xref: /openbmc/qemu/block/io.c (revision 28c4da28695bdbe04b336b2c9c463876cc3aaa6d)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 
37 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
38 
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44     int64_t offset, int bytes, BdrvRequestFlags flags);
45 
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47                                       bool ignore_bds_parents)
48 {
49     BdrvChild *c, *next;
50 
51     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
53             continue;
54         }
55         bdrv_parent_drained_begin_single(c, false);
56     }
57 }
58 
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60                                                    int *drained_end_counter)
61 {
62     assert(c->parent_quiesce_counter > 0);
63     c->parent_quiesce_counter--;
64     if (c->role->drained_end) {
65         c->role->drained_end(c, drained_end_counter);
66     }
67 }
68 
69 void bdrv_parent_drained_end_single(BdrvChild *c)
70 {
71     int drained_end_counter = 0;
72     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73     BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
74 }
75 
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77                                     bool ignore_bds_parents,
78                                     int *drained_end_counter)
79 {
80     BdrvChild *c;
81 
82     QLIST_FOREACH(c, &bs->parents, next_parent) {
83         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
84             continue;
85         }
86         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
87     }
88 }
89 
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91 {
92     if (c->role->drained_poll) {
93         return c->role->drained_poll(c);
94     }
95     return false;
96 }
97 
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99                                      bool ignore_bds_parents)
100 {
101     BdrvChild *c, *next;
102     bool busy = false;
103 
104     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
106             continue;
107         }
108         busy |= bdrv_parent_drained_poll_single(c);
109     }
110 
111     return busy;
112 }
113 
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115 {
116     c->parent_quiesce_counter++;
117     if (c->role->drained_begin) {
118         c->role->drained_begin(c);
119     }
120     if (poll) {
121         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
122     }
123 }
124 
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 {
127     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 }
135 
136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
137 {
138     BlockDriver *drv = bs->drv;
139     Error *local_err = NULL;
140 
141     memset(&bs->bl, 0, sizeof(bs->bl));
142 
143     if (!drv) {
144         return;
145     }
146 
147     /* Default alignment based on whether driver has byte interface */
148     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
149                                 drv->bdrv_aio_preadv ||
150                                 drv->bdrv_co_preadv_part) ? 1 : 512;
151 
152     /* Take some limits from the children as a default */
153     if (bs->file) {
154         bdrv_refresh_limits(bs->file->bs, &local_err);
155         if (local_err) {
156             error_propagate(errp, local_err);
157             return;
158         }
159         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
160     } else {
161         bs->bl.min_mem_alignment = 512;
162         bs->bl.opt_mem_alignment = getpagesize();
163 
164         /* Safe default since most protocols use readv()/writev()/etc */
165         bs->bl.max_iov = IOV_MAX;
166     }
167 
168     if (bs->backing) {
169         bdrv_refresh_limits(bs->backing->bs, &local_err);
170         if (local_err) {
171             error_propagate(errp, local_err);
172             return;
173         }
174         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
175     }
176 
177     /* Then let the driver override it */
178     if (drv->bdrv_refresh_limits) {
179         drv->bdrv_refresh_limits(bs, errp);
180     }
181 }
182 
183 /**
184  * The copy-on-read flag is actually a reference count so multiple users may
185  * use the feature without worrying about clobbering its previous state.
186  * Copy-on-read stays enabled until all users have called to disable it.
187  */
188 void bdrv_enable_copy_on_read(BlockDriverState *bs)
189 {
190     atomic_inc(&bs->copy_on_read);
191 }
192 
193 void bdrv_disable_copy_on_read(BlockDriverState *bs)
194 {
195     int old = atomic_fetch_dec(&bs->copy_on_read);
196     assert(old >= 1);
197 }
198 
199 typedef struct {
200     Coroutine *co;
201     BlockDriverState *bs;
202     bool done;
203     bool begin;
204     bool recursive;
205     bool poll;
206     BdrvChild *parent;
207     bool ignore_bds_parents;
208     int *drained_end_counter;
209 } BdrvCoDrainData;
210 
211 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
212 {
213     BdrvCoDrainData *data = opaque;
214     BlockDriverState *bs = data->bs;
215 
216     if (data->begin) {
217         bs->drv->bdrv_co_drain_begin(bs);
218     } else {
219         bs->drv->bdrv_co_drain_end(bs);
220     }
221 
222     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
223     atomic_mb_set(&data->done, true);
224     if (!data->begin) {
225         atomic_dec(data->drained_end_counter);
226     }
227     bdrv_dec_in_flight(bs);
228 
229     g_free(data);
230 }
231 
232 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
233 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
234                               int *drained_end_counter)
235 {
236     BdrvCoDrainData *data;
237 
238     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
239             (!begin && !bs->drv->bdrv_co_drain_end)) {
240         return;
241     }
242 
243     data = g_new(BdrvCoDrainData, 1);
244     *data = (BdrvCoDrainData) {
245         .bs = bs,
246         .done = false,
247         .begin = begin,
248         .drained_end_counter = drained_end_counter,
249     };
250 
251     if (!begin) {
252         atomic_inc(drained_end_counter);
253     }
254 
255     /* Make sure the driver callback completes during the polling phase for
256      * drain_begin. */
257     bdrv_inc_in_flight(bs);
258     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
259     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
260 }
261 
262 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
263 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
264                      BdrvChild *ignore_parent, bool ignore_bds_parents)
265 {
266     BdrvChild *child, *next;
267 
268     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
269         return true;
270     }
271 
272     if (atomic_read(&bs->in_flight)) {
273         return true;
274     }
275 
276     if (recursive) {
277         assert(!ignore_bds_parents);
278         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
279             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
280                 return true;
281             }
282         }
283     }
284 
285     return false;
286 }
287 
288 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
289                                       BdrvChild *ignore_parent)
290 {
291     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
292 }
293 
294 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
295                                   BdrvChild *parent, bool ignore_bds_parents,
296                                   bool poll);
297 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
298                                 BdrvChild *parent, bool ignore_bds_parents,
299                                 int *drained_end_counter);
300 
301 static void bdrv_co_drain_bh_cb(void *opaque)
302 {
303     BdrvCoDrainData *data = opaque;
304     Coroutine *co = data->co;
305     BlockDriverState *bs = data->bs;
306 
307     if (bs) {
308         AioContext *ctx = bdrv_get_aio_context(bs);
309         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
310 
311         /*
312          * When the coroutine yielded, the lock for its home context was
313          * released, so we need to re-acquire it here. If it explicitly
314          * acquired a different context, the lock is still held and we don't
315          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
316          */
317         if (ctx == co_ctx) {
318             aio_context_acquire(ctx);
319         }
320         bdrv_dec_in_flight(bs);
321         if (data->begin) {
322             assert(!data->drained_end_counter);
323             bdrv_do_drained_begin(bs, data->recursive, data->parent,
324                                   data->ignore_bds_parents, data->poll);
325         } else {
326             assert(!data->poll);
327             bdrv_do_drained_end(bs, data->recursive, data->parent,
328                                 data->ignore_bds_parents,
329                                 data->drained_end_counter);
330         }
331         if (ctx == co_ctx) {
332             aio_context_release(ctx);
333         }
334     } else {
335         assert(data->begin);
336         bdrv_drain_all_begin();
337     }
338 
339     data->done = true;
340     aio_co_wake(co);
341 }
342 
343 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
344                                                 bool begin, bool recursive,
345                                                 BdrvChild *parent,
346                                                 bool ignore_bds_parents,
347                                                 bool poll,
348                                                 int *drained_end_counter)
349 {
350     BdrvCoDrainData data;
351 
352     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
353      * other coroutines run if they were queued by aio_co_enter(). */
354 
355     assert(qemu_in_coroutine());
356     data = (BdrvCoDrainData) {
357         .co = qemu_coroutine_self(),
358         .bs = bs,
359         .done = false,
360         .begin = begin,
361         .recursive = recursive,
362         .parent = parent,
363         .ignore_bds_parents = ignore_bds_parents,
364         .poll = poll,
365         .drained_end_counter = drained_end_counter,
366     };
367 
368     if (bs) {
369         bdrv_inc_in_flight(bs);
370     }
371     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
372                             bdrv_co_drain_bh_cb, &data);
373 
374     qemu_coroutine_yield();
375     /* If we are resumed from some other event (such as an aio completion or a
376      * timer callback), it is a bug in the caller that should be fixed. */
377     assert(data.done);
378 }
379 
380 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
381                                    BdrvChild *parent, bool ignore_bds_parents)
382 {
383     assert(!qemu_in_coroutine());
384 
385     /* Stop things in parent-to-child order */
386     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
387         aio_disable_external(bdrv_get_aio_context(bs));
388     }
389 
390     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
391     bdrv_drain_invoke(bs, true, NULL);
392 }
393 
394 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
395                                   BdrvChild *parent, bool ignore_bds_parents,
396                                   bool poll)
397 {
398     BdrvChild *child, *next;
399 
400     if (qemu_in_coroutine()) {
401         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
402                                poll, NULL);
403         return;
404     }
405 
406     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
407 
408     if (recursive) {
409         assert(!ignore_bds_parents);
410         bs->recursive_quiesce_counter++;
411         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
412             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
413                                   false);
414         }
415     }
416 
417     /*
418      * Wait for drained requests to finish.
419      *
420      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
421      * call is needed so things in this AioContext can make progress even
422      * though we don't return to the main AioContext loop - this automatically
423      * includes other nodes in the same AioContext and therefore all child
424      * nodes.
425      */
426     if (poll) {
427         assert(!ignore_bds_parents);
428         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
429     }
430 }
431 
432 void bdrv_drained_begin(BlockDriverState *bs)
433 {
434     bdrv_do_drained_begin(bs, false, NULL, false, true);
435 }
436 
437 void bdrv_subtree_drained_begin(BlockDriverState *bs)
438 {
439     bdrv_do_drained_begin(bs, true, NULL, false, true);
440 }
441 
442 /**
443  * This function does not poll, nor must any of its recursively called
444  * functions.  The *drained_end_counter pointee will be incremented
445  * once for every background operation scheduled, and decremented once
446  * the operation settles.  Therefore, the pointer must remain valid
447  * until the pointee reaches 0.  That implies that whoever sets up the
448  * pointee has to poll until it is 0.
449  *
450  * We use atomic operations to access *drained_end_counter, because
451  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
452  *     @bs may contain nodes in different AioContexts,
453  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
454  *     regardless of which AioContext they are in.
455  */
456 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
457                                 BdrvChild *parent, bool ignore_bds_parents,
458                                 int *drained_end_counter)
459 {
460     BdrvChild *child;
461     int old_quiesce_counter;
462 
463     assert(drained_end_counter != NULL);
464 
465     if (qemu_in_coroutine()) {
466         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
467                                false, drained_end_counter);
468         return;
469     }
470     assert(bs->quiesce_counter > 0);
471 
472     /* Re-enable things in child-to-parent order */
473     bdrv_drain_invoke(bs, false, drained_end_counter);
474     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
475                             drained_end_counter);
476 
477     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
478     if (old_quiesce_counter == 1) {
479         aio_enable_external(bdrv_get_aio_context(bs));
480     }
481 
482     if (recursive) {
483         assert(!ignore_bds_parents);
484         bs->recursive_quiesce_counter--;
485         QLIST_FOREACH(child, &bs->children, next) {
486             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
487                                 drained_end_counter);
488         }
489     }
490 }
491 
492 void bdrv_drained_end(BlockDriverState *bs)
493 {
494     int drained_end_counter = 0;
495     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
496     BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
497 }
498 
499 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
500 {
501     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
502 }
503 
504 void bdrv_subtree_drained_end(BlockDriverState *bs)
505 {
506     int drained_end_counter = 0;
507     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
508     BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
509 }
510 
511 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
512 {
513     int i;
514 
515     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
516         bdrv_do_drained_begin(child->bs, true, child, false, true);
517     }
518 }
519 
520 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
521 {
522     int drained_end_counter = 0;
523     int i;
524 
525     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
526         bdrv_do_drained_end(child->bs, true, child, false,
527                             &drained_end_counter);
528     }
529 
530     BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
531 }
532 
533 /*
534  * Wait for pending requests to complete on a single BlockDriverState subtree,
535  * and suspend block driver's internal I/O until next request arrives.
536  *
537  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
538  * AioContext.
539  */
540 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
541 {
542     assert(qemu_in_coroutine());
543     bdrv_drained_begin(bs);
544     bdrv_drained_end(bs);
545 }
546 
547 void bdrv_drain(BlockDriverState *bs)
548 {
549     bdrv_drained_begin(bs);
550     bdrv_drained_end(bs);
551 }
552 
553 static void bdrv_drain_assert_idle(BlockDriverState *bs)
554 {
555     BdrvChild *child, *next;
556 
557     assert(atomic_read(&bs->in_flight) == 0);
558     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
559         bdrv_drain_assert_idle(child->bs);
560     }
561 }
562 
563 unsigned int bdrv_drain_all_count = 0;
564 
565 static bool bdrv_drain_all_poll(void)
566 {
567     BlockDriverState *bs = NULL;
568     bool result = false;
569 
570     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
571      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
572     while ((bs = bdrv_next_all_states(bs))) {
573         AioContext *aio_context = bdrv_get_aio_context(bs);
574         aio_context_acquire(aio_context);
575         result |= bdrv_drain_poll(bs, false, NULL, true);
576         aio_context_release(aio_context);
577     }
578 
579     return result;
580 }
581 
582 /*
583  * Wait for pending requests to complete across all BlockDriverStates
584  *
585  * This function does not flush data to disk, use bdrv_flush_all() for that
586  * after calling this function.
587  *
588  * This pauses all block jobs and disables external clients. It must
589  * be paired with bdrv_drain_all_end().
590  *
591  * NOTE: no new block jobs or BlockDriverStates can be created between
592  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
593  */
594 void bdrv_drain_all_begin(void)
595 {
596     BlockDriverState *bs = NULL;
597 
598     if (qemu_in_coroutine()) {
599         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
600         return;
601     }
602 
603     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
604      * loop AioContext, so make sure we're in the main context. */
605     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
606     assert(bdrv_drain_all_count < INT_MAX);
607     bdrv_drain_all_count++;
608 
609     /* Quiesce all nodes, without polling in-flight requests yet. The graph
610      * cannot change during this loop. */
611     while ((bs = bdrv_next_all_states(bs))) {
612         AioContext *aio_context = bdrv_get_aio_context(bs);
613 
614         aio_context_acquire(aio_context);
615         bdrv_do_drained_begin(bs, false, NULL, true, false);
616         aio_context_release(aio_context);
617     }
618 
619     /* Now poll the in-flight requests */
620     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
621 
622     while ((bs = bdrv_next_all_states(bs))) {
623         bdrv_drain_assert_idle(bs);
624     }
625 }
626 
627 void bdrv_drain_all_end(void)
628 {
629     BlockDriverState *bs = NULL;
630     int drained_end_counter = 0;
631 
632     while ((bs = bdrv_next_all_states(bs))) {
633         AioContext *aio_context = bdrv_get_aio_context(bs);
634 
635         aio_context_acquire(aio_context);
636         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
637         aio_context_release(aio_context);
638     }
639 
640     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
641     AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
642 
643     assert(bdrv_drain_all_count > 0);
644     bdrv_drain_all_count--;
645 }
646 
647 void bdrv_drain_all(void)
648 {
649     bdrv_drain_all_begin();
650     bdrv_drain_all_end();
651 }
652 
653 /**
654  * Remove an active request from the tracked requests list
655  *
656  * This function should be called when a tracked request is completing.
657  */
658 static void tracked_request_end(BdrvTrackedRequest *req)
659 {
660     if (req->serialising) {
661         atomic_dec(&req->bs->serialising_in_flight);
662     }
663 
664     qemu_co_mutex_lock(&req->bs->reqs_lock);
665     QLIST_REMOVE(req, list);
666     qemu_co_queue_restart_all(&req->wait_queue);
667     qemu_co_mutex_unlock(&req->bs->reqs_lock);
668 }
669 
670 /**
671  * Add an active request to the tracked requests list
672  */
673 static void tracked_request_begin(BdrvTrackedRequest *req,
674                                   BlockDriverState *bs,
675                                   int64_t offset,
676                                   uint64_t bytes,
677                                   enum BdrvTrackedRequestType type)
678 {
679     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
680 
681     *req = (BdrvTrackedRequest){
682         .bs = bs,
683         .offset         = offset,
684         .bytes          = bytes,
685         .type           = type,
686         .co             = qemu_coroutine_self(),
687         .serialising    = false,
688         .overlap_offset = offset,
689         .overlap_bytes  = bytes,
690     };
691 
692     qemu_co_queue_init(&req->wait_queue);
693 
694     qemu_co_mutex_lock(&bs->reqs_lock);
695     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
696     qemu_co_mutex_unlock(&bs->reqs_lock);
697 }
698 
699 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
700 {
701     int64_t overlap_offset = req->offset & ~(align - 1);
702     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
703                                - overlap_offset;
704 
705     if (!req->serialising) {
706         atomic_inc(&req->bs->serialising_in_flight);
707         req->serialising = true;
708     }
709 
710     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713 
714 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
715 {
716     /*
717      * If the request is serialising, overlap_offset and overlap_bytes are set,
718      * so we can check if the request is aligned. Otherwise, don't care and
719      * return false.
720      */
721 
722     return req->serialising && (req->offset == req->overlap_offset) &&
723            (req->bytes == req->overlap_bytes);
724 }
725 
726 /**
727  * Round a region to cluster boundaries
728  */
729 void bdrv_round_to_clusters(BlockDriverState *bs,
730                             int64_t offset, int64_t bytes,
731                             int64_t *cluster_offset,
732                             int64_t *cluster_bytes)
733 {
734     BlockDriverInfo bdi;
735 
736     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
737         *cluster_offset = offset;
738         *cluster_bytes = bytes;
739     } else {
740         int64_t c = bdi.cluster_size;
741         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
742         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
743     }
744 }
745 
746 static int bdrv_get_cluster_size(BlockDriverState *bs)
747 {
748     BlockDriverInfo bdi;
749     int ret;
750 
751     ret = bdrv_get_info(bs, &bdi);
752     if (ret < 0 || bdi.cluster_size == 0) {
753         return bs->bl.request_alignment;
754     } else {
755         return bdi.cluster_size;
756     }
757 }
758 
759 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
760                                      int64_t offset, uint64_t bytes)
761 {
762     /*        aaaa   bbbb */
763     if (offset >= req->overlap_offset + req->overlap_bytes) {
764         return false;
765     }
766     /* bbbb   aaaa        */
767     if (req->overlap_offset >= offset + bytes) {
768         return false;
769     }
770     return true;
771 }
772 
773 void bdrv_inc_in_flight(BlockDriverState *bs)
774 {
775     atomic_inc(&bs->in_flight);
776 }
777 
778 void bdrv_wakeup(BlockDriverState *bs)
779 {
780     aio_wait_kick();
781 }
782 
783 void bdrv_dec_in_flight(BlockDriverState *bs)
784 {
785     atomic_dec(&bs->in_flight);
786     bdrv_wakeup(bs);
787 }
788 
789 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
790 {
791     BlockDriverState *bs = self->bs;
792     BdrvTrackedRequest *req;
793     bool retry;
794     bool waited = false;
795 
796     if (!atomic_read(&bs->serialising_in_flight)) {
797         return false;
798     }
799 
800     do {
801         retry = false;
802         qemu_co_mutex_lock(&bs->reqs_lock);
803         QLIST_FOREACH(req, &bs->tracked_requests, list) {
804             if (req == self || (!req->serialising && !self->serialising)) {
805                 continue;
806             }
807             if (tracked_request_overlaps(req, self->overlap_offset,
808                                          self->overlap_bytes))
809             {
810                 /* Hitting this means there was a reentrant request, for
811                  * example, a block driver issuing nested requests.  This must
812                  * never happen since it means deadlock.
813                  */
814                 assert(qemu_coroutine_self() != req->co);
815 
816                 /* If the request is already (indirectly) waiting for us, or
817                  * will wait for us as soon as it wakes up, then just go on
818                  * (instead of producing a deadlock in the former case). */
819                 if (!req->waiting_for) {
820                     self->waiting_for = req;
821                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
822                     self->waiting_for = NULL;
823                     retry = true;
824                     waited = true;
825                     break;
826                 }
827             }
828         }
829         qemu_co_mutex_unlock(&bs->reqs_lock);
830     } while (retry);
831 
832     return waited;
833 }
834 
835 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
836                                    size_t size)
837 {
838     if (size > BDRV_REQUEST_MAX_BYTES) {
839         return -EIO;
840     }
841 
842     if (!bdrv_is_inserted(bs)) {
843         return -ENOMEDIUM;
844     }
845 
846     if (offset < 0) {
847         return -EIO;
848     }
849 
850     return 0;
851 }
852 
853 typedef struct RwCo {
854     BdrvChild *child;
855     int64_t offset;
856     QEMUIOVector *qiov;
857     bool is_write;
858     int ret;
859     BdrvRequestFlags flags;
860 } RwCo;
861 
862 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
863 {
864     RwCo *rwco = opaque;
865 
866     if (!rwco->is_write) {
867         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
868                                    rwco->qiov->size, rwco->qiov,
869                                    rwco->flags);
870     } else {
871         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
872                                     rwco->qiov->size, rwco->qiov,
873                                     rwco->flags);
874     }
875     aio_wait_kick();
876 }
877 
878 /*
879  * Process a vectored synchronous request using coroutines
880  */
881 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
882                         QEMUIOVector *qiov, bool is_write,
883                         BdrvRequestFlags flags)
884 {
885     Coroutine *co;
886     RwCo rwco = {
887         .child = child,
888         .offset = offset,
889         .qiov = qiov,
890         .is_write = is_write,
891         .ret = NOT_DONE,
892         .flags = flags,
893     };
894 
895     if (qemu_in_coroutine()) {
896         /* Fast-path if already in coroutine context */
897         bdrv_rw_co_entry(&rwco);
898     } else {
899         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
900         bdrv_coroutine_enter(child->bs, co);
901         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
902     }
903     return rwco.ret;
904 }
905 
906 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
907                        int bytes, BdrvRequestFlags flags)
908 {
909     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
910 
911     return bdrv_prwv_co(child, offset, &qiov, true,
912                         BDRV_REQ_ZERO_WRITE | flags);
913 }
914 
915 /*
916  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
917  * The operation is sped up by checking the block status and only writing
918  * zeroes to the device if they currently do not return zeroes. Optional
919  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
920  * BDRV_REQ_FUA).
921  *
922  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
923  */
924 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
925 {
926     int ret;
927     int64_t target_size, bytes, offset = 0;
928     BlockDriverState *bs = child->bs;
929 
930     target_size = bdrv_getlength(bs);
931     if (target_size < 0) {
932         return target_size;
933     }
934 
935     for (;;) {
936         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
937         if (bytes <= 0) {
938             return 0;
939         }
940         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
941         if (ret < 0) {
942             return ret;
943         }
944         if (ret & BDRV_BLOCK_ZERO) {
945             offset += bytes;
946             continue;
947         }
948         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
949         if (ret < 0) {
950             return ret;
951         }
952         offset += bytes;
953     }
954 }
955 
956 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
957 {
958     int ret;
959 
960     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
961     if (ret < 0) {
962         return ret;
963     }
964 
965     return qiov->size;
966 }
967 
968 /* See bdrv_pwrite() for the return codes */
969 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
970 {
971     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
972 
973     if (bytes < 0) {
974         return -EINVAL;
975     }
976 
977     return bdrv_preadv(child, offset, &qiov);
978 }
979 
980 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
981 {
982     int ret;
983 
984     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
985     if (ret < 0) {
986         return ret;
987     }
988 
989     return qiov->size;
990 }
991 
992 /* Return no. of bytes on success or < 0 on error. Important errors are:
993   -EIO         generic I/O error (may happen for all errors)
994   -ENOMEDIUM   No media inserted.
995   -EINVAL      Invalid offset or number of bytes
996   -EACCES      Trying to write a read-only device
997 */
998 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
999 {
1000     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1001 
1002     if (bytes < 0) {
1003         return -EINVAL;
1004     }
1005 
1006     return bdrv_pwritev(child, offset, &qiov);
1007 }
1008 
1009 /*
1010  * Writes to the file and ensures that no writes are reordered across this
1011  * request (acts as a barrier)
1012  *
1013  * Returns 0 on success, -errno in error cases.
1014  */
1015 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1016                      const void *buf, int count)
1017 {
1018     int ret;
1019 
1020     ret = bdrv_pwrite(child, offset, buf, count);
1021     if (ret < 0) {
1022         return ret;
1023     }
1024 
1025     ret = bdrv_flush(child->bs);
1026     if (ret < 0) {
1027         return ret;
1028     }
1029 
1030     return 0;
1031 }
1032 
1033 typedef struct CoroutineIOCompletion {
1034     Coroutine *coroutine;
1035     int ret;
1036 } CoroutineIOCompletion;
1037 
1038 static void bdrv_co_io_em_complete(void *opaque, int ret)
1039 {
1040     CoroutineIOCompletion *co = opaque;
1041 
1042     co->ret = ret;
1043     aio_co_wake(co->coroutine);
1044 }
1045 
1046 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1047                                            uint64_t offset, uint64_t bytes,
1048                                            QEMUIOVector *qiov,
1049                                            size_t qiov_offset, int flags)
1050 {
1051     BlockDriver *drv = bs->drv;
1052     int64_t sector_num;
1053     unsigned int nb_sectors;
1054     QEMUIOVector local_qiov;
1055     int ret;
1056 
1057     assert(!(flags & ~BDRV_REQ_MASK));
1058     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1059 
1060     if (!drv) {
1061         return -ENOMEDIUM;
1062     }
1063 
1064     if (drv->bdrv_co_preadv_part) {
1065         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1066                                         flags);
1067     }
1068 
1069     if (qiov_offset > 0 || bytes != qiov->size) {
1070         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1071         qiov = &local_qiov;
1072     }
1073 
1074     if (drv->bdrv_co_preadv) {
1075         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1076         goto out;
1077     }
1078 
1079     if (drv->bdrv_aio_preadv) {
1080         BlockAIOCB *acb;
1081         CoroutineIOCompletion co = {
1082             .coroutine = qemu_coroutine_self(),
1083         };
1084 
1085         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1086                                    bdrv_co_io_em_complete, &co);
1087         if (acb == NULL) {
1088             ret = -EIO;
1089             goto out;
1090         } else {
1091             qemu_coroutine_yield();
1092             ret = co.ret;
1093             goto out;
1094         }
1095     }
1096 
1097     sector_num = offset >> BDRV_SECTOR_BITS;
1098     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1099 
1100     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1101     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1102     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1103     assert(drv->bdrv_co_readv);
1104 
1105     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1106 
1107 out:
1108     if (qiov == &local_qiov) {
1109         qemu_iovec_destroy(&local_qiov);
1110     }
1111 
1112     return ret;
1113 }
1114 
1115 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1116                                             uint64_t offset, uint64_t bytes,
1117                                             QEMUIOVector *qiov,
1118                                             size_t qiov_offset, int flags)
1119 {
1120     BlockDriver *drv = bs->drv;
1121     int64_t sector_num;
1122     unsigned int nb_sectors;
1123     QEMUIOVector local_qiov;
1124     int ret;
1125 
1126     assert(!(flags & ~BDRV_REQ_MASK));
1127     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1128 
1129     if (!drv) {
1130         return -ENOMEDIUM;
1131     }
1132 
1133     if (drv->bdrv_co_pwritev_part) {
1134         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1135                                         flags & bs->supported_write_flags);
1136         flags &= ~bs->supported_write_flags;
1137         goto emulate_flags;
1138     }
1139 
1140     if (qiov_offset > 0 || bytes != qiov->size) {
1141         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1142         qiov = &local_qiov;
1143     }
1144 
1145     if (drv->bdrv_co_pwritev) {
1146         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1147                                    flags & bs->supported_write_flags);
1148         flags &= ~bs->supported_write_flags;
1149         goto emulate_flags;
1150     }
1151 
1152     if (drv->bdrv_aio_pwritev) {
1153         BlockAIOCB *acb;
1154         CoroutineIOCompletion co = {
1155             .coroutine = qemu_coroutine_self(),
1156         };
1157 
1158         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1159                                     flags & bs->supported_write_flags,
1160                                     bdrv_co_io_em_complete, &co);
1161         flags &= ~bs->supported_write_flags;
1162         if (acb == NULL) {
1163             ret = -EIO;
1164         } else {
1165             qemu_coroutine_yield();
1166             ret = co.ret;
1167         }
1168         goto emulate_flags;
1169     }
1170 
1171     sector_num = offset >> BDRV_SECTOR_BITS;
1172     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1173 
1174     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1175     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1176     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1177 
1178     assert(drv->bdrv_co_writev);
1179     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1180                               flags & bs->supported_write_flags);
1181     flags &= ~bs->supported_write_flags;
1182 
1183 emulate_flags:
1184     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1185         ret = bdrv_co_flush(bs);
1186     }
1187 
1188     if (qiov == &local_qiov) {
1189         qemu_iovec_destroy(&local_qiov);
1190     }
1191 
1192     return ret;
1193 }
1194 
1195 static int coroutine_fn
1196 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1197                                uint64_t bytes, QEMUIOVector *qiov,
1198                                size_t qiov_offset)
1199 {
1200     BlockDriver *drv = bs->drv;
1201     QEMUIOVector local_qiov;
1202     int ret;
1203 
1204     if (!drv) {
1205         return -ENOMEDIUM;
1206     }
1207 
1208     if (!block_driver_can_compress(drv)) {
1209         return -ENOTSUP;
1210     }
1211 
1212     if (drv->bdrv_co_pwritev_compressed_part) {
1213         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1214                                                     qiov, qiov_offset);
1215     }
1216 
1217     if (qiov_offset == 0) {
1218         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1219     }
1220 
1221     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1222     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1223     qemu_iovec_destroy(&local_qiov);
1224 
1225     return ret;
1226 }
1227 
1228 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1229         int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1230         size_t qiov_offset, int flags)
1231 {
1232     BlockDriverState *bs = child->bs;
1233 
1234     /* Perform I/O through a temporary buffer so that users who scribble over
1235      * their read buffer while the operation is in progress do not end up
1236      * modifying the image file.  This is critical for zero-copy guest I/O
1237      * where anything might happen inside guest memory.
1238      */
1239     void *bounce_buffer = NULL;
1240 
1241     BlockDriver *drv = bs->drv;
1242     int64_t cluster_offset;
1243     int64_t cluster_bytes;
1244     size_t skip_bytes;
1245     int ret;
1246     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1247                                     BDRV_REQUEST_MAX_BYTES);
1248     unsigned int progress = 0;
1249 
1250     if (!drv) {
1251         return -ENOMEDIUM;
1252     }
1253 
1254     /* FIXME We cannot require callers to have write permissions when all they
1255      * are doing is a read request. If we did things right, write permissions
1256      * would be obtained anyway, but internally by the copy-on-read code. As
1257      * long as it is implemented here rather than in a separate filter driver,
1258      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1259      * it could request permissions. Therefore we have to bypass the permission
1260      * system for the moment. */
1261     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1262 
1263     /* Cover entire cluster so no additional backing file I/O is required when
1264      * allocating cluster in the image file.  Note that this value may exceed
1265      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1266      * is one reason we loop rather than doing it all at once.
1267      */
1268     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1269     skip_bytes = offset - cluster_offset;
1270 
1271     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1272                                    cluster_offset, cluster_bytes);
1273 
1274     while (cluster_bytes) {
1275         int64_t pnum;
1276 
1277         ret = bdrv_is_allocated(bs, cluster_offset,
1278                                 MIN(cluster_bytes, max_transfer), &pnum);
1279         if (ret < 0) {
1280             /* Safe to treat errors in querying allocation as if
1281              * unallocated; we'll probably fail again soon on the
1282              * read, but at least that will set a decent errno.
1283              */
1284             pnum = MIN(cluster_bytes, max_transfer);
1285         }
1286 
1287         /* Stop at EOF if the image ends in the middle of the cluster */
1288         if (ret == 0 && pnum == 0) {
1289             assert(progress >= bytes);
1290             break;
1291         }
1292 
1293         assert(skip_bytes < pnum);
1294 
1295         if (ret <= 0) {
1296             QEMUIOVector local_qiov;
1297 
1298             /* Must copy-on-read; use the bounce buffer */
1299             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1300             if (!bounce_buffer) {
1301                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1302                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1303                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1304 
1305                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1306                 if (!bounce_buffer) {
1307                     ret = -ENOMEM;
1308                     goto err;
1309                 }
1310             }
1311             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1312 
1313             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1314                                      &local_qiov, 0, 0);
1315             if (ret < 0) {
1316                 goto err;
1317             }
1318 
1319             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1320             if (drv->bdrv_co_pwrite_zeroes &&
1321                 buffer_is_zero(bounce_buffer, pnum)) {
1322                 /* FIXME: Should we (perhaps conditionally) be setting
1323                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1324                  * that still correctly reads as zero? */
1325                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1326                                                BDRV_REQ_WRITE_UNCHANGED);
1327             } else {
1328                 /* This does not change the data on the disk, it is not
1329                  * necessary to flush even in cache=writethrough mode.
1330                  */
1331                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1332                                           &local_qiov, 0,
1333                                           BDRV_REQ_WRITE_UNCHANGED);
1334             }
1335 
1336             if (ret < 0) {
1337                 /* It might be okay to ignore write errors for guest
1338                  * requests.  If this is a deliberate copy-on-read
1339                  * then we don't want to ignore the error.  Simply
1340                  * report it in all cases.
1341                  */
1342                 goto err;
1343             }
1344 
1345             if (!(flags & BDRV_REQ_PREFETCH)) {
1346                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1347                                     bounce_buffer + skip_bytes,
1348                                     pnum - skip_bytes);
1349             }
1350         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1351             /* Read directly into the destination */
1352             ret = bdrv_driver_preadv(bs, offset + progress,
1353                                      MIN(pnum - skip_bytes, bytes - progress),
1354                                      qiov, qiov_offset + progress, 0);
1355             if (ret < 0) {
1356                 goto err;
1357             }
1358         }
1359 
1360         cluster_offset += pnum;
1361         cluster_bytes -= pnum;
1362         progress += pnum - skip_bytes;
1363         skip_bytes = 0;
1364     }
1365     ret = 0;
1366 
1367 err:
1368     qemu_vfree(bounce_buffer);
1369     return ret;
1370 }
1371 
1372 /*
1373  * Forwards an already correctly aligned request to the BlockDriver. This
1374  * handles copy on read, zeroing after EOF, and fragmentation of large
1375  * reads; any other features must be implemented by the caller.
1376  */
1377 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1378     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1379     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1380 {
1381     BlockDriverState *bs = child->bs;
1382     int64_t total_bytes, max_bytes;
1383     int ret = 0;
1384     uint64_t bytes_remaining = bytes;
1385     int max_transfer;
1386 
1387     assert(is_power_of_2(align));
1388     assert((offset & (align - 1)) == 0);
1389     assert((bytes & (align - 1)) == 0);
1390     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1391     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1392                                    align);
1393 
1394     /* TODO: We would need a per-BDS .supported_read_flags and
1395      * potential fallback support, if we ever implement any read flags
1396      * to pass through to drivers.  For now, there aren't any
1397      * passthrough flags.  */
1398     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
1399                        BDRV_REQ_PREFETCH)));
1400 
1401     /* Handle Copy on Read and associated serialisation */
1402     if (flags & BDRV_REQ_COPY_ON_READ) {
1403         /* If we touch the same cluster it counts as an overlap.  This
1404          * guarantees that allocating writes will be serialized and not race
1405          * with each other for the same cluster.  For example, in copy-on-read
1406          * it ensures that the CoR read and write operations are atomic and
1407          * guest writes cannot interleave between them. */
1408         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1409     }
1410 
1411     /* BDRV_REQ_SERIALISING is only for write operation */
1412     assert(!(flags & BDRV_REQ_SERIALISING));
1413 
1414     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1415         wait_serialising_requests(req);
1416     }
1417 
1418     if (flags & BDRV_REQ_COPY_ON_READ) {
1419         int64_t pnum;
1420 
1421         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1422         if (ret < 0) {
1423             goto out;
1424         }
1425 
1426         if (!ret || pnum != bytes) {
1427             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1428                                            qiov, qiov_offset, flags);
1429             goto out;
1430         } else if (flags & BDRV_REQ_PREFETCH) {
1431             goto out;
1432         }
1433     }
1434 
1435     /* Forward the request to the BlockDriver, possibly fragmenting it */
1436     total_bytes = bdrv_getlength(bs);
1437     if (total_bytes < 0) {
1438         ret = total_bytes;
1439         goto out;
1440     }
1441 
1442     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1443     if (bytes <= max_bytes && bytes <= max_transfer) {
1444         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1445         goto out;
1446     }
1447 
1448     while (bytes_remaining) {
1449         int num;
1450 
1451         if (max_bytes) {
1452             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1453             assert(num);
1454 
1455             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1456                                      num, qiov, bytes - bytes_remaining, 0);
1457             max_bytes -= num;
1458         } else {
1459             num = bytes_remaining;
1460             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1461                                     bytes_remaining);
1462         }
1463         if (ret < 0) {
1464             goto out;
1465         }
1466         bytes_remaining -= num;
1467     }
1468 
1469 out:
1470     return ret < 0 ? ret : 0;
1471 }
1472 
1473 /*
1474  * Request padding
1475  *
1476  *  |<---- align ----->|                     |<----- align ---->|
1477  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1478  *  |          |       |                     |     |            |
1479  * -*----------$-------*-------- ... --------*-----$------------*---
1480  *  |          |       |                     |     |            |
1481  *  |          offset  |                     |     end          |
1482  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1483  *  [buf   ... )                             [tail_buf          )
1484  *
1485  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1486  * is placed at the beginning of @buf and @tail at the @end.
1487  *
1488  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1489  * around tail, if tail exists.
1490  *
1491  * @merge_reads is true for small requests,
1492  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1493  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1494  */
1495 typedef struct BdrvRequestPadding {
1496     uint8_t *buf;
1497     size_t buf_len;
1498     uint8_t *tail_buf;
1499     size_t head;
1500     size_t tail;
1501     bool merge_reads;
1502     QEMUIOVector local_qiov;
1503 } BdrvRequestPadding;
1504 
1505 static bool bdrv_init_padding(BlockDriverState *bs,
1506                               int64_t offset, int64_t bytes,
1507                               BdrvRequestPadding *pad)
1508 {
1509     uint64_t align = bs->bl.request_alignment;
1510     size_t sum;
1511 
1512     memset(pad, 0, sizeof(*pad));
1513 
1514     pad->head = offset & (align - 1);
1515     pad->tail = ((offset + bytes) & (align - 1));
1516     if (pad->tail) {
1517         pad->tail = align - pad->tail;
1518     }
1519 
1520     if ((!pad->head && !pad->tail) || !bytes) {
1521         return false;
1522     }
1523 
1524     sum = pad->head + bytes + pad->tail;
1525     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1526     pad->buf = qemu_blockalign(bs, pad->buf_len);
1527     pad->merge_reads = sum == pad->buf_len;
1528     if (pad->tail) {
1529         pad->tail_buf = pad->buf + pad->buf_len - align;
1530     }
1531 
1532     return true;
1533 }
1534 
1535 static int bdrv_padding_rmw_read(BdrvChild *child,
1536                                  BdrvTrackedRequest *req,
1537                                  BdrvRequestPadding *pad,
1538                                  bool zero_middle)
1539 {
1540     QEMUIOVector local_qiov;
1541     BlockDriverState *bs = child->bs;
1542     uint64_t align = bs->bl.request_alignment;
1543     int ret;
1544 
1545     assert(req->serialising && pad->buf);
1546 
1547     if (pad->head || pad->merge_reads) {
1548         uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1549 
1550         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1551 
1552         if (pad->head) {
1553             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1554         }
1555         if (pad->merge_reads && pad->tail) {
1556             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1557         }
1558         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1559                                   align, &local_qiov, 0, 0);
1560         if (ret < 0) {
1561             return ret;
1562         }
1563         if (pad->head) {
1564             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1565         }
1566         if (pad->merge_reads && pad->tail) {
1567             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1568         }
1569 
1570         if (pad->merge_reads) {
1571             goto zero_mem;
1572         }
1573     }
1574 
1575     if (pad->tail) {
1576         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1577 
1578         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1579         ret = bdrv_aligned_preadv(
1580                 child, req,
1581                 req->overlap_offset + req->overlap_bytes - align,
1582                 align, align, &local_qiov, 0, 0);
1583         if (ret < 0) {
1584             return ret;
1585         }
1586         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1587     }
1588 
1589 zero_mem:
1590     if (zero_middle) {
1591         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1592     }
1593 
1594     return 0;
1595 }
1596 
1597 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1598 {
1599     if (pad->buf) {
1600         qemu_vfree(pad->buf);
1601         qemu_iovec_destroy(&pad->local_qiov);
1602     }
1603 }
1604 
1605 /*
1606  * bdrv_pad_request
1607  *
1608  * Exchange request parameters with padded request if needed. Don't include RMW
1609  * read of padding, bdrv_padding_rmw_read() should be called separately if
1610  * needed.
1611  *
1612  * All parameters except @bs are in-out: they represent original request at
1613  * function call and padded (if padding needed) at function finish.
1614  *
1615  * Function always succeeds.
1616  */
1617 static bool bdrv_pad_request(BlockDriverState *bs, QEMUIOVector **qiov,
1618                              int64_t *offset, unsigned int *bytes,
1619                              BdrvRequestPadding *pad)
1620 {
1621     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1622         return false;
1623     }
1624 
1625     qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1626                              *qiov, 0, *bytes,
1627                              pad->buf + pad->buf_len - pad->tail, pad->tail);
1628     *bytes += pad->head + pad->tail;
1629     *offset -= pad->head;
1630     *qiov = &pad->local_qiov;
1631 
1632     return true;
1633 }
1634 
1635 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1636     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1637     BdrvRequestFlags flags)
1638 {
1639     BlockDriverState *bs = child->bs;
1640     BdrvTrackedRequest req;
1641     BdrvRequestPadding pad;
1642     int ret;
1643 
1644     trace_bdrv_co_preadv(bs, offset, bytes, flags);
1645 
1646     ret = bdrv_check_byte_request(bs, offset, bytes);
1647     if (ret < 0) {
1648         return ret;
1649     }
1650 
1651     bdrv_inc_in_flight(bs);
1652 
1653     /* Don't do copy-on-read if we read data before write operation */
1654     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1655         flags |= BDRV_REQ_COPY_ON_READ;
1656     }
1657 
1658     bdrv_pad_request(bs, &qiov, &offset, &bytes, &pad);
1659 
1660     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1661     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1662                               bs->bl.request_alignment,
1663                               qiov, 0, flags);
1664     tracked_request_end(&req);
1665     bdrv_dec_in_flight(bs);
1666 
1667     bdrv_padding_destroy(&pad);
1668 
1669     return ret;
1670 }
1671 
1672 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1673     int64_t offset, int bytes, BdrvRequestFlags flags)
1674 {
1675     BlockDriver *drv = bs->drv;
1676     QEMUIOVector qiov;
1677     void *buf = NULL;
1678     int ret = 0;
1679     bool need_flush = false;
1680     int head = 0;
1681     int tail = 0;
1682 
1683     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1684     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1685                         bs->bl.request_alignment);
1686     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1687 
1688     if (!drv) {
1689         return -ENOMEDIUM;
1690     }
1691 
1692     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1693         return -ENOTSUP;
1694     }
1695 
1696     assert(alignment % bs->bl.request_alignment == 0);
1697     head = offset % alignment;
1698     tail = (offset + bytes) % alignment;
1699     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1700     assert(max_write_zeroes >= bs->bl.request_alignment);
1701 
1702     while (bytes > 0 && !ret) {
1703         int num = bytes;
1704 
1705         /* Align request.  Block drivers can expect the "bulk" of the request
1706          * to be aligned, and that unaligned requests do not cross cluster
1707          * boundaries.
1708          */
1709         if (head) {
1710             /* Make a small request up to the first aligned sector. For
1711              * convenience, limit this request to max_transfer even if
1712              * we don't need to fall back to writes.  */
1713             num = MIN(MIN(bytes, max_transfer), alignment - head);
1714             head = (head + num) % alignment;
1715             assert(num < max_write_zeroes);
1716         } else if (tail && num > alignment) {
1717             /* Shorten the request to the last aligned sector.  */
1718             num -= tail;
1719         }
1720 
1721         /* limit request size */
1722         if (num > max_write_zeroes) {
1723             num = max_write_zeroes;
1724         }
1725 
1726         ret = -ENOTSUP;
1727         /* First try the efficient write zeroes operation */
1728         if (drv->bdrv_co_pwrite_zeroes) {
1729             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1730                                              flags & bs->supported_zero_flags);
1731             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1732                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1733                 need_flush = true;
1734             }
1735         } else {
1736             assert(!bs->supported_zero_flags);
1737         }
1738 
1739         if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) {
1740             /* Fall back to bounce buffer if write zeroes is unsupported */
1741             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1742 
1743             if ((flags & BDRV_REQ_FUA) &&
1744                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1745                 /* No need for bdrv_driver_pwrite() to do a fallback
1746                  * flush on each chunk; use just one at the end */
1747                 write_flags &= ~BDRV_REQ_FUA;
1748                 need_flush = true;
1749             }
1750             num = MIN(num, max_transfer);
1751             if (buf == NULL) {
1752                 buf = qemu_try_blockalign0(bs, num);
1753                 if (buf == NULL) {
1754                     ret = -ENOMEM;
1755                     goto fail;
1756                 }
1757             }
1758             qemu_iovec_init_buf(&qiov, buf, num);
1759 
1760             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1761 
1762             /* Keep bounce buffer around if it is big enough for all
1763              * all future requests.
1764              */
1765             if (num < max_transfer) {
1766                 qemu_vfree(buf);
1767                 buf = NULL;
1768             }
1769         }
1770 
1771         offset += num;
1772         bytes -= num;
1773     }
1774 
1775 fail:
1776     if (ret == 0 && need_flush) {
1777         ret = bdrv_co_flush(bs);
1778     }
1779     qemu_vfree(buf);
1780     return ret;
1781 }
1782 
1783 static inline int coroutine_fn
1784 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1785                           BdrvTrackedRequest *req, int flags)
1786 {
1787     BlockDriverState *bs = child->bs;
1788     bool waited;
1789     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1790 
1791     if (bs->read_only) {
1792         return -EPERM;
1793     }
1794 
1795     /* BDRV_REQ_NO_SERIALISING is only for read operation */
1796     assert(!(flags & BDRV_REQ_NO_SERIALISING));
1797     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1798     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1799     assert(!(flags & ~BDRV_REQ_MASK));
1800 
1801     if (flags & BDRV_REQ_SERIALISING) {
1802         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1803     }
1804 
1805     waited = wait_serialising_requests(req);
1806 
1807     assert(!waited || !req->serialising ||
1808            is_request_serialising_and_aligned(req));
1809     assert(req->overlap_offset <= offset);
1810     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1811     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1812 
1813     switch (req->type) {
1814     case BDRV_TRACKED_WRITE:
1815     case BDRV_TRACKED_DISCARD:
1816         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1817             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1818         } else {
1819             assert(child->perm & BLK_PERM_WRITE);
1820         }
1821         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1822                                                 req);
1823     case BDRV_TRACKED_TRUNCATE:
1824         assert(child->perm & BLK_PERM_RESIZE);
1825         return 0;
1826     default:
1827         abort();
1828     }
1829 }
1830 
1831 static inline void coroutine_fn
1832 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1833                          BdrvTrackedRequest *req, int ret)
1834 {
1835     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1836     BlockDriverState *bs = child->bs;
1837 
1838     atomic_inc(&bs->write_gen);
1839 
1840     /*
1841      * Discard cannot extend the image, but in error handling cases, such as
1842      * when reverting a qcow2 cluster allocation, the discarded range can pass
1843      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1844      * here. Instead, just skip it, since semantically a discard request
1845      * beyond EOF cannot expand the image anyway.
1846      */
1847     if (ret == 0 &&
1848         (req->type == BDRV_TRACKED_TRUNCATE ||
1849          end_sector > bs->total_sectors) &&
1850         req->type != BDRV_TRACKED_DISCARD) {
1851         bs->total_sectors = end_sector;
1852         bdrv_parent_cb_resize(bs);
1853         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1854     }
1855     if (req->bytes) {
1856         switch (req->type) {
1857         case BDRV_TRACKED_WRITE:
1858             stat64_max(&bs->wr_highest_offset, offset + bytes);
1859             /* fall through, to set dirty bits */
1860         case BDRV_TRACKED_DISCARD:
1861             bdrv_set_dirty(bs, offset, bytes);
1862             break;
1863         default:
1864             break;
1865         }
1866     }
1867 }
1868 
1869 /*
1870  * Forwards an already correctly aligned write request to the BlockDriver,
1871  * after possibly fragmenting it.
1872  */
1873 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1874     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1875     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1876 {
1877     BlockDriverState *bs = child->bs;
1878     BlockDriver *drv = bs->drv;
1879     int ret;
1880 
1881     uint64_t bytes_remaining = bytes;
1882     int max_transfer;
1883 
1884     if (!drv) {
1885         return -ENOMEDIUM;
1886     }
1887 
1888     if (bdrv_has_readonly_bitmaps(bs)) {
1889         return -EPERM;
1890     }
1891 
1892     assert(is_power_of_2(align));
1893     assert((offset & (align - 1)) == 0);
1894     assert((bytes & (align - 1)) == 0);
1895     assert(!qiov || qiov_offset + bytes <= qiov->size);
1896     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1897                                    align);
1898 
1899     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1900 
1901     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1902         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1903         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1904         flags |= BDRV_REQ_ZERO_WRITE;
1905         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1906             flags |= BDRV_REQ_MAY_UNMAP;
1907         }
1908     }
1909 
1910     if (ret < 0) {
1911         /* Do nothing, write notifier decided to fail this request */
1912     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1913         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1914         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1915     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1916         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1917                                              qiov, qiov_offset);
1918     } else if (bytes <= max_transfer) {
1919         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1920         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1921     } else {
1922         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1923         while (bytes_remaining) {
1924             int num = MIN(bytes_remaining, max_transfer);
1925             int local_flags = flags;
1926 
1927             assert(num);
1928             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1929                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1930                 /* If FUA is going to be emulated by flush, we only
1931                  * need to flush on the last iteration */
1932                 local_flags &= ~BDRV_REQ_FUA;
1933             }
1934 
1935             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1936                                       num, qiov, bytes - bytes_remaining,
1937                                       local_flags);
1938             if (ret < 0) {
1939                 break;
1940             }
1941             bytes_remaining -= num;
1942         }
1943     }
1944     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1945 
1946     if (ret >= 0) {
1947         ret = 0;
1948     }
1949     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1950 
1951     return ret;
1952 }
1953 
1954 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1955                                                 int64_t offset,
1956                                                 unsigned int bytes,
1957                                                 BdrvRequestFlags flags,
1958                                                 BdrvTrackedRequest *req)
1959 {
1960     BlockDriverState *bs = child->bs;
1961     QEMUIOVector local_qiov;
1962     uint64_t align = bs->bl.request_alignment;
1963     int ret = 0;
1964     bool padding;
1965     BdrvRequestPadding pad;
1966 
1967     padding = bdrv_init_padding(bs, offset, bytes, &pad);
1968     if (padding) {
1969         mark_request_serialising(req, align);
1970         wait_serialising_requests(req);
1971 
1972         bdrv_padding_rmw_read(child, req, &pad, true);
1973 
1974         if (pad.head || pad.merge_reads) {
1975             int64_t aligned_offset = offset & ~(align - 1);
1976             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
1977 
1978             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
1979             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
1980                                        align, &local_qiov, 0,
1981                                        flags & ~BDRV_REQ_ZERO_WRITE);
1982             if (ret < 0 || pad.merge_reads) {
1983                 /* Error or all work is done */
1984                 goto out;
1985             }
1986             offset += write_bytes - pad.head;
1987             bytes -= write_bytes - pad.head;
1988         }
1989     }
1990 
1991     assert(!bytes || (offset & (align - 1)) == 0);
1992     if (bytes >= align) {
1993         /* Write the aligned part in the middle. */
1994         uint64_t aligned_bytes = bytes & ~(align - 1);
1995         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1996                                    NULL, 0, flags);
1997         if (ret < 0) {
1998             goto out;
1999         }
2000         bytes -= aligned_bytes;
2001         offset += aligned_bytes;
2002     }
2003 
2004     assert(!bytes || (offset & (align - 1)) == 0);
2005     if (bytes) {
2006         assert(align == pad.tail + bytes);
2007 
2008         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2009         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2010                                    &local_qiov, 0,
2011                                    flags & ~BDRV_REQ_ZERO_WRITE);
2012     }
2013 
2014 out:
2015     bdrv_padding_destroy(&pad);
2016 
2017     return ret;
2018 }
2019 
2020 /*
2021  * Handle a write request in coroutine context
2022  */
2023 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2024     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2025     BdrvRequestFlags flags)
2026 {
2027     BlockDriverState *bs = child->bs;
2028     BdrvTrackedRequest req;
2029     uint64_t align = bs->bl.request_alignment;
2030     BdrvRequestPadding pad;
2031     int ret;
2032 
2033     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2034 
2035     if (!bs->drv) {
2036         return -ENOMEDIUM;
2037     }
2038 
2039     ret = bdrv_check_byte_request(bs, offset, bytes);
2040     if (ret < 0) {
2041         return ret;
2042     }
2043 
2044     bdrv_inc_in_flight(bs);
2045     /*
2046      * Align write if necessary by performing a read-modify-write cycle.
2047      * Pad qiov with the read parts and be sure to have a tracked request not
2048      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2049      */
2050     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2051 
2052     if (flags & BDRV_REQ_ZERO_WRITE) {
2053         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2054         goto out;
2055     }
2056 
2057     if (bdrv_pad_request(bs, &qiov, &offset, &bytes, &pad)) {
2058         mark_request_serialising(&req, align);
2059         wait_serialising_requests(&req);
2060         bdrv_padding_rmw_read(child, &req, &pad, false);
2061     }
2062 
2063     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2064                                qiov, 0, flags);
2065 
2066     bdrv_padding_destroy(&pad);
2067 
2068 out:
2069     tracked_request_end(&req);
2070     bdrv_dec_in_flight(bs);
2071 
2072     return ret;
2073 }
2074 
2075 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2076                                        int bytes, BdrvRequestFlags flags)
2077 {
2078     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2079 
2080     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2081         flags &= ~BDRV_REQ_MAY_UNMAP;
2082     }
2083 
2084     return bdrv_co_pwritev(child, offset, bytes, NULL,
2085                            BDRV_REQ_ZERO_WRITE | flags);
2086 }
2087 
2088 /*
2089  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2090  */
2091 int bdrv_flush_all(void)
2092 {
2093     BdrvNextIterator it;
2094     BlockDriverState *bs = NULL;
2095     int result = 0;
2096 
2097     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2098         AioContext *aio_context = bdrv_get_aio_context(bs);
2099         int ret;
2100 
2101         aio_context_acquire(aio_context);
2102         ret = bdrv_flush(bs);
2103         if (ret < 0 && !result) {
2104             result = ret;
2105         }
2106         aio_context_release(aio_context);
2107     }
2108 
2109     return result;
2110 }
2111 
2112 
2113 typedef struct BdrvCoBlockStatusData {
2114     BlockDriverState *bs;
2115     BlockDriverState *base;
2116     bool want_zero;
2117     int64_t offset;
2118     int64_t bytes;
2119     int64_t *pnum;
2120     int64_t *map;
2121     BlockDriverState **file;
2122     int ret;
2123     bool done;
2124 } BdrvCoBlockStatusData;
2125 
2126 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2127                                                 bool want_zero,
2128                                                 int64_t offset,
2129                                                 int64_t bytes,
2130                                                 int64_t *pnum,
2131                                                 int64_t *map,
2132                                                 BlockDriverState **file)
2133 {
2134     assert(bs->file && bs->file->bs);
2135     *pnum = bytes;
2136     *map = offset;
2137     *file = bs->file->bs;
2138     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2139 }
2140 
2141 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2142                                                    bool want_zero,
2143                                                    int64_t offset,
2144                                                    int64_t bytes,
2145                                                    int64_t *pnum,
2146                                                    int64_t *map,
2147                                                    BlockDriverState **file)
2148 {
2149     assert(bs->backing && bs->backing->bs);
2150     *pnum = bytes;
2151     *map = offset;
2152     *file = bs->backing->bs;
2153     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2154 }
2155 
2156 /*
2157  * Returns the allocation status of the specified sectors.
2158  * Drivers not implementing the functionality are assumed to not support
2159  * backing files, hence all their sectors are reported as allocated.
2160  *
2161  * If 'want_zero' is true, the caller is querying for mapping
2162  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2163  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2164  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2165  *
2166  * If 'offset' is beyond the end of the disk image the return value is
2167  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2168  *
2169  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2170  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2171  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2172  *
2173  * 'pnum' is set to the number of bytes (including and immediately
2174  * following the specified offset) that are easily known to be in the
2175  * same allocated/unallocated state.  Note that a second call starting
2176  * at the original offset plus returned pnum may have the same status.
2177  * The returned value is non-zero on success except at end-of-file.
2178  *
2179  * Returns negative errno on failure.  Otherwise, if the
2180  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2181  * set to the host mapping and BDS corresponding to the guest offset.
2182  */
2183 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2184                                              bool want_zero,
2185                                              int64_t offset, int64_t bytes,
2186                                              int64_t *pnum, int64_t *map,
2187                                              BlockDriverState **file)
2188 {
2189     int64_t total_size;
2190     int64_t n; /* bytes */
2191     int ret;
2192     int64_t local_map = 0;
2193     BlockDriverState *local_file = NULL;
2194     int64_t aligned_offset, aligned_bytes;
2195     uint32_t align;
2196 
2197     assert(pnum);
2198     *pnum = 0;
2199     total_size = bdrv_getlength(bs);
2200     if (total_size < 0) {
2201         ret = total_size;
2202         goto early_out;
2203     }
2204 
2205     if (offset >= total_size) {
2206         ret = BDRV_BLOCK_EOF;
2207         goto early_out;
2208     }
2209     if (!bytes) {
2210         ret = 0;
2211         goto early_out;
2212     }
2213 
2214     n = total_size - offset;
2215     if (n < bytes) {
2216         bytes = n;
2217     }
2218 
2219     /* Must be non-NULL or bdrv_getlength() would have failed */
2220     assert(bs->drv);
2221     if (!bs->drv->bdrv_co_block_status) {
2222         *pnum = bytes;
2223         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2224         if (offset + bytes == total_size) {
2225             ret |= BDRV_BLOCK_EOF;
2226         }
2227         if (bs->drv->protocol_name) {
2228             ret |= BDRV_BLOCK_OFFSET_VALID;
2229             local_map = offset;
2230             local_file = bs;
2231         }
2232         goto early_out;
2233     }
2234 
2235     bdrv_inc_in_flight(bs);
2236 
2237     /* Round out to request_alignment boundaries */
2238     align = bs->bl.request_alignment;
2239     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2240     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2241 
2242     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2243                                         aligned_bytes, pnum, &local_map,
2244                                         &local_file);
2245     if (ret < 0) {
2246         *pnum = 0;
2247         goto out;
2248     }
2249 
2250     /*
2251      * The driver's result must be a non-zero multiple of request_alignment.
2252      * Clamp pnum and adjust map to original request.
2253      */
2254     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2255            align > offset - aligned_offset);
2256     if (ret & BDRV_BLOCK_RECURSE) {
2257         assert(ret & BDRV_BLOCK_DATA);
2258         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2259         assert(!(ret & BDRV_BLOCK_ZERO));
2260     }
2261 
2262     *pnum -= offset - aligned_offset;
2263     if (*pnum > bytes) {
2264         *pnum = bytes;
2265     }
2266     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2267         local_map += offset - aligned_offset;
2268     }
2269 
2270     if (ret & BDRV_BLOCK_RAW) {
2271         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2272         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2273                                    *pnum, pnum, &local_map, &local_file);
2274         goto out;
2275     }
2276 
2277     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2278         ret |= BDRV_BLOCK_ALLOCATED;
2279     } else if (want_zero) {
2280         if (bdrv_unallocated_blocks_are_zero(bs)) {
2281             ret |= BDRV_BLOCK_ZERO;
2282         } else if (bs->backing) {
2283             BlockDriverState *bs2 = bs->backing->bs;
2284             int64_t size2 = bdrv_getlength(bs2);
2285 
2286             if (size2 >= 0 && offset >= size2) {
2287                 ret |= BDRV_BLOCK_ZERO;
2288             }
2289         }
2290     }
2291 
2292     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2293         local_file && local_file != bs &&
2294         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2295         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2296         int64_t file_pnum;
2297         int ret2;
2298 
2299         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2300                                     *pnum, &file_pnum, NULL, NULL);
2301         if (ret2 >= 0) {
2302             /* Ignore errors.  This is just providing extra information, it
2303              * is useful but not necessary.
2304              */
2305             if (ret2 & BDRV_BLOCK_EOF &&
2306                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2307                 /*
2308                  * It is valid for the format block driver to read
2309                  * beyond the end of the underlying file's current
2310                  * size; such areas read as zero.
2311                  */
2312                 ret |= BDRV_BLOCK_ZERO;
2313             } else {
2314                 /* Limit request to the range reported by the protocol driver */
2315                 *pnum = file_pnum;
2316                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2317             }
2318         }
2319     }
2320 
2321 out:
2322     bdrv_dec_in_flight(bs);
2323     if (ret >= 0 && offset + *pnum == total_size) {
2324         ret |= BDRV_BLOCK_EOF;
2325     }
2326 early_out:
2327     if (file) {
2328         *file = local_file;
2329     }
2330     if (map) {
2331         *map = local_map;
2332     }
2333     return ret;
2334 }
2335 
2336 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2337                                                    BlockDriverState *base,
2338                                                    bool want_zero,
2339                                                    int64_t offset,
2340                                                    int64_t bytes,
2341                                                    int64_t *pnum,
2342                                                    int64_t *map,
2343                                                    BlockDriverState **file)
2344 {
2345     BlockDriverState *p;
2346     int ret = 0;
2347     bool first = true;
2348 
2349     assert(bs != base);
2350     for (p = bs; p != base; p = backing_bs(p)) {
2351         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2352                                    file);
2353         if (ret < 0) {
2354             break;
2355         }
2356         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2357             /*
2358              * Reading beyond the end of the file continues to read
2359              * zeroes, but we can only widen the result to the
2360              * unallocated length we learned from an earlier
2361              * iteration.
2362              */
2363             *pnum = bytes;
2364         }
2365         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2366             break;
2367         }
2368         /* [offset, pnum] unallocated on this layer, which could be only
2369          * the first part of [offset, bytes].  */
2370         bytes = MIN(bytes, *pnum);
2371         first = false;
2372     }
2373     return ret;
2374 }
2375 
2376 /* Coroutine wrapper for bdrv_block_status_above() */
2377 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2378 {
2379     BdrvCoBlockStatusData *data = opaque;
2380 
2381     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2382                                            data->want_zero,
2383                                            data->offset, data->bytes,
2384                                            data->pnum, data->map, data->file);
2385     data->done = true;
2386     aio_wait_kick();
2387 }
2388 
2389 /*
2390  * Synchronous wrapper around bdrv_co_block_status_above().
2391  *
2392  * See bdrv_co_block_status_above() for details.
2393  */
2394 static int bdrv_common_block_status_above(BlockDriverState *bs,
2395                                           BlockDriverState *base,
2396                                           bool want_zero, int64_t offset,
2397                                           int64_t bytes, int64_t *pnum,
2398                                           int64_t *map,
2399                                           BlockDriverState **file)
2400 {
2401     Coroutine *co;
2402     BdrvCoBlockStatusData data = {
2403         .bs = bs,
2404         .base = base,
2405         .want_zero = want_zero,
2406         .offset = offset,
2407         .bytes = bytes,
2408         .pnum = pnum,
2409         .map = map,
2410         .file = file,
2411         .done = false,
2412     };
2413 
2414     if (qemu_in_coroutine()) {
2415         /* Fast-path if already in coroutine context */
2416         bdrv_block_status_above_co_entry(&data);
2417     } else {
2418         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2419         bdrv_coroutine_enter(bs, co);
2420         BDRV_POLL_WHILE(bs, !data.done);
2421     }
2422     return data.ret;
2423 }
2424 
2425 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2426                             int64_t offset, int64_t bytes, int64_t *pnum,
2427                             int64_t *map, BlockDriverState **file)
2428 {
2429     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2430                                           pnum, map, file);
2431 }
2432 
2433 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2434                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2435 {
2436     return bdrv_block_status_above(bs, backing_bs(bs),
2437                                    offset, bytes, pnum, map, file);
2438 }
2439 
2440 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2441                                    int64_t bytes, int64_t *pnum)
2442 {
2443     int ret;
2444     int64_t dummy;
2445 
2446     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2447                                          bytes, pnum ? pnum : &dummy, NULL,
2448                                          NULL);
2449     if (ret < 0) {
2450         return ret;
2451     }
2452     return !!(ret & BDRV_BLOCK_ALLOCATED);
2453 }
2454 
2455 /*
2456  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2457  *
2458  * Return 1 if (a prefix of) the given range is allocated in any image
2459  * between BASE and TOP (BASE is only included if include_base is set).
2460  * BASE can be NULL to check if the given offset is allocated in any
2461  * image of the chain.  Return 0 otherwise, or negative errno on
2462  * failure.
2463  *
2464  * 'pnum' is set to the number of bytes (including and immediately
2465  * following the specified offset) that are known to be in the same
2466  * allocated/unallocated state.  Note that a subsequent call starting
2467  * at 'offset + *pnum' may return the same allocation status (in other
2468  * words, the result is not necessarily the maximum possible range);
2469  * but 'pnum' will only be 0 when end of file is reached.
2470  *
2471  */
2472 int bdrv_is_allocated_above(BlockDriverState *top,
2473                             BlockDriverState *base,
2474                             bool include_base, int64_t offset,
2475                             int64_t bytes, int64_t *pnum)
2476 {
2477     BlockDriverState *intermediate;
2478     int ret;
2479     int64_t n = bytes;
2480 
2481     assert(base || !include_base);
2482 
2483     intermediate = top;
2484     while (include_base || intermediate != base) {
2485         int64_t pnum_inter;
2486         int64_t size_inter;
2487 
2488         assert(intermediate);
2489         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2490         if (ret < 0) {
2491             return ret;
2492         }
2493         if (ret) {
2494             *pnum = pnum_inter;
2495             return 1;
2496         }
2497 
2498         size_inter = bdrv_getlength(intermediate);
2499         if (size_inter < 0) {
2500             return size_inter;
2501         }
2502         if (n > pnum_inter &&
2503             (intermediate == top || offset + pnum_inter < size_inter)) {
2504             n = pnum_inter;
2505         }
2506 
2507         if (intermediate == base) {
2508             break;
2509         }
2510 
2511         intermediate = backing_bs(intermediate);
2512     }
2513 
2514     *pnum = n;
2515     return 0;
2516 }
2517 
2518 typedef struct BdrvVmstateCo {
2519     BlockDriverState    *bs;
2520     QEMUIOVector        *qiov;
2521     int64_t             pos;
2522     bool                is_read;
2523     int                 ret;
2524 } BdrvVmstateCo;
2525 
2526 static int coroutine_fn
2527 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2528                    bool is_read)
2529 {
2530     BlockDriver *drv = bs->drv;
2531     int ret = -ENOTSUP;
2532 
2533     bdrv_inc_in_flight(bs);
2534 
2535     if (!drv) {
2536         ret = -ENOMEDIUM;
2537     } else if (drv->bdrv_load_vmstate) {
2538         if (is_read) {
2539             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2540         } else {
2541             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2542         }
2543     } else if (bs->file) {
2544         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2545     }
2546 
2547     bdrv_dec_in_flight(bs);
2548     return ret;
2549 }
2550 
2551 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2552 {
2553     BdrvVmstateCo *co = opaque;
2554     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2555     aio_wait_kick();
2556 }
2557 
2558 static inline int
2559 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2560                 bool is_read)
2561 {
2562     if (qemu_in_coroutine()) {
2563         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2564     } else {
2565         BdrvVmstateCo data = {
2566             .bs         = bs,
2567             .qiov       = qiov,
2568             .pos        = pos,
2569             .is_read    = is_read,
2570             .ret        = -EINPROGRESS,
2571         };
2572         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2573 
2574         bdrv_coroutine_enter(bs, co);
2575         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2576         return data.ret;
2577     }
2578 }
2579 
2580 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2581                       int64_t pos, int size)
2582 {
2583     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2584     int ret;
2585 
2586     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2587     if (ret < 0) {
2588         return ret;
2589     }
2590 
2591     return size;
2592 }
2593 
2594 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2595 {
2596     return bdrv_rw_vmstate(bs, qiov, pos, false);
2597 }
2598 
2599 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2600                       int64_t pos, int size)
2601 {
2602     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2603     int ret;
2604 
2605     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2606     if (ret < 0) {
2607         return ret;
2608     }
2609 
2610     return size;
2611 }
2612 
2613 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2614 {
2615     return bdrv_rw_vmstate(bs, qiov, pos, true);
2616 }
2617 
2618 /**************************************************************/
2619 /* async I/Os */
2620 
2621 void bdrv_aio_cancel(BlockAIOCB *acb)
2622 {
2623     qemu_aio_ref(acb);
2624     bdrv_aio_cancel_async(acb);
2625     while (acb->refcnt > 1) {
2626         if (acb->aiocb_info->get_aio_context) {
2627             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2628         } else if (acb->bs) {
2629             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2630              * assert that we're not using an I/O thread.  Thread-safe
2631              * code should use bdrv_aio_cancel_async exclusively.
2632              */
2633             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2634             aio_poll(bdrv_get_aio_context(acb->bs), true);
2635         } else {
2636             abort();
2637         }
2638     }
2639     qemu_aio_unref(acb);
2640 }
2641 
2642 /* Async version of aio cancel. The caller is not blocked if the acb implements
2643  * cancel_async, otherwise we do nothing and let the request normally complete.
2644  * In either case the completion callback must be called. */
2645 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2646 {
2647     if (acb->aiocb_info->cancel_async) {
2648         acb->aiocb_info->cancel_async(acb);
2649     }
2650 }
2651 
2652 /**************************************************************/
2653 /* Coroutine block device emulation */
2654 
2655 typedef struct FlushCo {
2656     BlockDriverState *bs;
2657     int ret;
2658 } FlushCo;
2659 
2660 
2661 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2662 {
2663     FlushCo *rwco = opaque;
2664 
2665     rwco->ret = bdrv_co_flush(rwco->bs);
2666     aio_wait_kick();
2667 }
2668 
2669 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2670 {
2671     int current_gen;
2672     int ret = 0;
2673 
2674     bdrv_inc_in_flight(bs);
2675 
2676     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2677         bdrv_is_sg(bs)) {
2678         goto early_exit;
2679     }
2680 
2681     qemu_co_mutex_lock(&bs->reqs_lock);
2682     current_gen = atomic_read(&bs->write_gen);
2683 
2684     /* Wait until any previous flushes are completed */
2685     while (bs->active_flush_req) {
2686         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2687     }
2688 
2689     /* Flushes reach this point in nondecreasing current_gen order.  */
2690     bs->active_flush_req = true;
2691     qemu_co_mutex_unlock(&bs->reqs_lock);
2692 
2693     /* Write back all layers by calling one driver function */
2694     if (bs->drv->bdrv_co_flush) {
2695         ret = bs->drv->bdrv_co_flush(bs);
2696         goto out;
2697     }
2698 
2699     /* Write back cached data to the OS even with cache=unsafe */
2700     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2701     if (bs->drv->bdrv_co_flush_to_os) {
2702         ret = bs->drv->bdrv_co_flush_to_os(bs);
2703         if (ret < 0) {
2704             goto out;
2705         }
2706     }
2707 
2708     /* But don't actually force it to the disk with cache=unsafe */
2709     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2710         goto flush_parent;
2711     }
2712 
2713     /* Check if we really need to flush anything */
2714     if (bs->flushed_gen == current_gen) {
2715         goto flush_parent;
2716     }
2717 
2718     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2719     if (!bs->drv) {
2720         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2721          * (even in case of apparent success) */
2722         ret = -ENOMEDIUM;
2723         goto out;
2724     }
2725     if (bs->drv->bdrv_co_flush_to_disk) {
2726         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2727     } else if (bs->drv->bdrv_aio_flush) {
2728         BlockAIOCB *acb;
2729         CoroutineIOCompletion co = {
2730             .coroutine = qemu_coroutine_self(),
2731         };
2732 
2733         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2734         if (acb == NULL) {
2735             ret = -EIO;
2736         } else {
2737             qemu_coroutine_yield();
2738             ret = co.ret;
2739         }
2740     } else {
2741         /*
2742          * Some block drivers always operate in either writethrough or unsafe
2743          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2744          * know how the server works (because the behaviour is hardcoded or
2745          * depends on server-side configuration), so we can't ensure that
2746          * everything is safe on disk. Returning an error doesn't work because
2747          * that would break guests even if the server operates in writethrough
2748          * mode.
2749          *
2750          * Let's hope the user knows what he's doing.
2751          */
2752         ret = 0;
2753     }
2754 
2755     if (ret < 0) {
2756         goto out;
2757     }
2758 
2759     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2760      * in the case of cache=unsafe, so there are no useless flushes.
2761      */
2762 flush_parent:
2763     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2764 out:
2765     /* Notify any pending flushes that we have completed */
2766     if (ret == 0) {
2767         bs->flushed_gen = current_gen;
2768     }
2769 
2770     qemu_co_mutex_lock(&bs->reqs_lock);
2771     bs->active_flush_req = false;
2772     /* Return value is ignored - it's ok if wait queue is empty */
2773     qemu_co_queue_next(&bs->flush_queue);
2774     qemu_co_mutex_unlock(&bs->reqs_lock);
2775 
2776 early_exit:
2777     bdrv_dec_in_flight(bs);
2778     return ret;
2779 }
2780 
2781 int bdrv_flush(BlockDriverState *bs)
2782 {
2783     Coroutine *co;
2784     FlushCo flush_co = {
2785         .bs = bs,
2786         .ret = NOT_DONE,
2787     };
2788 
2789     if (qemu_in_coroutine()) {
2790         /* Fast-path if already in coroutine context */
2791         bdrv_flush_co_entry(&flush_co);
2792     } else {
2793         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2794         bdrv_coroutine_enter(bs, co);
2795         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2796     }
2797 
2798     return flush_co.ret;
2799 }
2800 
2801 typedef struct DiscardCo {
2802     BdrvChild *child;
2803     int64_t offset;
2804     int64_t bytes;
2805     int ret;
2806 } DiscardCo;
2807 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2808 {
2809     DiscardCo *rwco = opaque;
2810 
2811     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2812     aio_wait_kick();
2813 }
2814 
2815 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2816                                   int64_t bytes)
2817 {
2818     BdrvTrackedRequest req;
2819     int max_pdiscard, ret;
2820     int head, tail, align;
2821     BlockDriverState *bs = child->bs;
2822 
2823     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2824         return -ENOMEDIUM;
2825     }
2826 
2827     if (bdrv_has_readonly_bitmaps(bs)) {
2828         return -EPERM;
2829     }
2830 
2831     if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2832         return -EIO;
2833     }
2834 
2835     /* Do nothing if disabled.  */
2836     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2837         return 0;
2838     }
2839 
2840     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2841         return 0;
2842     }
2843 
2844     /* Discard is advisory, but some devices track and coalesce
2845      * unaligned requests, so we must pass everything down rather than
2846      * round here.  Still, most devices will just silently ignore
2847      * unaligned requests (by returning -ENOTSUP), so we must fragment
2848      * the request accordingly.  */
2849     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2850     assert(align % bs->bl.request_alignment == 0);
2851     head = offset % align;
2852     tail = (offset + bytes) % align;
2853 
2854     bdrv_inc_in_flight(bs);
2855     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2856 
2857     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2858     if (ret < 0) {
2859         goto out;
2860     }
2861 
2862     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2863                                    align);
2864     assert(max_pdiscard >= bs->bl.request_alignment);
2865 
2866     while (bytes > 0) {
2867         int64_t num = bytes;
2868 
2869         if (head) {
2870             /* Make small requests to get to alignment boundaries. */
2871             num = MIN(bytes, align - head);
2872             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2873                 num %= bs->bl.request_alignment;
2874             }
2875             head = (head + num) % align;
2876             assert(num < max_pdiscard);
2877         } else if (tail) {
2878             if (num > align) {
2879                 /* Shorten the request to the last aligned cluster.  */
2880                 num -= tail;
2881             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2882                        tail > bs->bl.request_alignment) {
2883                 tail %= bs->bl.request_alignment;
2884                 num -= tail;
2885             }
2886         }
2887         /* limit request size */
2888         if (num > max_pdiscard) {
2889             num = max_pdiscard;
2890         }
2891 
2892         if (!bs->drv) {
2893             ret = -ENOMEDIUM;
2894             goto out;
2895         }
2896         if (bs->drv->bdrv_co_pdiscard) {
2897             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2898         } else {
2899             BlockAIOCB *acb;
2900             CoroutineIOCompletion co = {
2901                 .coroutine = qemu_coroutine_self(),
2902             };
2903 
2904             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2905                                              bdrv_co_io_em_complete, &co);
2906             if (acb == NULL) {
2907                 ret = -EIO;
2908                 goto out;
2909             } else {
2910                 qemu_coroutine_yield();
2911                 ret = co.ret;
2912             }
2913         }
2914         if (ret && ret != -ENOTSUP) {
2915             goto out;
2916         }
2917 
2918         offset += num;
2919         bytes -= num;
2920     }
2921     ret = 0;
2922 out:
2923     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2924     tracked_request_end(&req);
2925     bdrv_dec_in_flight(bs);
2926     return ret;
2927 }
2928 
2929 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
2930 {
2931     Coroutine *co;
2932     DiscardCo rwco = {
2933         .child = child,
2934         .offset = offset,
2935         .bytes = bytes,
2936         .ret = NOT_DONE,
2937     };
2938 
2939     if (qemu_in_coroutine()) {
2940         /* Fast-path if already in coroutine context */
2941         bdrv_pdiscard_co_entry(&rwco);
2942     } else {
2943         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2944         bdrv_coroutine_enter(child->bs, co);
2945         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2946     }
2947 
2948     return rwco.ret;
2949 }
2950 
2951 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2952 {
2953     BlockDriver *drv = bs->drv;
2954     CoroutineIOCompletion co = {
2955         .coroutine = qemu_coroutine_self(),
2956     };
2957     BlockAIOCB *acb;
2958 
2959     bdrv_inc_in_flight(bs);
2960     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2961         co.ret = -ENOTSUP;
2962         goto out;
2963     }
2964 
2965     if (drv->bdrv_co_ioctl) {
2966         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2967     } else {
2968         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2969         if (!acb) {
2970             co.ret = -ENOTSUP;
2971             goto out;
2972         }
2973         qemu_coroutine_yield();
2974     }
2975 out:
2976     bdrv_dec_in_flight(bs);
2977     return co.ret;
2978 }
2979 
2980 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2981 {
2982     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2983 }
2984 
2985 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2986 {
2987     return memset(qemu_blockalign(bs, size), 0, size);
2988 }
2989 
2990 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2991 {
2992     size_t align = bdrv_opt_mem_align(bs);
2993 
2994     /* Ensure that NULL is never returned on success */
2995     assert(align > 0);
2996     if (size == 0) {
2997         size = align;
2998     }
2999 
3000     return qemu_try_memalign(align, size);
3001 }
3002 
3003 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3004 {
3005     void *mem = qemu_try_blockalign(bs, size);
3006 
3007     if (mem) {
3008         memset(mem, 0, size);
3009     }
3010 
3011     return mem;
3012 }
3013 
3014 /*
3015  * Check if all memory in this vector is sector aligned.
3016  */
3017 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3018 {
3019     int i;
3020     size_t alignment = bdrv_min_mem_align(bs);
3021 
3022     for (i = 0; i < qiov->niov; i++) {
3023         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3024             return false;
3025         }
3026         if (qiov->iov[i].iov_len % alignment) {
3027             return false;
3028         }
3029     }
3030 
3031     return true;
3032 }
3033 
3034 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3035                                     NotifierWithReturn *notifier)
3036 {
3037     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3038 }
3039 
3040 void bdrv_io_plug(BlockDriverState *bs)
3041 {
3042     BdrvChild *child;
3043 
3044     QLIST_FOREACH(child, &bs->children, next) {
3045         bdrv_io_plug(child->bs);
3046     }
3047 
3048     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3049         BlockDriver *drv = bs->drv;
3050         if (drv && drv->bdrv_io_plug) {
3051             drv->bdrv_io_plug(bs);
3052         }
3053     }
3054 }
3055 
3056 void bdrv_io_unplug(BlockDriverState *bs)
3057 {
3058     BdrvChild *child;
3059 
3060     assert(bs->io_plugged);
3061     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3062         BlockDriver *drv = bs->drv;
3063         if (drv && drv->bdrv_io_unplug) {
3064             drv->bdrv_io_unplug(bs);
3065         }
3066     }
3067 
3068     QLIST_FOREACH(child, &bs->children, next) {
3069         bdrv_io_unplug(child->bs);
3070     }
3071 }
3072 
3073 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3074 {
3075     BdrvChild *child;
3076 
3077     if (bs->drv && bs->drv->bdrv_register_buf) {
3078         bs->drv->bdrv_register_buf(bs, host, size);
3079     }
3080     QLIST_FOREACH(child, &bs->children, next) {
3081         bdrv_register_buf(child->bs, host, size);
3082     }
3083 }
3084 
3085 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3086 {
3087     BdrvChild *child;
3088 
3089     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3090         bs->drv->bdrv_unregister_buf(bs, host);
3091     }
3092     QLIST_FOREACH(child, &bs->children, next) {
3093         bdrv_unregister_buf(child->bs, host);
3094     }
3095 }
3096 
3097 static int coroutine_fn bdrv_co_copy_range_internal(
3098         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3099         uint64_t dst_offset, uint64_t bytes,
3100         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3101         bool recurse_src)
3102 {
3103     BdrvTrackedRequest req;
3104     int ret;
3105 
3106     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3107     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3108     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3109 
3110     if (!dst || !dst->bs) {
3111         return -ENOMEDIUM;
3112     }
3113     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3114     if (ret) {
3115         return ret;
3116     }
3117     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3118         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3119     }
3120 
3121     if (!src || !src->bs) {
3122         return -ENOMEDIUM;
3123     }
3124     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3125     if (ret) {
3126         return ret;
3127     }
3128 
3129     if (!src->bs->drv->bdrv_co_copy_range_from
3130         || !dst->bs->drv->bdrv_co_copy_range_to
3131         || src->bs->encrypted || dst->bs->encrypted) {
3132         return -ENOTSUP;
3133     }
3134 
3135     if (recurse_src) {
3136         bdrv_inc_in_flight(src->bs);
3137         tracked_request_begin(&req, src->bs, src_offset, bytes,
3138                               BDRV_TRACKED_READ);
3139 
3140         /* BDRV_REQ_SERIALISING is only for write operation */
3141         assert(!(read_flags & BDRV_REQ_SERIALISING));
3142         if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3143             wait_serialising_requests(&req);
3144         }
3145 
3146         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3147                                                     src, src_offset,
3148                                                     dst, dst_offset,
3149                                                     bytes,
3150                                                     read_flags, write_flags);
3151 
3152         tracked_request_end(&req);
3153         bdrv_dec_in_flight(src->bs);
3154     } else {
3155         bdrv_inc_in_flight(dst->bs);
3156         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3157                               BDRV_TRACKED_WRITE);
3158         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3159                                         write_flags);
3160         if (!ret) {
3161             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3162                                                       src, src_offset,
3163                                                       dst, dst_offset,
3164                                                       bytes,
3165                                                       read_flags, write_flags);
3166         }
3167         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3168         tracked_request_end(&req);
3169         bdrv_dec_in_flight(dst->bs);
3170     }
3171 
3172     return ret;
3173 }
3174 
3175 /* Copy range from @src to @dst.
3176  *
3177  * See the comment of bdrv_co_copy_range for the parameter and return value
3178  * semantics. */
3179 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3180                                          BdrvChild *dst, uint64_t dst_offset,
3181                                          uint64_t bytes,
3182                                          BdrvRequestFlags read_flags,
3183                                          BdrvRequestFlags write_flags)
3184 {
3185     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3186                                   read_flags, write_flags);
3187     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3188                                        bytes, read_flags, write_flags, true);
3189 }
3190 
3191 /* Copy range from @src to @dst.
3192  *
3193  * See the comment of bdrv_co_copy_range for the parameter and return value
3194  * semantics. */
3195 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3196                                        BdrvChild *dst, uint64_t dst_offset,
3197                                        uint64_t bytes,
3198                                        BdrvRequestFlags read_flags,
3199                                        BdrvRequestFlags write_flags)
3200 {
3201     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3202                                 read_flags, write_flags);
3203     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3204                                        bytes, read_flags, write_flags, false);
3205 }
3206 
3207 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3208                                     BdrvChild *dst, uint64_t dst_offset,
3209                                     uint64_t bytes, BdrvRequestFlags read_flags,
3210                                     BdrvRequestFlags write_flags)
3211 {
3212     return bdrv_co_copy_range_from(src, src_offset,
3213                                    dst, dst_offset,
3214                                    bytes, read_flags, write_flags);
3215 }
3216 
3217 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3218 {
3219     BdrvChild *c;
3220     QLIST_FOREACH(c, &bs->parents, next_parent) {
3221         if (c->role->resize) {
3222             c->role->resize(c);
3223         }
3224     }
3225 }
3226 
3227 /**
3228  * Truncate file to 'offset' bytes (needed only for file protocols)
3229  */
3230 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3231                                   PreallocMode prealloc, Error **errp)
3232 {
3233     BlockDriverState *bs = child->bs;
3234     BlockDriver *drv = bs->drv;
3235     BdrvTrackedRequest req;
3236     int64_t old_size, new_bytes;
3237     int ret;
3238 
3239 
3240     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3241     if (!drv) {
3242         error_setg(errp, "No medium inserted");
3243         return -ENOMEDIUM;
3244     }
3245     if (offset < 0) {
3246         error_setg(errp, "Image size cannot be negative");
3247         return -EINVAL;
3248     }
3249 
3250     old_size = bdrv_getlength(bs);
3251     if (old_size < 0) {
3252         error_setg_errno(errp, -old_size, "Failed to get old image size");
3253         return old_size;
3254     }
3255 
3256     if (offset > old_size) {
3257         new_bytes = offset - old_size;
3258     } else {
3259         new_bytes = 0;
3260     }
3261 
3262     bdrv_inc_in_flight(bs);
3263     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3264                           BDRV_TRACKED_TRUNCATE);
3265 
3266     /* If we are growing the image and potentially using preallocation for the
3267      * new area, we need to make sure that no write requests are made to it
3268      * concurrently or they might be overwritten by preallocation. */
3269     if (new_bytes) {
3270         mark_request_serialising(&req, 1);
3271     }
3272     if (bs->read_only) {
3273         error_setg(errp, "Image is read-only");
3274         ret = -EACCES;
3275         goto out;
3276     }
3277     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3278                                     0);
3279     if (ret < 0) {
3280         error_setg_errno(errp, -ret,
3281                          "Failed to prepare request for truncation");
3282         goto out;
3283     }
3284 
3285     if (!drv->bdrv_co_truncate) {
3286         if (bs->file && drv->is_filter) {
3287             ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3288             goto out;
3289         }
3290         error_setg(errp, "Image format driver does not support resize");
3291         ret = -ENOTSUP;
3292         goto out;
3293     }
3294 
3295     ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3296     if (ret < 0) {
3297         goto out;
3298     }
3299     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3300     if (ret < 0) {
3301         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3302     } else {
3303         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3304     }
3305     /* It's possible that truncation succeeded but refresh_total_sectors
3306      * failed, but the latter doesn't affect how we should finish the request.
3307      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3308     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3309 
3310 out:
3311     tracked_request_end(&req);
3312     bdrv_dec_in_flight(bs);
3313 
3314     return ret;
3315 }
3316 
3317 typedef struct TruncateCo {
3318     BdrvChild *child;
3319     int64_t offset;
3320     PreallocMode prealloc;
3321     Error **errp;
3322     int ret;
3323 } TruncateCo;
3324 
3325 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3326 {
3327     TruncateCo *tco = opaque;
3328     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3329                                 tco->errp);
3330     aio_wait_kick();
3331 }
3332 
3333 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3334                   Error **errp)
3335 {
3336     Coroutine *co;
3337     TruncateCo tco = {
3338         .child      = child,
3339         .offset     = offset,
3340         .prealloc   = prealloc,
3341         .errp       = errp,
3342         .ret        = NOT_DONE,
3343     };
3344 
3345     if (qemu_in_coroutine()) {
3346         /* Fast-path if already in coroutine context */
3347         bdrv_truncate_co_entry(&tco);
3348     } else {
3349         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3350         bdrv_coroutine_enter(child->bs, co);
3351         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3352     }
3353 
3354     return tco.ret;
3355 }
3356