 3003 /* Shorten the request to the last aligned cluster. */ 3004 num -= tail; 3005 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3006 tail > bs->bl.request_alignment) { 3007 tail %= bs->bl.request_alignment; 3008 num -= tail; 3009 } 3010 } 3011 /* limit request size */ 3012 if (num > max_pdiscard) { 3013 num = max_pdiscard; 3014 } 3015 3016 if (!bs->drv) { 3017 ret = -ENOMEDIUM; 3018 goto out; 3019 } 3020 if (bs->drv->bdrv_co_pdiscard) { 3021 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3022 } else { 3023 BlockAIOCB *acb; 3024 CoroutineIOCompletion co = { 3025 .coroutine = qemu_coroutine_self(), 3026 }; 3027 3028 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3029 bdrv_co_io_em_complete, &co); 3030 if (acb == NULL) { 3031 ret = -EIO; 3032 goto out; 3033 } else { 3034 qemu_coroutine_yield(); 3035 ret = co.ret; 3036 } 3037 } 3038 if (ret && ret != -ENOTSUP) { 3039 goto out; 3040 } 3041 3042 offset += num; 3043 bytes -= num; 3044 } 3045 ret = 0; 3046 out: 3047 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3048 tracked_request_end(&req); 3049 bdrv_dec_in_flight(bs); 3050 return ret; 3051 } 3052 3053 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3054 { 3055 BlockDriver *drv = bs->drv; 3056 CoroutineIOCompletion co = { 3057 .coroutine = qemu_coroutine_self(), 3058 }; 3059 BlockAIOCB *acb; 3060 IO_CODE(); 3061 3062 bdrv_inc_in_flight(bs); 3063 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3064 co.ret = -ENOTSUP; 3065 goto out; 3066 } 3067 3068 if (drv->bdrv_co_ioctl) { 3069 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3070 } else { 3071 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3072 if (!acb) { 3073 co.ret = -ENOTSUP; 3074 goto out; 3075 } 3076 qemu_coroutine_yield(); 3077 } 3078 out: 3079 bdrv_dec_in_flight(bs); 3080 return co.ret; 3081 } 3082 3083 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3084 { 3085 IO_CODE(); 3086 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3087 } 3088 3089 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3090 { 3091 IO_CODE(); 3092 return memset(qemu_blockalign(bs, size), 0, size); 3093 } 3094 3095 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3096 { 3097 size_t align = bdrv_opt_mem_align(bs); 3098 IO_CODE(); 3099 3100 /* Ensure that NULL is never returned on success */ 3101 assert(align > 0); 3102 if (size == 0) { 3103 size = align; 3104 } 3105 3106 return qemu_try_memalign(align, size); 3107 } 3108 3109 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3110 { 3111 void *mem = qemu_try_blockalign(bs, size); 3112 IO_CODE(); 3113 3114 if (mem) { 3115 memset(mem, 0, size); 3116 } 3117 3118 return mem; 3119 } 3120 3121 void bdrv_io_plug(BlockDriverState *bs) 3122 { 3123 BdrvChild *child; 3124 IO_CODE(); 3125 3126 QLIST_FOREACH(child, &bs->children, next) { 3127 bdrv_io_plug(child->bs); 3128 } 3129 3130 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3131 BlockDriver *drv = bs->drv; 3132 if (drv && drv->bdrv_io_plug) { 3133 drv->bdrv_io_plug(bs); 3134 } 3135 } 3136 } 3137 3138 void bdrv_io_unplug(BlockDriverState *bs) 3139 { 3140 BdrvChild *child; 3141 IO_CODE(); 3142 3143 assert(bs->io_plugged); 3144 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3145 BlockDriver *drv = bs->drv; 3146 if (drv && drv->bdrv_io_unplug) { 3147 drv->bdrv_io_unplug(bs); 3148 } 3149 } 3150 3151 QLIST_FOREACH(child, &bs->children, next) { 3152 bdrv_io_unplug(child->bs); 3153 } 3154 } 3155 3156 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3157 static void bdrv_register_buf_rollback(BlockDriverState *bs, 3158 void *host, 3159 size_t size, 3160 BdrvChild *final_child) 3161 { 3162 BdrvChild *child; 3163 3164 QLIST_FOREACH(child, &bs->children, next) { 3165 if (child == final_child) { 3166 break; 3167 } 3168 3169 bdrv_unregister_buf(child->bs, host, size); 3170 } 3171 3172 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3173 bs->drv->bdrv_unregister_buf(bs, host, size); 3174 } 3175 } 3176 3177 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3178 Error **errp) 3179 { 3180 BdrvChild *child; 3181 3182 GLOBAL_STATE_CODE(); 3183 if (bs->drv && bs->drv->bdrv_register_buf) { 3184 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3185 return false; 3186 } 3187 } 3188 QLIST_FOREACH(child, &bs->children, next) { 3189 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3190 bdrv_register_buf_rollback(bs, host, size, child); 3191 return false; 3192 } 3193 } 3194 return true; 3195 } 3196 3197 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3198 { 3199 BdrvChild *child; 3200 3201 GLOBAL_STATE_CODE(); 3202 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3203 bs->drv->bdrv_unregister_buf(bs, host, size); 3204 } 3205 QLIST_FOREACH(child, &bs->children, next) { 3206 bdrv_unregister_buf(child->bs, host, size); 3207 } 3208 } 3209 3210 static int coroutine_fn bdrv_co_copy_range_internal( 3211 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3212 int64_t dst_offset, int64_t bytes, 3213 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3214 bool recurse_src) 3215 { 3216 BdrvTrackedRequest req; 3217 int ret; 3218 3219 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3220 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3221 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3222 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3223 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3224 3225 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3226 return -ENOMEDIUM; 3227 } 3228 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3229 if (ret) { 3230 return ret; 3231 } 3232 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3233 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3234 } 3235 3236 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3237 return -ENOMEDIUM; 3238 } 3239 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3240 if (ret) { 3241 return ret; 3242 } 3243 3244 if (!src->bs->drv->bdrv_co_copy_range_from 3245 || !dst->bs->drv->bdrv_co_copy_range_to 3246 || src->bs->encrypted || dst->bs->encrypted) { 3247 return -ENOTSUP; 3248 } 3249 3250 if (recurse_src) { 3251 bdrv_inc_in_flight(src->bs); 3252 tracked_request_begin(&req, src->bs, src_offset, bytes, 3253 BDRV_TRACKED_READ); 3254 3255 /* BDRV_REQ_SERIALISING is only for write operation */ 3256 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3257 bdrv_wait_serialising_requests(&req); 3258 3259 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3260 src, src_offset, 3261 dst, dst_offset, 3262 bytes, 3263 read_flags, write_flags); 3264 3265 tracked_request_end(&req); 3266 bdrv_dec_in_flight(src->bs); 3267 } else { 3268 bdrv_inc_in_flight(dst->bs); 3269 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3270 BDRV_TRACKED_WRITE); 3271 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3272 write_flags); 3273 if (!ret) { 3274 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3275 src, src_offset, 3276 dst, dst_offset, 3277 bytes, 3278 read_flags, write_flags); 3279 } 3280 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3281 tracked_request_end(&req); 3282 bdrv_dec_in_flight(dst->bs); 3283 } 3284 3285 return ret; 3286 } 3287 3288 /* Copy range from @src to @dst. 3289 * 3290 * See the comment of bdrv_co_copy_range for the parameter and return value 3291 * semantics. */ 3292 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3293 BdrvChild *dst, int64_t dst_offset, 3294 int64_t bytes, 3295 BdrvRequestFlags read_flags, 3296 BdrvRequestFlags write_flags) 3297 { 3298 IO_CODE(); 3299 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3300 read_flags, write_flags); 3301 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3302 bytes, read_flags, write_flags, true); 3303 } 3304 3305 /* Copy range from @src to @dst. 3306 * 3307 * See the comment of bdrv_co_copy_range for the parameter and return value 3308 * semantics. */ 3309 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3310 BdrvChild *dst, int64_t dst_offset, 3311 int64_t bytes, 3312 BdrvRequestFlags read_flags, 3313 BdrvRequestFlags write_flags) 3314 { 3315 IO_CODE(); 3316 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3317 read_flags, write_flags); 3318 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3319 bytes, read_flags, write_flags, false); 3320 } 3321 3322 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3323 BdrvChild *dst, int64_t dst_offset, 3324 int64_t bytes, BdrvRequestFlags read_flags, 3325 BdrvRequestFlags write_flags) 3326 { 3327 IO_CODE(); 3328 return bdrv_co_copy_range_from(src, src_offset, 3329 dst, dst_offset, 3330 bytes, read_flags, write_flags); 3331 } 3332 3333 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3334 { 3335 BdrvChild *c; 3336 QLIST_FOREACH(c, &bs->parents, next_parent) { 3337 if (c->klass->resize) { 3338 c->klass->resize(c); 3339 } 3340 } 3341 } 3342 3343 /** 3344 * Truncate file to 'offset' bytes (needed only for file protocols) 3345 * 3346 * If 'exact' is true, the file must be resized to exactly the given 3347 * 'offset'. Otherwise, it is sufficient for the node to be at least 3348 * 'offset' bytes in length. 3349 */ 3350 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3351 PreallocMode prealloc, BdrvRequestFlags flags, 3352 Error **errp) 3353 { 3354 BlockDriverState *bs = child->bs; 3355 BdrvChild *filtered, *backing; 3356 BlockDriver *drv = bs->drv; 3357 BdrvTrackedRequest req; 3358 int64_t old_size, new_bytes; 3359 int ret; 3360 IO_CODE(); 3361 3362 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3363 if (!drv) { 3364 error_setg(errp, "No medium inserted"); 3365 return -ENOMEDIUM; 3366 } 3367 if (offset < 0) { 3368 error_setg(errp, "Image size cannot be negative"); 3369 return -EINVAL; 3370 } 3371 3372 ret = bdrv_check_request(offset, 0, errp); 3373 if (ret < 0) { 3374 return ret; 3375 } 3376 3377 old_size = bdrv_getlength(bs); 3378 if (old_size < 0) { 3379 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3380 return old_size; 3381 } 3382 3383 if (bdrv_is_read_only(bs)) { 3384 error_setg(errp, "Image is read-only"); 3385 return -EACCES; 3386 } 3387 3388 if (offset > old_size) { 3389 new_bytes = offset - old_size; 3390 } else { 3391 new_bytes = 0; 3392 } 3393 3394 bdrv_inc_in_flight(bs); 3395 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3396 BDRV_TRACKED_TRUNCATE); 3397 3398 /* If we are growing the image and potentially using preallocation for the 3399 * new area, we need to make sure that no write requests are made to it 3400 * concurrently or they might be overwritten by preallocation. */ 3401 if (new_bytes) { 3402 bdrv_make_request_serialising(&req, 1); 3403 } 3404 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3405 0); 3406 if (ret < 0) { 3407 error_setg_errno(errp, -ret, 3408 "Failed to prepare request for truncation"); 3409 goto out; 3410 } 3411 3412 filtered = bdrv_filter_child(bs); 3413 backing = bdrv_cow_child(bs); 3414 3415 /* 3416 * If the image has a backing file that is large enough that it would 3417 * provide data for the new area, we cannot leave it unallocated because 3418 * then the backing file content would become visible. Instead, zero-fill 3419 * the new area. 3420 * 3421 * Note that if the image has a backing file, but was opened without the 3422 * backing file, taking care of keeping things consistent with that backing 3423 * file is the user's responsibility. 3424 */ 3425 if (new_bytes && backing) { 3426 int64_t backing_len; 3427 3428 backing_len = bdrv_getlength(backing->bs); 3429 if (backing_len < 0) { 3430 ret = backing_len; 3431 error_setg_errno(errp, -ret, "Could not get backing file size"); 3432 goto out; 3433 } 3434 3435 if (backing_len > old_size) { 3436 flags |= BDRV_REQ_ZERO_WRITE; 3437 } 3438 } 3439 3440 if (drv->bdrv_co_truncate) { 3441 if (flags & ~bs->supported_truncate_flags) { 3442 error_setg(errp, "Block driver does not support requested flags"); 3443 ret = -ENOTSUP; 3444 goto out; 3445 } 3446 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3447 } else if (filtered) { 3448 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3449 } else { 3450 error_setg(errp, "Image format driver does not support resize"); 3451 ret = -ENOTSUP; 3452 goto out; 3453 } 3454 if (ret < 0) { 3455 goto out; 3456 } 3457 3458 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3459 if (ret < 0) { 3460 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3461 } else { 3462 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3463 } 3464 /* It's possible that truncation succeeded but refresh_total_sectors 3465 * failed, but the latter doesn't affect how we should finish the request. 3466 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3467 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3468 3469 out: 3470 tracked_request_end(&req); 3471 bdrv_dec_in_flight(bs); 3472 3473 return ret; 3474 } 3475 3476 void bdrv_cancel_in_flight(BlockDriverState *bs) 3477 { 3478 GLOBAL_STATE_CODE(); 3479 if (!bs || !bs->drv) { 3480 return; 3481 } 3482 3483 if (bs->drv->bdrv_cancel_in_flight) { 3484 bs->drv->bdrv_cancel_in_flight(bs); 3485 } 3486 } 3487 3488 int coroutine_fn 3489 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3490 QEMUIOVector *qiov, size_t qiov_offset) 3491 { 3492 BlockDriverState *bs = child->bs; 3493 BlockDriver *drv = bs->drv; 3494 int ret; 3495 IO_CODE(); 3496 3497 if (!drv) { 3498 return -ENOMEDIUM; 3499 } 3500 3501 if (!drv->bdrv_co_preadv_snapshot) { 3502 return -ENOTSUP; 3503 } 3504 3505 bdrv_inc_in_flight(bs); 3506 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3507 bdrv_dec_in_flight(bs); 3508 3509 return ret; 3510 } 3511 3512 int coroutine_fn 3513 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3514 bool want_zero, int64_t offset, int64_t bytes, 3515 int64_t *pnum, int64_t *map, 3516 BlockDriverState **file) 3517 { 3518 BlockDriver *drv = bs->drv; 3519 int ret; 3520 IO_CODE(); 3521 3522 if (!drv) { 3523 return -ENOMEDIUM; 3524 } 3525 3526 if (!drv->bdrv_co_snapshot_block_status) { 3527 return -ENOTSUP; 3528 } 3529 3530 bdrv_inc_in_flight(bs); 3531 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3532 pnum, map, file); 3533 bdrv_dec_in_flight(bs); 3534 3535 return ret; 3536 } 3537 3538 int coroutine_fn 3539 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3540 { 3541 BlockDriver *drv = bs->drv; 3542 int ret; 3543 IO_CODE(); 3544 3545 if (!drv) { 3546 return -ENOMEDIUM; 3547 } 3548 3549 if (!drv->bdrv_co_pdiscard_snapshot) { 3550 return -ENOTSUP; 3551 } 3552 3553 bdrv_inc_in_flight(bs); 3554 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3555 bdrv_dec_in_flight(bs); 3556 3557 return ret; 3558 } 3559