1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/blockjob_int.h" 30 #include "block/block_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 36 37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 39 40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 41 int64_t offset, int bytes, BdrvRequestFlags flags); 42 43 void bdrv_parent_drained_begin(BlockDriverState *bs) 44 { 45 BdrvChild *c; 46 47 QLIST_FOREACH(c, &bs->parents, next_parent) { 48 if (c->role->drained_begin) { 49 c->role->drained_begin(c); 50 } 51 } 52 } 53 54 void bdrv_parent_drained_end(BlockDriverState *bs) 55 { 56 BdrvChild *c; 57 58 QLIST_FOREACH(c, &bs->parents, next_parent) { 59 if (c->role->drained_end) { 60 c->role->drained_end(c); 61 } 62 } 63 } 64 65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 66 { 67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 70 src->opt_mem_alignment); 71 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 72 src->min_mem_alignment); 73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 74 } 75 76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 77 { 78 BlockDriver *drv = bs->drv; 79 Error *local_err = NULL; 80 81 memset(&bs->bl, 0, sizeof(bs->bl)); 82 83 if (!drv) { 84 return; 85 } 86 87 /* Default alignment based on whether driver has byte interface */ 88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 89 90 /* Take some limits from the children as a default */ 91 if (bs->file) { 92 bdrv_refresh_limits(bs->file->bs, &local_err); 93 if (local_err) { 94 error_propagate(errp, local_err); 95 return; 96 } 97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 98 } else { 99 bs->bl.min_mem_alignment = 512; 100 bs->bl.opt_mem_alignment = getpagesize(); 101 102 /* Safe default since most protocols use readv()/writev()/etc */ 103 bs->bl.max_iov = IOV_MAX; 104 } 105 106 if (bs->backing) { 107 bdrv_refresh_limits(bs->backing->bs, &local_err); 108 if (local_err) { 109 error_propagate(errp, local_err); 110 return; 111 } 112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 113 } 114 115 /* Then let the driver override it */ 116 if (drv->bdrv_refresh_limits) { 117 drv->bdrv_refresh_limits(bs, errp); 118 } 119 } 120 121 /** 122 * The copy-on-read flag is actually a reference count so multiple users may 123 * use the feature without worrying about clobbering its previous state. 124 * Copy-on-read stays enabled until all users have called to disable it. 125 */ 126 void bdrv_enable_copy_on_read(BlockDriverState *bs) 127 { 128 atomic_inc(&bs->copy_on_read); 129 } 130 131 void bdrv_disable_copy_on_read(BlockDriverState *bs) 132 { 133 int old = atomic_fetch_dec(&bs->copy_on_read); 134 assert(old >= 1); 135 } 136 137 /* Check if any requests are in-flight (including throttled requests) */ 138 bool bdrv_requests_pending(BlockDriverState *bs) 139 { 140 BdrvChild *child; 141 142 if (atomic_read(&bs->in_flight)) { 143 return true; 144 } 145 146 QLIST_FOREACH(child, &bs->children, next) { 147 if (bdrv_requests_pending(child->bs)) { 148 return true; 149 } 150 } 151 152 return false; 153 } 154 155 typedef struct { 156 Coroutine *co; 157 BlockDriverState *bs; 158 bool done; 159 bool begin; 160 } BdrvCoDrainData; 161 162 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 163 { 164 BdrvCoDrainData *data = opaque; 165 BlockDriverState *bs = data->bs; 166 167 if (data->begin) { 168 bs->drv->bdrv_co_drain_begin(bs); 169 } else { 170 bs->drv->bdrv_co_drain_end(bs); 171 } 172 173 /* Set data->done before reading bs->wakeup. */ 174 atomic_mb_set(&data->done, true); 175 bdrv_wakeup(bs); 176 } 177 178 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin) 179 { 180 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin}; 181 182 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 183 (!begin && !bs->drv->bdrv_co_drain_end)) { 184 return; 185 } 186 187 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); 188 bdrv_coroutine_enter(bs, data.co); 189 BDRV_POLL_WHILE(bs, !data.done); 190 } 191 192 static bool bdrv_drain_recurse(BlockDriverState *bs, bool begin) 193 { 194 BdrvChild *child, *tmp; 195 bool waited; 196 197 /* Ensure any pending metadata writes are submitted to bs->file. */ 198 bdrv_drain_invoke(bs, begin); 199 200 /* Wait for drained requests to finish */ 201 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); 202 203 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { 204 BlockDriverState *bs = child->bs; 205 bool in_main_loop = 206 qemu_get_current_aio_context() == qemu_get_aio_context(); 207 assert(bs->refcnt > 0); 208 if (in_main_loop) { 209 /* In case the recursive bdrv_drain_recurse processes a 210 * block_job_defer_to_main_loop BH and modifies the graph, 211 * let's hold a reference to bs until we are done. 212 * 213 * IOThread doesn't have such a BH, and it is not safe to call 214 * bdrv_unref without BQL, so skip doing it there. 215 */ 216 bdrv_ref(bs); 217 } 218 waited |= bdrv_drain_recurse(bs, begin); 219 if (in_main_loop) { 220 bdrv_unref(bs); 221 } 222 } 223 224 return waited; 225 } 226 227 static void bdrv_co_drain_bh_cb(void *opaque) 228 { 229 BdrvCoDrainData *data = opaque; 230 Coroutine *co = data->co; 231 BlockDriverState *bs = data->bs; 232 233 bdrv_dec_in_flight(bs); 234 if (data->begin) { 235 bdrv_drained_begin(bs); 236 } else { 237 bdrv_drained_end(bs); 238 } 239 240 data->done = true; 241 aio_co_wake(co); 242 } 243 244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 245 bool begin) 246 { 247 BdrvCoDrainData data; 248 249 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 250 * other coroutines run if they were queued from 251 * qemu_co_queue_run_restart(). */ 252 253 assert(qemu_in_coroutine()); 254 data = (BdrvCoDrainData) { 255 .co = qemu_coroutine_self(), 256 .bs = bs, 257 .done = false, 258 .begin = begin, 259 }; 260 bdrv_inc_in_flight(bs); 261 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 262 bdrv_co_drain_bh_cb, &data); 263 264 qemu_coroutine_yield(); 265 /* If we are resumed from some other event (such as an aio completion or a 266 * timer callback), it is a bug in the caller that should be fixed. */ 267 assert(data.done); 268 } 269 270 void bdrv_drained_begin(BlockDriverState *bs) 271 { 272 if (qemu_in_coroutine()) { 273 bdrv_co_yield_to_drain(bs, true); 274 return; 275 } 276 277 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 278 aio_disable_external(bdrv_get_aio_context(bs)); 279 bdrv_parent_drained_begin(bs); 280 } 281 282 bdrv_drain_recurse(bs, true); 283 } 284 285 void bdrv_drained_end(BlockDriverState *bs) 286 { 287 if (qemu_in_coroutine()) { 288 bdrv_co_yield_to_drain(bs, false); 289 return; 290 } 291 assert(bs->quiesce_counter > 0); 292 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) { 293 return; 294 } 295 296 bdrv_parent_drained_end(bs); 297 bdrv_drain_recurse(bs, false); 298 aio_enable_external(bdrv_get_aio_context(bs)); 299 } 300 301 /* 302 * Wait for pending requests to complete on a single BlockDriverState subtree, 303 * and suspend block driver's internal I/O until next request arrives. 304 * 305 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 306 * AioContext. 307 * 308 * Only this BlockDriverState's AioContext is run, so in-flight requests must 309 * not depend on events in other AioContexts. In that case, use 310 * bdrv_drain_all() instead. 311 */ 312 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 313 { 314 assert(qemu_in_coroutine()); 315 bdrv_drained_begin(bs); 316 bdrv_drained_end(bs); 317 } 318 319 void bdrv_drain(BlockDriverState *bs) 320 { 321 bdrv_drained_begin(bs); 322 bdrv_drained_end(bs); 323 } 324 325 /* 326 * Wait for pending requests to complete across all BlockDriverStates 327 * 328 * This function does not flush data to disk, use bdrv_flush_all() for that 329 * after calling this function. 330 * 331 * This pauses all block jobs and disables external clients. It must 332 * be paired with bdrv_drain_all_end(). 333 * 334 * NOTE: no new block jobs or BlockDriverStates can be created between 335 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 336 */ 337 void bdrv_drain_all_begin(void) 338 { 339 /* Always run first iteration so any pending completion BHs run */ 340 bool waited = true; 341 BlockDriverState *bs; 342 BdrvNextIterator it; 343 GSList *aio_ctxs = NULL, *ctx; 344 345 block_job_pause_all(); 346 347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 348 AioContext *aio_context = bdrv_get_aio_context(bs); 349 350 aio_context_acquire(aio_context); 351 bdrv_parent_drained_begin(bs); 352 aio_disable_external(aio_context); 353 aio_context_release(aio_context); 354 355 if (!g_slist_find(aio_ctxs, aio_context)) { 356 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 357 } 358 } 359 360 /* Note that completion of an asynchronous I/O operation can trigger any 361 * number of other I/O operations on other devices---for example a 362 * coroutine can submit an I/O request to another device in response to 363 * request completion. Therefore we must keep looping until there was no 364 * more activity rather than simply draining each device independently. 365 */ 366 while (waited) { 367 waited = false; 368 369 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 370 AioContext *aio_context = ctx->data; 371 372 aio_context_acquire(aio_context); 373 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 374 if (aio_context == bdrv_get_aio_context(bs)) { 375 waited |= bdrv_drain_recurse(bs, true); 376 } 377 } 378 aio_context_release(aio_context); 379 } 380 } 381 382 g_slist_free(aio_ctxs); 383 } 384 385 void bdrv_drain_all_end(void) 386 { 387 BlockDriverState *bs; 388 BdrvNextIterator it; 389 390 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 391 AioContext *aio_context = bdrv_get_aio_context(bs); 392 393 aio_context_acquire(aio_context); 394 aio_enable_external(aio_context); 395 bdrv_parent_drained_end(bs); 396 bdrv_drain_recurse(bs, false); 397 aio_context_release(aio_context); 398 } 399 400 block_job_resume_all(); 401 } 402 403 void bdrv_drain_all(void) 404 { 405 bdrv_drain_all_begin(); 406 bdrv_drain_all_end(); 407 } 408 409 /** 410 * Remove an active request from the tracked requests list 411 * 412 * This function should be called when a tracked request is completing. 413 */ 414 static void tracked_request_end(BdrvTrackedRequest *req) 415 { 416 if (req->serialising) { 417 atomic_dec(&req->bs->serialising_in_flight); 418 } 419 420 qemu_co_mutex_lock(&req->bs->reqs_lock); 421 QLIST_REMOVE(req, list); 422 qemu_co_queue_restart_all(&req->wait_queue); 423 qemu_co_mutex_unlock(&req->bs->reqs_lock); 424 } 425 426 /** 427 * Add an active request to the tracked requests list 428 */ 429 static void tracked_request_begin(BdrvTrackedRequest *req, 430 BlockDriverState *bs, 431 int64_t offset, 432 unsigned int bytes, 433 enum BdrvTrackedRequestType type) 434 { 435 *req = (BdrvTrackedRequest){ 436 .bs = bs, 437 .offset = offset, 438 .bytes = bytes, 439 .type = type, 440 .co = qemu_coroutine_self(), 441 .serialising = false, 442 .overlap_offset = offset, 443 .overlap_bytes = bytes, 444 }; 445 446 qemu_co_queue_init(&req->wait_queue); 447 448 qemu_co_mutex_lock(&bs->reqs_lock); 449 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 450 qemu_co_mutex_unlock(&bs->reqs_lock); 451 } 452 453 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 454 { 455 int64_t overlap_offset = req->offset & ~(align - 1); 456 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 457 - overlap_offset; 458 459 if (!req->serialising) { 460 atomic_inc(&req->bs->serialising_in_flight); 461 req->serialising = true; 462 } 463 464 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 465 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 466 } 467 468 /** 469 * Round a region to cluster boundaries 470 */ 471 void bdrv_round_to_clusters(BlockDriverState *bs, 472 int64_t offset, int64_t bytes, 473 int64_t *cluster_offset, 474 int64_t *cluster_bytes) 475 { 476 BlockDriverInfo bdi; 477 478 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 479 *cluster_offset = offset; 480 *cluster_bytes = bytes; 481 } else { 482 int64_t c = bdi.cluster_size; 483 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 484 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 485 } 486 } 487 488 static int bdrv_get_cluster_size(BlockDriverState *bs) 489 { 490 BlockDriverInfo bdi; 491 int ret; 492 493 ret = bdrv_get_info(bs, &bdi); 494 if (ret < 0 || bdi.cluster_size == 0) { 495 return bs->bl.request_alignment; 496 } else { 497 return bdi.cluster_size; 498 } 499 } 500 501 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 502 int64_t offset, unsigned int bytes) 503 { 504 /* aaaa bbbb */ 505 if (offset >= req->overlap_offset + req->overlap_bytes) { 506 return false; 507 } 508 /* bbbb aaaa */ 509 if (req->overlap_offset >= offset + bytes) { 510 return false; 511 } 512 return true; 513 } 514 515 void bdrv_inc_in_flight(BlockDriverState *bs) 516 { 517 atomic_inc(&bs->in_flight); 518 } 519 520 static void dummy_bh_cb(void *opaque) 521 { 522 } 523 524 void bdrv_wakeup(BlockDriverState *bs) 525 { 526 /* The barrier (or an atomic op) is in the caller. */ 527 if (atomic_read(&bs->wakeup)) { 528 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL); 529 } 530 } 531 532 void bdrv_dec_in_flight(BlockDriverState *bs) 533 { 534 atomic_dec(&bs->in_flight); 535 bdrv_wakeup(bs); 536 } 537 538 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 539 { 540 BlockDriverState *bs = self->bs; 541 BdrvTrackedRequest *req; 542 bool retry; 543 bool waited = false; 544 545 if (!atomic_read(&bs->serialising_in_flight)) { 546 return false; 547 } 548 549 do { 550 retry = false; 551 qemu_co_mutex_lock(&bs->reqs_lock); 552 QLIST_FOREACH(req, &bs->tracked_requests, list) { 553 if (req == self || (!req->serialising && !self->serialising)) { 554 continue; 555 } 556 if (tracked_request_overlaps(req, self->overlap_offset, 557 self->overlap_bytes)) 558 { 559 /* Hitting this means there was a reentrant request, for 560 * example, a block driver issuing nested requests. This must 561 * never happen since it means deadlock. 562 */ 563 assert(qemu_coroutine_self() != req->co); 564 565 /* If the request is already (indirectly) waiting for us, or 566 * will wait for us as soon as it wakes up, then just go on 567 * (instead of producing a deadlock in the former case). */ 568 if (!req->waiting_for) { 569 self->waiting_for = req; 570 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 571 self->waiting_for = NULL; 572 retry = true; 573 waited = true; 574 break; 575 } 576 } 577 } 578 qemu_co_mutex_unlock(&bs->reqs_lock); 579 } while (retry); 580 581 return waited; 582 } 583 584 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 585 size_t size) 586 { 587 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 588 return -EIO; 589 } 590 591 if (!bdrv_is_inserted(bs)) { 592 return -ENOMEDIUM; 593 } 594 595 if (offset < 0) { 596 return -EIO; 597 } 598 599 return 0; 600 } 601 602 typedef struct RwCo { 603 BdrvChild *child; 604 int64_t offset; 605 QEMUIOVector *qiov; 606 bool is_write; 607 int ret; 608 BdrvRequestFlags flags; 609 } RwCo; 610 611 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 612 { 613 RwCo *rwco = opaque; 614 615 if (!rwco->is_write) { 616 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 617 rwco->qiov->size, rwco->qiov, 618 rwco->flags); 619 } else { 620 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 621 rwco->qiov->size, rwco->qiov, 622 rwco->flags); 623 } 624 } 625 626 /* 627 * Process a vectored synchronous request using coroutines 628 */ 629 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 630 QEMUIOVector *qiov, bool is_write, 631 BdrvRequestFlags flags) 632 { 633 Coroutine *co; 634 RwCo rwco = { 635 .child = child, 636 .offset = offset, 637 .qiov = qiov, 638 .is_write = is_write, 639 .ret = NOT_DONE, 640 .flags = flags, 641 }; 642 643 if (qemu_in_coroutine()) { 644 /* Fast-path if already in coroutine context */ 645 bdrv_rw_co_entry(&rwco); 646 } else { 647 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 648 bdrv_coroutine_enter(child->bs, co); 649 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 650 } 651 return rwco.ret; 652 } 653 654 /* 655 * Process a synchronous request using coroutines 656 */ 657 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 658 int nb_sectors, bool is_write, BdrvRequestFlags flags) 659 { 660 QEMUIOVector qiov; 661 struct iovec iov = { 662 .iov_base = (void *)buf, 663 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 664 }; 665 666 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 667 return -EINVAL; 668 } 669 670 qemu_iovec_init_external(&qiov, &iov, 1); 671 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 672 &qiov, is_write, flags); 673 } 674 675 /* return < 0 if error. See bdrv_write() for the return codes */ 676 int bdrv_read(BdrvChild *child, int64_t sector_num, 677 uint8_t *buf, int nb_sectors) 678 { 679 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 680 } 681 682 /* Return < 0 if error. Important errors are: 683 -EIO generic I/O error (may happen for all errors) 684 -ENOMEDIUM No media inserted. 685 -EINVAL Invalid sector number or nb_sectors 686 -EACCES Trying to write a read-only device 687 */ 688 int bdrv_write(BdrvChild *child, int64_t sector_num, 689 const uint8_t *buf, int nb_sectors) 690 { 691 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 692 } 693 694 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 695 int bytes, BdrvRequestFlags flags) 696 { 697 QEMUIOVector qiov; 698 struct iovec iov = { 699 .iov_base = NULL, 700 .iov_len = bytes, 701 }; 702 703 qemu_iovec_init_external(&qiov, &iov, 1); 704 return bdrv_prwv_co(child, offset, &qiov, true, 705 BDRV_REQ_ZERO_WRITE | flags); 706 } 707 708 /* 709 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 710 * The operation is sped up by checking the block status and only writing 711 * zeroes to the device if they currently do not return zeroes. Optional 712 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 713 * BDRV_REQ_FUA). 714 * 715 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 716 */ 717 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 718 { 719 int ret; 720 int64_t target_size, bytes, offset = 0; 721 BlockDriverState *bs = child->bs; 722 723 target_size = bdrv_getlength(bs); 724 if (target_size < 0) { 725 return target_size; 726 } 727 728 for (;;) { 729 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 730 if (bytes <= 0) { 731 return 0; 732 } 733 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 734 if (ret < 0) { 735 error_report("error getting block status at offset %" PRId64 ": %s", 736 offset, strerror(-ret)); 737 return ret; 738 } 739 if (ret & BDRV_BLOCK_ZERO) { 740 offset += bytes; 741 continue; 742 } 743 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 744 if (ret < 0) { 745 error_report("error writing zeroes at offset %" PRId64 ": %s", 746 offset, strerror(-ret)); 747 return ret; 748 } 749 offset += bytes; 750 } 751 } 752 753 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 754 { 755 int ret; 756 757 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 758 if (ret < 0) { 759 return ret; 760 } 761 762 return qiov->size; 763 } 764 765 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 766 { 767 QEMUIOVector qiov; 768 struct iovec iov = { 769 .iov_base = (void *)buf, 770 .iov_len = bytes, 771 }; 772 773 if (bytes < 0) { 774 return -EINVAL; 775 } 776 777 qemu_iovec_init_external(&qiov, &iov, 1); 778 return bdrv_preadv(child, offset, &qiov); 779 } 780 781 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 782 { 783 int ret; 784 785 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 786 if (ret < 0) { 787 return ret; 788 } 789 790 return qiov->size; 791 } 792 793 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 794 { 795 QEMUIOVector qiov; 796 struct iovec iov = { 797 .iov_base = (void *) buf, 798 .iov_len = bytes, 799 }; 800 801 if (bytes < 0) { 802 return -EINVAL; 803 } 804 805 qemu_iovec_init_external(&qiov, &iov, 1); 806 return bdrv_pwritev(child, offset, &qiov); 807 } 808 809 /* 810 * Writes to the file and ensures that no writes are reordered across this 811 * request (acts as a barrier) 812 * 813 * Returns 0 on success, -errno in error cases. 814 */ 815 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 816 const void *buf, int count) 817 { 818 int ret; 819 820 ret = bdrv_pwrite(child, offset, buf, count); 821 if (ret < 0) { 822 return ret; 823 } 824 825 ret = bdrv_flush(child->bs); 826 if (ret < 0) { 827 return ret; 828 } 829 830 return 0; 831 } 832 833 typedef struct CoroutineIOCompletion { 834 Coroutine *coroutine; 835 int ret; 836 } CoroutineIOCompletion; 837 838 static void bdrv_co_io_em_complete(void *opaque, int ret) 839 { 840 CoroutineIOCompletion *co = opaque; 841 842 co->ret = ret; 843 aio_co_wake(co->coroutine); 844 } 845 846 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 847 uint64_t offset, uint64_t bytes, 848 QEMUIOVector *qiov, int flags) 849 { 850 BlockDriver *drv = bs->drv; 851 int64_t sector_num; 852 unsigned int nb_sectors; 853 854 assert(!(flags & ~BDRV_REQ_MASK)); 855 856 if (drv->bdrv_co_preadv) { 857 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 858 } 859 860 sector_num = offset >> BDRV_SECTOR_BITS; 861 nb_sectors = bytes >> BDRV_SECTOR_BITS; 862 863 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 864 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 865 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 866 867 if (drv->bdrv_co_readv) { 868 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 869 } else { 870 BlockAIOCB *acb; 871 CoroutineIOCompletion co = { 872 .coroutine = qemu_coroutine_self(), 873 }; 874 875 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 876 bdrv_co_io_em_complete, &co); 877 if (acb == NULL) { 878 return -EIO; 879 } else { 880 qemu_coroutine_yield(); 881 return co.ret; 882 } 883 } 884 } 885 886 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 887 uint64_t offset, uint64_t bytes, 888 QEMUIOVector *qiov, int flags) 889 { 890 BlockDriver *drv = bs->drv; 891 int64_t sector_num; 892 unsigned int nb_sectors; 893 int ret; 894 895 assert(!(flags & ~BDRV_REQ_MASK)); 896 897 if (drv->bdrv_co_pwritev) { 898 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 899 flags & bs->supported_write_flags); 900 flags &= ~bs->supported_write_flags; 901 goto emulate_flags; 902 } 903 904 sector_num = offset >> BDRV_SECTOR_BITS; 905 nb_sectors = bytes >> BDRV_SECTOR_BITS; 906 907 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 908 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 909 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 910 911 if (drv->bdrv_co_writev_flags) { 912 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 913 flags & bs->supported_write_flags); 914 flags &= ~bs->supported_write_flags; 915 } else if (drv->bdrv_co_writev) { 916 assert(!bs->supported_write_flags); 917 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 918 } else { 919 BlockAIOCB *acb; 920 CoroutineIOCompletion co = { 921 .coroutine = qemu_coroutine_self(), 922 }; 923 924 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 925 bdrv_co_io_em_complete, &co); 926 if (acb == NULL) { 927 ret = -EIO; 928 } else { 929 qemu_coroutine_yield(); 930 ret = co.ret; 931 } 932 } 933 934 emulate_flags: 935 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 936 ret = bdrv_co_flush(bs); 937 } 938 939 return ret; 940 } 941 942 static int coroutine_fn 943 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 944 uint64_t bytes, QEMUIOVector *qiov) 945 { 946 BlockDriver *drv = bs->drv; 947 948 if (!drv->bdrv_co_pwritev_compressed) { 949 return -ENOTSUP; 950 } 951 952 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 953 } 954 955 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 956 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 957 { 958 BlockDriverState *bs = child->bs; 959 960 /* Perform I/O through a temporary buffer so that users who scribble over 961 * their read buffer while the operation is in progress do not end up 962 * modifying the image file. This is critical for zero-copy guest I/O 963 * where anything might happen inside guest memory. 964 */ 965 void *bounce_buffer; 966 967 BlockDriver *drv = bs->drv; 968 struct iovec iov; 969 QEMUIOVector local_qiov; 970 int64_t cluster_offset; 971 int64_t cluster_bytes; 972 size_t skip_bytes; 973 int ret; 974 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 975 BDRV_REQUEST_MAX_BYTES); 976 unsigned int progress = 0; 977 978 /* FIXME We cannot require callers to have write permissions when all they 979 * are doing is a read request. If we did things right, write permissions 980 * would be obtained anyway, but internally by the copy-on-read code. As 981 * long as it is implemented here rather than in a separate filter driver, 982 * the copy-on-read code doesn't have its own BdrvChild, however, for which 983 * it could request permissions. Therefore we have to bypass the permission 984 * system for the moment. */ 985 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 986 987 /* Cover entire cluster so no additional backing file I/O is required when 988 * allocating cluster in the image file. Note that this value may exceed 989 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 990 * is one reason we loop rather than doing it all at once. 991 */ 992 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 993 skip_bytes = offset - cluster_offset; 994 995 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 996 cluster_offset, cluster_bytes); 997 998 bounce_buffer = qemu_try_blockalign(bs, 999 MIN(MIN(max_transfer, cluster_bytes), 1000 MAX_BOUNCE_BUFFER)); 1001 if (bounce_buffer == NULL) { 1002 ret = -ENOMEM; 1003 goto err; 1004 } 1005 1006 while (cluster_bytes) { 1007 int64_t pnum; 1008 1009 ret = bdrv_is_allocated(bs, cluster_offset, 1010 MIN(cluster_bytes, max_transfer), &pnum); 1011 if (ret < 0) { 1012 /* Safe to treat errors in querying allocation as if 1013 * unallocated; we'll probably fail again soon on the 1014 * read, but at least that will set a decent errno. 1015 */ 1016 pnum = MIN(cluster_bytes, max_transfer); 1017 } 1018 1019 assert(skip_bytes < pnum); 1020 1021 if (ret <= 0) { 1022 /* Must copy-on-read; use the bounce buffer */ 1023 iov.iov_base = bounce_buffer; 1024 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1025 qemu_iovec_init_external(&local_qiov, &iov, 1); 1026 1027 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1028 &local_qiov, 0); 1029 if (ret < 0) { 1030 goto err; 1031 } 1032 1033 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1034 if (drv->bdrv_co_pwrite_zeroes && 1035 buffer_is_zero(bounce_buffer, pnum)) { 1036 /* FIXME: Should we (perhaps conditionally) be setting 1037 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1038 * that still correctly reads as zero? */ 1039 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0); 1040 } else { 1041 /* This does not change the data on the disk, it is not 1042 * necessary to flush even in cache=writethrough mode. 1043 */ 1044 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1045 &local_qiov, 0); 1046 } 1047 1048 if (ret < 0) { 1049 /* It might be okay to ignore write errors for guest 1050 * requests. If this is a deliberate copy-on-read 1051 * then we don't want to ignore the error. Simply 1052 * report it in all cases. 1053 */ 1054 goto err; 1055 } 1056 1057 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, 1058 pnum - skip_bytes); 1059 } else { 1060 /* Read directly into the destination */ 1061 qemu_iovec_init(&local_qiov, qiov->niov); 1062 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); 1063 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, 1064 &local_qiov, 0); 1065 qemu_iovec_destroy(&local_qiov); 1066 if (ret < 0) { 1067 goto err; 1068 } 1069 } 1070 1071 cluster_offset += pnum; 1072 cluster_bytes -= pnum; 1073 progress += pnum - skip_bytes; 1074 skip_bytes = 0; 1075 } 1076 ret = 0; 1077 1078 err: 1079 qemu_vfree(bounce_buffer); 1080 return ret; 1081 } 1082 1083 /* 1084 * Forwards an already correctly aligned request to the BlockDriver. This 1085 * handles copy on read, zeroing after EOF, and fragmentation of large 1086 * reads; any other features must be implemented by the caller. 1087 */ 1088 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1089 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1090 int64_t align, QEMUIOVector *qiov, int flags) 1091 { 1092 BlockDriverState *bs = child->bs; 1093 int64_t total_bytes, max_bytes; 1094 int ret = 0; 1095 uint64_t bytes_remaining = bytes; 1096 int max_transfer; 1097 1098 assert(is_power_of_2(align)); 1099 assert((offset & (align - 1)) == 0); 1100 assert((bytes & (align - 1)) == 0); 1101 assert(!qiov || bytes == qiov->size); 1102 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1103 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1104 align); 1105 1106 /* TODO: We would need a per-BDS .supported_read_flags and 1107 * potential fallback support, if we ever implement any read flags 1108 * to pass through to drivers. For now, there aren't any 1109 * passthrough flags. */ 1110 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 1111 1112 /* Handle Copy on Read and associated serialisation */ 1113 if (flags & BDRV_REQ_COPY_ON_READ) { 1114 /* If we touch the same cluster it counts as an overlap. This 1115 * guarantees that allocating writes will be serialized and not race 1116 * with each other for the same cluster. For example, in copy-on-read 1117 * it ensures that the CoR read and write operations are atomic and 1118 * guest writes cannot interleave between them. */ 1119 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1120 } 1121 1122 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1123 wait_serialising_requests(req); 1124 } 1125 1126 if (flags & BDRV_REQ_COPY_ON_READ) { 1127 int64_t pnum; 1128 1129 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1130 if (ret < 0) { 1131 goto out; 1132 } 1133 1134 if (!ret || pnum != bytes) { 1135 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); 1136 goto out; 1137 } 1138 } 1139 1140 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1141 total_bytes = bdrv_getlength(bs); 1142 if (total_bytes < 0) { 1143 ret = total_bytes; 1144 goto out; 1145 } 1146 1147 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1148 if (bytes <= max_bytes && bytes <= max_transfer) { 1149 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1150 goto out; 1151 } 1152 1153 while (bytes_remaining) { 1154 int num; 1155 1156 if (max_bytes) { 1157 QEMUIOVector local_qiov; 1158 1159 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1160 assert(num); 1161 qemu_iovec_init(&local_qiov, qiov->niov); 1162 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1163 1164 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1165 num, &local_qiov, 0); 1166 max_bytes -= num; 1167 qemu_iovec_destroy(&local_qiov); 1168 } else { 1169 num = bytes_remaining; 1170 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1171 bytes_remaining); 1172 } 1173 if (ret < 0) { 1174 goto out; 1175 } 1176 bytes_remaining -= num; 1177 } 1178 1179 out: 1180 return ret < 0 ? ret : 0; 1181 } 1182 1183 /* 1184 * Handle a read request in coroutine context 1185 */ 1186 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1187 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1188 BdrvRequestFlags flags) 1189 { 1190 BlockDriverState *bs = child->bs; 1191 BlockDriver *drv = bs->drv; 1192 BdrvTrackedRequest req; 1193 1194 uint64_t align = bs->bl.request_alignment; 1195 uint8_t *head_buf = NULL; 1196 uint8_t *tail_buf = NULL; 1197 QEMUIOVector local_qiov; 1198 bool use_local_qiov = false; 1199 int ret; 1200 1201 trace_bdrv_co_preadv(child->bs, offset, bytes, flags); 1202 1203 if (!drv) { 1204 return -ENOMEDIUM; 1205 } 1206 1207 ret = bdrv_check_byte_request(bs, offset, bytes); 1208 if (ret < 0) { 1209 return ret; 1210 } 1211 1212 bdrv_inc_in_flight(bs); 1213 1214 /* Don't do copy-on-read if we read data before write operation */ 1215 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1216 flags |= BDRV_REQ_COPY_ON_READ; 1217 } 1218 1219 /* Align read if necessary by padding qiov */ 1220 if (offset & (align - 1)) { 1221 head_buf = qemu_blockalign(bs, align); 1222 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1223 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1224 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1225 use_local_qiov = true; 1226 1227 bytes += offset & (align - 1); 1228 offset = offset & ~(align - 1); 1229 } 1230 1231 if ((offset + bytes) & (align - 1)) { 1232 if (!use_local_qiov) { 1233 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1234 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1235 use_local_qiov = true; 1236 } 1237 tail_buf = qemu_blockalign(bs, align); 1238 qemu_iovec_add(&local_qiov, tail_buf, 1239 align - ((offset + bytes) & (align - 1))); 1240 1241 bytes = ROUND_UP(bytes, align); 1242 } 1243 1244 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1245 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, 1246 use_local_qiov ? &local_qiov : qiov, 1247 flags); 1248 tracked_request_end(&req); 1249 bdrv_dec_in_flight(bs); 1250 1251 if (use_local_qiov) { 1252 qemu_iovec_destroy(&local_qiov); 1253 qemu_vfree(head_buf); 1254 qemu_vfree(tail_buf); 1255 } 1256 1257 return ret; 1258 } 1259 1260 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1261 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1262 BdrvRequestFlags flags) 1263 { 1264 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1265 return -EINVAL; 1266 } 1267 1268 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1269 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1270 } 1271 1272 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1273 int nb_sectors, QEMUIOVector *qiov) 1274 { 1275 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1276 } 1277 1278 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1279 int64_t offset, int bytes, BdrvRequestFlags flags) 1280 { 1281 BlockDriver *drv = bs->drv; 1282 QEMUIOVector qiov; 1283 struct iovec iov = {0}; 1284 int ret = 0; 1285 bool need_flush = false; 1286 int head = 0; 1287 int tail = 0; 1288 1289 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1290 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1291 bs->bl.request_alignment); 1292 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1293 1294 assert(alignment % bs->bl.request_alignment == 0); 1295 head = offset % alignment; 1296 tail = (offset + bytes) % alignment; 1297 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1298 assert(max_write_zeroes >= bs->bl.request_alignment); 1299 1300 while (bytes > 0 && !ret) { 1301 int num = bytes; 1302 1303 /* Align request. Block drivers can expect the "bulk" of the request 1304 * to be aligned, and that unaligned requests do not cross cluster 1305 * boundaries. 1306 */ 1307 if (head) { 1308 /* Make a small request up to the first aligned sector. For 1309 * convenience, limit this request to max_transfer even if 1310 * we don't need to fall back to writes. */ 1311 num = MIN(MIN(bytes, max_transfer), alignment - head); 1312 head = (head + num) % alignment; 1313 assert(num < max_write_zeroes); 1314 } else if (tail && num > alignment) { 1315 /* Shorten the request to the last aligned sector. */ 1316 num -= tail; 1317 } 1318 1319 /* limit request size */ 1320 if (num > max_write_zeroes) { 1321 num = max_write_zeroes; 1322 } 1323 1324 ret = -ENOTSUP; 1325 /* First try the efficient write zeroes operation */ 1326 if (drv->bdrv_co_pwrite_zeroes) { 1327 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1328 flags & bs->supported_zero_flags); 1329 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1330 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1331 need_flush = true; 1332 } 1333 } else { 1334 assert(!bs->supported_zero_flags); 1335 } 1336 1337 if (ret == -ENOTSUP) { 1338 /* Fall back to bounce buffer if write zeroes is unsupported */ 1339 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1340 1341 if ((flags & BDRV_REQ_FUA) && 1342 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1343 /* No need for bdrv_driver_pwrite() to do a fallback 1344 * flush on each chunk; use just one at the end */ 1345 write_flags &= ~BDRV_REQ_FUA; 1346 need_flush = true; 1347 } 1348 num = MIN(num, max_transfer); 1349 iov.iov_len = num; 1350 if (iov.iov_base == NULL) { 1351 iov.iov_base = qemu_try_blockalign(bs, num); 1352 if (iov.iov_base == NULL) { 1353 ret = -ENOMEM; 1354 goto fail; 1355 } 1356 memset(iov.iov_base, 0, num); 1357 } 1358 qemu_iovec_init_external(&qiov, &iov, 1); 1359 1360 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1361 1362 /* Keep bounce buffer around if it is big enough for all 1363 * all future requests. 1364 */ 1365 if (num < max_transfer) { 1366 qemu_vfree(iov.iov_base); 1367 iov.iov_base = NULL; 1368 } 1369 } 1370 1371 offset += num; 1372 bytes -= num; 1373 } 1374 1375 fail: 1376 if (ret == 0 && need_flush) { 1377 ret = bdrv_co_flush(bs); 1378 } 1379 qemu_vfree(iov.iov_base); 1380 return ret; 1381 } 1382 1383 /* 1384 * Forwards an already correctly aligned write request to the BlockDriver, 1385 * after possibly fragmenting it. 1386 */ 1387 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1388 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1389 int64_t align, QEMUIOVector *qiov, int flags) 1390 { 1391 BlockDriverState *bs = child->bs; 1392 BlockDriver *drv = bs->drv; 1393 bool waited; 1394 int ret; 1395 1396 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1397 uint64_t bytes_remaining = bytes; 1398 int max_transfer; 1399 1400 if (bdrv_has_readonly_bitmaps(bs)) { 1401 return -EPERM; 1402 } 1403 1404 assert(is_power_of_2(align)); 1405 assert((offset & (align - 1)) == 0); 1406 assert((bytes & (align - 1)) == 0); 1407 assert(!qiov || bytes == qiov->size); 1408 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1409 assert(!(flags & ~BDRV_REQ_MASK)); 1410 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1411 align); 1412 1413 waited = wait_serialising_requests(req); 1414 assert(!waited || !req->serialising); 1415 assert(req->overlap_offset <= offset); 1416 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1417 assert(child->perm & BLK_PERM_WRITE); 1418 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1419 1420 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1421 1422 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1423 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1424 qemu_iovec_is_zero(qiov)) { 1425 flags |= BDRV_REQ_ZERO_WRITE; 1426 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1427 flags |= BDRV_REQ_MAY_UNMAP; 1428 } 1429 } 1430 1431 if (ret < 0) { 1432 /* Do nothing, write notifier decided to fail this request */ 1433 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1434 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1435 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1436 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1437 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1438 } else if (bytes <= max_transfer) { 1439 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1440 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1441 } else { 1442 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1443 while (bytes_remaining) { 1444 int num = MIN(bytes_remaining, max_transfer); 1445 QEMUIOVector local_qiov; 1446 int local_flags = flags; 1447 1448 assert(num); 1449 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1450 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1451 /* If FUA is going to be emulated by flush, we only 1452 * need to flush on the last iteration */ 1453 local_flags &= ~BDRV_REQ_FUA; 1454 } 1455 qemu_iovec_init(&local_qiov, qiov->niov); 1456 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1457 1458 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1459 num, &local_qiov, local_flags); 1460 qemu_iovec_destroy(&local_qiov); 1461 if (ret < 0) { 1462 break; 1463 } 1464 bytes_remaining -= num; 1465 } 1466 } 1467 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1468 1469 atomic_inc(&bs->write_gen); 1470 bdrv_set_dirty(bs, offset, bytes); 1471 1472 stat64_max(&bs->wr_highest_offset, offset + bytes); 1473 1474 if (ret >= 0) { 1475 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1476 ret = 0; 1477 } 1478 1479 return ret; 1480 } 1481 1482 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1483 int64_t offset, 1484 unsigned int bytes, 1485 BdrvRequestFlags flags, 1486 BdrvTrackedRequest *req) 1487 { 1488 BlockDriverState *bs = child->bs; 1489 uint8_t *buf = NULL; 1490 QEMUIOVector local_qiov; 1491 struct iovec iov; 1492 uint64_t align = bs->bl.request_alignment; 1493 unsigned int head_padding_bytes, tail_padding_bytes; 1494 int ret = 0; 1495 1496 head_padding_bytes = offset & (align - 1); 1497 tail_padding_bytes = (align - (offset + bytes)) & (align - 1); 1498 1499 1500 assert(flags & BDRV_REQ_ZERO_WRITE); 1501 if (head_padding_bytes || tail_padding_bytes) { 1502 buf = qemu_blockalign(bs, align); 1503 iov = (struct iovec) { 1504 .iov_base = buf, 1505 .iov_len = align, 1506 }; 1507 qemu_iovec_init_external(&local_qiov, &iov, 1); 1508 } 1509 if (head_padding_bytes) { 1510 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1511 1512 /* RMW the unaligned part before head. */ 1513 mark_request_serialising(req, align); 1514 wait_serialising_requests(req); 1515 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1516 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, 1517 align, &local_qiov, 0); 1518 if (ret < 0) { 1519 goto fail; 1520 } 1521 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1522 1523 memset(buf + head_padding_bytes, 0, zero_bytes); 1524 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, 1525 align, &local_qiov, 1526 flags & ~BDRV_REQ_ZERO_WRITE); 1527 if (ret < 0) { 1528 goto fail; 1529 } 1530 offset += zero_bytes; 1531 bytes -= zero_bytes; 1532 } 1533 1534 assert(!bytes || (offset & (align - 1)) == 0); 1535 if (bytes >= align) { 1536 /* Write the aligned part in the middle. */ 1537 uint64_t aligned_bytes = bytes & ~(align - 1); 1538 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 1539 NULL, flags); 1540 if (ret < 0) { 1541 goto fail; 1542 } 1543 bytes -= aligned_bytes; 1544 offset += aligned_bytes; 1545 } 1546 1547 assert(!bytes || (offset & (align - 1)) == 0); 1548 if (bytes) { 1549 assert(align == tail_padding_bytes + bytes); 1550 /* RMW the unaligned part after tail. */ 1551 mark_request_serialising(req, align); 1552 wait_serialising_requests(req); 1553 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1554 ret = bdrv_aligned_preadv(child, req, offset, align, 1555 align, &local_qiov, 0); 1556 if (ret < 0) { 1557 goto fail; 1558 } 1559 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1560 1561 memset(buf, 0, bytes); 1562 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 1563 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1564 } 1565 fail: 1566 qemu_vfree(buf); 1567 return ret; 1568 1569 } 1570 1571 /* 1572 * Handle a write request in coroutine context 1573 */ 1574 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1575 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1576 BdrvRequestFlags flags) 1577 { 1578 BlockDriverState *bs = child->bs; 1579 BdrvTrackedRequest req; 1580 uint64_t align = bs->bl.request_alignment; 1581 uint8_t *head_buf = NULL; 1582 uint8_t *tail_buf = NULL; 1583 QEMUIOVector local_qiov; 1584 bool use_local_qiov = false; 1585 int ret; 1586 1587 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 1588 1589 if (!bs->drv) { 1590 return -ENOMEDIUM; 1591 } 1592 if (bs->read_only) { 1593 return -EPERM; 1594 } 1595 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1596 1597 ret = bdrv_check_byte_request(bs, offset, bytes); 1598 if (ret < 0) { 1599 return ret; 1600 } 1601 1602 bdrv_inc_in_flight(bs); 1603 /* 1604 * Align write if necessary by performing a read-modify-write cycle. 1605 * Pad qiov with the read parts and be sure to have a tracked request not 1606 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1607 */ 1608 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1609 1610 if (!qiov) { 1611 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 1612 goto out; 1613 } 1614 1615 if (offset & (align - 1)) { 1616 QEMUIOVector head_qiov; 1617 struct iovec head_iov; 1618 1619 mark_request_serialising(&req, align); 1620 wait_serialising_requests(&req); 1621 1622 head_buf = qemu_blockalign(bs, align); 1623 head_iov = (struct iovec) { 1624 .iov_base = head_buf, 1625 .iov_len = align, 1626 }; 1627 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1628 1629 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1630 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, 1631 align, &head_qiov, 0); 1632 if (ret < 0) { 1633 goto fail; 1634 } 1635 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1636 1637 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1638 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1639 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1640 use_local_qiov = true; 1641 1642 bytes += offset & (align - 1); 1643 offset = offset & ~(align - 1); 1644 1645 /* We have read the tail already if the request is smaller 1646 * than one aligned block. 1647 */ 1648 if (bytes < align) { 1649 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1650 bytes = align; 1651 } 1652 } 1653 1654 if ((offset + bytes) & (align - 1)) { 1655 QEMUIOVector tail_qiov; 1656 struct iovec tail_iov; 1657 size_t tail_bytes; 1658 bool waited; 1659 1660 mark_request_serialising(&req, align); 1661 waited = wait_serialising_requests(&req); 1662 assert(!waited || !use_local_qiov); 1663 1664 tail_buf = qemu_blockalign(bs, align); 1665 tail_iov = (struct iovec) { 1666 .iov_base = tail_buf, 1667 .iov_len = align, 1668 }; 1669 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1670 1671 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1672 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), 1673 align, align, &tail_qiov, 0); 1674 if (ret < 0) { 1675 goto fail; 1676 } 1677 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1678 1679 if (!use_local_qiov) { 1680 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1681 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1682 use_local_qiov = true; 1683 } 1684 1685 tail_bytes = (offset + bytes) & (align - 1); 1686 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1687 1688 bytes = ROUND_UP(bytes, align); 1689 } 1690 1691 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 1692 use_local_qiov ? &local_qiov : qiov, 1693 flags); 1694 1695 fail: 1696 1697 if (use_local_qiov) { 1698 qemu_iovec_destroy(&local_qiov); 1699 } 1700 qemu_vfree(head_buf); 1701 qemu_vfree(tail_buf); 1702 out: 1703 tracked_request_end(&req); 1704 bdrv_dec_in_flight(bs); 1705 return ret; 1706 } 1707 1708 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1709 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1710 BdrvRequestFlags flags) 1711 { 1712 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1713 return -EINVAL; 1714 } 1715 1716 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1717 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1718 } 1719 1720 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1721 int nb_sectors, QEMUIOVector *qiov) 1722 { 1723 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1724 } 1725 1726 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1727 int bytes, BdrvRequestFlags flags) 1728 { 1729 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 1730 1731 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1732 flags &= ~BDRV_REQ_MAY_UNMAP; 1733 } 1734 1735 return bdrv_co_pwritev(child, offset, bytes, NULL, 1736 BDRV_REQ_ZERO_WRITE | flags); 1737 } 1738 1739 /* 1740 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1741 */ 1742 int bdrv_flush_all(void) 1743 { 1744 BdrvNextIterator it; 1745 BlockDriverState *bs = NULL; 1746 int result = 0; 1747 1748 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1749 AioContext *aio_context = bdrv_get_aio_context(bs); 1750 int ret; 1751 1752 aio_context_acquire(aio_context); 1753 ret = bdrv_flush(bs); 1754 if (ret < 0 && !result) { 1755 result = ret; 1756 } 1757 aio_context_release(aio_context); 1758 } 1759 1760 return result; 1761 } 1762 1763 1764 typedef struct BdrvCoBlockStatusData { 1765 BlockDriverState *bs; 1766 BlockDriverState *base; 1767 bool want_zero; 1768 int64_t offset; 1769 int64_t bytes; 1770 int64_t *pnum; 1771 int64_t *map; 1772 BlockDriverState **file; 1773 int ret; 1774 bool done; 1775 } BdrvCoBlockStatusData; 1776 1777 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs, 1778 int64_t sector_num, 1779 int nb_sectors, 1780 int *pnum, 1781 BlockDriverState **file) 1782 { 1783 assert(bs->file && bs->file->bs); 1784 *pnum = nb_sectors; 1785 *file = bs->file->bs; 1786 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1787 (sector_num << BDRV_SECTOR_BITS); 1788 } 1789 1790 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs, 1791 int64_t sector_num, 1792 int nb_sectors, 1793 int *pnum, 1794 BlockDriverState **file) 1795 { 1796 assert(bs->backing && bs->backing->bs); 1797 *pnum = nb_sectors; 1798 *file = bs->backing->bs; 1799 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID | 1800 (sector_num << BDRV_SECTOR_BITS); 1801 } 1802 1803 /* 1804 * Returns the allocation status of the specified sectors. 1805 * Drivers not implementing the functionality are assumed to not support 1806 * backing files, hence all their sectors are reported as allocated. 1807 * 1808 * If 'want_zero' is true, the caller is querying for mapping purposes, 1809 * and the result should include BDRV_BLOCK_OFFSET_VALID and 1810 * BDRV_BLOCK_ZERO where possible; otherwise, the result may omit those 1811 * bits particularly if it allows for a larger value in 'pnum'. 1812 * 1813 * If 'offset' is beyond the end of the disk image the return value is 1814 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 1815 * 1816 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 1817 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 1818 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 1819 * 1820 * 'pnum' is set to the number of bytes (including and immediately 1821 * following the specified offset) that are easily known to be in the 1822 * same allocated/unallocated state. Note that a second call starting 1823 * at the original offset plus returned pnum may have the same status. 1824 * The returned value is non-zero on success except at end-of-file. 1825 * 1826 * Returns negative errno on failure. Otherwise, if the 1827 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 1828 * set to the host mapping and BDS corresponding to the guest offset. 1829 */ 1830 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 1831 bool want_zero, 1832 int64_t offset, int64_t bytes, 1833 int64_t *pnum, int64_t *map, 1834 BlockDriverState **file) 1835 { 1836 int64_t total_size; 1837 int64_t n; /* bytes */ 1838 int ret; 1839 int64_t local_map = 0; 1840 BlockDriverState *local_file = NULL; 1841 int64_t aligned_offset, aligned_bytes; 1842 uint32_t align; 1843 1844 assert(pnum); 1845 *pnum = 0; 1846 total_size = bdrv_getlength(bs); 1847 if (total_size < 0) { 1848 ret = total_size; 1849 goto early_out; 1850 } 1851 1852 if (offset >= total_size) { 1853 ret = BDRV_BLOCK_EOF; 1854 goto early_out; 1855 } 1856 if (!bytes) { 1857 ret = 0; 1858 goto early_out; 1859 } 1860 1861 n = total_size - offset; 1862 if (n < bytes) { 1863 bytes = n; 1864 } 1865 1866 if (!bs->drv->bdrv_co_get_block_status) { 1867 *pnum = bytes; 1868 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1869 if (offset + bytes == total_size) { 1870 ret |= BDRV_BLOCK_EOF; 1871 } 1872 if (bs->drv->protocol_name) { 1873 ret |= BDRV_BLOCK_OFFSET_VALID; 1874 local_map = offset; 1875 local_file = bs; 1876 } 1877 goto early_out; 1878 } 1879 1880 bdrv_inc_in_flight(bs); 1881 1882 /* Round out to request_alignment boundaries */ 1883 /* TODO: until we have a byte-based driver callback, we also have to 1884 * round out to sectors, even if that is bigger than request_alignment */ 1885 align = MAX(bs->bl.request_alignment, BDRV_SECTOR_SIZE); 1886 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 1887 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 1888 1889 { 1890 int count; /* sectors */ 1891 int64_t longret; 1892 1893 assert(QEMU_IS_ALIGNED(aligned_offset | aligned_bytes, 1894 BDRV_SECTOR_SIZE)); 1895 /* 1896 * The contract allows us to return pnum smaller than bytes, even 1897 * if the next query would see the same status; we truncate the 1898 * request to avoid overflowing the driver's 32-bit interface. 1899 */ 1900 longret = bs->drv->bdrv_co_get_block_status( 1901 bs, aligned_offset >> BDRV_SECTOR_BITS, 1902 MIN(INT_MAX, aligned_bytes) >> BDRV_SECTOR_BITS, &count, 1903 &local_file); 1904 if (longret < 0) { 1905 assert(INT_MIN <= longret); 1906 ret = longret; 1907 goto out; 1908 } 1909 if (longret & BDRV_BLOCK_OFFSET_VALID) { 1910 local_map = longret & BDRV_BLOCK_OFFSET_MASK; 1911 } 1912 ret = longret & ~BDRV_BLOCK_OFFSET_MASK; 1913 *pnum = count * BDRV_SECTOR_SIZE; 1914 } 1915 1916 /* 1917 * The driver's result must be a multiple of request_alignment. 1918 * Clamp pnum and adjust map to original request. 1919 */ 1920 assert(QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset); 1921 *pnum -= offset - aligned_offset; 1922 if (*pnum > bytes) { 1923 *pnum = bytes; 1924 } 1925 if (ret & BDRV_BLOCK_OFFSET_VALID) { 1926 local_map += offset - aligned_offset; 1927 } 1928 1929 if (ret & BDRV_BLOCK_RAW) { 1930 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 1931 ret = bdrv_co_block_status(local_file, want_zero, local_map, 1932 *pnum, pnum, &local_map, &local_file); 1933 goto out; 1934 } 1935 1936 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1937 ret |= BDRV_BLOCK_ALLOCATED; 1938 } else if (want_zero) { 1939 if (bdrv_unallocated_blocks_are_zero(bs)) { 1940 ret |= BDRV_BLOCK_ZERO; 1941 } else if (bs->backing) { 1942 BlockDriverState *bs2 = bs->backing->bs; 1943 int64_t size2 = bdrv_getlength(bs2); 1944 1945 if (size2 >= 0 && offset >= size2) { 1946 ret |= BDRV_BLOCK_ZERO; 1947 } 1948 } 1949 } 1950 1951 if (want_zero && local_file && local_file != bs && 1952 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1953 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1954 int64_t file_pnum; 1955 int ret2; 1956 1957 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 1958 *pnum, &file_pnum, NULL, NULL); 1959 if (ret2 >= 0) { 1960 /* Ignore errors. This is just providing extra information, it 1961 * is useful but not necessary. 1962 */ 1963 if (ret2 & BDRV_BLOCK_EOF && 1964 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 1965 /* 1966 * It is valid for the format block driver to read 1967 * beyond the end of the underlying file's current 1968 * size; such areas read as zero. 1969 */ 1970 ret |= BDRV_BLOCK_ZERO; 1971 } else { 1972 /* Limit request to the range reported by the protocol driver */ 1973 *pnum = file_pnum; 1974 ret |= (ret2 & BDRV_BLOCK_ZERO); 1975 } 1976 } 1977 } 1978 1979 out: 1980 bdrv_dec_in_flight(bs); 1981 if (ret >= 0 && offset + *pnum == total_size) { 1982 ret |= BDRV_BLOCK_EOF; 1983 } 1984 early_out: 1985 if (file) { 1986 *file = local_file; 1987 } 1988 if (map) { 1989 *map = local_map; 1990 } 1991 return ret; 1992 } 1993 1994 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 1995 BlockDriverState *base, 1996 bool want_zero, 1997 int64_t offset, 1998 int64_t bytes, 1999 int64_t *pnum, 2000 int64_t *map, 2001 BlockDriverState **file) 2002 { 2003 BlockDriverState *p; 2004 int ret = 0; 2005 bool first = true; 2006 2007 assert(bs != base); 2008 for (p = bs; p != base; p = backing_bs(p)) { 2009 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2010 file); 2011 if (ret < 0) { 2012 break; 2013 } 2014 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2015 /* 2016 * Reading beyond the end of the file continues to read 2017 * zeroes, but we can only widen the result to the 2018 * unallocated length we learned from an earlier 2019 * iteration. 2020 */ 2021 *pnum = bytes; 2022 } 2023 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2024 break; 2025 } 2026 /* [offset, pnum] unallocated on this layer, which could be only 2027 * the first part of [offset, bytes]. */ 2028 bytes = MIN(bytes, *pnum); 2029 first = false; 2030 } 2031 return ret; 2032 } 2033 2034 /* Coroutine wrapper for bdrv_block_status_above() */ 2035 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2036 { 2037 BdrvCoBlockStatusData *data = opaque; 2038 2039 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2040 data->want_zero, 2041 data->offset, data->bytes, 2042 data->pnum, data->map, data->file); 2043 data->done = true; 2044 } 2045 2046 /* 2047 * Synchronous wrapper around bdrv_co_block_status_above(). 2048 * 2049 * See bdrv_co_block_status_above() for details. 2050 */ 2051 static int bdrv_common_block_status_above(BlockDriverState *bs, 2052 BlockDriverState *base, 2053 bool want_zero, int64_t offset, 2054 int64_t bytes, int64_t *pnum, 2055 int64_t *map, 2056 BlockDriverState **file) 2057 { 2058 Coroutine *co; 2059 BdrvCoBlockStatusData data = { 2060 .bs = bs, 2061 .base = base, 2062 .want_zero = want_zero, 2063 .offset = offset, 2064 .bytes = bytes, 2065 .pnum = pnum, 2066 .map = map, 2067 .file = file, 2068 .done = false, 2069 }; 2070 2071 if (qemu_in_coroutine()) { 2072 /* Fast-path if already in coroutine context */ 2073 bdrv_block_status_above_co_entry(&data); 2074 } else { 2075 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2076 bdrv_coroutine_enter(bs, co); 2077 BDRV_POLL_WHILE(bs, !data.done); 2078 } 2079 return data.ret; 2080 } 2081 2082 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2083 int64_t offset, int64_t bytes, int64_t *pnum, 2084 int64_t *map, BlockDriverState **file) 2085 { 2086 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2087 pnum, map, file); 2088 } 2089 2090 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2091 int64_t *pnum, int64_t *map, BlockDriverState **file) 2092 { 2093 return bdrv_block_status_above(bs, backing_bs(bs), 2094 offset, bytes, pnum, map, file); 2095 } 2096 2097 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2098 int64_t bytes, int64_t *pnum) 2099 { 2100 int ret; 2101 int64_t dummy; 2102 2103 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2104 bytes, pnum ? pnum : &dummy, NULL, 2105 NULL); 2106 if (ret < 0) { 2107 return ret; 2108 } 2109 return !!(ret & BDRV_BLOCK_ALLOCATED); 2110 } 2111 2112 /* 2113 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2114 * 2115 * Return true if (a prefix of) the given range is allocated in any image 2116 * between BASE and TOP (inclusive). BASE can be NULL to check if the given 2117 * offset is allocated in any image of the chain. Return false otherwise, 2118 * or negative errno on failure. 2119 * 2120 * 'pnum' is set to the number of bytes (including and immediately 2121 * following the specified offset) that are known to be in the same 2122 * allocated/unallocated state. Note that a subsequent call starting 2123 * at 'offset + *pnum' may return the same allocation status (in other 2124 * words, the result is not necessarily the maximum possible range); 2125 * but 'pnum' will only be 0 when end of file is reached. 2126 * 2127 */ 2128 int bdrv_is_allocated_above(BlockDriverState *top, 2129 BlockDriverState *base, 2130 int64_t offset, int64_t bytes, int64_t *pnum) 2131 { 2132 BlockDriverState *intermediate; 2133 int ret; 2134 int64_t n = bytes; 2135 2136 intermediate = top; 2137 while (intermediate && intermediate != base) { 2138 int64_t pnum_inter; 2139 int64_t size_inter; 2140 2141 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2142 if (ret < 0) { 2143 return ret; 2144 } 2145 if (ret) { 2146 *pnum = pnum_inter; 2147 return 1; 2148 } 2149 2150 size_inter = bdrv_getlength(intermediate); 2151 if (size_inter < 0) { 2152 return size_inter; 2153 } 2154 if (n > pnum_inter && 2155 (intermediate == top || offset + pnum_inter < size_inter)) { 2156 n = pnum_inter; 2157 } 2158 2159 intermediate = backing_bs(intermediate); 2160 } 2161 2162 *pnum = n; 2163 return 0; 2164 } 2165 2166 typedef struct BdrvVmstateCo { 2167 BlockDriverState *bs; 2168 QEMUIOVector *qiov; 2169 int64_t pos; 2170 bool is_read; 2171 int ret; 2172 } BdrvVmstateCo; 2173 2174 static int coroutine_fn 2175 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2176 bool is_read) 2177 { 2178 BlockDriver *drv = bs->drv; 2179 int ret = -ENOTSUP; 2180 2181 bdrv_inc_in_flight(bs); 2182 2183 if (!drv) { 2184 ret = -ENOMEDIUM; 2185 } else if (drv->bdrv_load_vmstate) { 2186 if (is_read) { 2187 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2188 } else { 2189 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2190 } 2191 } else if (bs->file) { 2192 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2193 } 2194 2195 bdrv_dec_in_flight(bs); 2196 return ret; 2197 } 2198 2199 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2200 { 2201 BdrvVmstateCo *co = opaque; 2202 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2203 } 2204 2205 static inline int 2206 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2207 bool is_read) 2208 { 2209 if (qemu_in_coroutine()) { 2210 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2211 } else { 2212 BdrvVmstateCo data = { 2213 .bs = bs, 2214 .qiov = qiov, 2215 .pos = pos, 2216 .is_read = is_read, 2217 .ret = -EINPROGRESS, 2218 }; 2219 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2220 2221 bdrv_coroutine_enter(bs, co); 2222 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2223 return data.ret; 2224 } 2225 } 2226 2227 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2228 int64_t pos, int size) 2229 { 2230 QEMUIOVector qiov; 2231 struct iovec iov = { 2232 .iov_base = (void *) buf, 2233 .iov_len = size, 2234 }; 2235 int ret; 2236 2237 qemu_iovec_init_external(&qiov, &iov, 1); 2238 2239 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2240 if (ret < 0) { 2241 return ret; 2242 } 2243 2244 return size; 2245 } 2246 2247 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2248 { 2249 return bdrv_rw_vmstate(bs, qiov, pos, false); 2250 } 2251 2252 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2253 int64_t pos, int size) 2254 { 2255 QEMUIOVector qiov; 2256 struct iovec iov = { 2257 .iov_base = buf, 2258 .iov_len = size, 2259 }; 2260 int ret; 2261 2262 qemu_iovec_init_external(&qiov, &iov, 1); 2263 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2264 if (ret < 0) { 2265 return ret; 2266 } 2267 2268 return size; 2269 } 2270 2271 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2272 { 2273 return bdrv_rw_vmstate(bs, qiov, pos, true); 2274 } 2275 2276 /**************************************************************/ 2277 /* async I/Os */ 2278 2279 void bdrv_aio_cancel(BlockAIOCB *acb) 2280 { 2281 qemu_aio_ref(acb); 2282 bdrv_aio_cancel_async(acb); 2283 while (acb->refcnt > 1) { 2284 if (acb->aiocb_info->get_aio_context) { 2285 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2286 } else if (acb->bs) { 2287 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2288 * assert that we're not using an I/O thread. Thread-safe 2289 * code should use bdrv_aio_cancel_async exclusively. 2290 */ 2291 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2292 aio_poll(bdrv_get_aio_context(acb->bs), true); 2293 } else { 2294 abort(); 2295 } 2296 } 2297 qemu_aio_unref(acb); 2298 } 2299 2300 /* Async version of aio cancel. The caller is not blocked if the acb implements 2301 * cancel_async, otherwise we do nothing and let the request normally complete. 2302 * In either case the completion callback must be called. */ 2303 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2304 { 2305 if (acb->aiocb_info->cancel_async) { 2306 acb->aiocb_info->cancel_async(acb); 2307 } 2308 } 2309 2310 /**************************************************************/ 2311 /* Coroutine block device emulation */ 2312 2313 typedef struct FlushCo { 2314 BlockDriverState *bs; 2315 int ret; 2316 } FlushCo; 2317 2318 2319 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2320 { 2321 FlushCo *rwco = opaque; 2322 2323 rwco->ret = bdrv_co_flush(rwco->bs); 2324 } 2325 2326 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2327 { 2328 int current_gen; 2329 int ret = 0; 2330 2331 bdrv_inc_in_flight(bs); 2332 2333 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2334 bdrv_is_sg(bs)) { 2335 goto early_exit; 2336 } 2337 2338 qemu_co_mutex_lock(&bs->reqs_lock); 2339 current_gen = atomic_read(&bs->write_gen); 2340 2341 /* Wait until any previous flushes are completed */ 2342 while (bs->active_flush_req) { 2343 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2344 } 2345 2346 /* Flushes reach this point in nondecreasing current_gen order. */ 2347 bs->active_flush_req = true; 2348 qemu_co_mutex_unlock(&bs->reqs_lock); 2349 2350 /* Write back all layers by calling one driver function */ 2351 if (bs->drv->bdrv_co_flush) { 2352 ret = bs->drv->bdrv_co_flush(bs); 2353 goto out; 2354 } 2355 2356 /* Write back cached data to the OS even with cache=unsafe */ 2357 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2358 if (bs->drv->bdrv_co_flush_to_os) { 2359 ret = bs->drv->bdrv_co_flush_to_os(bs); 2360 if (ret < 0) { 2361 goto out; 2362 } 2363 } 2364 2365 /* But don't actually force it to the disk with cache=unsafe */ 2366 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2367 goto flush_parent; 2368 } 2369 2370 /* Check if we really need to flush anything */ 2371 if (bs->flushed_gen == current_gen) { 2372 goto flush_parent; 2373 } 2374 2375 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2376 if (bs->drv->bdrv_co_flush_to_disk) { 2377 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2378 } else if (bs->drv->bdrv_aio_flush) { 2379 BlockAIOCB *acb; 2380 CoroutineIOCompletion co = { 2381 .coroutine = qemu_coroutine_self(), 2382 }; 2383 2384 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2385 if (acb == NULL) { 2386 ret = -EIO; 2387 } else { 2388 qemu_coroutine_yield(); 2389 ret = co.ret; 2390 } 2391 } else { 2392 /* 2393 * Some block drivers always operate in either writethrough or unsafe 2394 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2395 * know how the server works (because the behaviour is hardcoded or 2396 * depends on server-side configuration), so we can't ensure that 2397 * everything is safe on disk. Returning an error doesn't work because 2398 * that would break guests even if the server operates in writethrough 2399 * mode. 2400 * 2401 * Let's hope the user knows what he's doing. 2402 */ 2403 ret = 0; 2404 } 2405 2406 if (ret < 0) { 2407 goto out; 2408 } 2409 2410 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2411 * in the case of cache=unsafe, so there are no useless flushes. 2412 */ 2413 flush_parent: 2414 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2415 out: 2416 /* Notify any pending flushes that we have completed */ 2417 if (ret == 0) { 2418 bs->flushed_gen = current_gen; 2419 } 2420 2421 qemu_co_mutex_lock(&bs->reqs_lock); 2422 bs->active_flush_req = false; 2423 /* Return value is ignored - it's ok if wait queue is empty */ 2424 qemu_co_queue_next(&bs->flush_queue); 2425 qemu_co_mutex_unlock(&bs->reqs_lock); 2426 2427 early_exit: 2428 bdrv_dec_in_flight(bs); 2429 return ret; 2430 } 2431 2432 int bdrv_flush(BlockDriverState *bs) 2433 { 2434 Coroutine *co; 2435 FlushCo flush_co = { 2436 .bs = bs, 2437 .ret = NOT_DONE, 2438 }; 2439 2440 if (qemu_in_coroutine()) { 2441 /* Fast-path if already in coroutine context */ 2442 bdrv_flush_co_entry(&flush_co); 2443 } else { 2444 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2445 bdrv_coroutine_enter(bs, co); 2446 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2447 } 2448 2449 return flush_co.ret; 2450 } 2451 2452 typedef struct DiscardCo { 2453 BlockDriverState *bs; 2454 int64_t offset; 2455 int bytes; 2456 int ret; 2457 } DiscardCo; 2458 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2459 { 2460 DiscardCo *rwco = opaque; 2461 2462 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); 2463 } 2464 2465 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2466 int bytes) 2467 { 2468 BdrvTrackedRequest req; 2469 int max_pdiscard, ret; 2470 int head, tail, align; 2471 2472 if (!bs->drv) { 2473 return -ENOMEDIUM; 2474 } 2475 2476 if (bdrv_has_readonly_bitmaps(bs)) { 2477 return -EPERM; 2478 } 2479 2480 ret = bdrv_check_byte_request(bs, offset, bytes); 2481 if (ret < 0) { 2482 return ret; 2483 } else if (bs->read_only) { 2484 return -EPERM; 2485 } 2486 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2487 2488 /* Do nothing if disabled. */ 2489 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2490 return 0; 2491 } 2492 2493 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2494 return 0; 2495 } 2496 2497 /* Discard is advisory, but some devices track and coalesce 2498 * unaligned requests, so we must pass everything down rather than 2499 * round here. Still, most devices will just silently ignore 2500 * unaligned requests (by returning -ENOTSUP), so we must fragment 2501 * the request accordingly. */ 2502 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2503 assert(align % bs->bl.request_alignment == 0); 2504 head = offset % align; 2505 tail = (offset + bytes) % align; 2506 2507 bdrv_inc_in_flight(bs); 2508 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2509 2510 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2511 if (ret < 0) { 2512 goto out; 2513 } 2514 2515 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2516 align); 2517 assert(max_pdiscard >= bs->bl.request_alignment); 2518 2519 while (bytes > 0) { 2520 int num = bytes; 2521 2522 if (head) { 2523 /* Make small requests to get to alignment boundaries. */ 2524 num = MIN(bytes, align - head); 2525 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2526 num %= bs->bl.request_alignment; 2527 } 2528 head = (head + num) % align; 2529 assert(num < max_pdiscard); 2530 } else if (tail) { 2531 if (num > align) { 2532 /* Shorten the request to the last aligned cluster. */ 2533 num -= tail; 2534 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2535 tail > bs->bl.request_alignment) { 2536 tail %= bs->bl.request_alignment; 2537 num -= tail; 2538 } 2539 } 2540 /* limit request size */ 2541 if (num > max_pdiscard) { 2542 num = max_pdiscard; 2543 } 2544 2545 if (bs->drv->bdrv_co_pdiscard) { 2546 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2547 } else { 2548 BlockAIOCB *acb; 2549 CoroutineIOCompletion co = { 2550 .coroutine = qemu_coroutine_self(), 2551 }; 2552 2553 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2554 bdrv_co_io_em_complete, &co); 2555 if (acb == NULL) { 2556 ret = -EIO; 2557 goto out; 2558 } else { 2559 qemu_coroutine_yield(); 2560 ret = co.ret; 2561 } 2562 } 2563 if (ret && ret != -ENOTSUP) { 2564 goto out; 2565 } 2566 2567 offset += num; 2568 bytes -= num; 2569 } 2570 ret = 0; 2571 out: 2572 atomic_inc(&bs->write_gen); 2573 bdrv_set_dirty(bs, req.offset, req.bytes); 2574 tracked_request_end(&req); 2575 bdrv_dec_in_flight(bs); 2576 return ret; 2577 } 2578 2579 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) 2580 { 2581 Coroutine *co; 2582 DiscardCo rwco = { 2583 .bs = bs, 2584 .offset = offset, 2585 .bytes = bytes, 2586 .ret = NOT_DONE, 2587 }; 2588 2589 if (qemu_in_coroutine()) { 2590 /* Fast-path if already in coroutine context */ 2591 bdrv_pdiscard_co_entry(&rwco); 2592 } else { 2593 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2594 bdrv_coroutine_enter(bs, co); 2595 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); 2596 } 2597 2598 return rwco.ret; 2599 } 2600 2601 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2602 { 2603 BlockDriver *drv = bs->drv; 2604 CoroutineIOCompletion co = { 2605 .coroutine = qemu_coroutine_self(), 2606 }; 2607 BlockAIOCB *acb; 2608 2609 bdrv_inc_in_flight(bs); 2610 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2611 co.ret = -ENOTSUP; 2612 goto out; 2613 } 2614 2615 if (drv->bdrv_co_ioctl) { 2616 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2617 } else { 2618 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2619 if (!acb) { 2620 co.ret = -ENOTSUP; 2621 goto out; 2622 } 2623 qemu_coroutine_yield(); 2624 } 2625 out: 2626 bdrv_dec_in_flight(bs); 2627 return co.ret; 2628 } 2629 2630 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2631 { 2632 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2633 } 2634 2635 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2636 { 2637 return memset(qemu_blockalign(bs, size), 0, size); 2638 } 2639 2640 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2641 { 2642 size_t align = bdrv_opt_mem_align(bs); 2643 2644 /* Ensure that NULL is never returned on success */ 2645 assert(align > 0); 2646 if (size == 0) { 2647 size = align; 2648 } 2649 2650 return qemu_try_memalign(align, size); 2651 } 2652 2653 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2654 { 2655 void *mem = qemu_try_blockalign(bs, size); 2656 2657 if (mem) { 2658 memset(mem, 0, size); 2659 } 2660 2661 return mem; 2662 } 2663 2664 /* 2665 * Check if all memory in this vector is sector aligned. 2666 */ 2667 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2668 { 2669 int i; 2670 size_t alignment = bdrv_min_mem_align(bs); 2671 2672 for (i = 0; i < qiov->niov; i++) { 2673 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2674 return false; 2675 } 2676 if (qiov->iov[i].iov_len % alignment) { 2677 return false; 2678 } 2679 } 2680 2681 return true; 2682 } 2683 2684 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2685 NotifierWithReturn *notifier) 2686 { 2687 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2688 } 2689 2690 void bdrv_io_plug(BlockDriverState *bs) 2691 { 2692 BdrvChild *child; 2693 2694 QLIST_FOREACH(child, &bs->children, next) { 2695 bdrv_io_plug(child->bs); 2696 } 2697 2698 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 2699 BlockDriver *drv = bs->drv; 2700 if (drv && drv->bdrv_io_plug) { 2701 drv->bdrv_io_plug(bs); 2702 } 2703 } 2704 } 2705 2706 void bdrv_io_unplug(BlockDriverState *bs) 2707 { 2708 BdrvChild *child; 2709 2710 assert(bs->io_plugged); 2711 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 2712 BlockDriver *drv = bs->drv; 2713 if (drv && drv->bdrv_io_unplug) { 2714 drv->bdrv_io_unplug(bs); 2715 } 2716 } 2717 2718 QLIST_FOREACH(child, &bs->children, next) { 2719 bdrv_io_unplug(child->bs); 2720 } 2721 } 2722