xref: /openbmc/qemu/block/io.c (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37                                           int64_t offset,
38                                           QEMUIOVector *qiov,
39                                           BdrvRequestFlags flags,
40                                           BlockCompletionFunc *cb,
41                                           void *opaque,
42                                           bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int count, BdrvRequestFlags flags);
46 
47 void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49     BdrvChild *c;
50 
51     QLIST_FOREACH(c, &bs->parents, next_parent) {
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60     BdrvChild *c;
61 
62     QLIST_FOREACH(c, &bs->parents, next_parent) {
63         if (c->role->drained_end) {
64             c->role->drained_end(c);
65         }
66     }
67 }
68 
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74                                  src->opt_mem_alignment);
75     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76                                  src->min_mem_alignment);
77     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79 
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82     BlockDriver *drv = bs->drv;
83     Error *local_err = NULL;
84 
85     memset(&bs->bl, 0, sizeof(bs->bl));
86 
87     if (!drv) {
88         return;
89     }
90 
91     /* Default alignment based on whether driver has byte interface */
92     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93 
94     /* Take some limits from the children as a default */
95     if (bs->file) {
96         bdrv_refresh_limits(bs->file->bs, &local_err);
97         if (local_err) {
98             error_propagate(errp, local_err);
99             return;
100         }
101         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102     } else {
103         bs->bl.min_mem_alignment = 512;
104         bs->bl.opt_mem_alignment = getpagesize();
105 
106         /* Safe default since most protocols use readv()/writev()/etc */
107         bs->bl.max_iov = IOV_MAX;
108     }
109 
110     if (bs->backing) {
111         bdrv_refresh_limits(bs->backing->bs, &local_err);
112         if (local_err) {
113             error_propagate(errp, local_err);
114             return;
115         }
116         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117     }
118 
119     /* Then let the driver override it */
120     if (drv->bdrv_refresh_limits) {
121         drv->bdrv_refresh_limits(bs, errp);
122     }
123 }
124 
125 /**
126  * The copy-on-read flag is actually a reference count so multiple users may
127  * use the feature without worrying about clobbering its previous state.
128  * Copy-on-read stays enabled until all users have called to disable it.
129  */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132     bs->copy_on_read++;
133 }
134 
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137     assert(bs->copy_on_read > 0);
138     bs->copy_on_read--;
139 }
140 
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144     BdrvChild *child;
145 
146     if (atomic_read(&bs->in_flight)) {
147         return true;
148     }
149 
150     QLIST_FOREACH(child, &bs->children, next) {
151         if (bdrv_requests_pending(child->bs)) {
152             return true;
153         }
154     }
155 
156     return false;
157 }
158 
159 static bool bdrv_drain_recurse(BlockDriverState *bs)
160 {
161     BdrvChild *child, *tmp;
162     bool waited;
163 
164     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
165 
166     if (bs->drv && bs->drv->bdrv_drain) {
167         bs->drv->bdrv_drain(bs);
168     }
169 
170     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
171         BlockDriverState *bs = child->bs;
172         bool in_main_loop =
173             qemu_get_current_aio_context() == qemu_get_aio_context();
174         assert(bs->refcnt > 0);
175         if (in_main_loop) {
176             /* In case the recursive bdrv_drain_recurse processes a
177              * block_job_defer_to_main_loop BH and modifies the graph,
178              * let's hold a reference to bs until we are done.
179              *
180              * IOThread doesn't have such a BH, and it is not safe to call
181              * bdrv_unref without BQL, so skip doing it there.
182              */
183             bdrv_ref(bs);
184         }
185         waited |= bdrv_drain_recurse(bs);
186         if (in_main_loop) {
187             bdrv_unref(bs);
188         }
189     }
190 
191     return waited;
192 }
193 
194 typedef struct {
195     Coroutine *co;
196     BlockDriverState *bs;
197     bool done;
198 } BdrvCoDrainData;
199 
200 static void bdrv_co_drain_bh_cb(void *opaque)
201 {
202     BdrvCoDrainData *data = opaque;
203     Coroutine *co = data->co;
204     BlockDriverState *bs = data->bs;
205 
206     bdrv_dec_in_flight(bs);
207     bdrv_drained_begin(bs);
208     data->done = true;
209     aio_co_wake(co);
210 }
211 
212 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
213 {
214     BdrvCoDrainData data;
215 
216     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
217      * other coroutines run if they were queued from
218      * qemu_co_queue_run_restart(). */
219 
220     assert(qemu_in_coroutine());
221     data = (BdrvCoDrainData) {
222         .co = qemu_coroutine_self(),
223         .bs = bs,
224         .done = false,
225     };
226     bdrv_inc_in_flight(bs);
227     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
228                             bdrv_co_drain_bh_cb, &data);
229 
230     qemu_coroutine_yield();
231     /* If we are resumed from some other event (such as an aio completion or a
232      * timer callback), it is a bug in the caller that should be fixed. */
233     assert(data.done);
234 }
235 
236 void bdrv_drained_begin(BlockDriverState *bs)
237 {
238     if (qemu_in_coroutine()) {
239         bdrv_co_yield_to_drain(bs);
240         return;
241     }
242 
243     if (!bs->quiesce_counter++) {
244         aio_disable_external(bdrv_get_aio_context(bs));
245         bdrv_parent_drained_begin(bs);
246     }
247 
248     bdrv_drain_recurse(bs);
249 }
250 
251 void bdrv_drained_end(BlockDriverState *bs)
252 {
253     assert(bs->quiesce_counter > 0);
254     if (--bs->quiesce_counter > 0) {
255         return;
256     }
257 
258     bdrv_parent_drained_end(bs);
259     aio_enable_external(bdrv_get_aio_context(bs));
260 }
261 
262 /*
263  * Wait for pending requests to complete on a single BlockDriverState subtree,
264  * and suspend block driver's internal I/O until next request arrives.
265  *
266  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
267  * AioContext.
268  *
269  * Only this BlockDriverState's AioContext is run, so in-flight requests must
270  * not depend on events in other AioContexts.  In that case, use
271  * bdrv_drain_all() instead.
272  */
273 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
274 {
275     assert(qemu_in_coroutine());
276     bdrv_drained_begin(bs);
277     bdrv_drained_end(bs);
278 }
279 
280 void bdrv_drain(BlockDriverState *bs)
281 {
282     bdrv_drained_begin(bs);
283     bdrv_drained_end(bs);
284 }
285 
286 /*
287  * Wait for pending requests to complete across all BlockDriverStates
288  *
289  * This function does not flush data to disk, use bdrv_flush_all() for that
290  * after calling this function.
291  *
292  * This pauses all block jobs and disables external clients. It must
293  * be paired with bdrv_drain_all_end().
294  *
295  * NOTE: no new block jobs or BlockDriverStates can be created between
296  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
297  */
298 void bdrv_drain_all_begin(void)
299 {
300     /* Always run first iteration so any pending completion BHs run */
301     bool waited = true;
302     BlockDriverState *bs;
303     BdrvNextIterator it;
304     BlockJob *job = NULL;
305     GSList *aio_ctxs = NULL, *ctx;
306 
307     while ((job = block_job_next(job))) {
308         AioContext *aio_context = blk_get_aio_context(job->blk);
309 
310         aio_context_acquire(aio_context);
311         block_job_pause(job);
312         aio_context_release(aio_context);
313     }
314 
315     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
316         AioContext *aio_context = bdrv_get_aio_context(bs);
317 
318         aio_context_acquire(aio_context);
319         bdrv_parent_drained_begin(bs);
320         aio_disable_external(aio_context);
321         aio_context_release(aio_context);
322 
323         if (!g_slist_find(aio_ctxs, aio_context)) {
324             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
325         }
326     }
327 
328     /* Note that completion of an asynchronous I/O operation can trigger any
329      * number of other I/O operations on other devices---for example a
330      * coroutine can submit an I/O request to another device in response to
331      * request completion.  Therefore we must keep looping until there was no
332      * more activity rather than simply draining each device independently.
333      */
334     while (waited) {
335         waited = false;
336 
337         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
338             AioContext *aio_context = ctx->data;
339 
340             aio_context_acquire(aio_context);
341             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
342                 if (aio_context == bdrv_get_aio_context(bs)) {
343                     waited |= bdrv_drain_recurse(bs);
344                 }
345             }
346             aio_context_release(aio_context);
347         }
348     }
349 
350     g_slist_free(aio_ctxs);
351 }
352 
353 void bdrv_drain_all_end(void)
354 {
355     BlockDriverState *bs;
356     BdrvNextIterator it;
357     BlockJob *job = NULL;
358 
359     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
360         AioContext *aio_context = bdrv_get_aio_context(bs);
361 
362         aio_context_acquire(aio_context);
363         aio_enable_external(aio_context);
364         bdrv_parent_drained_end(bs);
365         aio_context_release(aio_context);
366     }
367 
368     while ((job = block_job_next(job))) {
369         AioContext *aio_context = blk_get_aio_context(job->blk);
370 
371         aio_context_acquire(aio_context);
372         block_job_resume(job);
373         aio_context_release(aio_context);
374     }
375 }
376 
377 void bdrv_drain_all(void)
378 {
379     bdrv_drain_all_begin();
380     bdrv_drain_all_end();
381 }
382 
383 /**
384  * Remove an active request from the tracked requests list
385  *
386  * This function should be called when a tracked request is completing.
387  */
388 static void tracked_request_end(BdrvTrackedRequest *req)
389 {
390     if (req->serialising) {
391         req->bs->serialising_in_flight--;
392     }
393 
394     QLIST_REMOVE(req, list);
395     qemu_co_queue_restart_all(&req->wait_queue);
396 }
397 
398 /**
399  * Add an active request to the tracked requests list
400  */
401 static void tracked_request_begin(BdrvTrackedRequest *req,
402                                   BlockDriverState *bs,
403                                   int64_t offset,
404                                   unsigned int bytes,
405                                   enum BdrvTrackedRequestType type)
406 {
407     *req = (BdrvTrackedRequest){
408         .bs = bs,
409         .offset         = offset,
410         .bytes          = bytes,
411         .type           = type,
412         .co             = qemu_coroutine_self(),
413         .serialising    = false,
414         .overlap_offset = offset,
415         .overlap_bytes  = bytes,
416     };
417 
418     qemu_co_queue_init(&req->wait_queue);
419 
420     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
421 }
422 
423 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
424 {
425     int64_t overlap_offset = req->offset & ~(align - 1);
426     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
427                                - overlap_offset;
428 
429     if (!req->serialising) {
430         req->bs->serialising_in_flight++;
431         req->serialising = true;
432     }
433 
434     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
435     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
436 }
437 
438 /**
439  * Round a region to cluster boundaries (sector-based)
440  */
441 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
442                                     int64_t sector_num, int nb_sectors,
443                                     int64_t *cluster_sector_num,
444                                     int *cluster_nb_sectors)
445 {
446     BlockDriverInfo bdi;
447 
448     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
449         *cluster_sector_num = sector_num;
450         *cluster_nb_sectors = nb_sectors;
451     } else {
452         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
453         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
454         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
455                                             nb_sectors, c);
456     }
457 }
458 
459 /**
460  * Round a region to cluster boundaries
461  */
462 void bdrv_round_to_clusters(BlockDriverState *bs,
463                             int64_t offset, unsigned int bytes,
464                             int64_t *cluster_offset,
465                             unsigned int *cluster_bytes)
466 {
467     BlockDriverInfo bdi;
468 
469     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
470         *cluster_offset = offset;
471         *cluster_bytes = bytes;
472     } else {
473         int64_t c = bdi.cluster_size;
474         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
475         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
476     }
477 }
478 
479 static int bdrv_get_cluster_size(BlockDriverState *bs)
480 {
481     BlockDriverInfo bdi;
482     int ret;
483 
484     ret = bdrv_get_info(bs, &bdi);
485     if (ret < 0 || bdi.cluster_size == 0) {
486         return bs->bl.request_alignment;
487     } else {
488         return bdi.cluster_size;
489     }
490 }
491 
492 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
493                                      int64_t offset, unsigned int bytes)
494 {
495     /*        aaaa   bbbb */
496     if (offset >= req->overlap_offset + req->overlap_bytes) {
497         return false;
498     }
499     /* bbbb   aaaa        */
500     if (req->overlap_offset >= offset + bytes) {
501         return false;
502     }
503     return true;
504 }
505 
506 void bdrv_inc_in_flight(BlockDriverState *bs)
507 {
508     atomic_inc(&bs->in_flight);
509 }
510 
511 static void dummy_bh_cb(void *opaque)
512 {
513 }
514 
515 void bdrv_wakeup(BlockDriverState *bs)
516 {
517     if (bs->wakeup) {
518         aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
519     }
520 }
521 
522 void bdrv_dec_in_flight(BlockDriverState *bs)
523 {
524     atomic_dec(&bs->in_flight);
525     bdrv_wakeup(bs);
526 }
527 
528 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
529 {
530     BlockDriverState *bs = self->bs;
531     BdrvTrackedRequest *req;
532     bool retry;
533     bool waited = false;
534 
535     if (!bs->serialising_in_flight) {
536         return false;
537     }
538 
539     do {
540         retry = false;
541         QLIST_FOREACH(req, &bs->tracked_requests, list) {
542             if (req == self || (!req->serialising && !self->serialising)) {
543                 continue;
544             }
545             if (tracked_request_overlaps(req, self->overlap_offset,
546                                          self->overlap_bytes))
547             {
548                 /* Hitting this means there was a reentrant request, for
549                  * example, a block driver issuing nested requests.  This must
550                  * never happen since it means deadlock.
551                  */
552                 assert(qemu_coroutine_self() != req->co);
553 
554                 /* If the request is already (indirectly) waiting for us, or
555                  * will wait for us as soon as it wakes up, then just go on
556                  * (instead of producing a deadlock in the former case). */
557                 if (!req->waiting_for) {
558                     self->waiting_for = req;
559                     qemu_co_queue_wait(&req->wait_queue, NULL);
560                     self->waiting_for = NULL;
561                     retry = true;
562                     waited = true;
563                     break;
564                 }
565             }
566         }
567     } while (retry);
568 
569     return waited;
570 }
571 
572 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
573                                    size_t size)
574 {
575     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
576         return -EIO;
577     }
578 
579     if (!bdrv_is_inserted(bs)) {
580         return -ENOMEDIUM;
581     }
582 
583     if (offset < 0) {
584         return -EIO;
585     }
586 
587     return 0;
588 }
589 
590 typedef struct RwCo {
591     BdrvChild *child;
592     int64_t offset;
593     QEMUIOVector *qiov;
594     bool is_write;
595     int ret;
596     BdrvRequestFlags flags;
597 } RwCo;
598 
599 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
600 {
601     RwCo *rwco = opaque;
602 
603     if (!rwco->is_write) {
604         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
605                                    rwco->qiov->size, rwco->qiov,
606                                    rwco->flags);
607     } else {
608         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
609                                     rwco->qiov->size, rwco->qiov,
610                                     rwco->flags);
611     }
612 }
613 
614 /*
615  * Process a vectored synchronous request using coroutines
616  */
617 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
618                         QEMUIOVector *qiov, bool is_write,
619                         BdrvRequestFlags flags)
620 {
621     Coroutine *co;
622     RwCo rwco = {
623         .child = child,
624         .offset = offset,
625         .qiov = qiov,
626         .is_write = is_write,
627         .ret = NOT_DONE,
628         .flags = flags,
629     };
630 
631     if (qemu_in_coroutine()) {
632         /* Fast-path if already in coroutine context */
633         bdrv_rw_co_entry(&rwco);
634     } else {
635         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
636         bdrv_coroutine_enter(child->bs, co);
637         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
638     }
639     return rwco.ret;
640 }
641 
642 /*
643  * Process a synchronous request using coroutines
644  */
645 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
646                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
647 {
648     QEMUIOVector qiov;
649     struct iovec iov = {
650         .iov_base = (void *)buf,
651         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
652     };
653 
654     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
655         return -EINVAL;
656     }
657 
658     qemu_iovec_init_external(&qiov, &iov, 1);
659     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
660                         &qiov, is_write, flags);
661 }
662 
663 /* return < 0 if error. See bdrv_write() for the return codes */
664 int bdrv_read(BdrvChild *child, int64_t sector_num,
665               uint8_t *buf, int nb_sectors)
666 {
667     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
668 }
669 
670 /* Return < 0 if error. Important errors are:
671   -EIO         generic I/O error (may happen for all errors)
672   -ENOMEDIUM   No media inserted.
673   -EINVAL      Invalid sector number or nb_sectors
674   -EACCES      Trying to write a read-only device
675 */
676 int bdrv_write(BdrvChild *child, int64_t sector_num,
677                const uint8_t *buf, int nb_sectors)
678 {
679     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
680 }
681 
682 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
683                        int count, BdrvRequestFlags flags)
684 {
685     QEMUIOVector qiov;
686     struct iovec iov = {
687         .iov_base = NULL,
688         .iov_len = count,
689     };
690 
691     qemu_iovec_init_external(&qiov, &iov, 1);
692     return bdrv_prwv_co(child, offset, &qiov, true,
693                         BDRV_REQ_ZERO_WRITE | flags);
694 }
695 
696 /*
697  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
698  * The operation is sped up by checking the block status and only writing
699  * zeroes to the device if they currently do not return zeroes. Optional
700  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
701  * BDRV_REQ_FUA).
702  *
703  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
704  */
705 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
706 {
707     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
708     BlockDriverState *bs = child->bs;
709     BlockDriverState *file;
710     int n;
711 
712     target_sectors = bdrv_nb_sectors(bs);
713     if (target_sectors < 0) {
714         return target_sectors;
715     }
716 
717     for (;;) {
718         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
719         if (nb_sectors <= 0) {
720             return 0;
721         }
722         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
723         if (ret < 0) {
724             error_report("error getting block status at sector %" PRId64 ": %s",
725                          sector_num, strerror(-ret));
726             return ret;
727         }
728         if (ret & BDRV_BLOCK_ZERO) {
729             sector_num += n;
730             continue;
731         }
732         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
733                                  n << BDRV_SECTOR_BITS, flags);
734         if (ret < 0) {
735             error_report("error writing zeroes at sector %" PRId64 ": %s",
736                          sector_num, strerror(-ret));
737             return ret;
738         }
739         sector_num += n;
740     }
741 }
742 
743 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
744 {
745     int ret;
746 
747     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
748     if (ret < 0) {
749         return ret;
750     }
751 
752     return qiov->size;
753 }
754 
755 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
756 {
757     QEMUIOVector qiov;
758     struct iovec iov = {
759         .iov_base = (void *)buf,
760         .iov_len = bytes,
761     };
762 
763     if (bytes < 0) {
764         return -EINVAL;
765     }
766 
767     qemu_iovec_init_external(&qiov, &iov, 1);
768     return bdrv_preadv(child, offset, &qiov);
769 }
770 
771 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
772 {
773     int ret;
774 
775     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
776     if (ret < 0) {
777         return ret;
778     }
779 
780     return qiov->size;
781 }
782 
783 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
784 {
785     QEMUIOVector qiov;
786     struct iovec iov = {
787         .iov_base   = (void *) buf,
788         .iov_len    = bytes,
789     };
790 
791     if (bytes < 0) {
792         return -EINVAL;
793     }
794 
795     qemu_iovec_init_external(&qiov, &iov, 1);
796     return bdrv_pwritev(child, offset, &qiov);
797 }
798 
799 /*
800  * Writes to the file and ensures that no writes are reordered across this
801  * request (acts as a barrier)
802  *
803  * Returns 0 on success, -errno in error cases.
804  */
805 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
806                      const void *buf, int count)
807 {
808     int ret;
809 
810     ret = bdrv_pwrite(child, offset, buf, count);
811     if (ret < 0) {
812         return ret;
813     }
814 
815     ret = bdrv_flush(child->bs);
816     if (ret < 0) {
817         return ret;
818     }
819 
820     return 0;
821 }
822 
823 typedef struct CoroutineIOCompletion {
824     Coroutine *coroutine;
825     int ret;
826 } CoroutineIOCompletion;
827 
828 static void bdrv_co_io_em_complete(void *opaque, int ret)
829 {
830     CoroutineIOCompletion *co = opaque;
831 
832     co->ret = ret;
833     aio_co_wake(co->coroutine);
834 }
835 
836 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
837                                            uint64_t offset, uint64_t bytes,
838                                            QEMUIOVector *qiov, int flags)
839 {
840     BlockDriver *drv = bs->drv;
841     int64_t sector_num;
842     unsigned int nb_sectors;
843 
844     assert(!(flags & ~BDRV_REQ_MASK));
845 
846     if (drv->bdrv_co_preadv) {
847         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
848     }
849 
850     sector_num = offset >> BDRV_SECTOR_BITS;
851     nb_sectors = bytes >> BDRV_SECTOR_BITS;
852 
853     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
854     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
855     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
856 
857     if (drv->bdrv_co_readv) {
858         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
859     } else {
860         BlockAIOCB *acb;
861         CoroutineIOCompletion co = {
862             .coroutine = qemu_coroutine_self(),
863         };
864 
865         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
866                                       bdrv_co_io_em_complete, &co);
867         if (acb == NULL) {
868             return -EIO;
869         } else {
870             qemu_coroutine_yield();
871             return co.ret;
872         }
873     }
874 }
875 
876 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
877                                             uint64_t offset, uint64_t bytes,
878                                             QEMUIOVector *qiov, int flags)
879 {
880     BlockDriver *drv = bs->drv;
881     int64_t sector_num;
882     unsigned int nb_sectors;
883     int ret;
884 
885     assert(!(flags & ~BDRV_REQ_MASK));
886 
887     if (drv->bdrv_co_pwritev) {
888         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
889                                    flags & bs->supported_write_flags);
890         flags &= ~bs->supported_write_flags;
891         goto emulate_flags;
892     }
893 
894     sector_num = offset >> BDRV_SECTOR_BITS;
895     nb_sectors = bytes >> BDRV_SECTOR_BITS;
896 
897     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
898     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
899     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
900 
901     if (drv->bdrv_co_writev_flags) {
902         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
903                                         flags & bs->supported_write_flags);
904         flags &= ~bs->supported_write_flags;
905     } else if (drv->bdrv_co_writev) {
906         assert(!bs->supported_write_flags);
907         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
908     } else {
909         BlockAIOCB *acb;
910         CoroutineIOCompletion co = {
911             .coroutine = qemu_coroutine_self(),
912         };
913 
914         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
915                                        bdrv_co_io_em_complete, &co);
916         if (acb == NULL) {
917             ret = -EIO;
918         } else {
919             qemu_coroutine_yield();
920             ret = co.ret;
921         }
922     }
923 
924 emulate_flags:
925     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
926         ret = bdrv_co_flush(bs);
927     }
928 
929     return ret;
930 }
931 
932 static int coroutine_fn
933 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
934                                uint64_t bytes, QEMUIOVector *qiov)
935 {
936     BlockDriver *drv = bs->drv;
937 
938     if (!drv->bdrv_co_pwritev_compressed) {
939         return -ENOTSUP;
940     }
941 
942     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
943 }
944 
945 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
946         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
947 {
948     BlockDriverState *bs = child->bs;
949 
950     /* Perform I/O through a temporary buffer so that users who scribble over
951      * their read buffer while the operation is in progress do not end up
952      * modifying the image file.  This is critical for zero-copy guest I/O
953      * where anything might happen inside guest memory.
954      */
955     void *bounce_buffer;
956 
957     BlockDriver *drv = bs->drv;
958     struct iovec iov;
959     QEMUIOVector bounce_qiov;
960     int64_t cluster_offset;
961     unsigned int cluster_bytes;
962     size_t skip_bytes;
963     int ret;
964 
965     /* FIXME We cannot require callers to have write permissions when all they
966      * are doing is a read request. If we did things right, write permissions
967      * would be obtained anyway, but internally by the copy-on-read code. As
968      * long as it is implemented here rather than in a separat filter driver,
969      * the copy-on-read code doesn't have its own BdrvChild, however, for which
970      * it could request permissions. Therefore we have to bypass the permission
971      * system for the moment. */
972     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
973 
974     /* Cover entire cluster so no additional backing file I/O is required when
975      * allocating cluster in the image file.
976      */
977     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
978 
979     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
980                                    cluster_offset, cluster_bytes);
981 
982     iov.iov_len = cluster_bytes;
983     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
984     if (bounce_buffer == NULL) {
985         ret = -ENOMEM;
986         goto err;
987     }
988 
989     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
990 
991     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
992                              &bounce_qiov, 0);
993     if (ret < 0) {
994         goto err;
995     }
996 
997     if (drv->bdrv_co_pwrite_zeroes &&
998         buffer_is_zero(bounce_buffer, iov.iov_len)) {
999         /* FIXME: Should we (perhaps conditionally) be setting
1000          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1001          * that still correctly reads as zero? */
1002         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
1003     } else {
1004         /* This does not change the data on the disk, it is not necessary
1005          * to flush even in cache=writethrough mode.
1006          */
1007         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
1008                                   &bounce_qiov, 0);
1009     }
1010 
1011     if (ret < 0) {
1012         /* It might be okay to ignore write errors for guest requests.  If this
1013          * is a deliberate copy-on-read then we don't want to ignore the error.
1014          * Simply report it in all cases.
1015          */
1016         goto err;
1017     }
1018 
1019     skip_bytes = offset - cluster_offset;
1020     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1021 
1022 err:
1023     qemu_vfree(bounce_buffer);
1024     return ret;
1025 }
1026 
1027 /*
1028  * Forwards an already correctly aligned request to the BlockDriver. This
1029  * handles copy on read, zeroing after EOF, and fragmentation of large
1030  * reads; any other features must be implemented by the caller.
1031  */
1032 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1033     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1034     int64_t align, QEMUIOVector *qiov, int flags)
1035 {
1036     BlockDriverState *bs = child->bs;
1037     int64_t total_bytes, max_bytes;
1038     int ret = 0;
1039     uint64_t bytes_remaining = bytes;
1040     int max_transfer;
1041 
1042     assert(is_power_of_2(align));
1043     assert((offset & (align - 1)) == 0);
1044     assert((bytes & (align - 1)) == 0);
1045     assert(!qiov || bytes == qiov->size);
1046     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1047     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1048                                    align);
1049 
1050     /* TODO: We would need a per-BDS .supported_read_flags and
1051      * potential fallback support, if we ever implement any read flags
1052      * to pass through to drivers.  For now, there aren't any
1053      * passthrough flags.  */
1054     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1055 
1056     /* Handle Copy on Read and associated serialisation */
1057     if (flags & BDRV_REQ_COPY_ON_READ) {
1058         /* If we touch the same cluster it counts as an overlap.  This
1059          * guarantees that allocating writes will be serialized and not race
1060          * with each other for the same cluster.  For example, in copy-on-read
1061          * it ensures that the CoR read and write operations are atomic and
1062          * guest writes cannot interleave between them. */
1063         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1064     }
1065 
1066     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1067         wait_serialising_requests(req);
1068     }
1069 
1070     if (flags & BDRV_REQ_COPY_ON_READ) {
1071         int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1072         int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1073         unsigned int nb_sectors = end_sector - start_sector;
1074         int pnum;
1075 
1076         ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1077         if (ret < 0) {
1078             goto out;
1079         }
1080 
1081         if (!ret || pnum != nb_sectors) {
1082             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1083             goto out;
1084         }
1085     }
1086 
1087     /* Forward the request to the BlockDriver, possibly fragmenting it */
1088     total_bytes = bdrv_getlength(bs);
1089     if (total_bytes < 0) {
1090         ret = total_bytes;
1091         goto out;
1092     }
1093 
1094     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1095     if (bytes <= max_bytes && bytes <= max_transfer) {
1096         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1097         goto out;
1098     }
1099 
1100     while (bytes_remaining) {
1101         int num;
1102 
1103         if (max_bytes) {
1104             QEMUIOVector local_qiov;
1105 
1106             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1107             assert(num);
1108             qemu_iovec_init(&local_qiov, qiov->niov);
1109             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1110 
1111             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1112                                      num, &local_qiov, 0);
1113             max_bytes -= num;
1114             qemu_iovec_destroy(&local_qiov);
1115         } else {
1116             num = bytes_remaining;
1117             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1118                                     bytes_remaining);
1119         }
1120         if (ret < 0) {
1121             goto out;
1122         }
1123         bytes_remaining -= num;
1124     }
1125 
1126 out:
1127     return ret < 0 ? ret : 0;
1128 }
1129 
1130 /*
1131  * Handle a read request in coroutine context
1132  */
1133 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1134     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1135     BdrvRequestFlags flags)
1136 {
1137     BlockDriverState *bs = child->bs;
1138     BlockDriver *drv = bs->drv;
1139     BdrvTrackedRequest req;
1140 
1141     uint64_t align = bs->bl.request_alignment;
1142     uint8_t *head_buf = NULL;
1143     uint8_t *tail_buf = NULL;
1144     QEMUIOVector local_qiov;
1145     bool use_local_qiov = false;
1146     int ret;
1147 
1148     if (!drv) {
1149         return -ENOMEDIUM;
1150     }
1151 
1152     ret = bdrv_check_byte_request(bs, offset, bytes);
1153     if (ret < 0) {
1154         return ret;
1155     }
1156 
1157     bdrv_inc_in_flight(bs);
1158 
1159     /* Don't do copy-on-read if we read data before write operation */
1160     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1161         flags |= BDRV_REQ_COPY_ON_READ;
1162     }
1163 
1164     /* Align read if necessary by padding qiov */
1165     if (offset & (align - 1)) {
1166         head_buf = qemu_blockalign(bs, align);
1167         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1168         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1169         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1170         use_local_qiov = true;
1171 
1172         bytes += offset & (align - 1);
1173         offset = offset & ~(align - 1);
1174     }
1175 
1176     if ((offset + bytes) & (align - 1)) {
1177         if (!use_local_qiov) {
1178             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1179             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1180             use_local_qiov = true;
1181         }
1182         tail_buf = qemu_blockalign(bs, align);
1183         qemu_iovec_add(&local_qiov, tail_buf,
1184                        align - ((offset + bytes) & (align - 1)));
1185 
1186         bytes = ROUND_UP(bytes, align);
1187     }
1188 
1189     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1190     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1191                               use_local_qiov ? &local_qiov : qiov,
1192                               flags);
1193     tracked_request_end(&req);
1194     bdrv_dec_in_flight(bs);
1195 
1196     if (use_local_qiov) {
1197         qemu_iovec_destroy(&local_qiov);
1198         qemu_vfree(head_buf);
1199         qemu_vfree(tail_buf);
1200     }
1201 
1202     return ret;
1203 }
1204 
1205 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1206     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1207     BdrvRequestFlags flags)
1208 {
1209     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1210         return -EINVAL;
1211     }
1212 
1213     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1214                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1215 }
1216 
1217 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1218                                int nb_sectors, QEMUIOVector *qiov)
1219 {
1220     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1221 
1222     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1223 }
1224 
1225 /* Maximum buffer for write zeroes fallback, in bytes */
1226 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1227 
1228 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1229     int64_t offset, int count, BdrvRequestFlags flags)
1230 {
1231     BlockDriver *drv = bs->drv;
1232     QEMUIOVector qiov;
1233     struct iovec iov = {0};
1234     int ret = 0;
1235     bool need_flush = false;
1236     int head = 0;
1237     int tail = 0;
1238 
1239     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1240     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1241                         bs->bl.request_alignment);
1242     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1243                                     MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1244 
1245     assert(alignment % bs->bl.request_alignment == 0);
1246     head = offset % alignment;
1247     tail = (offset + count) % alignment;
1248     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1249     assert(max_write_zeroes >= bs->bl.request_alignment);
1250 
1251     while (count > 0 && !ret) {
1252         int num = count;
1253 
1254         /* Align request.  Block drivers can expect the "bulk" of the request
1255          * to be aligned, and that unaligned requests do not cross cluster
1256          * boundaries.
1257          */
1258         if (head) {
1259             /* Make a small request up to the first aligned sector. For
1260              * convenience, limit this request to max_transfer even if
1261              * we don't need to fall back to writes.  */
1262             num = MIN(MIN(count, max_transfer), alignment - head);
1263             head = (head + num) % alignment;
1264             assert(num < max_write_zeroes);
1265         } else if (tail && num > alignment) {
1266             /* Shorten the request to the last aligned sector.  */
1267             num -= tail;
1268         }
1269 
1270         /* limit request size */
1271         if (num > max_write_zeroes) {
1272             num = max_write_zeroes;
1273         }
1274 
1275         ret = -ENOTSUP;
1276         /* First try the efficient write zeroes operation */
1277         if (drv->bdrv_co_pwrite_zeroes) {
1278             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1279                                              flags & bs->supported_zero_flags);
1280             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1281                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1282                 need_flush = true;
1283             }
1284         } else {
1285             assert(!bs->supported_zero_flags);
1286         }
1287 
1288         if (ret == -ENOTSUP) {
1289             /* Fall back to bounce buffer if write zeroes is unsupported */
1290             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1291 
1292             if ((flags & BDRV_REQ_FUA) &&
1293                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1294                 /* No need for bdrv_driver_pwrite() to do a fallback
1295                  * flush on each chunk; use just one at the end */
1296                 write_flags &= ~BDRV_REQ_FUA;
1297                 need_flush = true;
1298             }
1299             num = MIN(num, max_transfer);
1300             iov.iov_len = num;
1301             if (iov.iov_base == NULL) {
1302                 iov.iov_base = qemu_try_blockalign(bs, num);
1303                 if (iov.iov_base == NULL) {
1304                     ret = -ENOMEM;
1305                     goto fail;
1306                 }
1307                 memset(iov.iov_base, 0, num);
1308             }
1309             qemu_iovec_init_external(&qiov, &iov, 1);
1310 
1311             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1312 
1313             /* Keep bounce buffer around if it is big enough for all
1314              * all future requests.
1315              */
1316             if (num < max_transfer) {
1317                 qemu_vfree(iov.iov_base);
1318                 iov.iov_base = NULL;
1319             }
1320         }
1321 
1322         offset += num;
1323         count -= num;
1324     }
1325 
1326 fail:
1327     if (ret == 0 && need_flush) {
1328         ret = bdrv_co_flush(bs);
1329     }
1330     qemu_vfree(iov.iov_base);
1331     return ret;
1332 }
1333 
1334 /*
1335  * Forwards an already correctly aligned write request to the BlockDriver,
1336  * after possibly fragmenting it.
1337  */
1338 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1339     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1340     int64_t align, QEMUIOVector *qiov, int flags)
1341 {
1342     BlockDriverState *bs = child->bs;
1343     BlockDriver *drv = bs->drv;
1344     bool waited;
1345     int ret;
1346 
1347     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1348     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1349     uint64_t bytes_remaining = bytes;
1350     int max_transfer;
1351 
1352     assert(is_power_of_2(align));
1353     assert((offset & (align - 1)) == 0);
1354     assert((bytes & (align - 1)) == 0);
1355     assert(!qiov || bytes == qiov->size);
1356     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1357     assert(!(flags & ~BDRV_REQ_MASK));
1358     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1359                                    align);
1360 
1361     waited = wait_serialising_requests(req);
1362     assert(!waited || !req->serialising);
1363     assert(req->overlap_offset <= offset);
1364     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1365     assert(child->perm & BLK_PERM_WRITE);
1366     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1367 
1368     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1369 
1370     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1371         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1372         qemu_iovec_is_zero(qiov)) {
1373         flags |= BDRV_REQ_ZERO_WRITE;
1374         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1375             flags |= BDRV_REQ_MAY_UNMAP;
1376         }
1377     }
1378 
1379     if (ret < 0) {
1380         /* Do nothing, write notifier decided to fail this request */
1381     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1382         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1383         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1384     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1385         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1386     } else if (bytes <= max_transfer) {
1387         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1388         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1389     } else {
1390         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1391         while (bytes_remaining) {
1392             int num = MIN(bytes_remaining, max_transfer);
1393             QEMUIOVector local_qiov;
1394             int local_flags = flags;
1395 
1396             assert(num);
1397             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1398                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1399                 /* If FUA is going to be emulated by flush, we only
1400                  * need to flush on the last iteration */
1401                 local_flags &= ~BDRV_REQ_FUA;
1402             }
1403             qemu_iovec_init(&local_qiov, qiov->niov);
1404             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1405 
1406             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1407                                       num, &local_qiov, local_flags);
1408             qemu_iovec_destroy(&local_qiov);
1409             if (ret < 0) {
1410                 break;
1411             }
1412             bytes_remaining -= num;
1413         }
1414     }
1415     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1416 
1417     ++bs->write_gen;
1418     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1419 
1420     if (bs->wr_highest_offset < offset + bytes) {
1421         bs->wr_highest_offset = offset + bytes;
1422     }
1423 
1424     if (ret >= 0) {
1425         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1426         ret = 0;
1427     }
1428 
1429     return ret;
1430 }
1431 
1432 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1433                                                 int64_t offset,
1434                                                 unsigned int bytes,
1435                                                 BdrvRequestFlags flags,
1436                                                 BdrvTrackedRequest *req)
1437 {
1438     BlockDriverState *bs = child->bs;
1439     uint8_t *buf = NULL;
1440     QEMUIOVector local_qiov;
1441     struct iovec iov;
1442     uint64_t align = bs->bl.request_alignment;
1443     unsigned int head_padding_bytes, tail_padding_bytes;
1444     int ret = 0;
1445 
1446     head_padding_bytes = offset & (align - 1);
1447     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1448 
1449 
1450     assert(flags & BDRV_REQ_ZERO_WRITE);
1451     if (head_padding_bytes || tail_padding_bytes) {
1452         buf = qemu_blockalign(bs, align);
1453         iov = (struct iovec) {
1454             .iov_base   = buf,
1455             .iov_len    = align,
1456         };
1457         qemu_iovec_init_external(&local_qiov, &iov, 1);
1458     }
1459     if (head_padding_bytes) {
1460         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1461 
1462         /* RMW the unaligned part before head. */
1463         mark_request_serialising(req, align);
1464         wait_serialising_requests(req);
1465         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1466         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1467                                   align, &local_qiov, 0);
1468         if (ret < 0) {
1469             goto fail;
1470         }
1471         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1472 
1473         memset(buf + head_padding_bytes, 0, zero_bytes);
1474         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1475                                    align, &local_qiov,
1476                                    flags & ~BDRV_REQ_ZERO_WRITE);
1477         if (ret < 0) {
1478             goto fail;
1479         }
1480         offset += zero_bytes;
1481         bytes -= zero_bytes;
1482     }
1483 
1484     assert(!bytes || (offset & (align - 1)) == 0);
1485     if (bytes >= align) {
1486         /* Write the aligned part in the middle. */
1487         uint64_t aligned_bytes = bytes & ~(align - 1);
1488         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1489                                    NULL, flags);
1490         if (ret < 0) {
1491             goto fail;
1492         }
1493         bytes -= aligned_bytes;
1494         offset += aligned_bytes;
1495     }
1496 
1497     assert(!bytes || (offset & (align - 1)) == 0);
1498     if (bytes) {
1499         assert(align == tail_padding_bytes + bytes);
1500         /* RMW the unaligned part after tail. */
1501         mark_request_serialising(req, align);
1502         wait_serialising_requests(req);
1503         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1504         ret = bdrv_aligned_preadv(child, req, offset, align,
1505                                   align, &local_qiov, 0);
1506         if (ret < 0) {
1507             goto fail;
1508         }
1509         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1510 
1511         memset(buf, 0, bytes);
1512         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1513                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1514     }
1515 fail:
1516     qemu_vfree(buf);
1517     return ret;
1518 
1519 }
1520 
1521 /*
1522  * Handle a write request in coroutine context
1523  */
1524 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1525     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1526     BdrvRequestFlags flags)
1527 {
1528     BlockDriverState *bs = child->bs;
1529     BdrvTrackedRequest req;
1530     uint64_t align = bs->bl.request_alignment;
1531     uint8_t *head_buf = NULL;
1532     uint8_t *tail_buf = NULL;
1533     QEMUIOVector local_qiov;
1534     bool use_local_qiov = false;
1535     int ret;
1536 
1537     if (!bs->drv) {
1538         return -ENOMEDIUM;
1539     }
1540     if (bs->read_only) {
1541         return -EPERM;
1542     }
1543     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1544 
1545     ret = bdrv_check_byte_request(bs, offset, bytes);
1546     if (ret < 0) {
1547         return ret;
1548     }
1549 
1550     bdrv_inc_in_flight(bs);
1551     /*
1552      * Align write if necessary by performing a read-modify-write cycle.
1553      * Pad qiov with the read parts and be sure to have a tracked request not
1554      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1555      */
1556     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1557 
1558     if (!qiov) {
1559         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1560         goto out;
1561     }
1562 
1563     if (offset & (align - 1)) {
1564         QEMUIOVector head_qiov;
1565         struct iovec head_iov;
1566 
1567         mark_request_serialising(&req, align);
1568         wait_serialising_requests(&req);
1569 
1570         head_buf = qemu_blockalign(bs, align);
1571         head_iov = (struct iovec) {
1572             .iov_base   = head_buf,
1573             .iov_len    = align,
1574         };
1575         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1576 
1577         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1578         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1579                                   align, &head_qiov, 0);
1580         if (ret < 0) {
1581             goto fail;
1582         }
1583         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1584 
1585         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1586         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1587         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1588         use_local_qiov = true;
1589 
1590         bytes += offset & (align - 1);
1591         offset = offset & ~(align - 1);
1592 
1593         /* We have read the tail already if the request is smaller
1594          * than one aligned block.
1595          */
1596         if (bytes < align) {
1597             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1598             bytes = align;
1599         }
1600     }
1601 
1602     if ((offset + bytes) & (align - 1)) {
1603         QEMUIOVector tail_qiov;
1604         struct iovec tail_iov;
1605         size_t tail_bytes;
1606         bool waited;
1607 
1608         mark_request_serialising(&req, align);
1609         waited = wait_serialising_requests(&req);
1610         assert(!waited || !use_local_qiov);
1611 
1612         tail_buf = qemu_blockalign(bs, align);
1613         tail_iov = (struct iovec) {
1614             .iov_base   = tail_buf,
1615             .iov_len    = align,
1616         };
1617         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1618 
1619         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1620         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1621                                   align, align, &tail_qiov, 0);
1622         if (ret < 0) {
1623             goto fail;
1624         }
1625         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1626 
1627         if (!use_local_qiov) {
1628             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1629             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1630             use_local_qiov = true;
1631         }
1632 
1633         tail_bytes = (offset + bytes) & (align - 1);
1634         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1635 
1636         bytes = ROUND_UP(bytes, align);
1637     }
1638 
1639     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1640                                use_local_qiov ? &local_qiov : qiov,
1641                                flags);
1642 
1643 fail:
1644 
1645     if (use_local_qiov) {
1646         qemu_iovec_destroy(&local_qiov);
1647     }
1648     qemu_vfree(head_buf);
1649     qemu_vfree(tail_buf);
1650 out:
1651     tracked_request_end(&req);
1652     bdrv_dec_in_flight(bs);
1653     return ret;
1654 }
1655 
1656 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1657     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1658     BdrvRequestFlags flags)
1659 {
1660     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1661         return -EINVAL;
1662     }
1663 
1664     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1665                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1666 }
1667 
1668 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1669     int nb_sectors, QEMUIOVector *qiov)
1670 {
1671     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1672 
1673     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1674 }
1675 
1676 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1677                                        int count, BdrvRequestFlags flags)
1678 {
1679     trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1680 
1681     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1682         flags &= ~BDRV_REQ_MAY_UNMAP;
1683     }
1684 
1685     return bdrv_co_pwritev(child, offset, count, NULL,
1686                            BDRV_REQ_ZERO_WRITE | flags);
1687 }
1688 
1689 /*
1690  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1691  */
1692 int bdrv_flush_all(void)
1693 {
1694     BdrvNextIterator it;
1695     BlockDriverState *bs = NULL;
1696     int result = 0;
1697 
1698     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1699         AioContext *aio_context = bdrv_get_aio_context(bs);
1700         int ret;
1701 
1702         aio_context_acquire(aio_context);
1703         ret = bdrv_flush(bs);
1704         if (ret < 0 && !result) {
1705             result = ret;
1706         }
1707         aio_context_release(aio_context);
1708     }
1709 
1710     return result;
1711 }
1712 
1713 
1714 typedef struct BdrvCoGetBlockStatusData {
1715     BlockDriverState *bs;
1716     BlockDriverState *base;
1717     BlockDriverState **file;
1718     int64_t sector_num;
1719     int nb_sectors;
1720     int *pnum;
1721     int64_t ret;
1722     bool done;
1723 } BdrvCoGetBlockStatusData;
1724 
1725 /*
1726  * Returns the allocation status of the specified sectors.
1727  * Drivers not implementing the functionality are assumed to not support
1728  * backing files, hence all their sectors are reported as allocated.
1729  *
1730  * If 'sector_num' is beyond the end of the disk image the return value is 0
1731  * and 'pnum' is set to 0.
1732  *
1733  * 'pnum' is set to the number of sectors (including and immediately following
1734  * the specified sector) that are known to be in the same
1735  * allocated/unallocated state.
1736  *
1737  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1738  * beyond the end of the disk image it will be clamped.
1739  *
1740  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1741  * points to the BDS which the sector range is allocated in.
1742  */
1743 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1744                                                      int64_t sector_num,
1745                                                      int nb_sectors, int *pnum,
1746                                                      BlockDriverState **file)
1747 {
1748     int64_t total_sectors;
1749     int64_t n;
1750     int64_t ret, ret2;
1751 
1752     total_sectors = bdrv_nb_sectors(bs);
1753     if (total_sectors < 0) {
1754         return total_sectors;
1755     }
1756 
1757     if (sector_num >= total_sectors) {
1758         *pnum = 0;
1759         return 0;
1760     }
1761 
1762     n = total_sectors - sector_num;
1763     if (n < nb_sectors) {
1764         nb_sectors = n;
1765     }
1766 
1767     if (!bs->drv->bdrv_co_get_block_status) {
1768         *pnum = nb_sectors;
1769         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1770         if (bs->drv->protocol_name) {
1771             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1772         }
1773         return ret;
1774     }
1775 
1776     *file = NULL;
1777     bdrv_inc_in_flight(bs);
1778     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1779                                             file);
1780     if (ret < 0) {
1781         *pnum = 0;
1782         goto out;
1783     }
1784 
1785     if (ret & BDRV_BLOCK_RAW) {
1786         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1787         ret = bdrv_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1788                                     *pnum, pnum, file);
1789         goto out;
1790     }
1791 
1792     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1793         ret |= BDRV_BLOCK_ALLOCATED;
1794     } else {
1795         if (bdrv_unallocated_blocks_are_zero(bs)) {
1796             ret |= BDRV_BLOCK_ZERO;
1797         } else if (bs->backing) {
1798             BlockDriverState *bs2 = bs->backing->bs;
1799             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1800             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1801                 ret |= BDRV_BLOCK_ZERO;
1802             }
1803         }
1804     }
1805 
1806     if (*file && *file != bs &&
1807         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1808         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1809         BlockDriverState *file2;
1810         int file_pnum;
1811 
1812         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1813                                         *pnum, &file_pnum, &file2);
1814         if (ret2 >= 0) {
1815             /* Ignore errors.  This is just providing extra information, it
1816              * is useful but not necessary.
1817              */
1818             if (!file_pnum) {
1819                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1820                  * perfectly valid for the format block driver to point to such
1821                  * offsets, so catch it and mark everything as zero */
1822                 ret |= BDRV_BLOCK_ZERO;
1823             } else {
1824                 /* Limit request to the range reported by the protocol driver */
1825                 *pnum = file_pnum;
1826                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1827             }
1828         }
1829     }
1830 
1831 out:
1832     bdrv_dec_in_flight(bs);
1833     return ret;
1834 }
1835 
1836 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1837         BlockDriverState *base,
1838         int64_t sector_num,
1839         int nb_sectors,
1840         int *pnum,
1841         BlockDriverState **file)
1842 {
1843     BlockDriverState *p;
1844     int64_t ret = 0;
1845 
1846     assert(bs != base);
1847     for (p = bs; p != base; p = backing_bs(p)) {
1848         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1849         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1850             break;
1851         }
1852         /* [sector_num, pnum] unallocated on this layer, which could be only
1853          * the first part of [sector_num, nb_sectors].  */
1854         nb_sectors = MIN(nb_sectors, *pnum);
1855     }
1856     return ret;
1857 }
1858 
1859 /* Coroutine wrapper for bdrv_get_block_status_above() */
1860 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1861 {
1862     BdrvCoGetBlockStatusData *data = opaque;
1863 
1864     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1865                                                data->sector_num,
1866                                                data->nb_sectors,
1867                                                data->pnum,
1868                                                data->file);
1869     data->done = true;
1870 }
1871 
1872 /*
1873  * Synchronous wrapper around bdrv_co_get_block_status_above().
1874  *
1875  * See bdrv_co_get_block_status_above() for details.
1876  */
1877 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1878                                     BlockDriverState *base,
1879                                     int64_t sector_num,
1880                                     int nb_sectors, int *pnum,
1881                                     BlockDriverState **file)
1882 {
1883     Coroutine *co;
1884     BdrvCoGetBlockStatusData data = {
1885         .bs = bs,
1886         .base = base,
1887         .file = file,
1888         .sector_num = sector_num,
1889         .nb_sectors = nb_sectors,
1890         .pnum = pnum,
1891         .done = false,
1892     };
1893 
1894     if (qemu_in_coroutine()) {
1895         /* Fast-path if already in coroutine context */
1896         bdrv_get_block_status_above_co_entry(&data);
1897     } else {
1898         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1899                                    &data);
1900         bdrv_coroutine_enter(bs, co);
1901         BDRV_POLL_WHILE(bs, !data.done);
1902     }
1903     return data.ret;
1904 }
1905 
1906 int64_t bdrv_get_block_status(BlockDriverState *bs,
1907                               int64_t sector_num,
1908                               int nb_sectors, int *pnum,
1909                               BlockDriverState **file)
1910 {
1911     return bdrv_get_block_status_above(bs, backing_bs(bs),
1912                                        sector_num, nb_sectors, pnum, file);
1913 }
1914 
1915 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1916                                    int nb_sectors, int *pnum)
1917 {
1918     BlockDriverState *file;
1919     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1920                                         &file);
1921     if (ret < 0) {
1922         return ret;
1923     }
1924     return !!(ret & BDRV_BLOCK_ALLOCATED);
1925 }
1926 
1927 /*
1928  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1929  *
1930  * Return true if the given sector is allocated in any image between
1931  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1932  * sector is allocated in any image of the chain.  Return false otherwise.
1933  *
1934  * 'pnum' is set to the number of sectors (including and immediately following
1935  *  the specified sector) that are known to be in the same
1936  *  allocated/unallocated state.
1937  *
1938  */
1939 int bdrv_is_allocated_above(BlockDriverState *top,
1940                             BlockDriverState *base,
1941                             int64_t sector_num,
1942                             int nb_sectors, int *pnum)
1943 {
1944     BlockDriverState *intermediate;
1945     int ret, n = nb_sectors;
1946 
1947     intermediate = top;
1948     while (intermediate && intermediate != base) {
1949         int pnum_inter;
1950         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1951                                 &pnum_inter);
1952         if (ret < 0) {
1953             return ret;
1954         } else if (ret) {
1955             *pnum = pnum_inter;
1956             return 1;
1957         }
1958 
1959         /*
1960          * [sector_num, nb_sectors] is unallocated on top but intermediate
1961          * might have
1962          *
1963          * [sector_num+x, nr_sectors] allocated.
1964          */
1965         if (n > pnum_inter &&
1966             (intermediate == top ||
1967              sector_num + pnum_inter < intermediate->total_sectors)) {
1968             n = pnum_inter;
1969         }
1970 
1971         intermediate = backing_bs(intermediate);
1972     }
1973 
1974     *pnum = n;
1975     return 0;
1976 }
1977 
1978 typedef struct BdrvVmstateCo {
1979     BlockDriverState    *bs;
1980     QEMUIOVector        *qiov;
1981     int64_t             pos;
1982     bool                is_read;
1983     int                 ret;
1984 } BdrvVmstateCo;
1985 
1986 static int coroutine_fn
1987 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1988                    bool is_read)
1989 {
1990     BlockDriver *drv = bs->drv;
1991 
1992     if (!drv) {
1993         return -ENOMEDIUM;
1994     } else if (drv->bdrv_load_vmstate) {
1995         return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1996                        : drv->bdrv_save_vmstate(bs, qiov, pos);
1997     } else if (bs->file) {
1998         return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1999     }
2000 
2001     return -ENOTSUP;
2002 }
2003 
2004 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2005 {
2006     BdrvVmstateCo *co = opaque;
2007     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2008 }
2009 
2010 static inline int
2011 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2012                 bool is_read)
2013 {
2014     if (qemu_in_coroutine()) {
2015         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2016     } else {
2017         BdrvVmstateCo data = {
2018             .bs         = bs,
2019             .qiov       = qiov,
2020             .pos        = pos,
2021             .is_read    = is_read,
2022             .ret        = -EINPROGRESS,
2023         };
2024         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2025 
2026         bdrv_coroutine_enter(bs, co);
2027         while (data.ret == -EINPROGRESS) {
2028             aio_poll(bdrv_get_aio_context(bs), true);
2029         }
2030         return data.ret;
2031     }
2032 }
2033 
2034 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2035                       int64_t pos, int size)
2036 {
2037     QEMUIOVector qiov;
2038     struct iovec iov = {
2039         .iov_base   = (void *) buf,
2040         .iov_len    = size,
2041     };
2042     int ret;
2043 
2044     qemu_iovec_init_external(&qiov, &iov, 1);
2045 
2046     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2047     if (ret < 0) {
2048         return ret;
2049     }
2050 
2051     return size;
2052 }
2053 
2054 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2055 {
2056     return bdrv_rw_vmstate(bs, qiov, pos, false);
2057 }
2058 
2059 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2060                       int64_t pos, int size)
2061 {
2062     QEMUIOVector qiov;
2063     struct iovec iov = {
2064         .iov_base   = buf,
2065         .iov_len    = size,
2066     };
2067     int ret;
2068 
2069     qemu_iovec_init_external(&qiov, &iov, 1);
2070     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2071     if (ret < 0) {
2072         return ret;
2073     }
2074 
2075     return size;
2076 }
2077 
2078 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2079 {
2080     return bdrv_rw_vmstate(bs, qiov, pos, true);
2081 }
2082 
2083 /**************************************************************/
2084 /* async I/Os */
2085 
2086 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2087                            QEMUIOVector *qiov, int nb_sectors,
2088                            BlockCompletionFunc *cb, void *opaque)
2089 {
2090     trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2091 
2092     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2093     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2094                                   0, cb, opaque, false);
2095 }
2096 
2097 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2098                             QEMUIOVector *qiov, int nb_sectors,
2099                             BlockCompletionFunc *cb, void *opaque)
2100 {
2101     trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2102 
2103     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2104     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2105                                   0, cb, opaque, true);
2106 }
2107 
2108 void bdrv_aio_cancel(BlockAIOCB *acb)
2109 {
2110     qemu_aio_ref(acb);
2111     bdrv_aio_cancel_async(acb);
2112     while (acb->refcnt > 1) {
2113         if (acb->aiocb_info->get_aio_context) {
2114             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2115         } else if (acb->bs) {
2116             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2117              * assert that we're not using an I/O thread.  Thread-safe
2118              * code should use bdrv_aio_cancel_async exclusively.
2119              */
2120             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2121             aio_poll(bdrv_get_aio_context(acb->bs), true);
2122         } else {
2123             abort();
2124         }
2125     }
2126     qemu_aio_unref(acb);
2127 }
2128 
2129 /* Async version of aio cancel. The caller is not blocked if the acb implements
2130  * cancel_async, otherwise we do nothing and let the request normally complete.
2131  * In either case the completion callback must be called. */
2132 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2133 {
2134     if (acb->aiocb_info->cancel_async) {
2135         acb->aiocb_info->cancel_async(acb);
2136     }
2137 }
2138 
2139 /**************************************************************/
2140 /* async block device emulation */
2141 
2142 typedef struct BlockRequest {
2143     union {
2144         /* Used during read, write, trim */
2145         struct {
2146             int64_t offset;
2147             int bytes;
2148             int flags;
2149             QEMUIOVector *qiov;
2150         };
2151         /* Used during ioctl */
2152         struct {
2153             int req;
2154             void *buf;
2155         };
2156     };
2157     BlockCompletionFunc *cb;
2158     void *opaque;
2159 
2160     int error;
2161 } BlockRequest;
2162 
2163 typedef struct BlockAIOCBCoroutine {
2164     BlockAIOCB common;
2165     BdrvChild *child;
2166     BlockRequest req;
2167     bool is_write;
2168     bool need_bh;
2169     bool *done;
2170 } BlockAIOCBCoroutine;
2171 
2172 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2173     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2174 };
2175 
2176 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2177 {
2178     if (!acb->need_bh) {
2179         bdrv_dec_in_flight(acb->common.bs);
2180         acb->common.cb(acb->common.opaque, acb->req.error);
2181         qemu_aio_unref(acb);
2182     }
2183 }
2184 
2185 static void bdrv_co_em_bh(void *opaque)
2186 {
2187     BlockAIOCBCoroutine *acb = opaque;
2188 
2189     assert(!acb->need_bh);
2190     bdrv_co_complete(acb);
2191 }
2192 
2193 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2194 {
2195     acb->need_bh = false;
2196     if (acb->req.error != -EINPROGRESS) {
2197         BlockDriverState *bs = acb->common.bs;
2198 
2199         aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2200     }
2201 }
2202 
2203 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2204 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2205 {
2206     BlockAIOCBCoroutine *acb = opaque;
2207 
2208     if (!acb->is_write) {
2209         acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2210             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2211     } else {
2212         acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2213             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2214     }
2215 
2216     bdrv_co_complete(acb);
2217 }
2218 
2219 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2220                                           int64_t offset,
2221                                           QEMUIOVector *qiov,
2222                                           BdrvRequestFlags flags,
2223                                           BlockCompletionFunc *cb,
2224                                           void *opaque,
2225                                           bool is_write)
2226 {
2227     Coroutine *co;
2228     BlockAIOCBCoroutine *acb;
2229 
2230     /* Matched by bdrv_co_complete's bdrv_dec_in_flight.  */
2231     bdrv_inc_in_flight(child->bs);
2232 
2233     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2234     acb->child = child;
2235     acb->need_bh = true;
2236     acb->req.error = -EINPROGRESS;
2237     acb->req.offset = offset;
2238     acb->req.qiov = qiov;
2239     acb->req.flags = flags;
2240     acb->is_write = is_write;
2241 
2242     co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2243     bdrv_coroutine_enter(child->bs, co);
2244 
2245     bdrv_co_maybe_schedule_bh(acb);
2246     return &acb->common;
2247 }
2248 
2249 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2250 {
2251     BlockAIOCBCoroutine *acb = opaque;
2252     BlockDriverState *bs = acb->common.bs;
2253 
2254     acb->req.error = bdrv_co_flush(bs);
2255     bdrv_co_complete(acb);
2256 }
2257 
2258 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2259         BlockCompletionFunc *cb, void *opaque)
2260 {
2261     trace_bdrv_aio_flush(bs, opaque);
2262 
2263     Coroutine *co;
2264     BlockAIOCBCoroutine *acb;
2265 
2266     /* Matched by bdrv_co_complete's bdrv_dec_in_flight.  */
2267     bdrv_inc_in_flight(bs);
2268 
2269     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2270     acb->need_bh = true;
2271     acb->req.error = -EINPROGRESS;
2272 
2273     co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2274     bdrv_coroutine_enter(bs, co);
2275 
2276     bdrv_co_maybe_schedule_bh(acb);
2277     return &acb->common;
2278 }
2279 
2280 /**************************************************************/
2281 /* Coroutine block device emulation */
2282 
2283 typedef struct FlushCo {
2284     BlockDriverState *bs;
2285     int ret;
2286 } FlushCo;
2287 
2288 
2289 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2290 {
2291     FlushCo *rwco = opaque;
2292 
2293     rwco->ret = bdrv_co_flush(rwco->bs);
2294 }
2295 
2296 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2297 {
2298     int current_gen;
2299     int ret = 0;
2300 
2301     bdrv_inc_in_flight(bs);
2302 
2303     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2304         bdrv_is_sg(bs)) {
2305         goto early_exit;
2306     }
2307 
2308     current_gen = bs->write_gen;
2309 
2310     /* Wait until any previous flushes are completed */
2311     while (bs->active_flush_req) {
2312         qemu_co_queue_wait(&bs->flush_queue, NULL);
2313     }
2314 
2315     bs->active_flush_req = true;
2316 
2317     /* Write back all layers by calling one driver function */
2318     if (bs->drv->bdrv_co_flush) {
2319         ret = bs->drv->bdrv_co_flush(bs);
2320         goto out;
2321     }
2322 
2323     /* Write back cached data to the OS even with cache=unsafe */
2324     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2325     if (bs->drv->bdrv_co_flush_to_os) {
2326         ret = bs->drv->bdrv_co_flush_to_os(bs);
2327         if (ret < 0) {
2328             goto out;
2329         }
2330     }
2331 
2332     /* But don't actually force it to the disk with cache=unsafe */
2333     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2334         goto flush_parent;
2335     }
2336 
2337     /* Check if we really need to flush anything */
2338     if (bs->flushed_gen == current_gen) {
2339         goto flush_parent;
2340     }
2341 
2342     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2343     if (bs->drv->bdrv_co_flush_to_disk) {
2344         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2345     } else if (bs->drv->bdrv_aio_flush) {
2346         BlockAIOCB *acb;
2347         CoroutineIOCompletion co = {
2348             .coroutine = qemu_coroutine_self(),
2349         };
2350 
2351         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2352         if (acb == NULL) {
2353             ret = -EIO;
2354         } else {
2355             qemu_coroutine_yield();
2356             ret = co.ret;
2357         }
2358     } else {
2359         /*
2360          * Some block drivers always operate in either writethrough or unsafe
2361          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2362          * know how the server works (because the behaviour is hardcoded or
2363          * depends on server-side configuration), so we can't ensure that
2364          * everything is safe on disk. Returning an error doesn't work because
2365          * that would break guests even if the server operates in writethrough
2366          * mode.
2367          *
2368          * Let's hope the user knows what he's doing.
2369          */
2370         ret = 0;
2371     }
2372 
2373     if (ret < 0) {
2374         goto out;
2375     }
2376 
2377     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2378      * in the case of cache=unsafe, so there are no useless flushes.
2379      */
2380 flush_parent:
2381     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2382 out:
2383     /* Notify any pending flushes that we have completed */
2384     if (ret == 0) {
2385         bs->flushed_gen = current_gen;
2386     }
2387     bs->active_flush_req = false;
2388     /* Return value is ignored - it's ok if wait queue is empty */
2389     qemu_co_queue_next(&bs->flush_queue);
2390 
2391 early_exit:
2392     bdrv_dec_in_flight(bs);
2393     return ret;
2394 }
2395 
2396 int bdrv_flush(BlockDriverState *bs)
2397 {
2398     Coroutine *co;
2399     FlushCo flush_co = {
2400         .bs = bs,
2401         .ret = NOT_DONE,
2402     };
2403 
2404     if (qemu_in_coroutine()) {
2405         /* Fast-path if already in coroutine context */
2406         bdrv_flush_co_entry(&flush_co);
2407     } else {
2408         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2409         bdrv_coroutine_enter(bs, co);
2410         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2411     }
2412 
2413     return flush_co.ret;
2414 }
2415 
2416 typedef struct DiscardCo {
2417     BlockDriverState *bs;
2418     int64_t offset;
2419     int count;
2420     int ret;
2421 } DiscardCo;
2422 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2423 {
2424     DiscardCo *rwco = opaque;
2425 
2426     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2427 }
2428 
2429 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2430                                   int count)
2431 {
2432     BdrvTrackedRequest req;
2433     int max_pdiscard, ret;
2434     int head, tail, align;
2435 
2436     if (!bs->drv) {
2437         return -ENOMEDIUM;
2438     }
2439 
2440     ret = bdrv_check_byte_request(bs, offset, count);
2441     if (ret < 0) {
2442         return ret;
2443     } else if (bs->read_only) {
2444         return -EPERM;
2445     }
2446     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2447 
2448     /* Do nothing if disabled.  */
2449     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2450         return 0;
2451     }
2452 
2453     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2454         return 0;
2455     }
2456 
2457     /* Discard is advisory, but some devices track and coalesce
2458      * unaligned requests, so we must pass everything down rather than
2459      * round here.  Still, most devices will just silently ignore
2460      * unaligned requests (by returning -ENOTSUP), so we must fragment
2461      * the request accordingly.  */
2462     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2463     assert(align % bs->bl.request_alignment == 0);
2464     head = offset % align;
2465     tail = (offset + count) % align;
2466 
2467     bdrv_inc_in_flight(bs);
2468     tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2469 
2470     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2471     if (ret < 0) {
2472         goto out;
2473     }
2474 
2475     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2476                                    align);
2477     assert(max_pdiscard >= bs->bl.request_alignment);
2478 
2479     while (count > 0) {
2480         int ret;
2481         int num = count;
2482 
2483         if (head) {
2484             /* Make small requests to get to alignment boundaries. */
2485             num = MIN(count, align - head);
2486             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2487                 num %= bs->bl.request_alignment;
2488             }
2489             head = (head + num) % align;
2490             assert(num < max_pdiscard);
2491         } else if (tail) {
2492             if (num > align) {
2493                 /* Shorten the request to the last aligned cluster.  */
2494                 num -= tail;
2495             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2496                        tail > bs->bl.request_alignment) {
2497                 tail %= bs->bl.request_alignment;
2498                 num -= tail;
2499             }
2500         }
2501         /* limit request size */
2502         if (num > max_pdiscard) {
2503             num = max_pdiscard;
2504         }
2505 
2506         if (bs->drv->bdrv_co_pdiscard) {
2507             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2508         } else {
2509             BlockAIOCB *acb;
2510             CoroutineIOCompletion co = {
2511                 .coroutine = qemu_coroutine_self(),
2512             };
2513 
2514             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2515                                              bdrv_co_io_em_complete, &co);
2516             if (acb == NULL) {
2517                 ret = -EIO;
2518                 goto out;
2519             } else {
2520                 qemu_coroutine_yield();
2521                 ret = co.ret;
2522             }
2523         }
2524         if (ret && ret != -ENOTSUP) {
2525             goto out;
2526         }
2527 
2528         offset += num;
2529         count -= num;
2530     }
2531     ret = 0;
2532 out:
2533     ++bs->write_gen;
2534     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2535                    req.bytes >> BDRV_SECTOR_BITS);
2536     tracked_request_end(&req);
2537     bdrv_dec_in_flight(bs);
2538     return ret;
2539 }
2540 
2541 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2542 {
2543     Coroutine *co;
2544     DiscardCo rwco = {
2545         .bs = bs,
2546         .offset = offset,
2547         .count = count,
2548         .ret = NOT_DONE,
2549     };
2550 
2551     if (qemu_in_coroutine()) {
2552         /* Fast-path if already in coroutine context */
2553         bdrv_pdiscard_co_entry(&rwco);
2554     } else {
2555         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2556         bdrv_coroutine_enter(bs, co);
2557         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2558     }
2559 
2560     return rwco.ret;
2561 }
2562 
2563 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2564 {
2565     BlockDriver *drv = bs->drv;
2566     CoroutineIOCompletion co = {
2567         .coroutine = qemu_coroutine_self(),
2568     };
2569     BlockAIOCB *acb;
2570 
2571     bdrv_inc_in_flight(bs);
2572     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2573         co.ret = -ENOTSUP;
2574         goto out;
2575     }
2576 
2577     if (drv->bdrv_co_ioctl) {
2578         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2579     } else {
2580         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2581         if (!acb) {
2582             co.ret = -ENOTSUP;
2583             goto out;
2584         }
2585         qemu_coroutine_yield();
2586     }
2587 out:
2588     bdrv_dec_in_flight(bs);
2589     return co.ret;
2590 }
2591 
2592 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2593 {
2594     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2595 }
2596 
2597 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2598 {
2599     return memset(qemu_blockalign(bs, size), 0, size);
2600 }
2601 
2602 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2603 {
2604     size_t align = bdrv_opt_mem_align(bs);
2605 
2606     /* Ensure that NULL is never returned on success */
2607     assert(align > 0);
2608     if (size == 0) {
2609         size = align;
2610     }
2611 
2612     return qemu_try_memalign(align, size);
2613 }
2614 
2615 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2616 {
2617     void *mem = qemu_try_blockalign(bs, size);
2618 
2619     if (mem) {
2620         memset(mem, 0, size);
2621     }
2622 
2623     return mem;
2624 }
2625 
2626 /*
2627  * Check if all memory in this vector is sector aligned.
2628  */
2629 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2630 {
2631     int i;
2632     size_t alignment = bdrv_min_mem_align(bs);
2633 
2634     for (i = 0; i < qiov->niov; i++) {
2635         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2636             return false;
2637         }
2638         if (qiov->iov[i].iov_len % alignment) {
2639             return false;
2640         }
2641     }
2642 
2643     return true;
2644 }
2645 
2646 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2647                                     NotifierWithReturn *notifier)
2648 {
2649     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2650 }
2651 
2652 void bdrv_io_plug(BlockDriverState *bs)
2653 {
2654     BdrvChild *child;
2655 
2656     QLIST_FOREACH(child, &bs->children, next) {
2657         bdrv_io_plug(child->bs);
2658     }
2659 
2660     if (bs->io_plugged++ == 0) {
2661         BlockDriver *drv = bs->drv;
2662         if (drv && drv->bdrv_io_plug) {
2663             drv->bdrv_io_plug(bs);
2664         }
2665     }
2666 }
2667 
2668 void bdrv_io_unplug(BlockDriverState *bs)
2669 {
2670     BdrvChild *child;
2671 
2672     assert(bs->io_plugged);
2673     if (--bs->io_plugged == 0) {
2674         BlockDriver *drv = bs->drv;
2675         if (drv && drv->bdrv_io_unplug) {
2676             drv->bdrv_io_unplug(bs);
2677         }
2678     }
2679 
2680     QLIST_FOREACH(child, &bs->children, next) {
2681         bdrv_io_unplug(child->bs);
2682     }
2683 }
2684