xref: /openbmc/qemu/block/block-copy.c (revision 8092b51849499be97c42c0f1a832ade969e38724)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 #include "qemu/error-report.h"
25 
26 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
27 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
28 #define BLOCK_COPY_MAX_MEM (128 * MiB)
29 #define BLOCK_COPY_MAX_WORKERS 64
30 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
31 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
32 
33 typedef enum {
34     COPY_READ_WRITE_CLUSTER,
35     COPY_READ_WRITE,
36     COPY_WRITE_ZEROES,
37     COPY_RANGE_SMALL,
38     COPY_RANGE_FULL
39 } BlockCopyMethod;
40 
41 static coroutine_fn int block_copy_task_entry(AioTask *task);
42 
43 typedef struct BlockCopyCallState {
44     /* Fields initialized in block_copy_async() and never changed. */
45     BlockCopyState *s;
46     int64_t offset;
47     int64_t bytes;
48     int max_workers;
49     int64_t max_chunk;
50     bool ignore_ratelimit;
51     BlockCopyAsyncCallbackFunc cb;
52     void *cb_opaque;
53     /* Coroutine where async block-copy is running */
54     Coroutine *co;
55 
56     /* Fields whose state changes throughout the execution */
57     bool finished; /* atomic */
58     QemuCoSleep sleep; /* TODO: protect API with a lock */
59     bool cancelled; /* atomic */
60     /* To reference all call states from BlockCopyState */
61     QLIST_ENTRY(BlockCopyCallState) list;
62 
63     /*
64      * Fields that report information about return values and erros.
65      * Protected by lock in BlockCopyState.
66      */
67     bool error_is_read;
68     /*
69      * @ret is set concurrently by tasks under mutex. Only set once by first
70      * failed task (and untouched if no task failed).
71      * After finishing (call_state->finished is true), it is not modified
72      * anymore and may be safely read without mutex.
73      */
74     int ret;
75 } BlockCopyCallState;
76 
77 typedef struct BlockCopyTask {
78     AioTask task;
79 
80     /*
81      * Fields initialized in block_copy_task_create()
82      * and never changed.
83      */
84     BlockCopyState *s;
85     BlockCopyCallState *call_state;
86     int64_t offset;
87     /*
88      * @method can also be set again in the while loop of
89      * block_copy_dirty_clusters(), but it is never accessed concurrently
90      * because the only other function that reads it is
91      * block_copy_task_entry() and it is invoked afterwards in the same
92      * iteration.
93      */
94     BlockCopyMethod method;
95 
96     /*
97      * Fields whose state changes throughout the execution
98      * Protected by lock in BlockCopyState.
99      */
100     CoQueue wait_queue; /* coroutines blocked on this task */
101     /*
102      * Only protect the case of parallel read while updating @bytes
103      * value in block_copy_task_shrink().
104      */
105     int64_t bytes;
106     QLIST_ENTRY(BlockCopyTask) list;
107 } BlockCopyTask;
108 
109 static int64_t task_end(BlockCopyTask *task)
110 {
111     return task->offset + task->bytes;
112 }
113 
114 typedef struct BlockCopyState {
115     /*
116      * BdrvChild objects are not owned or managed by block-copy. They are
117      * provided by block-copy user and user is responsible for appropriate
118      * permissions on these children.
119      */
120     BdrvChild *source;
121     BdrvChild *target;
122 
123     /*
124      * Fields initialized in block_copy_state_new()
125      * and never changed.
126      */
127     int64_t cluster_size;
128     int64_t max_transfer;
129     uint64_t len;
130     BdrvRequestFlags write_flags;
131 
132     /*
133      * Fields whose state changes throughout the execution
134      * Protected by lock.
135      */
136     CoMutex lock;
137     int64_t in_flight_bytes;
138     BlockCopyMethod method;
139     QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
140     QLIST_HEAD(, BlockCopyCallState) calls;
141     /*
142      * skip_unallocated:
143      *
144      * Used by sync=top jobs, which first scan the source node for unallocated
145      * areas and clear them in the copy_bitmap.  During this process, the bitmap
146      * is thus not fully initialized: It may still have bits set for areas that
147      * are unallocated and should actually not be copied.
148      *
149      * This is indicated by skip_unallocated.
150      *
151      * In this case, block_copy() will query the source’s allocation status,
152      * skip unallocated regions, clear them in the copy_bitmap, and invoke
153      * block_copy_reset_unallocated() every time it does.
154      */
155     bool skip_unallocated; /* atomic */
156     /* State fields that use a thread-safe API */
157     BdrvDirtyBitmap *copy_bitmap;
158     ProgressMeter *progress;
159     SharedResource *mem;
160     RateLimit rate_limit;
161 } BlockCopyState;
162 
163 /* Called with lock held */
164 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
165                                             int64_t offset, int64_t bytes)
166 {
167     BlockCopyTask *t;
168 
169     QLIST_FOREACH(t, &s->tasks, list) {
170         if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
171             return t;
172         }
173     }
174 
175     return NULL;
176 }
177 
178 /*
179  * If there are no intersecting tasks return false. Otherwise, wait for the
180  * first found intersecting tasks to finish and return true.
181  *
182  * Called with lock held. May temporary release the lock.
183  * Return value of 0 proves that lock was NOT released.
184  */
185 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
186                                              int64_t bytes)
187 {
188     BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
189 
190     if (!task) {
191         return false;
192     }
193 
194     qemu_co_queue_wait(&task->wait_queue, &s->lock);
195 
196     return true;
197 }
198 
199 /* Called with lock held */
200 static int64_t block_copy_chunk_size(BlockCopyState *s)
201 {
202     switch (s->method) {
203     case COPY_READ_WRITE_CLUSTER:
204         return s->cluster_size;
205     case COPY_READ_WRITE:
206     case COPY_RANGE_SMALL:
207         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
208                    s->max_transfer);
209     case COPY_RANGE_FULL:
210         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
211                    s->max_transfer);
212     default:
213         /* Cannot have COPY_WRITE_ZEROES here.  */
214         abort();
215     }
216 }
217 
218 /*
219  * Search for the first dirty area in offset/bytes range and create task at
220  * the beginning of it.
221  */
222 static coroutine_fn BlockCopyTask *
223 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
224                        int64_t offset, int64_t bytes)
225 {
226     BlockCopyTask *task;
227     int64_t max_chunk;
228 
229     QEMU_LOCK_GUARD(&s->lock);
230     max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
231     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
232                                            offset, offset + bytes,
233                                            max_chunk, &offset, &bytes))
234     {
235         return NULL;
236     }
237 
238     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
239     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
240 
241     /* region is dirty, so no existent tasks possible in it */
242     assert(!find_conflicting_task(s, offset, bytes));
243 
244     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
245     s->in_flight_bytes += bytes;
246 
247     task = g_new(BlockCopyTask, 1);
248     *task = (BlockCopyTask) {
249         .task.func = block_copy_task_entry,
250         .s = s,
251         .call_state = call_state,
252         .offset = offset,
253         .bytes = bytes,
254         .method = s->method,
255     };
256     qemu_co_queue_init(&task->wait_queue);
257     QLIST_INSERT_HEAD(&s->tasks, task, list);
258 
259     return task;
260 }
261 
262 /*
263  * block_copy_task_shrink
264  *
265  * Drop the tail of the task to be handled later. Set dirty bits back and
266  * wake up all tasks waiting for us (may be some of them are not intersecting
267  * with shrunk task)
268  */
269 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
270                                                 int64_t new_bytes)
271 {
272     QEMU_LOCK_GUARD(&task->s->lock);
273     if (new_bytes == task->bytes) {
274         return;
275     }
276 
277     assert(new_bytes > 0 && new_bytes < task->bytes);
278 
279     task->s->in_flight_bytes -= task->bytes - new_bytes;
280     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
281                           task->offset + new_bytes, task->bytes - new_bytes);
282 
283     task->bytes = new_bytes;
284     qemu_co_queue_restart_all(&task->wait_queue);
285 }
286 
287 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
288 {
289     QEMU_LOCK_GUARD(&task->s->lock);
290     task->s->in_flight_bytes -= task->bytes;
291     if (ret < 0) {
292         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
293     }
294     QLIST_REMOVE(task, list);
295     if (task->s->progress) {
296         progress_set_remaining(task->s->progress,
297                                bdrv_get_dirty_count(task->s->copy_bitmap) +
298                                task->s->in_flight_bytes);
299     }
300     qemu_co_queue_restart_all(&task->wait_queue);
301 }
302 
303 void block_copy_state_free(BlockCopyState *s)
304 {
305     if (!s) {
306         return;
307     }
308 
309     ratelimit_destroy(&s->rate_limit);
310     bdrv_release_dirty_bitmap(s->copy_bitmap);
311     shres_destroy(s->mem);
312     g_free(s);
313 }
314 
315 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
316 {
317     return MIN_NON_ZERO(INT_MAX,
318                         MIN_NON_ZERO(source->bs->bl.max_transfer,
319                                      target->bs->bl.max_transfer));
320 }
321 
322 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
323                               bool compress)
324 {
325     /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
326     s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
327         (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
328 
329     if (s->max_transfer < s->cluster_size) {
330         /*
331          * copy_range does not respect max_transfer. We don't want to bother
332          * with requests smaller than block-copy cluster size, so fallback to
333          * buffered copying (read and write respect max_transfer on their
334          * behalf).
335          */
336         s->method = COPY_READ_WRITE_CLUSTER;
337     } else if (compress) {
338         /* Compression supports only cluster-size writes and no copy-range. */
339         s->method = COPY_READ_WRITE_CLUSTER;
340     } else {
341         /*
342          * If copy range enabled, start with COPY_RANGE_SMALL, until first
343          * successful copy_range (look at block_copy_do_copy).
344          */
345         s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
346     }
347 }
348 
349 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
350                                                  Error **errp)
351 {
352     int ret;
353     BlockDriverInfo bdi;
354     bool target_does_cow = bdrv_backing_chain_next(target);
355 
356     /*
357      * If there is no backing file on the target, we cannot rely on COW if our
358      * backup cluster size is smaller than the target cluster size. Even for
359      * targets with a backing file, try to avoid COW if possible.
360      */
361     ret = bdrv_get_info(target, &bdi);
362     if (ret == -ENOTSUP && !target_does_cow) {
363         /* Cluster size is not defined */
364         warn_report("The target block device doesn't provide "
365                     "information about the block size and it doesn't have a "
366                     "backing file. The default block size of %u bytes is "
367                     "used. If the actual block size of the target exceeds "
368                     "this default, the backup may be unusable",
369                     BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
370         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
371     } else if (ret < 0 && !target_does_cow) {
372         error_setg_errno(errp, -ret,
373             "Couldn't determine the cluster size of the target image, "
374             "which has no backing file");
375         error_append_hint(errp,
376             "Aborting, since this may create an unusable destination image\n");
377         return ret;
378     } else if (ret < 0 && target_does_cow) {
379         /* Not fatal; just trudge on ahead. */
380         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
381     }
382 
383     return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
384 }
385 
386 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
387                                      Error **errp)
388 {
389     BlockCopyState *s;
390     int64_t cluster_size;
391     BdrvDirtyBitmap *copy_bitmap;
392     bool is_fleecing;
393 
394     cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
395     if (cluster_size < 0) {
396         return NULL;
397     }
398 
399     copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
400                                            errp);
401     if (!copy_bitmap) {
402         return NULL;
403     }
404     bdrv_disable_dirty_bitmap(copy_bitmap);
405 
406     /*
407      * If source is in backing chain of target assume that target is going to be
408      * used for "image fleecing", i.e. it should represent a kind of snapshot of
409      * source at backup-start point in time. And target is going to be read by
410      * somebody (for example, used as NBD export) during backup job.
411      *
412      * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
413      * intersection of backup writes and third party reads from target,
414      * otherwise reading from target we may occasionally read already updated by
415      * guest data.
416      *
417      * For more information see commit f8d59dfb40bb and test
418      * tests/qemu-iotests/222
419      */
420     is_fleecing = bdrv_chain_contains(target->bs, source->bs);
421 
422     s = g_new(BlockCopyState, 1);
423     *s = (BlockCopyState) {
424         .source = source,
425         .target = target,
426         .copy_bitmap = copy_bitmap,
427         .cluster_size = cluster_size,
428         .len = bdrv_dirty_bitmap_size(copy_bitmap),
429         .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
430         .mem = shres_create(BLOCK_COPY_MAX_MEM),
431         .max_transfer = QEMU_ALIGN_DOWN(
432                                     block_copy_max_transfer(source, target),
433                                     cluster_size),
434     };
435 
436     block_copy_set_copy_opts(s, false, false);
437 
438     ratelimit_init(&s->rate_limit);
439     qemu_co_mutex_init(&s->lock);
440     QLIST_INIT(&s->tasks);
441     QLIST_INIT(&s->calls);
442 
443     return s;
444 }
445 
446 /* Only set before running the job, no need for locking. */
447 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
448 {
449     s->progress = pm;
450 }
451 
452 /*
453  * Takes ownership of @task
454  *
455  * If pool is NULL directly run the task, otherwise schedule it into the pool.
456  *
457  * Returns: task.func return code if pool is NULL
458  *          otherwise -ECANCELED if pool status is bad
459  *          otherwise 0 (successfully scheduled)
460  */
461 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
462                                             BlockCopyTask *task)
463 {
464     if (!pool) {
465         int ret = task->task.func(&task->task);
466 
467         g_free(task);
468         return ret;
469     }
470 
471     aio_task_pool_wait_slot(pool);
472     if (aio_task_pool_status(pool) < 0) {
473         co_put_to_shres(task->s->mem, task->bytes);
474         block_copy_task_end(task, -ECANCELED);
475         g_free(task);
476         return -ECANCELED;
477     }
478 
479     aio_task_pool_start_task(pool, &task->task);
480 
481     return 0;
482 }
483 
484 /*
485  * block_copy_do_copy
486  *
487  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
488  * s->len only to cover last cluster when s->len is not aligned to clusters.
489  *
490  * No sync here: nor bitmap neighter intersecting requests handling, only copy.
491  *
492  * @method is an in-out argument, so that copy_range can be either extended to
493  * a full-size buffer or disabled if the copy_range attempt fails.  The output
494  * value of @method should be used for subsequent tasks.
495  * Returns 0 on success.
496  */
497 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
498                                            int64_t offset, int64_t bytes,
499                                            BlockCopyMethod *method,
500                                            bool *error_is_read)
501 {
502     int ret;
503     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
504     void *bounce_buffer = NULL;
505 
506     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
507     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
508     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
509     assert(offset < s->len);
510     assert(offset + bytes <= s->len ||
511            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
512     assert(nbytes < INT_MAX);
513 
514     switch (*method) {
515     case COPY_WRITE_ZEROES:
516         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
517                                     ~BDRV_REQ_WRITE_COMPRESSED);
518         if (ret < 0) {
519             trace_block_copy_write_zeroes_fail(s, offset, ret);
520             *error_is_read = false;
521         }
522         return ret;
523 
524     case COPY_RANGE_SMALL:
525     case COPY_RANGE_FULL:
526         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
527                                  0, s->write_flags);
528         if (ret >= 0) {
529             /* Successful copy-range, increase chunk size.  */
530             *method = COPY_RANGE_FULL;
531             return 0;
532         }
533 
534         trace_block_copy_copy_range_fail(s, offset, ret);
535         *method = COPY_READ_WRITE;
536         /* Fall through to read+write with allocated buffer */
537 
538     case COPY_READ_WRITE_CLUSTER:
539     case COPY_READ_WRITE:
540         /*
541          * In case of failed copy_range request above, we may proceed with
542          * buffered request larger than BLOCK_COPY_MAX_BUFFER.
543          * Still, further requests will be properly limited, so don't care too
544          * much. Moreover the most likely case (copy_range is unsupported for
545          * the configuration, so the very first copy_range request fails)
546          * is handled by setting large copy_size only after first successful
547          * copy_range.
548          */
549 
550         bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
551 
552         ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
553         if (ret < 0) {
554             trace_block_copy_read_fail(s, offset, ret);
555             *error_is_read = true;
556             goto out;
557         }
558 
559         ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
560                              s->write_flags);
561         if (ret < 0) {
562             trace_block_copy_write_fail(s, offset, ret);
563             *error_is_read = false;
564             goto out;
565         }
566 
567     out:
568         qemu_vfree(bounce_buffer);
569         break;
570 
571     default:
572         abort();
573     }
574 
575     return ret;
576 }
577 
578 static coroutine_fn int block_copy_task_entry(AioTask *task)
579 {
580     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
581     BlockCopyState *s = t->s;
582     bool error_is_read = false;
583     BlockCopyMethod method = t->method;
584     int ret;
585 
586     ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read);
587 
588     WITH_QEMU_LOCK_GUARD(&s->lock) {
589         if (s->method == t->method) {
590             s->method = method;
591         }
592 
593         if (ret < 0) {
594             if (!t->call_state->ret) {
595                 t->call_state->ret = ret;
596                 t->call_state->error_is_read = error_is_read;
597             }
598         } else if (s->progress) {
599             progress_work_done(s->progress, t->bytes);
600         }
601     }
602     co_put_to_shres(s->mem, t->bytes);
603     block_copy_task_end(t, ret);
604 
605     return ret;
606 }
607 
608 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
609                                    int64_t bytes, int64_t *pnum)
610 {
611     int64_t num;
612     BlockDriverState *base;
613     int ret;
614 
615     if (qatomic_read(&s->skip_unallocated)) {
616         base = bdrv_backing_chain_next(s->source->bs);
617     } else {
618         base = NULL;
619     }
620 
621     ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
622                                   NULL, NULL);
623     if (ret < 0 || num < s->cluster_size) {
624         /*
625          * On error or if failed to obtain large enough chunk just fallback to
626          * copy one cluster.
627          */
628         num = s->cluster_size;
629         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
630     } else if (offset + num == s->len) {
631         num = QEMU_ALIGN_UP(num, s->cluster_size);
632     } else {
633         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
634     }
635 
636     *pnum = num;
637     return ret;
638 }
639 
640 /*
641  * Check if the cluster starting at offset is allocated or not.
642  * return via pnum the number of contiguous clusters sharing this allocation.
643  */
644 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
645                                            int64_t *pnum)
646 {
647     BlockDriverState *bs = s->source->bs;
648     int64_t count, total_count = 0;
649     int64_t bytes = s->len - offset;
650     int ret;
651 
652     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
653 
654     while (true) {
655         ret = bdrv_is_allocated(bs, offset, bytes, &count);
656         if (ret < 0) {
657             return ret;
658         }
659 
660         total_count += count;
661 
662         if (ret || count == 0) {
663             /*
664              * ret: partial segment(s) are considered allocated.
665              * otherwise: unallocated tail is treated as an entire segment.
666              */
667             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
668             return ret;
669         }
670 
671         /* Unallocated segment(s) with uncertain following segment(s) */
672         if (total_count >= s->cluster_size) {
673             *pnum = total_count / s->cluster_size;
674             return 0;
675         }
676 
677         offset += count;
678         bytes -= count;
679     }
680 }
681 
682 /*
683  * Reset bits in copy_bitmap starting at offset if they represent unallocated
684  * data in the image. May reset subsequent contiguous bits.
685  * @return 0 when the cluster at @offset was unallocated,
686  *         1 otherwise, and -ret on error.
687  */
688 int64_t block_copy_reset_unallocated(BlockCopyState *s,
689                                      int64_t offset, int64_t *count)
690 {
691     int ret;
692     int64_t clusters, bytes;
693 
694     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
695     if (ret < 0) {
696         return ret;
697     }
698 
699     bytes = clusters * s->cluster_size;
700 
701     if (!ret) {
702         qemu_co_mutex_lock(&s->lock);
703         bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
704         if (s->progress) {
705             progress_set_remaining(s->progress,
706                                    bdrv_get_dirty_count(s->copy_bitmap) +
707                                    s->in_flight_bytes);
708         }
709         qemu_co_mutex_unlock(&s->lock);
710     }
711 
712     *count = bytes;
713     return ret;
714 }
715 
716 /*
717  * block_copy_dirty_clusters
718  *
719  * Copy dirty clusters in @offset/@bytes range.
720  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
721  * clusters found and -errno on failure.
722  */
723 static int coroutine_fn
724 block_copy_dirty_clusters(BlockCopyCallState *call_state)
725 {
726     BlockCopyState *s = call_state->s;
727     int64_t offset = call_state->offset;
728     int64_t bytes = call_state->bytes;
729 
730     int ret = 0;
731     bool found_dirty = false;
732     int64_t end = offset + bytes;
733     AioTaskPool *aio = NULL;
734 
735     /*
736      * block_copy() user is responsible for keeping source and target in same
737      * aio context
738      */
739     assert(bdrv_get_aio_context(s->source->bs) ==
740            bdrv_get_aio_context(s->target->bs));
741 
742     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
743     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
744 
745     while (bytes && aio_task_pool_status(aio) == 0 &&
746            !qatomic_read(&call_state->cancelled)) {
747         BlockCopyTask *task;
748         int64_t status_bytes;
749 
750         task = block_copy_task_create(s, call_state, offset, bytes);
751         if (!task) {
752             /* No more dirty bits in the bitmap */
753             trace_block_copy_skip_range(s, offset, bytes);
754             break;
755         }
756         if (task->offset > offset) {
757             trace_block_copy_skip_range(s, offset, task->offset - offset);
758         }
759 
760         found_dirty = true;
761 
762         ret = block_copy_block_status(s, task->offset, task->bytes,
763                                       &status_bytes);
764         assert(ret >= 0); /* never fail */
765         if (status_bytes < task->bytes) {
766             block_copy_task_shrink(task, status_bytes);
767         }
768         if (qatomic_read(&s->skip_unallocated) &&
769             !(ret & BDRV_BLOCK_ALLOCATED)) {
770             block_copy_task_end(task, 0);
771             trace_block_copy_skip_range(s, task->offset, task->bytes);
772             offset = task_end(task);
773             bytes = end - offset;
774             g_free(task);
775             continue;
776         }
777         if (ret & BDRV_BLOCK_ZERO) {
778             task->method = COPY_WRITE_ZEROES;
779         }
780 
781         if (!call_state->ignore_ratelimit) {
782             uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
783             if (ns > 0) {
784                 block_copy_task_end(task, -EAGAIN);
785                 g_free(task);
786                 qemu_co_sleep_ns_wakeable(&call_state->sleep,
787                                           QEMU_CLOCK_REALTIME, ns);
788                 continue;
789             }
790         }
791 
792         ratelimit_calculate_delay(&s->rate_limit, task->bytes);
793 
794         trace_block_copy_process(s, task->offset);
795 
796         co_get_from_shres(s->mem, task->bytes);
797 
798         offset = task_end(task);
799         bytes = end - offset;
800 
801         if (!aio && bytes) {
802             aio = aio_task_pool_new(call_state->max_workers);
803         }
804 
805         ret = block_copy_task_run(aio, task);
806         if (ret < 0) {
807             goto out;
808         }
809     }
810 
811 out:
812     if (aio) {
813         aio_task_pool_wait_all(aio);
814 
815         /*
816          * We are not really interested in -ECANCELED returned from
817          * block_copy_task_run. If it fails, it means some task already failed
818          * for real reason, let's return first failure.
819          * Still, assert that we don't rewrite failure by success.
820          *
821          * Note: ret may be positive here because of block-status result.
822          */
823         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
824         ret = aio_task_pool_status(aio);
825 
826         aio_task_pool_free(aio);
827     }
828 
829     return ret < 0 ? ret : found_dirty;
830 }
831 
832 void block_copy_kick(BlockCopyCallState *call_state)
833 {
834     qemu_co_sleep_wake(&call_state->sleep);
835 }
836 
837 /*
838  * block_copy_common
839  *
840  * Copy requested region, accordingly to dirty bitmap.
841  * Collaborate with parallel block_copy requests: if they succeed it will help
842  * us. If they fail, we will retry not-copied regions. So, if we return error,
843  * it means that some I/O operation failed in context of _this_ block_copy call,
844  * not some parallel operation.
845  */
846 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
847 {
848     int ret;
849     BlockCopyState *s = call_state->s;
850 
851     qemu_co_mutex_lock(&s->lock);
852     QLIST_INSERT_HEAD(&s->calls, call_state, list);
853     qemu_co_mutex_unlock(&s->lock);
854 
855     do {
856         ret = block_copy_dirty_clusters(call_state);
857 
858         if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
859             WITH_QEMU_LOCK_GUARD(&s->lock) {
860                 /*
861                  * Check that there is no task we still need to
862                  * wait to complete
863                  */
864                 ret = block_copy_wait_one(s, call_state->offset,
865                                           call_state->bytes);
866                 if (ret == 0) {
867                     /*
868                      * No pending tasks, but check again the bitmap in this
869                      * same critical section, since a task might have failed
870                      * between this and the critical section in
871                      * block_copy_dirty_clusters().
872                      *
873                      * block_copy_wait_one return value 0 also means that it
874                      * didn't release the lock. So, we are still in the same
875                      * critical section, not interrupted by any concurrent
876                      * access to state.
877                      */
878                     ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
879                                                        call_state->offset,
880                                                        call_state->bytes) >= 0;
881                 }
882             }
883         }
884 
885         /*
886          * We retry in two cases:
887          * 1. Some progress done
888          *    Something was copied, which means that there were yield points
889          *    and some new dirty bits may have appeared (due to failed parallel
890          *    block-copy requests).
891          * 2. We have waited for some intersecting block-copy request
892          *    It may have failed and produced new dirty bits.
893          */
894     } while (ret > 0 && !qatomic_read(&call_state->cancelled));
895 
896     qatomic_store_release(&call_state->finished, true);
897 
898     if (call_state->cb) {
899         call_state->cb(call_state->cb_opaque);
900     }
901 
902     qemu_co_mutex_lock(&s->lock);
903     QLIST_REMOVE(call_state, list);
904     qemu_co_mutex_unlock(&s->lock);
905 
906     return ret;
907 }
908 
909 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
910                             bool ignore_ratelimit)
911 {
912     BlockCopyCallState call_state = {
913         .s = s,
914         .offset = start,
915         .bytes = bytes,
916         .ignore_ratelimit = ignore_ratelimit,
917         .max_workers = BLOCK_COPY_MAX_WORKERS,
918     };
919 
920     return block_copy_common(&call_state);
921 }
922 
923 static void coroutine_fn block_copy_async_co_entry(void *opaque)
924 {
925     block_copy_common(opaque);
926 }
927 
928 BlockCopyCallState *block_copy_async(BlockCopyState *s,
929                                      int64_t offset, int64_t bytes,
930                                      int max_workers, int64_t max_chunk,
931                                      BlockCopyAsyncCallbackFunc cb,
932                                      void *cb_opaque)
933 {
934     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
935 
936     *call_state = (BlockCopyCallState) {
937         .s = s,
938         .offset = offset,
939         .bytes = bytes,
940         .max_workers = max_workers,
941         .max_chunk = max_chunk,
942         .cb = cb,
943         .cb_opaque = cb_opaque,
944 
945         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
946     };
947 
948     qemu_coroutine_enter(call_state->co);
949 
950     return call_state;
951 }
952 
953 void block_copy_call_free(BlockCopyCallState *call_state)
954 {
955     if (!call_state) {
956         return;
957     }
958 
959     assert(qatomic_read(&call_state->finished));
960     g_free(call_state);
961 }
962 
963 bool block_copy_call_finished(BlockCopyCallState *call_state)
964 {
965     return qatomic_read(&call_state->finished);
966 }
967 
968 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
969 {
970     return qatomic_load_acquire(&call_state->finished) &&
971            !qatomic_read(&call_state->cancelled) &&
972            call_state->ret == 0;
973 }
974 
975 bool block_copy_call_failed(BlockCopyCallState *call_state)
976 {
977     return qatomic_load_acquire(&call_state->finished) &&
978            !qatomic_read(&call_state->cancelled) &&
979            call_state->ret < 0;
980 }
981 
982 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
983 {
984     return qatomic_read(&call_state->cancelled);
985 }
986 
987 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
988 {
989     assert(qatomic_load_acquire(&call_state->finished));
990     if (error_is_read) {
991         *error_is_read = call_state->error_is_read;
992     }
993     return call_state->ret;
994 }
995 
996 /*
997  * Note that cancelling and finishing are racy.
998  * User can cancel a block-copy that is already finished.
999  */
1000 void block_copy_call_cancel(BlockCopyCallState *call_state)
1001 {
1002     qatomic_set(&call_state->cancelled, true);
1003     block_copy_kick(call_state);
1004 }
1005 
1006 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1007 {
1008     return s->copy_bitmap;
1009 }
1010 
1011 int64_t block_copy_cluster_size(BlockCopyState *s)
1012 {
1013     return s->cluster_size;
1014 }
1015 
1016 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1017 {
1018     qatomic_set(&s->skip_unallocated, skip);
1019 }
1020 
1021 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1022 {
1023     ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1024 
1025     /*
1026      * Note: it's good to kick all call states from here, but it should be done
1027      * only from a coroutine, to not crash if s->calls list changed while
1028      * entering one call. So for now, the only user of this function kicks its
1029      * only one call_state by hand.
1030      */
1031 }
1032