1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "module.h" 30 #include "qjson.h" 31 #include "qemu-coroutine.h" 32 #include "qmp-commands.h" 33 #include "qemu-timer.h" 34 35 #ifdef CONFIG_BSD 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <sys/ioctl.h> 39 #include <sys/queue.h> 40 #ifndef __DragonFly__ 41 #include <sys/disk.h> 42 #endif 43 #endif 44 45 #ifdef _WIN32 46 #include <windows.h> 47 #endif 48 49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 50 51 typedef enum { 52 BDRV_REQ_COPY_ON_READ = 0x1, 53 BDRV_REQ_ZERO_WRITE = 0x2, 54 } BdrvRequestFlags; 55 56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 59 BlockDriverCompletionFunc *cb, void *opaque); 60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 64 int64_t sector_num, int nb_sectors, 65 QEMUIOVector *iov); 66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 71 BdrvRequestFlags flags); 72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 76 int64_t sector_num, 77 QEMUIOVector *qiov, 78 int nb_sectors, 79 BlockDriverCompletionFunc *cb, 80 void *opaque, 81 bool is_write); 82 static void coroutine_fn bdrv_co_do_rw(void *opaque); 83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 84 int64_t sector_num, int nb_sectors); 85 86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 87 bool is_write, double elapsed_time, uint64_t *wait); 88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 89 double elapsed_time, uint64_t *wait); 90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 91 bool is_write, int64_t *wait); 92 93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 94 QTAILQ_HEAD_INITIALIZER(bdrv_states); 95 96 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 97 QLIST_HEAD_INITIALIZER(bdrv_drivers); 98 99 /* The device to use for VM snapshots */ 100 static BlockDriverState *bs_snapshots; 101 102 /* If non-zero, use only whitelisted block drivers */ 103 static int use_bdrv_whitelist; 104 105 #ifdef _WIN32 106 static int is_windows_drive_prefix(const char *filename) 107 { 108 return (((filename[0] >= 'a' && filename[0] <= 'z') || 109 (filename[0] >= 'A' && filename[0] <= 'Z')) && 110 filename[1] == ':'); 111 } 112 113 int is_windows_drive(const char *filename) 114 { 115 if (is_windows_drive_prefix(filename) && 116 filename[2] == '\0') 117 return 1; 118 if (strstart(filename, "\\\\.\\", NULL) || 119 strstart(filename, "//./", NULL)) 120 return 1; 121 return 0; 122 } 123 #endif 124 125 /* throttling disk I/O limits */ 126 void bdrv_io_limits_disable(BlockDriverState *bs) 127 { 128 bs->io_limits_enabled = false; 129 130 while (qemu_co_queue_next(&bs->throttled_reqs)); 131 132 if (bs->block_timer) { 133 qemu_del_timer(bs->block_timer); 134 qemu_free_timer(bs->block_timer); 135 bs->block_timer = NULL; 136 } 137 138 bs->slice_start = 0; 139 bs->slice_end = 0; 140 bs->slice_time = 0; 141 memset(&bs->io_base, 0, sizeof(bs->io_base)); 142 } 143 144 static void bdrv_block_timer(void *opaque) 145 { 146 BlockDriverState *bs = opaque; 147 148 qemu_co_queue_next(&bs->throttled_reqs); 149 } 150 151 void bdrv_io_limits_enable(BlockDriverState *bs) 152 { 153 qemu_co_queue_init(&bs->throttled_reqs); 154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 156 bs->slice_start = qemu_get_clock_ns(vm_clock); 157 bs->slice_end = bs->slice_start + bs->slice_time; 158 memset(&bs->io_base, 0, sizeof(bs->io_base)); 159 bs->io_limits_enabled = true; 160 } 161 162 bool bdrv_io_limits_enabled(BlockDriverState *bs) 163 { 164 BlockIOLimit *io_limits = &bs->io_limits; 165 return io_limits->bps[BLOCK_IO_LIMIT_READ] 166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 168 || io_limits->iops[BLOCK_IO_LIMIT_READ] 169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 171 } 172 173 static void bdrv_io_limits_intercept(BlockDriverState *bs, 174 bool is_write, int nb_sectors) 175 { 176 int64_t wait_time = -1; 177 178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 179 qemu_co_queue_wait(&bs->throttled_reqs); 180 } 181 182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 183 * throttled requests will not be dequeued until the current request is 184 * allowed to be serviced. So if the current request still exceeds the 185 * limits, it will be inserted to the head. All requests followed it will 186 * be still in throttled_reqs queue. 187 */ 188 189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 190 qemu_mod_timer(bs->block_timer, 191 wait_time + qemu_get_clock_ns(vm_clock)); 192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 193 } 194 195 qemu_co_queue_next(&bs->throttled_reqs); 196 } 197 198 /* check if the path starts with "<protocol>:" */ 199 static int path_has_protocol(const char *path) 200 { 201 const char *p; 202 203 #ifdef _WIN32 204 if (is_windows_drive(path) || 205 is_windows_drive_prefix(path)) { 206 return 0; 207 } 208 p = path + strcspn(path, ":/\\"); 209 #else 210 p = path + strcspn(path, ":/"); 211 #endif 212 213 return *p == ':'; 214 } 215 216 int path_is_absolute(const char *path) 217 { 218 #ifdef _WIN32 219 /* specific case for names like: "\\.\d:" */ 220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 221 return 1; 222 } 223 return (*path == '/' || *path == '\\'); 224 #else 225 return (*path == '/'); 226 #endif 227 } 228 229 /* if filename is absolute, just copy it to dest. Otherwise, build a 230 path to it by considering it is relative to base_path. URL are 231 supported. */ 232 void path_combine(char *dest, int dest_size, 233 const char *base_path, 234 const char *filename) 235 { 236 const char *p, *p1; 237 int len; 238 239 if (dest_size <= 0) 240 return; 241 if (path_is_absolute(filename)) { 242 pstrcpy(dest, dest_size, filename); 243 } else { 244 p = strchr(base_path, ':'); 245 if (p) 246 p++; 247 else 248 p = base_path; 249 p1 = strrchr(base_path, '/'); 250 #ifdef _WIN32 251 { 252 const char *p2; 253 p2 = strrchr(base_path, '\\'); 254 if (!p1 || p2 > p1) 255 p1 = p2; 256 } 257 #endif 258 if (p1) 259 p1++; 260 else 261 p1 = base_path; 262 if (p1 > p) 263 p = p1; 264 len = p - base_path; 265 if (len > dest_size - 1) 266 len = dest_size - 1; 267 memcpy(dest, base_path, len); 268 dest[len] = '\0'; 269 pstrcat(dest, dest_size, filename); 270 } 271 } 272 273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 274 { 275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 276 pstrcpy(dest, sz, bs->backing_file); 277 } else { 278 path_combine(dest, sz, bs->filename, bs->backing_file); 279 } 280 } 281 282 void bdrv_register(BlockDriver *bdrv) 283 { 284 /* Block drivers without coroutine functions need emulation */ 285 if (!bdrv->bdrv_co_readv) { 286 bdrv->bdrv_co_readv = bdrv_co_readv_em; 287 bdrv->bdrv_co_writev = bdrv_co_writev_em; 288 289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 290 * the block driver lacks aio we need to emulate that too. 291 */ 292 if (!bdrv->bdrv_aio_readv) { 293 /* add AIO emulation layer */ 294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 296 } 297 } 298 299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 300 } 301 302 /* create a new block device (by default it is empty) */ 303 BlockDriverState *bdrv_new(const char *device_name) 304 { 305 BlockDriverState *bs; 306 307 bs = g_malloc0(sizeof(BlockDriverState)); 308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 309 if (device_name[0] != '\0') { 310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 311 } 312 bdrv_iostatus_disable(bs); 313 return bs; 314 } 315 316 BlockDriver *bdrv_find_format(const char *format_name) 317 { 318 BlockDriver *drv1; 319 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 320 if (!strcmp(drv1->format_name, format_name)) { 321 return drv1; 322 } 323 } 324 return NULL; 325 } 326 327 static int bdrv_is_whitelisted(BlockDriver *drv) 328 { 329 static const char *whitelist[] = { 330 CONFIG_BDRV_WHITELIST 331 }; 332 const char **p; 333 334 if (!whitelist[0]) 335 return 1; /* no whitelist, anything goes */ 336 337 for (p = whitelist; *p; p++) { 338 if (!strcmp(drv->format_name, *p)) { 339 return 1; 340 } 341 } 342 return 0; 343 } 344 345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 346 { 347 BlockDriver *drv = bdrv_find_format(format_name); 348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 349 } 350 351 typedef struct CreateCo { 352 BlockDriver *drv; 353 char *filename; 354 QEMUOptionParameter *options; 355 int ret; 356 } CreateCo; 357 358 static void coroutine_fn bdrv_create_co_entry(void *opaque) 359 { 360 CreateCo *cco = opaque; 361 assert(cco->drv); 362 363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 364 } 365 366 int bdrv_create(BlockDriver *drv, const char* filename, 367 QEMUOptionParameter *options) 368 { 369 int ret; 370 371 Coroutine *co; 372 CreateCo cco = { 373 .drv = drv, 374 .filename = g_strdup(filename), 375 .options = options, 376 .ret = NOT_DONE, 377 }; 378 379 if (!drv->bdrv_create) { 380 return -ENOTSUP; 381 } 382 383 if (qemu_in_coroutine()) { 384 /* Fast-path if already in coroutine context */ 385 bdrv_create_co_entry(&cco); 386 } else { 387 co = qemu_coroutine_create(bdrv_create_co_entry); 388 qemu_coroutine_enter(co, &cco); 389 while (cco.ret == NOT_DONE) { 390 qemu_aio_wait(); 391 } 392 } 393 394 ret = cco.ret; 395 g_free(cco.filename); 396 397 return ret; 398 } 399 400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 401 { 402 BlockDriver *drv; 403 404 drv = bdrv_find_protocol(filename); 405 if (drv == NULL) { 406 return -ENOENT; 407 } 408 409 return bdrv_create(drv, filename, options); 410 } 411 412 /* 413 * Create a uniquely-named empty temporary file. 414 * Return 0 upon success, otherwise a negative errno value. 415 */ 416 int get_tmp_filename(char *filename, int size) 417 { 418 #ifdef _WIN32 419 char temp_dir[MAX_PATH]; 420 /* GetTempFileName requires that its output buffer (4th param) 421 have length MAX_PATH or greater. */ 422 assert(size >= MAX_PATH); 423 return (GetTempPath(MAX_PATH, temp_dir) 424 && GetTempFileName(temp_dir, "qem", 0, filename) 425 ? 0 : -GetLastError()); 426 #else 427 int fd; 428 const char *tmpdir; 429 tmpdir = getenv("TMPDIR"); 430 if (!tmpdir) 431 tmpdir = "/tmp"; 432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 433 return -EOVERFLOW; 434 } 435 fd = mkstemp(filename); 436 if (fd < 0 || close(fd)) { 437 return -errno; 438 } 439 return 0; 440 #endif 441 } 442 443 /* 444 * Detect host devices. By convention, /dev/cdrom[N] is always 445 * recognized as a host CDROM. 446 */ 447 static BlockDriver *find_hdev_driver(const char *filename) 448 { 449 int score_max = 0, score; 450 BlockDriver *drv = NULL, *d; 451 452 QLIST_FOREACH(d, &bdrv_drivers, list) { 453 if (d->bdrv_probe_device) { 454 score = d->bdrv_probe_device(filename); 455 if (score > score_max) { 456 score_max = score; 457 drv = d; 458 } 459 } 460 } 461 462 return drv; 463 } 464 465 BlockDriver *bdrv_find_protocol(const char *filename) 466 { 467 BlockDriver *drv1; 468 char protocol[128]; 469 int len; 470 const char *p; 471 472 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 473 474 /* 475 * XXX(hch): we really should not let host device detection 476 * override an explicit protocol specification, but moving this 477 * later breaks access to device names with colons in them. 478 * Thanks to the brain-dead persistent naming schemes on udev- 479 * based Linux systems those actually are quite common. 480 */ 481 drv1 = find_hdev_driver(filename); 482 if (drv1) { 483 return drv1; 484 } 485 486 if (!path_has_protocol(filename)) { 487 return bdrv_find_format("file"); 488 } 489 p = strchr(filename, ':'); 490 assert(p != NULL); 491 len = p - filename; 492 if (len > sizeof(protocol) - 1) 493 len = sizeof(protocol) - 1; 494 memcpy(protocol, filename, len); 495 protocol[len] = '\0'; 496 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 497 if (drv1->protocol_name && 498 !strcmp(drv1->protocol_name, protocol)) { 499 return drv1; 500 } 501 } 502 return NULL; 503 } 504 505 static int find_image_format(const char *filename, BlockDriver **pdrv) 506 { 507 int ret, score, score_max; 508 BlockDriver *drv1, *drv; 509 uint8_t buf[2048]; 510 BlockDriverState *bs; 511 512 ret = bdrv_file_open(&bs, filename, 0); 513 if (ret < 0) { 514 *pdrv = NULL; 515 return ret; 516 } 517 518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 519 if (bs->sg || !bdrv_is_inserted(bs)) { 520 bdrv_delete(bs); 521 drv = bdrv_find_format("raw"); 522 if (!drv) { 523 ret = -ENOENT; 524 } 525 *pdrv = drv; 526 return ret; 527 } 528 529 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 530 bdrv_delete(bs); 531 if (ret < 0) { 532 *pdrv = NULL; 533 return ret; 534 } 535 536 score_max = 0; 537 drv = NULL; 538 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 539 if (drv1->bdrv_probe) { 540 score = drv1->bdrv_probe(buf, ret, filename); 541 if (score > score_max) { 542 score_max = score; 543 drv = drv1; 544 } 545 } 546 } 547 if (!drv) { 548 ret = -ENOENT; 549 } 550 *pdrv = drv; 551 return ret; 552 } 553 554 /** 555 * Set the current 'total_sectors' value 556 */ 557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 558 { 559 BlockDriver *drv = bs->drv; 560 561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 562 if (bs->sg) 563 return 0; 564 565 /* query actual device if possible, otherwise just trust the hint */ 566 if (drv->bdrv_getlength) { 567 int64_t length = drv->bdrv_getlength(bs); 568 if (length < 0) { 569 return length; 570 } 571 hint = length >> BDRV_SECTOR_BITS; 572 } 573 574 bs->total_sectors = hint; 575 return 0; 576 } 577 578 /** 579 * Set open flags for a given cache mode 580 * 581 * Return 0 on success, -1 if the cache mode was invalid. 582 */ 583 int bdrv_parse_cache_flags(const char *mode, int *flags) 584 { 585 *flags &= ~BDRV_O_CACHE_MASK; 586 587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 589 } else if (!strcmp(mode, "directsync")) { 590 *flags |= BDRV_O_NOCACHE; 591 } else if (!strcmp(mode, "writeback")) { 592 *flags |= BDRV_O_CACHE_WB; 593 } else if (!strcmp(mode, "unsafe")) { 594 *flags |= BDRV_O_CACHE_WB; 595 *flags |= BDRV_O_NO_FLUSH; 596 } else if (!strcmp(mode, "writethrough")) { 597 /* this is the default */ 598 } else { 599 return -1; 600 } 601 602 return 0; 603 } 604 605 /** 606 * The copy-on-read flag is actually a reference count so multiple users may 607 * use the feature without worrying about clobbering its previous state. 608 * Copy-on-read stays enabled until all users have called to disable it. 609 */ 610 void bdrv_enable_copy_on_read(BlockDriverState *bs) 611 { 612 bs->copy_on_read++; 613 } 614 615 void bdrv_disable_copy_on_read(BlockDriverState *bs) 616 { 617 assert(bs->copy_on_read > 0); 618 bs->copy_on_read--; 619 } 620 621 /* 622 * Common part for opening disk images and files 623 */ 624 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 625 int flags, BlockDriver *drv) 626 { 627 int ret, open_flags; 628 629 assert(drv != NULL); 630 assert(bs->file == NULL); 631 632 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 633 634 bs->open_flags = flags; 635 bs->buffer_alignment = 512; 636 637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 639 bdrv_enable_copy_on_read(bs); 640 } 641 642 pstrcpy(bs->filename, sizeof(bs->filename), filename); 643 644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 645 return -ENOTSUP; 646 } 647 648 bs->drv = drv; 649 bs->opaque = g_malloc0(drv->instance_size); 650 651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 652 open_flags = flags | BDRV_O_CACHE_WB; 653 654 /* 655 * Clear flags that are internal to the block layer before opening the 656 * image. 657 */ 658 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 659 660 /* 661 * Snapshots should be writable. 662 */ 663 if (bs->is_temporary) { 664 open_flags |= BDRV_O_RDWR; 665 } 666 667 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR); 668 669 /* Open the image, either directly or using a protocol */ 670 if (drv->bdrv_file_open) { 671 ret = drv->bdrv_file_open(bs, filename, open_flags); 672 } else { 673 ret = bdrv_file_open(&bs->file, filename, open_flags); 674 if (ret >= 0) { 675 ret = drv->bdrv_open(bs, open_flags); 676 } 677 } 678 679 if (ret < 0) { 680 goto free_and_fail; 681 } 682 683 ret = refresh_total_sectors(bs, bs->total_sectors); 684 if (ret < 0) { 685 goto free_and_fail; 686 } 687 688 #ifndef _WIN32 689 if (bs->is_temporary) { 690 unlink(filename); 691 } 692 #endif 693 return 0; 694 695 free_and_fail: 696 if (bs->file) { 697 bdrv_delete(bs->file); 698 bs->file = NULL; 699 } 700 g_free(bs->opaque); 701 bs->opaque = NULL; 702 bs->drv = NULL; 703 return ret; 704 } 705 706 /* 707 * Opens a file using a protocol (file, host_device, nbd, ...) 708 */ 709 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 710 { 711 BlockDriverState *bs; 712 BlockDriver *drv; 713 int ret; 714 715 drv = bdrv_find_protocol(filename); 716 if (!drv) { 717 return -ENOENT; 718 } 719 720 bs = bdrv_new(""); 721 ret = bdrv_open_common(bs, filename, flags, drv); 722 if (ret < 0) { 723 bdrv_delete(bs); 724 return ret; 725 } 726 bs->growable = 1; 727 *pbs = bs; 728 return 0; 729 } 730 731 /* 732 * Opens a disk image (raw, qcow2, vmdk, ...) 733 */ 734 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 735 BlockDriver *drv) 736 { 737 int ret; 738 char tmp_filename[PATH_MAX]; 739 740 if (flags & BDRV_O_SNAPSHOT) { 741 BlockDriverState *bs1; 742 int64_t total_size; 743 int is_protocol = 0; 744 BlockDriver *bdrv_qcow2; 745 QEMUOptionParameter *options; 746 char backing_filename[PATH_MAX]; 747 748 /* if snapshot, we create a temporary backing file and open it 749 instead of opening 'filename' directly */ 750 751 /* if there is a backing file, use it */ 752 bs1 = bdrv_new(""); 753 ret = bdrv_open(bs1, filename, 0, drv); 754 if (ret < 0) { 755 bdrv_delete(bs1); 756 return ret; 757 } 758 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 759 760 if (bs1->drv && bs1->drv->protocol_name) 761 is_protocol = 1; 762 763 bdrv_delete(bs1); 764 765 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 766 if (ret < 0) { 767 return ret; 768 } 769 770 /* Real path is meaningless for protocols */ 771 if (is_protocol) 772 snprintf(backing_filename, sizeof(backing_filename), 773 "%s", filename); 774 else if (!realpath(filename, backing_filename)) 775 return -errno; 776 777 bdrv_qcow2 = bdrv_find_format("qcow2"); 778 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 779 780 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 781 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 782 if (drv) { 783 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 784 drv->format_name); 785 } 786 787 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 788 free_option_parameters(options); 789 if (ret < 0) { 790 return ret; 791 } 792 793 filename = tmp_filename; 794 drv = bdrv_qcow2; 795 bs->is_temporary = 1; 796 } 797 798 /* Find the right image format driver */ 799 if (!drv) { 800 ret = find_image_format(filename, &drv); 801 } 802 803 if (!drv) { 804 goto unlink_and_fail; 805 } 806 807 /* Open the image */ 808 ret = bdrv_open_common(bs, filename, flags, drv); 809 if (ret < 0) { 810 goto unlink_and_fail; 811 } 812 813 /* If there is a backing file, use it */ 814 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') { 815 char backing_filename[PATH_MAX]; 816 int back_flags; 817 BlockDriver *back_drv = NULL; 818 819 bs->backing_hd = bdrv_new(""); 820 bdrv_get_full_backing_filename(bs, backing_filename, 821 sizeof(backing_filename)); 822 823 if (bs->backing_format[0] != '\0') { 824 back_drv = bdrv_find_format(bs->backing_format); 825 } 826 827 /* backing files always opened read-only */ 828 back_flags = 829 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 830 831 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 832 if (ret < 0) { 833 bdrv_close(bs); 834 return ret; 835 } 836 if (bs->is_temporary) { 837 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR); 838 } else { 839 /* base image inherits from "parent" */ 840 bs->backing_hd->keep_read_only = bs->keep_read_only; 841 } 842 } 843 844 if (!bdrv_key_required(bs)) { 845 bdrv_dev_change_media_cb(bs, true); 846 } 847 848 /* throttling disk I/O limits */ 849 if (bs->io_limits_enabled) { 850 bdrv_io_limits_enable(bs); 851 } 852 853 return 0; 854 855 unlink_and_fail: 856 if (bs->is_temporary) { 857 unlink(filename); 858 } 859 return ret; 860 } 861 862 void bdrv_close(BlockDriverState *bs) 863 { 864 bdrv_flush(bs); 865 if (bs->drv) { 866 if (bs->job) { 867 block_job_cancel_sync(bs->job); 868 } 869 bdrv_drain_all(); 870 871 if (bs == bs_snapshots) { 872 bs_snapshots = NULL; 873 } 874 if (bs->backing_hd) { 875 bdrv_delete(bs->backing_hd); 876 bs->backing_hd = NULL; 877 } 878 bs->drv->bdrv_close(bs); 879 g_free(bs->opaque); 880 #ifdef _WIN32 881 if (bs->is_temporary) { 882 unlink(bs->filename); 883 } 884 #endif 885 bs->opaque = NULL; 886 bs->drv = NULL; 887 bs->copy_on_read = 0; 888 bs->backing_file[0] = '\0'; 889 bs->backing_format[0] = '\0'; 890 bs->total_sectors = 0; 891 bs->encrypted = 0; 892 bs->valid_key = 0; 893 bs->sg = 0; 894 bs->growable = 0; 895 896 if (bs->file != NULL) { 897 bdrv_delete(bs->file); 898 bs->file = NULL; 899 } 900 901 bdrv_dev_change_media_cb(bs, false); 902 } 903 904 /*throttling disk I/O limits*/ 905 if (bs->io_limits_enabled) { 906 bdrv_io_limits_disable(bs); 907 } 908 } 909 910 void bdrv_close_all(void) 911 { 912 BlockDriverState *bs; 913 914 QTAILQ_FOREACH(bs, &bdrv_states, list) { 915 bdrv_close(bs); 916 } 917 } 918 919 /* 920 * Wait for pending requests to complete across all BlockDriverStates 921 * 922 * This function does not flush data to disk, use bdrv_flush_all() for that 923 * after calling this function. 924 * 925 * Note that completion of an asynchronous I/O operation can trigger any 926 * number of other I/O operations on other devices---for example a coroutine 927 * can be arbitrarily complex and a constant flow of I/O can come until the 928 * coroutine is complete. Because of this, it is not possible to have a 929 * function to drain a single device's I/O queue. 930 */ 931 void bdrv_drain_all(void) 932 { 933 BlockDriverState *bs; 934 bool busy; 935 936 do { 937 busy = qemu_aio_wait(); 938 939 /* FIXME: We do not have timer support here, so this is effectively 940 * a busy wait. 941 */ 942 QTAILQ_FOREACH(bs, &bdrv_states, list) { 943 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 944 qemu_co_queue_restart_all(&bs->throttled_reqs); 945 busy = true; 946 } 947 } 948 } while (busy); 949 950 /* If requests are still pending there is a bug somewhere */ 951 QTAILQ_FOREACH(bs, &bdrv_states, list) { 952 assert(QLIST_EMPTY(&bs->tracked_requests)); 953 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 954 } 955 } 956 957 /* make a BlockDriverState anonymous by removing from bdrv_state list. 958 Also, NULL terminate the device_name to prevent double remove */ 959 void bdrv_make_anon(BlockDriverState *bs) 960 { 961 if (bs->device_name[0] != '\0') { 962 QTAILQ_REMOVE(&bdrv_states, bs, list); 963 } 964 bs->device_name[0] = '\0'; 965 } 966 967 static void bdrv_rebind(BlockDriverState *bs) 968 { 969 if (bs->drv && bs->drv->bdrv_rebind) { 970 bs->drv->bdrv_rebind(bs); 971 } 972 } 973 974 /* 975 * Add new bs contents at the top of an image chain while the chain is 976 * live, while keeping required fields on the top layer. 977 * 978 * This will modify the BlockDriverState fields, and swap contents 979 * between bs_new and bs_top. Both bs_new and bs_top are modified. 980 * 981 * bs_new is required to be anonymous. 982 * 983 * This function does not create any image files. 984 */ 985 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 986 { 987 BlockDriverState tmp; 988 989 /* bs_new must be anonymous */ 990 assert(bs_new->device_name[0] == '\0'); 991 992 tmp = *bs_new; 993 994 /* there are some fields that need to stay on the top layer: */ 995 tmp.open_flags = bs_top->open_flags; 996 997 /* dev info */ 998 tmp.dev_ops = bs_top->dev_ops; 999 tmp.dev_opaque = bs_top->dev_opaque; 1000 tmp.dev = bs_top->dev; 1001 tmp.buffer_alignment = bs_top->buffer_alignment; 1002 tmp.copy_on_read = bs_top->copy_on_read; 1003 1004 tmp.enable_write_cache = bs_top->enable_write_cache; 1005 1006 /* i/o timing parameters */ 1007 tmp.slice_time = bs_top->slice_time; 1008 tmp.slice_start = bs_top->slice_start; 1009 tmp.slice_end = bs_top->slice_end; 1010 tmp.io_limits = bs_top->io_limits; 1011 tmp.io_base = bs_top->io_base; 1012 tmp.throttled_reqs = bs_top->throttled_reqs; 1013 tmp.block_timer = bs_top->block_timer; 1014 tmp.io_limits_enabled = bs_top->io_limits_enabled; 1015 1016 /* geometry */ 1017 tmp.cyls = bs_top->cyls; 1018 tmp.heads = bs_top->heads; 1019 tmp.secs = bs_top->secs; 1020 tmp.translation = bs_top->translation; 1021 1022 /* r/w error */ 1023 tmp.on_read_error = bs_top->on_read_error; 1024 tmp.on_write_error = bs_top->on_write_error; 1025 1026 /* i/o status */ 1027 tmp.iostatus_enabled = bs_top->iostatus_enabled; 1028 tmp.iostatus = bs_top->iostatus; 1029 1030 /* keep the same entry in bdrv_states */ 1031 pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name); 1032 tmp.list = bs_top->list; 1033 1034 /* The contents of 'tmp' will become bs_top, as we are 1035 * swapping bs_new and bs_top contents. */ 1036 tmp.backing_hd = bs_new; 1037 pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename); 1038 bdrv_get_format(bs_top, tmp.backing_format, sizeof(tmp.backing_format)); 1039 1040 /* swap contents of the fixed new bs and the current top */ 1041 *bs_new = *bs_top; 1042 *bs_top = tmp; 1043 1044 /* device_name[] was carried over from the old bs_top. bs_new 1045 * shouldn't be in bdrv_states, so we need to make device_name[] 1046 * reflect the anonymity of bs_new 1047 */ 1048 bs_new->device_name[0] = '\0'; 1049 1050 /* clear the copied fields in the new backing file */ 1051 bdrv_detach_dev(bs_new, bs_new->dev); 1052 1053 qemu_co_queue_init(&bs_new->throttled_reqs); 1054 memset(&bs_new->io_base, 0, sizeof(bs_new->io_base)); 1055 memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits)); 1056 bdrv_iostatus_disable(bs_new); 1057 1058 /* we don't use bdrv_io_limits_disable() for this, because we don't want 1059 * to affect or delete the block_timer, as it has been moved to bs_top */ 1060 bs_new->io_limits_enabled = false; 1061 bs_new->block_timer = NULL; 1062 bs_new->slice_time = 0; 1063 bs_new->slice_start = 0; 1064 bs_new->slice_end = 0; 1065 1066 bdrv_rebind(bs_new); 1067 bdrv_rebind(bs_top); 1068 } 1069 1070 void bdrv_delete(BlockDriverState *bs) 1071 { 1072 assert(!bs->dev); 1073 assert(!bs->job); 1074 assert(!bs->in_use); 1075 1076 /* remove from list, if necessary */ 1077 bdrv_make_anon(bs); 1078 1079 bdrv_close(bs); 1080 1081 assert(bs != bs_snapshots); 1082 g_free(bs); 1083 } 1084 1085 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1086 /* TODO change to DeviceState *dev when all users are qdevified */ 1087 { 1088 if (bs->dev) { 1089 return -EBUSY; 1090 } 1091 bs->dev = dev; 1092 bdrv_iostatus_reset(bs); 1093 return 0; 1094 } 1095 1096 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1097 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1098 { 1099 if (bdrv_attach_dev(bs, dev) < 0) { 1100 abort(); 1101 } 1102 } 1103 1104 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1105 /* TODO change to DeviceState *dev when all users are qdevified */ 1106 { 1107 assert(bs->dev == dev); 1108 bs->dev = NULL; 1109 bs->dev_ops = NULL; 1110 bs->dev_opaque = NULL; 1111 bs->buffer_alignment = 512; 1112 } 1113 1114 /* TODO change to return DeviceState * when all users are qdevified */ 1115 void *bdrv_get_attached_dev(BlockDriverState *bs) 1116 { 1117 return bs->dev; 1118 } 1119 1120 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1121 void *opaque) 1122 { 1123 bs->dev_ops = ops; 1124 bs->dev_opaque = opaque; 1125 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1126 bs_snapshots = NULL; 1127 } 1128 } 1129 1130 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1131 BlockQMPEventAction action, int is_read) 1132 { 1133 QObject *data; 1134 const char *action_str; 1135 1136 switch (action) { 1137 case BDRV_ACTION_REPORT: 1138 action_str = "report"; 1139 break; 1140 case BDRV_ACTION_IGNORE: 1141 action_str = "ignore"; 1142 break; 1143 case BDRV_ACTION_STOP: 1144 action_str = "stop"; 1145 break; 1146 default: 1147 abort(); 1148 } 1149 1150 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1151 bdrv->device_name, 1152 action_str, 1153 is_read ? "read" : "write"); 1154 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data); 1155 1156 qobject_decref(data); 1157 } 1158 1159 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1160 { 1161 QObject *data; 1162 1163 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1164 bdrv_get_device_name(bs), ejected); 1165 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1166 1167 qobject_decref(data); 1168 } 1169 1170 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1171 { 1172 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1173 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1174 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1175 if (tray_was_closed) { 1176 /* tray open */ 1177 bdrv_emit_qmp_eject_event(bs, true); 1178 } 1179 if (load) { 1180 /* tray close */ 1181 bdrv_emit_qmp_eject_event(bs, false); 1182 } 1183 } 1184 } 1185 1186 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1187 { 1188 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1189 } 1190 1191 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1192 { 1193 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1194 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1195 } 1196 } 1197 1198 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1199 { 1200 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1201 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1202 } 1203 return false; 1204 } 1205 1206 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1207 { 1208 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1209 bs->dev_ops->resize_cb(bs->dev_opaque); 1210 } 1211 } 1212 1213 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1214 { 1215 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1216 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1217 } 1218 return false; 1219 } 1220 1221 /* 1222 * Run consistency checks on an image 1223 * 1224 * Returns 0 if the check could be completed (it doesn't mean that the image is 1225 * free of errors) or -errno when an internal error occurred. The results of the 1226 * check are stored in res. 1227 */ 1228 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1229 { 1230 if (bs->drv->bdrv_check == NULL) { 1231 return -ENOTSUP; 1232 } 1233 1234 memset(res, 0, sizeof(*res)); 1235 return bs->drv->bdrv_check(bs, res, fix); 1236 } 1237 1238 #define COMMIT_BUF_SECTORS 2048 1239 1240 /* commit COW file into the raw image */ 1241 int bdrv_commit(BlockDriverState *bs) 1242 { 1243 BlockDriver *drv = bs->drv; 1244 BlockDriver *backing_drv; 1245 int64_t sector, total_sectors; 1246 int n, ro, open_flags; 1247 int ret = 0, rw_ret = 0; 1248 uint8_t *buf; 1249 char filename[1024]; 1250 BlockDriverState *bs_rw, *bs_ro; 1251 1252 if (!drv) 1253 return -ENOMEDIUM; 1254 1255 if (!bs->backing_hd) { 1256 return -ENOTSUP; 1257 } 1258 1259 if (bs->backing_hd->keep_read_only) { 1260 return -EACCES; 1261 } 1262 1263 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1264 return -EBUSY; 1265 } 1266 1267 backing_drv = bs->backing_hd->drv; 1268 ro = bs->backing_hd->read_only; 1269 strncpy(filename, bs->backing_hd->filename, sizeof(filename)); 1270 open_flags = bs->backing_hd->open_flags; 1271 1272 if (ro) { 1273 /* re-open as RW */ 1274 bdrv_delete(bs->backing_hd); 1275 bs->backing_hd = NULL; 1276 bs_rw = bdrv_new(""); 1277 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR, 1278 backing_drv); 1279 if (rw_ret < 0) { 1280 bdrv_delete(bs_rw); 1281 /* try to re-open read-only */ 1282 bs_ro = bdrv_new(""); 1283 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1284 backing_drv); 1285 if (ret < 0) { 1286 bdrv_delete(bs_ro); 1287 /* drive not functional anymore */ 1288 bs->drv = NULL; 1289 return ret; 1290 } 1291 bs->backing_hd = bs_ro; 1292 return rw_ret; 1293 } 1294 bs->backing_hd = bs_rw; 1295 } 1296 1297 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1298 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1299 1300 for (sector = 0; sector < total_sectors; sector += n) { 1301 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1302 1303 if (bdrv_read(bs, sector, buf, n) != 0) { 1304 ret = -EIO; 1305 goto ro_cleanup; 1306 } 1307 1308 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1309 ret = -EIO; 1310 goto ro_cleanup; 1311 } 1312 } 1313 } 1314 1315 if (drv->bdrv_make_empty) { 1316 ret = drv->bdrv_make_empty(bs); 1317 bdrv_flush(bs); 1318 } 1319 1320 /* 1321 * Make sure all data we wrote to the backing device is actually 1322 * stable on disk. 1323 */ 1324 if (bs->backing_hd) 1325 bdrv_flush(bs->backing_hd); 1326 1327 ro_cleanup: 1328 g_free(buf); 1329 1330 if (ro) { 1331 /* re-open as RO */ 1332 bdrv_delete(bs->backing_hd); 1333 bs->backing_hd = NULL; 1334 bs_ro = bdrv_new(""); 1335 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1336 backing_drv); 1337 if (ret < 0) { 1338 bdrv_delete(bs_ro); 1339 /* drive not functional anymore */ 1340 bs->drv = NULL; 1341 return ret; 1342 } 1343 bs->backing_hd = bs_ro; 1344 bs->backing_hd->keep_read_only = 0; 1345 } 1346 1347 return ret; 1348 } 1349 1350 int bdrv_commit_all(void) 1351 { 1352 BlockDriverState *bs; 1353 1354 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1355 int ret = bdrv_commit(bs); 1356 if (ret < 0) { 1357 return ret; 1358 } 1359 } 1360 return 0; 1361 } 1362 1363 struct BdrvTrackedRequest { 1364 BlockDriverState *bs; 1365 int64_t sector_num; 1366 int nb_sectors; 1367 bool is_write; 1368 QLIST_ENTRY(BdrvTrackedRequest) list; 1369 Coroutine *co; /* owner, used for deadlock detection */ 1370 CoQueue wait_queue; /* coroutines blocked on this request */ 1371 }; 1372 1373 /** 1374 * Remove an active request from the tracked requests list 1375 * 1376 * This function should be called when a tracked request is completing. 1377 */ 1378 static void tracked_request_end(BdrvTrackedRequest *req) 1379 { 1380 QLIST_REMOVE(req, list); 1381 qemu_co_queue_restart_all(&req->wait_queue); 1382 } 1383 1384 /** 1385 * Add an active request to the tracked requests list 1386 */ 1387 static void tracked_request_begin(BdrvTrackedRequest *req, 1388 BlockDriverState *bs, 1389 int64_t sector_num, 1390 int nb_sectors, bool is_write) 1391 { 1392 *req = (BdrvTrackedRequest){ 1393 .bs = bs, 1394 .sector_num = sector_num, 1395 .nb_sectors = nb_sectors, 1396 .is_write = is_write, 1397 .co = qemu_coroutine_self(), 1398 }; 1399 1400 qemu_co_queue_init(&req->wait_queue); 1401 1402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1403 } 1404 1405 /** 1406 * Round a region to cluster boundaries 1407 */ 1408 static void round_to_clusters(BlockDriverState *bs, 1409 int64_t sector_num, int nb_sectors, 1410 int64_t *cluster_sector_num, 1411 int *cluster_nb_sectors) 1412 { 1413 BlockDriverInfo bdi; 1414 1415 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1416 *cluster_sector_num = sector_num; 1417 *cluster_nb_sectors = nb_sectors; 1418 } else { 1419 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1420 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1421 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1422 nb_sectors, c); 1423 } 1424 } 1425 1426 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1427 int64_t sector_num, int nb_sectors) { 1428 /* aaaa bbbb */ 1429 if (sector_num >= req->sector_num + req->nb_sectors) { 1430 return false; 1431 } 1432 /* bbbb aaaa */ 1433 if (req->sector_num >= sector_num + nb_sectors) { 1434 return false; 1435 } 1436 return true; 1437 } 1438 1439 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1440 int64_t sector_num, int nb_sectors) 1441 { 1442 BdrvTrackedRequest *req; 1443 int64_t cluster_sector_num; 1444 int cluster_nb_sectors; 1445 bool retry; 1446 1447 /* If we touch the same cluster it counts as an overlap. This guarantees 1448 * that allocating writes will be serialized and not race with each other 1449 * for the same cluster. For example, in copy-on-read it ensures that the 1450 * CoR read and write operations are atomic and guest writes cannot 1451 * interleave between them. 1452 */ 1453 round_to_clusters(bs, sector_num, nb_sectors, 1454 &cluster_sector_num, &cluster_nb_sectors); 1455 1456 do { 1457 retry = false; 1458 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1459 if (tracked_request_overlaps(req, cluster_sector_num, 1460 cluster_nb_sectors)) { 1461 /* Hitting this means there was a reentrant request, for 1462 * example, a block driver issuing nested requests. This must 1463 * never happen since it means deadlock. 1464 */ 1465 assert(qemu_coroutine_self() != req->co); 1466 1467 qemu_co_queue_wait(&req->wait_queue); 1468 retry = true; 1469 break; 1470 } 1471 } 1472 } while (retry); 1473 } 1474 1475 /* 1476 * Return values: 1477 * 0 - success 1478 * -EINVAL - backing format specified, but no file 1479 * -ENOSPC - can't update the backing file because no space is left in the 1480 * image file header 1481 * -ENOTSUP - format driver doesn't support changing the backing file 1482 */ 1483 int bdrv_change_backing_file(BlockDriverState *bs, 1484 const char *backing_file, const char *backing_fmt) 1485 { 1486 BlockDriver *drv = bs->drv; 1487 int ret; 1488 1489 /* Backing file format doesn't make sense without a backing file */ 1490 if (backing_fmt && !backing_file) { 1491 return -EINVAL; 1492 } 1493 1494 if (drv->bdrv_change_backing_file != NULL) { 1495 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1496 } else { 1497 ret = -ENOTSUP; 1498 } 1499 1500 if (ret == 0) { 1501 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1502 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1503 } 1504 return ret; 1505 } 1506 1507 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1508 size_t size) 1509 { 1510 int64_t len; 1511 1512 if (!bdrv_is_inserted(bs)) 1513 return -ENOMEDIUM; 1514 1515 if (bs->growable) 1516 return 0; 1517 1518 len = bdrv_getlength(bs); 1519 1520 if (offset < 0) 1521 return -EIO; 1522 1523 if ((offset > len) || (len - offset < size)) 1524 return -EIO; 1525 1526 return 0; 1527 } 1528 1529 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1530 int nb_sectors) 1531 { 1532 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1533 nb_sectors * BDRV_SECTOR_SIZE); 1534 } 1535 1536 typedef struct RwCo { 1537 BlockDriverState *bs; 1538 int64_t sector_num; 1539 int nb_sectors; 1540 QEMUIOVector *qiov; 1541 bool is_write; 1542 int ret; 1543 } RwCo; 1544 1545 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1546 { 1547 RwCo *rwco = opaque; 1548 1549 if (!rwco->is_write) { 1550 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1551 rwco->nb_sectors, rwco->qiov, 0); 1552 } else { 1553 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1554 rwco->nb_sectors, rwco->qiov, 0); 1555 } 1556 } 1557 1558 /* 1559 * Process a synchronous request using coroutines 1560 */ 1561 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1562 int nb_sectors, bool is_write) 1563 { 1564 QEMUIOVector qiov; 1565 struct iovec iov = { 1566 .iov_base = (void *)buf, 1567 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1568 }; 1569 Coroutine *co; 1570 RwCo rwco = { 1571 .bs = bs, 1572 .sector_num = sector_num, 1573 .nb_sectors = nb_sectors, 1574 .qiov = &qiov, 1575 .is_write = is_write, 1576 .ret = NOT_DONE, 1577 }; 1578 1579 qemu_iovec_init_external(&qiov, &iov, 1); 1580 1581 /** 1582 * In sync call context, when the vcpu is blocked, this throttling timer 1583 * will not fire; so the I/O throttling function has to be disabled here 1584 * if it has been enabled. 1585 */ 1586 if (bs->io_limits_enabled) { 1587 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1588 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1589 bdrv_io_limits_disable(bs); 1590 } 1591 1592 if (qemu_in_coroutine()) { 1593 /* Fast-path if already in coroutine context */ 1594 bdrv_rw_co_entry(&rwco); 1595 } else { 1596 co = qemu_coroutine_create(bdrv_rw_co_entry); 1597 qemu_coroutine_enter(co, &rwco); 1598 while (rwco.ret == NOT_DONE) { 1599 qemu_aio_wait(); 1600 } 1601 } 1602 return rwco.ret; 1603 } 1604 1605 /* return < 0 if error. See bdrv_write() for the return codes */ 1606 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 1607 uint8_t *buf, int nb_sectors) 1608 { 1609 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 1610 } 1611 1612 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 1613 1614 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 1615 int nb_sectors, int dirty) 1616 { 1617 int64_t start, end; 1618 unsigned long val, idx, bit; 1619 1620 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 1621 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 1622 1623 for (; start <= end; start++) { 1624 idx = start / BITS_PER_LONG; 1625 bit = start % BITS_PER_LONG; 1626 val = bs->dirty_bitmap[idx]; 1627 if (dirty) { 1628 if (!(val & (1UL << bit))) { 1629 bs->dirty_count++; 1630 val |= 1UL << bit; 1631 } 1632 } else { 1633 if (val & (1UL << bit)) { 1634 bs->dirty_count--; 1635 val &= ~(1UL << bit); 1636 } 1637 } 1638 bs->dirty_bitmap[idx] = val; 1639 } 1640 } 1641 1642 /* Return < 0 if error. Important errors are: 1643 -EIO generic I/O error (may happen for all errors) 1644 -ENOMEDIUM No media inserted. 1645 -EINVAL Invalid sector number or nb_sectors 1646 -EACCES Trying to write a read-only device 1647 */ 1648 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 1649 const uint8_t *buf, int nb_sectors) 1650 { 1651 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 1652 } 1653 1654 int bdrv_pread(BlockDriverState *bs, int64_t offset, 1655 void *buf, int count1) 1656 { 1657 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1658 int len, nb_sectors, count; 1659 int64_t sector_num; 1660 int ret; 1661 1662 count = count1; 1663 /* first read to align to sector start */ 1664 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1665 if (len > count) 1666 len = count; 1667 sector_num = offset >> BDRV_SECTOR_BITS; 1668 if (len > 0) { 1669 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1670 return ret; 1671 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 1672 count -= len; 1673 if (count == 0) 1674 return count1; 1675 sector_num++; 1676 buf += len; 1677 } 1678 1679 /* read the sectors "in place" */ 1680 nb_sectors = count >> BDRV_SECTOR_BITS; 1681 if (nb_sectors > 0) { 1682 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 1683 return ret; 1684 sector_num += nb_sectors; 1685 len = nb_sectors << BDRV_SECTOR_BITS; 1686 buf += len; 1687 count -= len; 1688 } 1689 1690 /* add data from the last sector */ 1691 if (count > 0) { 1692 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1693 return ret; 1694 memcpy(buf, tmp_buf, count); 1695 } 1696 return count1; 1697 } 1698 1699 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 1700 const void *buf, int count1) 1701 { 1702 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1703 int len, nb_sectors, count; 1704 int64_t sector_num; 1705 int ret; 1706 1707 count = count1; 1708 /* first write to align to sector start */ 1709 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1710 if (len > count) 1711 len = count; 1712 sector_num = offset >> BDRV_SECTOR_BITS; 1713 if (len > 0) { 1714 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1715 return ret; 1716 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 1717 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1718 return ret; 1719 count -= len; 1720 if (count == 0) 1721 return count1; 1722 sector_num++; 1723 buf += len; 1724 } 1725 1726 /* write the sectors "in place" */ 1727 nb_sectors = count >> BDRV_SECTOR_BITS; 1728 if (nb_sectors > 0) { 1729 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 1730 return ret; 1731 sector_num += nb_sectors; 1732 len = nb_sectors << BDRV_SECTOR_BITS; 1733 buf += len; 1734 count -= len; 1735 } 1736 1737 /* add data from the last sector */ 1738 if (count > 0) { 1739 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1740 return ret; 1741 memcpy(tmp_buf, buf, count); 1742 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1743 return ret; 1744 } 1745 return count1; 1746 } 1747 1748 /* 1749 * Writes to the file and ensures that no writes are reordered across this 1750 * request (acts as a barrier) 1751 * 1752 * Returns 0 on success, -errno in error cases. 1753 */ 1754 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 1755 const void *buf, int count) 1756 { 1757 int ret; 1758 1759 ret = bdrv_pwrite(bs, offset, buf, count); 1760 if (ret < 0) { 1761 return ret; 1762 } 1763 1764 /* No flush needed for cache modes that already do it */ 1765 if (bs->enable_write_cache) { 1766 bdrv_flush(bs); 1767 } 1768 1769 return 0; 1770 } 1771 1772 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 1773 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1774 { 1775 /* Perform I/O through a temporary buffer so that users who scribble over 1776 * their read buffer while the operation is in progress do not end up 1777 * modifying the image file. This is critical for zero-copy guest I/O 1778 * where anything might happen inside guest memory. 1779 */ 1780 void *bounce_buffer; 1781 1782 BlockDriver *drv = bs->drv; 1783 struct iovec iov; 1784 QEMUIOVector bounce_qiov; 1785 int64_t cluster_sector_num; 1786 int cluster_nb_sectors; 1787 size_t skip_bytes; 1788 int ret; 1789 1790 /* Cover entire cluster so no additional backing file I/O is required when 1791 * allocating cluster in the image file. 1792 */ 1793 round_to_clusters(bs, sector_num, nb_sectors, 1794 &cluster_sector_num, &cluster_nb_sectors); 1795 1796 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 1797 cluster_sector_num, cluster_nb_sectors); 1798 1799 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 1800 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 1801 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 1802 1803 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 1804 &bounce_qiov); 1805 if (ret < 0) { 1806 goto err; 1807 } 1808 1809 if (drv->bdrv_co_write_zeroes && 1810 buffer_is_zero(bounce_buffer, iov.iov_len)) { 1811 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 1812 cluster_nb_sectors); 1813 } else { 1814 /* This does not change the data on the disk, it is not necessary 1815 * to flush even in cache=writethrough mode. 1816 */ 1817 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 1818 &bounce_qiov); 1819 } 1820 1821 if (ret < 0) { 1822 /* It might be okay to ignore write errors for guest requests. If this 1823 * is a deliberate copy-on-read then we don't want to ignore the error. 1824 * Simply report it in all cases. 1825 */ 1826 goto err; 1827 } 1828 1829 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 1830 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes, 1831 nb_sectors * BDRV_SECTOR_SIZE); 1832 1833 err: 1834 qemu_vfree(bounce_buffer); 1835 return ret; 1836 } 1837 1838 /* 1839 * Handle a read request in coroutine context 1840 */ 1841 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1842 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1843 BdrvRequestFlags flags) 1844 { 1845 BlockDriver *drv = bs->drv; 1846 BdrvTrackedRequest req; 1847 int ret; 1848 1849 if (!drv) { 1850 return -ENOMEDIUM; 1851 } 1852 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 1853 return -EIO; 1854 } 1855 1856 /* throttling disk read I/O */ 1857 if (bs->io_limits_enabled) { 1858 bdrv_io_limits_intercept(bs, false, nb_sectors); 1859 } 1860 1861 if (bs->copy_on_read) { 1862 flags |= BDRV_REQ_COPY_ON_READ; 1863 } 1864 if (flags & BDRV_REQ_COPY_ON_READ) { 1865 bs->copy_on_read_in_flight++; 1866 } 1867 1868 if (bs->copy_on_read_in_flight) { 1869 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 1870 } 1871 1872 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 1873 1874 if (flags & BDRV_REQ_COPY_ON_READ) { 1875 int pnum; 1876 1877 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 1878 if (ret < 0) { 1879 goto out; 1880 } 1881 1882 if (!ret || pnum != nb_sectors) { 1883 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 1884 goto out; 1885 } 1886 } 1887 1888 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1889 1890 out: 1891 tracked_request_end(&req); 1892 1893 if (flags & BDRV_REQ_COPY_ON_READ) { 1894 bs->copy_on_read_in_flight--; 1895 } 1896 1897 return ret; 1898 } 1899 1900 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1901 int nb_sectors, QEMUIOVector *qiov) 1902 { 1903 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1904 1905 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1906 } 1907 1908 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 1909 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1910 { 1911 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 1912 1913 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1914 BDRV_REQ_COPY_ON_READ); 1915 } 1916 1917 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1918 int64_t sector_num, int nb_sectors) 1919 { 1920 BlockDriver *drv = bs->drv; 1921 QEMUIOVector qiov; 1922 struct iovec iov; 1923 int ret; 1924 1925 /* TODO Emulate only part of misaligned requests instead of letting block 1926 * drivers return -ENOTSUP and emulate everything */ 1927 1928 /* First try the efficient write zeroes operation */ 1929 if (drv->bdrv_co_write_zeroes) { 1930 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 1931 if (ret != -ENOTSUP) { 1932 return ret; 1933 } 1934 } 1935 1936 /* Fall back to bounce buffer if write zeroes is unsupported */ 1937 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 1938 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 1939 memset(iov.iov_base, 0, iov.iov_len); 1940 qemu_iovec_init_external(&qiov, &iov, 1); 1941 1942 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 1943 1944 qemu_vfree(iov.iov_base); 1945 return ret; 1946 } 1947 1948 /* 1949 * Handle a write request in coroutine context 1950 */ 1951 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1952 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1953 BdrvRequestFlags flags) 1954 { 1955 BlockDriver *drv = bs->drv; 1956 BdrvTrackedRequest req; 1957 int ret; 1958 1959 if (!bs->drv) { 1960 return -ENOMEDIUM; 1961 } 1962 if (bs->read_only) { 1963 return -EACCES; 1964 } 1965 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 1966 return -EIO; 1967 } 1968 1969 /* throttling disk write I/O */ 1970 if (bs->io_limits_enabled) { 1971 bdrv_io_limits_intercept(bs, true, nb_sectors); 1972 } 1973 1974 if (bs->copy_on_read_in_flight) { 1975 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 1976 } 1977 1978 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 1979 1980 if (flags & BDRV_REQ_ZERO_WRITE) { 1981 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 1982 } else { 1983 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 1984 } 1985 1986 if (ret == 0 && !bs->enable_write_cache) { 1987 ret = bdrv_co_flush(bs); 1988 } 1989 1990 if (bs->dirty_bitmap) { 1991 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 1992 } 1993 1994 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 1995 bs->wr_highest_sector = sector_num + nb_sectors - 1; 1996 } 1997 1998 tracked_request_end(&req); 1999 2000 return ret; 2001 } 2002 2003 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2004 int nb_sectors, QEMUIOVector *qiov) 2005 { 2006 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2007 2008 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2009 } 2010 2011 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2012 int64_t sector_num, int nb_sectors) 2013 { 2014 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2015 2016 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2017 BDRV_REQ_ZERO_WRITE); 2018 } 2019 2020 /** 2021 * Truncate file to 'offset' bytes (needed only for file protocols) 2022 */ 2023 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2024 { 2025 BlockDriver *drv = bs->drv; 2026 int ret; 2027 if (!drv) 2028 return -ENOMEDIUM; 2029 if (!drv->bdrv_truncate) 2030 return -ENOTSUP; 2031 if (bs->read_only) 2032 return -EACCES; 2033 if (bdrv_in_use(bs)) 2034 return -EBUSY; 2035 ret = drv->bdrv_truncate(bs, offset); 2036 if (ret == 0) { 2037 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2038 bdrv_dev_resize_cb(bs); 2039 } 2040 return ret; 2041 } 2042 2043 /** 2044 * Length of a allocated file in bytes. Sparse files are counted by actual 2045 * allocated space. Return < 0 if error or unknown. 2046 */ 2047 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2048 { 2049 BlockDriver *drv = bs->drv; 2050 if (!drv) { 2051 return -ENOMEDIUM; 2052 } 2053 if (drv->bdrv_get_allocated_file_size) { 2054 return drv->bdrv_get_allocated_file_size(bs); 2055 } 2056 if (bs->file) { 2057 return bdrv_get_allocated_file_size(bs->file); 2058 } 2059 return -ENOTSUP; 2060 } 2061 2062 /** 2063 * Length of a file in bytes. Return < 0 if error or unknown. 2064 */ 2065 int64_t bdrv_getlength(BlockDriverState *bs) 2066 { 2067 BlockDriver *drv = bs->drv; 2068 if (!drv) 2069 return -ENOMEDIUM; 2070 2071 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2072 if (drv->bdrv_getlength) { 2073 return drv->bdrv_getlength(bs); 2074 } 2075 } 2076 return bs->total_sectors * BDRV_SECTOR_SIZE; 2077 } 2078 2079 /* return 0 as number of sectors if no device present or error */ 2080 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2081 { 2082 int64_t length; 2083 length = bdrv_getlength(bs); 2084 if (length < 0) 2085 length = 0; 2086 else 2087 length = length >> BDRV_SECTOR_BITS; 2088 *nb_sectors_ptr = length; 2089 } 2090 2091 struct partition { 2092 uint8_t boot_ind; /* 0x80 - active */ 2093 uint8_t head; /* starting head */ 2094 uint8_t sector; /* starting sector */ 2095 uint8_t cyl; /* starting cylinder */ 2096 uint8_t sys_ind; /* What partition type */ 2097 uint8_t end_head; /* end head */ 2098 uint8_t end_sector; /* end sector */ 2099 uint8_t end_cyl; /* end cylinder */ 2100 uint32_t start_sect; /* starting sector counting from 0 */ 2101 uint32_t nr_sects; /* nr of sectors in partition */ 2102 } QEMU_PACKED; 2103 2104 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */ 2105 static int guess_disk_lchs(BlockDriverState *bs, 2106 int *pcylinders, int *pheads, int *psectors) 2107 { 2108 uint8_t buf[BDRV_SECTOR_SIZE]; 2109 int ret, i, heads, sectors, cylinders; 2110 struct partition *p; 2111 uint32_t nr_sects; 2112 uint64_t nb_sectors; 2113 bool enabled; 2114 2115 bdrv_get_geometry(bs, &nb_sectors); 2116 2117 /** 2118 * The function will be invoked during startup not only in sync I/O mode, 2119 * but also in async I/O mode. So the I/O throttling function has to 2120 * be disabled temporarily here, not permanently. 2121 */ 2122 enabled = bs->io_limits_enabled; 2123 bs->io_limits_enabled = false; 2124 ret = bdrv_read(bs, 0, buf, 1); 2125 bs->io_limits_enabled = enabled; 2126 if (ret < 0) 2127 return -1; 2128 /* test msdos magic */ 2129 if (buf[510] != 0x55 || buf[511] != 0xaa) 2130 return -1; 2131 for(i = 0; i < 4; i++) { 2132 p = ((struct partition *)(buf + 0x1be)) + i; 2133 nr_sects = le32_to_cpu(p->nr_sects); 2134 if (nr_sects && p->end_head) { 2135 /* We make the assumption that the partition terminates on 2136 a cylinder boundary */ 2137 heads = p->end_head + 1; 2138 sectors = p->end_sector & 63; 2139 if (sectors == 0) 2140 continue; 2141 cylinders = nb_sectors / (heads * sectors); 2142 if (cylinders < 1 || cylinders > 16383) 2143 continue; 2144 *pheads = heads; 2145 *psectors = sectors; 2146 *pcylinders = cylinders; 2147 #if 0 2148 printf("guessed geometry: LCHS=%d %d %d\n", 2149 cylinders, heads, sectors); 2150 #endif 2151 return 0; 2152 } 2153 } 2154 return -1; 2155 } 2156 2157 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs) 2158 { 2159 int translation, lba_detected = 0; 2160 int cylinders, heads, secs; 2161 uint64_t nb_sectors; 2162 2163 /* if a geometry hint is available, use it */ 2164 bdrv_get_geometry(bs, &nb_sectors); 2165 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs); 2166 translation = bdrv_get_translation_hint(bs); 2167 if (cylinders != 0) { 2168 *pcyls = cylinders; 2169 *pheads = heads; 2170 *psecs = secs; 2171 } else { 2172 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) { 2173 if (heads > 16) { 2174 /* if heads > 16, it means that a BIOS LBA 2175 translation was active, so the default 2176 hardware geometry is OK */ 2177 lba_detected = 1; 2178 goto default_geometry; 2179 } else { 2180 *pcyls = cylinders; 2181 *pheads = heads; 2182 *psecs = secs; 2183 /* disable any translation to be in sync with 2184 the logical geometry */ 2185 if (translation == BIOS_ATA_TRANSLATION_AUTO) { 2186 bdrv_set_translation_hint(bs, 2187 BIOS_ATA_TRANSLATION_NONE); 2188 } 2189 } 2190 } else { 2191 default_geometry: 2192 /* if no geometry, use a standard physical disk geometry */ 2193 cylinders = nb_sectors / (16 * 63); 2194 2195 if (cylinders > 16383) 2196 cylinders = 16383; 2197 else if (cylinders < 2) 2198 cylinders = 2; 2199 *pcyls = cylinders; 2200 *pheads = 16; 2201 *psecs = 63; 2202 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) { 2203 if ((*pcyls * *pheads) <= 131072) { 2204 bdrv_set_translation_hint(bs, 2205 BIOS_ATA_TRANSLATION_LARGE); 2206 } else { 2207 bdrv_set_translation_hint(bs, 2208 BIOS_ATA_TRANSLATION_LBA); 2209 } 2210 } 2211 } 2212 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs); 2213 } 2214 } 2215 2216 void bdrv_set_geometry_hint(BlockDriverState *bs, 2217 int cyls, int heads, int secs) 2218 { 2219 bs->cyls = cyls; 2220 bs->heads = heads; 2221 bs->secs = secs; 2222 } 2223 2224 void bdrv_set_translation_hint(BlockDriverState *bs, int translation) 2225 { 2226 bs->translation = translation; 2227 } 2228 2229 void bdrv_get_geometry_hint(BlockDriverState *bs, 2230 int *pcyls, int *pheads, int *psecs) 2231 { 2232 *pcyls = bs->cyls; 2233 *pheads = bs->heads; 2234 *psecs = bs->secs; 2235 } 2236 2237 /* throttling disk io limits */ 2238 void bdrv_set_io_limits(BlockDriverState *bs, 2239 BlockIOLimit *io_limits) 2240 { 2241 bs->io_limits = *io_limits; 2242 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2243 } 2244 2245 /* Recognize floppy formats */ 2246 typedef struct FDFormat { 2247 FDriveType drive; 2248 uint8_t last_sect; 2249 uint8_t max_track; 2250 uint8_t max_head; 2251 FDriveRate rate; 2252 } FDFormat; 2253 2254 static const FDFormat fd_formats[] = { 2255 /* First entry is default format */ 2256 /* 1.44 MB 3"1/2 floppy disks */ 2257 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, }, 2258 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, }, 2259 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, }, 2260 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, }, 2261 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, }, 2262 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, }, 2263 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, }, 2264 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, }, 2265 /* 2.88 MB 3"1/2 floppy disks */ 2266 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, }, 2267 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, }, 2268 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, }, 2269 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, }, 2270 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, }, 2271 /* 720 kB 3"1/2 floppy disks */ 2272 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, }, 2273 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, }, 2274 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, }, 2275 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, }, 2276 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, }, 2277 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, }, 2278 /* 1.2 MB 5"1/4 floppy disks */ 2279 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, }, 2280 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, }, 2281 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, }, 2282 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, }, 2283 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, }, 2284 /* 720 kB 5"1/4 floppy disks */ 2285 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, }, 2286 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, }, 2287 /* 360 kB 5"1/4 floppy disks */ 2288 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, }, 2289 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, }, 2290 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, }, 2291 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, }, 2292 /* 320 kB 5"1/4 floppy disks */ 2293 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, }, 2294 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, }, 2295 /* 360 kB must match 5"1/4 better than 3"1/2... */ 2296 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, }, 2297 /* end */ 2298 { FDRIVE_DRV_NONE, -1, -1, 0, 0, }, 2299 }; 2300 2301 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads, 2302 int *max_track, int *last_sect, 2303 FDriveType drive_in, FDriveType *drive, 2304 FDriveRate *rate) 2305 { 2306 const FDFormat *parse; 2307 uint64_t nb_sectors, size; 2308 int i, first_match, match; 2309 2310 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect); 2311 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) { 2312 /* User defined disk */ 2313 *rate = FDRIVE_RATE_500K; 2314 } else { 2315 bdrv_get_geometry(bs, &nb_sectors); 2316 match = -1; 2317 first_match = -1; 2318 for (i = 0; ; i++) { 2319 parse = &fd_formats[i]; 2320 if (parse->drive == FDRIVE_DRV_NONE) { 2321 break; 2322 } 2323 if (drive_in == parse->drive || 2324 drive_in == FDRIVE_DRV_NONE) { 2325 size = (parse->max_head + 1) * parse->max_track * 2326 parse->last_sect; 2327 if (nb_sectors == size) { 2328 match = i; 2329 break; 2330 } 2331 if (first_match == -1) { 2332 first_match = i; 2333 } 2334 } 2335 } 2336 if (match == -1) { 2337 if (first_match == -1) { 2338 match = 1; 2339 } else { 2340 match = first_match; 2341 } 2342 parse = &fd_formats[match]; 2343 } 2344 *nb_heads = parse->max_head + 1; 2345 *max_track = parse->max_track; 2346 *last_sect = parse->last_sect; 2347 *drive = parse->drive; 2348 *rate = parse->rate; 2349 } 2350 } 2351 2352 int bdrv_get_translation_hint(BlockDriverState *bs) 2353 { 2354 return bs->translation; 2355 } 2356 2357 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error, 2358 BlockErrorAction on_write_error) 2359 { 2360 bs->on_read_error = on_read_error; 2361 bs->on_write_error = on_write_error; 2362 } 2363 2364 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read) 2365 { 2366 return is_read ? bs->on_read_error : bs->on_write_error; 2367 } 2368 2369 int bdrv_is_read_only(BlockDriverState *bs) 2370 { 2371 return bs->read_only; 2372 } 2373 2374 int bdrv_is_sg(BlockDriverState *bs) 2375 { 2376 return bs->sg; 2377 } 2378 2379 int bdrv_enable_write_cache(BlockDriverState *bs) 2380 { 2381 return bs->enable_write_cache; 2382 } 2383 2384 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2385 { 2386 bs->enable_write_cache = wce; 2387 } 2388 2389 int bdrv_is_encrypted(BlockDriverState *bs) 2390 { 2391 if (bs->backing_hd && bs->backing_hd->encrypted) 2392 return 1; 2393 return bs->encrypted; 2394 } 2395 2396 int bdrv_key_required(BlockDriverState *bs) 2397 { 2398 BlockDriverState *backing_hd = bs->backing_hd; 2399 2400 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2401 return 1; 2402 return (bs->encrypted && !bs->valid_key); 2403 } 2404 2405 int bdrv_set_key(BlockDriverState *bs, const char *key) 2406 { 2407 int ret; 2408 if (bs->backing_hd && bs->backing_hd->encrypted) { 2409 ret = bdrv_set_key(bs->backing_hd, key); 2410 if (ret < 0) 2411 return ret; 2412 if (!bs->encrypted) 2413 return 0; 2414 } 2415 if (!bs->encrypted) { 2416 return -EINVAL; 2417 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2418 return -ENOMEDIUM; 2419 } 2420 ret = bs->drv->bdrv_set_key(bs, key); 2421 if (ret < 0) { 2422 bs->valid_key = 0; 2423 } else if (!bs->valid_key) { 2424 bs->valid_key = 1; 2425 /* call the change callback now, we skipped it on open */ 2426 bdrv_dev_change_media_cb(bs, true); 2427 } 2428 return ret; 2429 } 2430 2431 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size) 2432 { 2433 if (!bs->drv) { 2434 buf[0] = '\0'; 2435 } else { 2436 pstrcpy(buf, buf_size, bs->drv->format_name); 2437 } 2438 } 2439 2440 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2441 void *opaque) 2442 { 2443 BlockDriver *drv; 2444 2445 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2446 it(opaque, drv->format_name); 2447 } 2448 } 2449 2450 BlockDriverState *bdrv_find(const char *name) 2451 { 2452 BlockDriverState *bs; 2453 2454 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2455 if (!strcmp(name, bs->device_name)) { 2456 return bs; 2457 } 2458 } 2459 return NULL; 2460 } 2461 2462 BlockDriverState *bdrv_next(BlockDriverState *bs) 2463 { 2464 if (!bs) { 2465 return QTAILQ_FIRST(&bdrv_states); 2466 } 2467 return QTAILQ_NEXT(bs, list); 2468 } 2469 2470 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2471 { 2472 BlockDriverState *bs; 2473 2474 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2475 it(opaque, bs); 2476 } 2477 } 2478 2479 const char *bdrv_get_device_name(BlockDriverState *bs) 2480 { 2481 return bs->device_name; 2482 } 2483 2484 int bdrv_get_flags(BlockDriverState *bs) 2485 { 2486 return bs->open_flags; 2487 } 2488 2489 void bdrv_flush_all(void) 2490 { 2491 BlockDriverState *bs; 2492 2493 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2494 bdrv_flush(bs); 2495 } 2496 } 2497 2498 int bdrv_has_zero_init(BlockDriverState *bs) 2499 { 2500 assert(bs->drv); 2501 2502 if (bs->drv->bdrv_has_zero_init) { 2503 return bs->drv->bdrv_has_zero_init(bs); 2504 } 2505 2506 return 1; 2507 } 2508 2509 typedef struct BdrvCoIsAllocatedData { 2510 BlockDriverState *bs; 2511 int64_t sector_num; 2512 int nb_sectors; 2513 int *pnum; 2514 int ret; 2515 bool done; 2516 } BdrvCoIsAllocatedData; 2517 2518 /* 2519 * Returns true iff the specified sector is present in the disk image. Drivers 2520 * not implementing the functionality are assumed to not support backing files, 2521 * hence all their sectors are reported as allocated. 2522 * 2523 * If 'sector_num' is beyond the end of the disk image the return value is 0 2524 * and 'pnum' is set to 0. 2525 * 2526 * 'pnum' is set to the number of sectors (including and immediately following 2527 * the specified sector) that are known to be in the same 2528 * allocated/unallocated state. 2529 * 2530 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2531 * beyond the end of the disk image it will be clamped. 2532 */ 2533 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2534 int nb_sectors, int *pnum) 2535 { 2536 int64_t n; 2537 2538 if (sector_num >= bs->total_sectors) { 2539 *pnum = 0; 2540 return 0; 2541 } 2542 2543 n = bs->total_sectors - sector_num; 2544 if (n < nb_sectors) { 2545 nb_sectors = n; 2546 } 2547 2548 if (!bs->drv->bdrv_co_is_allocated) { 2549 *pnum = nb_sectors; 2550 return 1; 2551 } 2552 2553 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2554 } 2555 2556 /* Coroutine wrapper for bdrv_is_allocated() */ 2557 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2558 { 2559 BdrvCoIsAllocatedData *data = opaque; 2560 BlockDriverState *bs = data->bs; 2561 2562 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2563 data->pnum); 2564 data->done = true; 2565 } 2566 2567 /* 2568 * Synchronous wrapper around bdrv_co_is_allocated(). 2569 * 2570 * See bdrv_co_is_allocated() for details. 2571 */ 2572 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2573 int *pnum) 2574 { 2575 Coroutine *co; 2576 BdrvCoIsAllocatedData data = { 2577 .bs = bs, 2578 .sector_num = sector_num, 2579 .nb_sectors = nb_sectors, 2580 .pnum = pnum, 2581 .done = false, 2582 }; 2583 2584 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2585 qemu_coroutine_enter(co, &data); 2586 while (!data.done) { 2587 qemu_aio_wait(); 2588 } 2589 return data.ret; 2590 } 2591 2592 /* 2593 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2594 * 2595 * Return true if the given sector is allocated in any image between 2596 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2597 * sector is allocated in any image of the chain. Return false otherwise. 2598 * 2599 * 'pnum' is set to the number of sectors (including and immediately following 2600 * the specified sector) that are known to be in the same 2601 * allocated/unallocated state. 2602 * 2603 */ 2604 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2605 BlockDriverState *base, 2606 int64_t sector_num, 2607 int nb_sectors, int *pnum) 2608 { 2609 BlockDriverState *intermediate; 2610 int ret, n = nb_sectors; 2611 2612 intermediate = top; 2613 while (intermediate && intermediate != base) { 2614 int pnum_inter; 2615 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2616 &pnum_inter); 2617 if (ret < 0) { 2618 return ret; 2619 } else if (ret) { 2620 *pnum = pnum_inter; 2621 return 1; 2622 } 2623 2624 /* 2625 * [sector_num, nb_sectors] is unallocated on top but intermediate 2626 * might have 2627 * 2628 * [sector_num+x, nr_sectors] allocated. 2629 */ 2630 if (n > pnum_inter) { 2631 n = pnum_inter; 2632 } 2633 2634 intermediate = intermediate->backing_hd; 2635 } 2636 2637 *pnum = n; 2638 return 0; 2639 } 2640 2641 BlockInfoList *qmp_query_block(Error **errp) 2642 { 2643 BlockInfoList *head = NULL, *cur_item = NULL; 2644 BlockDriverState *bs; 2645 2646 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2647 BlockInfoList *info = g_malloc0(sizeof(*info)); 2648 2649 info->value = g_malloc0(sizeof(*info->value)); 2650 info->value->device = g_strdup(bs->device_name); 2651 info->value->type = g_strdup("unknown"); 2652 info->value->locked = bdrv_dev_is_medium_locked(bs); 2653 info->value->removable = bdrv_dev_has_removable_media(bs); 2654 2655 if (bdrv_dev_has_removable_media(bs)) { 2656 info->value->has_tray_open = true; 2657 info->value->tray_open = bdrv_dev_is_tray_open(bs); 2658 } 2659 2660 if (bdrv_iostatus_is_enabled(bs)) { 2661 info->value->has_io_status = true; 2662 info->value->io_status = bs->iostatus; 2663 } 2664 2665 if (bs->drv) { 2666 info->value->has_inserted = true; 2667 info->value->inserted = g_malloc0(sizeof(*info->value->inserted)); 2668 info->value->inserted->file = g_strdup(bs->filename); 2669 info->value->inserted->ro = bs->read_only; 2670 info->value->inserted->drv = g_strdup(bs->drv->format_name); 2671 info->value->inserted->encrypted = bs->encrypted; 2672 if (bs->backing_file[0]) { 2673 info->value->inserted->has_backing_file = true; 2674 info->value->inserted->backing_file = g_strdup(bs->backing_file); 2675 } 2676 2677 if (bs->io_limits_enabled) { 2678 info->value->inserted->bps = 2679 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2680 info->value->inserted->bps_rd = 2681 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2682 info->value->inserted->bps_wr = 2683 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2684 info->value->inserted->iops = 2685 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2686 info->value->inserted->iops_rd = 2687 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2688 info->value->inserted->iops_wr = 2689 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2690 } 2691 } 2692 2693 /* XXX: waiting for the qapi to support GSList */ 2694 if (!cur_item) { 2695 head = cur_item = info; 2696 } else { 2697 cur_item->next = info; 2698 cur_item = info; 2699 } 2700 } 2701 2702 return head; 2703 } 2704 2705 /* Consider exposing this as a full fledged QMP command */ 2706 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp) 2707 { 2708 BlockStats *s; 2709 2710 s = g_malloc0(sizeof(*s)); 2711 2712 if (bs->device_name[0]) { 2713 s->has_device = true; 2714 s->device = g_strdup(bs->device_name); 2715 } 2716 2717 s->stats = g_malloc0(sizeof(*s->stats)); 2718 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2719 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2720 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2721 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2722 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2723 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2724 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2725 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2726 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2727 2728 if (bs->file) { 2729 s->has_parent = true; 2730 s->parent = qmp_query_blockstat(bs->file, NULL); 2731 } 2732 2733 return s; 2734 } 2735 2736 BlockStatsList *qmp_query_blockstats(Error **errp) 2737 { 2738 BlockStatsList *head = NULL, *cur_item = NULL; 2739 BlockDriverState *bs; 2740 2741 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2742 BlockStatsList *info = g_malloc0(sizeof(*info)); 2743 info->value = qmp_query_blockstat(bs, NULL); 2744 2745 /* XXX: waiting for the qapi to support GSList */ 2746 if (!cur_item) { 2747 head = cur_item = info; 2748 } else { 2749 cur_item->next = info; 2750 cur_item = info; 2751 } 2752 } 2753 2754 return head; 2755 } 2756 2757 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2758 { 2759 if (bs->backing_hd && bs->backing_hd->encrypted) 2760 return bs->backing_file; 2761 else if (bs->encrypted) 2762 return bs->filename; 2763 else 2764 return NULL; 2765 } 2766 2767 void bdrv_get_backing_filename(BlockDriverState *bs, 2768 char *filename, int filename_size) 2769 { 2770 pstrcpy(filename, filename_size, bs->backing_file); 2771 } 2772 2773 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2774 const uint8_t *buf, int nb_sectors) 2775 { 2776 BlockDriver *drv = bs->drv; 2777 if (!drv) 2778 return -ENOMEDIUM; 2779 if (!drv->bdrv_write_compressed) 2780 return -ENOTSUP; 2781 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2782 return -EIO; 2783 2784 if (bs->dirty_bitmap) { 2785 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2786 } 2787 2788 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2789 } 2790 2791 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2792 { 2793 BlockDriver *drv = bs->drv; 2794 if (!drv) 2795 return -ENOMEDIUM; 2796 if (!drv->bdrv_get_info) 2797 return -ENOTSUP; 2798 memset(bdi, 0, sizeof(*bdi)); 2799 return drv->bdrv_get_info(bs, bdi); 2800 } 2801 2802 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2803 int64_t pos, int size) 2804 { 2805 BlockDriver *drv = bs->drv; 2806 if (!drv) 2807 return -ENOMEDIUM; 2808 if (drv->bdrv_save_vmstate) 2809 return drv->bdrv_save_vmstate(bs, buf, pos, size); 2810 if (bs->file) 2811 return bdrv_save_vmstate(bs->file, buf, pos, size); 2812 return -ENOTSUP; 2813 } 2814 2815 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2816 int64_t pos, int size) 2817 { 2818 BlockDriver *drv = bs->drv; 2819 if (!drv) 2820 return -ENOMEDIUM; 2821 if (drv->bdrv_load_vmstate) 2822 return drv->bdrv_load_vmstate(bs, buf, pos, size); 2823 if (bs->file) 2824 return bdrv_load_vmstate(bs->file, buf, pos, size); 2825 return -ENOTSUP; 2826 } 2827 2828 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 2829 { 2830 BlockDriver *drv = bs->drv; 2831 2832 if (!drv || !drv->bdrv_debug_event) { 2833 return; 2834 } 2835 2836 return drv->bdrv_debug_event(bs, event); 2837 2838 } 2839 2840 /**************************************************************/ 2841 /* handling of snapshots */ 2842 2843 int bdrv_can_snapshot(BlockDriverState *bs) 2844 { 2845 BlockDriver *drv = bs->drv; 2846 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 2847 return 0; 2848 } 2849 2850 if (!drv->bdrv_snapshot_create) { 2851 if (bs->file != NULL) { 2852 return bdrv_can_snapshot(bs->file); 2853 } 2854 return 0; 2855 } 2856 2857 return 1; 2858 } 2859 2860 int bdrv_is_snapshot(BlockDriverState *bs) 2861 { 2862 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 2863 } 2864 2865 BlockDriverState *bdrv_snapshots(void) 2866 { 2867 BlockDriverState *bs; 2868 2869 if (bs_snapshots) { 2870 return bs_snapshots; 2871 } 2872 2873 bs = NULL; 2874 while ((bs = bdrv_next(bs))) { 2875 if (bdrv_can_snapshot(bs)) { 2876 bs_snapshots = bs; 2877 return bs; 2878 } 2879 } 2880 return NULL; 2881 } 2882 2883 int bdrv_snapshot_create(BlockDriverState *bs, 2884 QEMUSnapshotInfo *sn_info) 2885 { 2886 BlockDriver *drv = bs->drv; 2887 if (!drv) 2888 return -ENOMEDIUM; 2889 if (drv->bdrv_snapshot_create) 2890 return drv->bdrv_snapshot_create(bs, sn_info); 2891 if (bs->file) 2892 return bdrv_snapshot_create(bs->file, sn_info); 2893 return -ENOTSUP; 2894 } 2895 2896 int bdrv_snapshot_goto(BlockDriverState *bs, 2897 const char *snapshot_id) 2898 { 2899 BlockDriver *drv = bs->drv; 2900 int ret, open_ret; 2901 2902 if (!drv) 2903 return -ENOMEDIUM; 2904 if (drv->bdrv_snapshot_goto) 2905 return drv->bdrv_snapshot_goto(bs, snapshot_id); 2906 2907 if (bs->file) { 2908 drv->bdrv_close(bs); 2909 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 2910 open_ret = drv->bdrv_open(bs, bs->open_flags); 2911 if (open_ret < 0) { 2912 bdrv_delete(bs->file); 2913 bs->drv = NULL; 2914 return open_ret; 2915 } 2916 return ret; 2917 } 2918 2919 return -ENOTSUP; 2920 } 2921 2922 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 2923 { 2924 BlockDriver *drv = bs->drv; 2925 if (!drv) 2926 return -ENOMEDIUM; 2927 if (drv->bdrv_snapshot_delete) 2928 return drv->bdrv_snapshot_delete(bs, snapshot_id); 2929 if (bs->file) 2930 return bdrv_snapshot_delete(bs->file, snapshot_id); 2931 return -ENOTSUP; 2932 } 2933 2934 int bdrv_snapshot_list(BlockDriverState *bs, 2935 QEMUSnapshotInfo **psn_info) 2936 { 2937 BlockDriver *drv = bs->drv; 2938 if (!drv) 2939 return -ENOMEDIUM; 2940 if (drv->bdrv_snapshot_list) 2941 return drv->bdrv_snapshot_list(bs, psn_info); 2942 if (bs->file) 2943 return bdrv_snapshot_list(bs->file, psn_info); 2944 return -ENOTSUP; 2945 } 2946 2947 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 2948 const char *snapshot_name) 2949 { 2950 BlockDriver *drv = bs->drv; 2951 if (!drv) { 2952 return -ENOMEDIUM; 2953 } 2954 if (!bs->read_only) { 2955 return -EINVAL; 2956 } 2957 if (drv->bdrv_snapshot_load_tmp) { 2958 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 2959 } 2960 return -ENOTSUP; 2961 } 2962 2963 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 2964 const char *backing_file) 2965 { 2966 if (!bs->drv) { 2967 return NULL; 2968 } 2969 2970 if (bs->backing_hd) { 2971 if (strcmp(bs->backing_file, backing_file) == 0) { 2972 return bs->backing_hd; 2973 } else { 2974 return bdrv_find_backing_image(bs->backing_hd, backing_file); 2975 } 2976 } 2977 2978 return NULL; 2979 } 2980 2981 #define NB_SUFFIXES 4 2982 2983 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 2984 { 2985 static const char suffixes[NB_SUFFIXES] = "KMGT"; 2986 int64_t base; 2987 int i; 2988 2989 if (size <= 999) { 2990 snprintf(buf, buf_size, "%" PRId64, size); 2991 } else { 2992 base = 1024; 2993 for(i = 0; i < NB_SUFFIXES; i++) { 2994 if (size < (10 * base)) { 2995 snprintf(buf, buf_size, "%0.1f%c", 2996 (double)size / base, 2997 suffixes[i]); 2998 break; 2999 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3000 snprintf(buf, buf_size, "%" PRId64 "%c", 3001 ((size + (base >> 1)) / base), 3002 suffixes[i]); 3003 break; 3004 } 3005 base = base * 1024; 3006 } 3007 } 3008 return buf; 3009 } 3010 3011 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3012 { 3013 char buf1[128], date_buf[128], clock_buf[128]; 3014 #ifdef _WIN32 3015 struct tm *ptm; 3016 #else 3017 struct tm tm; 3018 #endif 3019 time_t ti; 3020 int64_t secs; 3021 3022 if (!sn) { 3023 snprintf(buf, buf_size, 3024 "%-10s%-20s%7s%20s%15s", 3025 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3026 } else { 3027 ti = sn->date_sec; 3028 #ifdef _WIN32 3029 ptm = localtime(&ti); 3030 strftime(date_buf, sizeof(date_buf), 3031 "%Y-%m-%d %H:%M:%S", ptm); 3032 #else 3033 localtime_r(&ti, &tm); 3034 strftime(date_buf, sizeof(date_buf), 3035 "%Y-%m-%d %H:%M:%S", &tm); 3036 #endif 3037 secs = sn->vm_clock_nsec / 1000000000; 3038 snprintf(clock_buf, sizeof(clock_buf), 3039 "%02d:%02d:%02d.%03d", 3040 (int)(secs / 3600), 3041 (int)((secs / 60) % 60), 3042 (int)(secs % 60), 3043 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3044 snprintf(buf, buf_size, 3045 "%-10s%-20s%7s%20s%15s", 3046 sn->id_str, sn->name, 3047 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3048 date_buf, 3049 clock_buf); 3050 } 3051 return buf; 3052 } 3053 3054 /**************************************************************/ 3055 /* async I/Os */ 3056 3057 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3058 QEMUIOVector *qiov, int nb_sectors, 3059 BlockDriverCompletionFunc *cb, void *opaque) 3060 { 3061 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3062 3063 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3064 cb, opaque, false); 3065 } 3066 3067 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3068 QEMUIOVector *qiov, int nb_sectors, 3069 BlockDriverCompletionFunc *cb, void *opaque) 3070 { 3071 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3072 3073 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3074 cb, opaque, true); 3075 } 3076 3077 3078 typedef struct MultiwriteCB { 3079 int error; 3080 int num_requests; 3081 int num_callbacks; 3082 struct { 3083 BlockDriverCompletionFunc *cb; 3084 void *opaque; 3085 QEMUIOVector *free_qiov; 3086 } callbacks[]; 3087 } MultiwriteCB; 3088 3089 static void multiwrite_user_cb(MultiwriteCB *mcb) 3090 { 3091 int i; 3092 3093 for (i = 0; i < mcb->num_callbacks; i++) { 3094 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3095 if (mcb->callbacks[i].free_qiov) { 3096 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3097 } 3098 g_free(mcb->callbacks[i].free_qiov); 3099 } 3100 } 3101 3102 static void multiwrite_cb(void *opaque, int ret) 3103 { 3104 MultiwriteCB *mcb = opaque; 3105 3106 trace_multiwrite_cb(mcb, ret); 3107 3108 if (ret < 0 && !mcb->error) { 3109 mcb->error = ret; 3110 } 3111 3112 mcb->num_requests--; 3113 if (mcb->num_requests == 0) { 3114 multiwrite_user_cb(mcb); 3115 g_free(mcb); 3116 } 3117 } 3118 3119 static int multiwrite_req_compare(const void *a, const void *b) 3120 { 3121 const BlockRequest *req1 = a, *req2 = b; 3122 3123 /* 3124 * Note that we can't simply subtract req2->sector from req1->sector 3125 * here as that could overflow the return value. 3126 */ 3127 if (req1->sector > req2->sector) { 3128 return 1; 3129 } else if (req1->sector < req2->sector) { 3130 return -1; 3131 } else { 3132 return 0; 3133 } 3134 } 3135 3136 /* 3137 * Takes a bunch of requests and tries to merge them. Returns the number of 3138 * requests that remain after merging. 3139 */ 3140 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3141 int num_reqs, MultiwriteCB *mcb) 3142 { 3143 int i, outidx; 3144 3145 // Sort requests by start sector 3146 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3147 3148 // Check if adjacent requests touch the same clusters. If so, combine them, 3149 // filling up gaps with zero sectors. 3150 outidx = 0; 3151 for (i = 1; i < num_reqs; i++) { 3152 int merge = 0; 3153 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3154 3155 // Handle exactly sequential writes and overlapping writes. 3156 if (reqs[i].sector <= oldreq_last) { 3157 merge = 1; 3158 } 3159 3160 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3161 merge = 0; 3162 } 3163 3164 if (merge) { 3165 size_t size; 3166 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3167 qemu_iovec_init(qiov, 3168 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3169 3170 // Add the first request to the merged one. If the requests are 3171 // overlapping, drop the last sectors of the first request. 3172 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3173 qemu_iovec_concat(qiov, reqs[outidx].qiov, size); 3174 3175 // We should need to add any zeros between the two requests 3176 assert (reqs[i].sector <= oldreq_last); 3177 3178 // Add the second request 3179 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size); 3180 3181 reqs[outidx].nb_sectors = qiov->size >> 9; 3182 reqs[outidx].qiov = qiov; 3183 3184 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3185 } else { 3186 outidx++; 3187 reqs[outidx].sector = reqs[i].sector; 3188 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3189 reqs[outidx].qiov = reqs[i].qiov; 3190 } 3191 } 3192 3193 return outidx + 1; 3194 } 3195 3196 /* 3197 * Submit multiple AIO write requests at once. 3198 * 3199 * On success, the function returns 0 and all requests in the reqs array have 3200 * been submitted. In error case this function returns -1, and any of the 3201 * requests may or may not be submitted yet. In particular, this means that the 3202 * callback will be called for some of the requests, for others it won't. The 3203 * caller must check the error field of the BlockRequest to wait for the right 3204 * callbacks (if error != 0, no callback will be called). 3205 * 3206 * The implementation may modify the contents of the reqs array, e.g. to merge 3207 * requests. However, the fields opaque and error are left unmodified as they 3208 * are used to signal failure for a single request to the caller. 3209 */ 3210 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3211 { 3212 MultiwriteCB *mcb; 3213 int i; 3214 3215 /* don't submit writes if we don't have a medium */ 3216 if (bs->drv == NULL) { 3217 for (i = 0; i < num_reqs; i++) { 3218 reqs[i].error = -ENOMEDIUM; 3219 } 3220 return -1; 3221 } 3222 3223 if (num_reqs == 0) { 3224 return 0; 3225 } 3226 3227 // Create MultiwriteCB structure 3228 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3229 mcb->num_requests = 0; 3230 mcb->num_callbacks = num_reqs; 3231 3232 for (i = 0; i < num_reqs; i++) { 3233 mcb->callbacks[i].cb = reqs[i].cb; 3234 mcb->callbacks[i].opaque = reqs[i].opaque; 3235 } 3236 3237 // Check for mergable requests 3238 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3239 3240 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3241 3242 /* Run the aio requests. */ 3243 mcb->num_requests = num_reqs; 3244 for (i = 0; i < num_reqs; i++) { 3245 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3246 reqs[i].nb_sectors, multiwrite_cb, mcb); 3247 } 3248 3249 return 0; 3250 } 3251 3252 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3253 { 3254 acb->pool->cancel(acb); 3255 } 3256 3257 /* block I/O throttling */ 3258 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3259 bool is_write, double elapsed_time, uint64_t *wait) 3260 { 3261 uint64_t bps_limit = 0; 3262 double bytes_limit, bytes_base, bytes_res; 3263 double slice_time, wait_time; 3264 3265 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3266 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3267 } else if (bs->io_limits.bps[is_write]) { 3268 bps_limit = bs->io_limits.bps[is_write]; 3269 } else { 3270 if (wait) { 3271 *wait = 0; 3272 } 3273 3274 return false; 3275 } 3276 3277 slice_time = bs->slice_end - bs->slice_start; 3278 slice_time /= (NANOSECONDS_PER_SECOND); 3279 bytes_limit = bps_limit * slice_time; 3280 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3281 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3282 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3283 } 3284 3285 /* bytes_base: the bytes of data which have been read/written; and 3286 * it is obtained from the history statistic info. 3287 * bytes_res: the remaining bytes of data which need to be read/written. 3288 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3289 * the total time for completing reading/writting all data. 3290 */ 3291 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3292 3293 if (bytes_base + bytes_res <= bytes_limit) { 3294 if (wait) { 3295 *wait = 0; 3296 } 3297 3298 return false; 3299 } 3300 3301 /* Calc approx time to dispatch */ 3302 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3303 3304 /* When the I/O rate at runtime exceeds the limits, 3305 * bs->slice_end need to be extended in order that the current statistic 3306 * info can be kept until the timer fire, so it is increased and tuned 3307 * based on the result of experiment. 3308 */ 3309 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3310 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3311 if (wait) { 3312 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3313 } 3314 3315 return true; 3316 } 3317 3318 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3319 double elapsed_time, uint64_t *wait) 3320 { 3321 uint64_t iops_limit = 0; 3322 double ios_limit, ios_base; 3323 double slice_time, wait_time; 3324 3325 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3326 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3327 } else if (bs->io_limits.iops[is_write]) { 3328 iops_limit = bs->io_limits.iops[is_write]; 3329 } else { 3330 if (wait) { 3331 *wait = 0; 3332 } 3333 3334 return false; 3335 } 3336 3337 slice_time = bs->slice_end - bs->slice_start; 3338 slice_time /= (NANOSECONDS_PER_SECOND); 3339 ios_limit = iops_limit * slice_time; 3340 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3341 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3342 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3343 } 3344 3345 if (ios_base + 1 <= ios_limit) { 3346 if (wait) { 3347 *wait = 0; 3348 } 3349 3350 return false; 3351 } 3352 3353 /* Calc approx time to dispatch */ 3354 wait_time = (ios_base + 1) / iops_limit; 3355 if (wait_time > elapsed_time) { 3356 wait_time = wait_time - elapsed_time; 3357 } else { 3358 wait_time = 0; 3359 } 3360 3361 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3362 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3363 if (wait) { 3364 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3365 } 3366 3367 return true; 3368 } 3369 3370 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3371 bool is_write, int64_t *wait) 3372 { 3373 int64_t now, max_wait; 3374 uint64_t bps_wait = 0, iops_wait = 0; 3375 double elapsed_time; 3376 int bps_ret, iops_ret; 3377 3378 now = qemu_get_clock_ns(vm_clock); 3379 if ((bs->slice_start < now) 3380 && (bs->slice_end > now)) { 3381 bs->slice_end = now + bs->slice_time; 3382 } else { 3383 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3384 bs->slice_start = now; 3385 bs->slice_end = now + bs->slice_time; 3386 3387 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3388 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3389 3390 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3391 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3392 } 3393 3394 elapsed_time = now - bs->slice_start; 3395 elapsed_time /= (NANOSECONDS_PER_SECOND); 3396 3397 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3398 is_write, elapsed_time, &bps_wait); 3399 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3400 elapsed_time, &iops_wait); 3401 if (bps_ret || iops_ret) { 3402 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3403 if (wait) { 3404 *wait = max_wait; 3405 } 3406 3407 now = qemu_get_clock_ns(vm_clock); 3408 if (bs->slice_end < now + max_wait) { 3409 bs->slice_end = now + max_wait; 3410 } 3411 3412 return true; 3413 } 3414 3415 if (wait) { 3416 *wait = 0; 3417 } 3418 3419 return false; 3420 } 3421 3422 /**************************************************************/ 3423 /* async block device emulation */ 3424 3425 typedef struct BlockDriverAIOCBSync { 3426 BlockDriverAIOCB common; 3427 QEMUBH *bh; 3428 int ret; 3429 /* vector translation state */ 3430 QEMUIOVector *qiov; 3431 uint8_t *bounce; 3432 int is_write; 3433 } BlockDriverAIOCBSync; 3434 3435 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3436 { 3437 BlockDriverAIOCBSync *acb = 3438 container_of(blockacb, BlockDriverAIOCBSync, common); 3439 qemu_bh_delete(acb->bh); 3440 acb->bh = NULL; 3441 qemu_aio_release(acb); 3442 } 3443 3444 static AIOPool bdrv_em_aio_pool = { 3445 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3446 .cancel = bdrv_aio_cancel_em, 3447 }; 3448 3449 static void bdrv_aio_bh_cb(void *opaque) 3450 { 3451 BlockDriverAIOCBSync *acb = opaque; 3452 3453 if (!acb->is_write) 3454 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size); 3455 qemu_vfree(acb->bounce); 3456 acb->common.cb(acb->common.opaque, acb->ret); 3457 qemu_bh_delete(acb->bh); 3458 acb->bh = NULL; 3459 qemu_aio_release(acb); 3460 } 3461 3462 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3463 int64_t sector_num, 3464 QEMUIOVector *qiov, 3465 int nb_sectors, 3466 BlockDriverCompletionFunc *cb, 3467 void *opaque, 3468 int is_write) 3469 3470 { 3471 BlockDriverAIOCBSync *acb; 3472 3473 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque); 3474 acb->is_write = is_write; 3475 acb->qiov = qiov; 3476 acb->bounce = qemu_blockalign(bs, qiov->size); 3477 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3478 3479 if (is_write) { 3480 qemu_iovec_to_buffer(acb->qiov, acb->bounce); 3481 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3482 } else { 3483 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3484 } 3485 3486 qemu_bh_schedule(acb->bh); 3487 3488 return &acb->common; 3489 } 3490 3491 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3492 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3493 BlockDriverCompletionFunc *cb, void *opaque) 3494 { 3495 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3496 } 3497 3498 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3499 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3500 BlockDriverCompletionFunc *cb, void *opaque) 3501 { 3502 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3503 } 3504 3505 3506 typedef struct BlockDriverAIOCBCoroutine { 3507 BlockDriverAIOCB common; 3508 BlockRequest req; 3509 bool is_write; 3510 QEMUBH* bh; 3511 } BlockDriverAIOCBCoroutine; 3512 3513 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3514 { 3515 qemu_aio_flush(); 3516 } 3517 3518 static AIOPool bdrv_em_co_aio_pool = { 3519 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3520 .cancel = bdrv_aio_co_cancel_em, 3521 }; 3522 3523 static void bdrv_co_em_bh(void *opaque) 3524 { 3525 BlockDriverAIOCBCoroutine *acb = opaque; 3526 3527 acb->common.cb(acb->common.opaque, acb->req.error); 3528 qemu_bh_delete(acb->bh); 3529 qemu_aio_release(acb); 3530 } 3531 3532 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3533 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3534 { 3535 BlockDriverAIOCBCoroutine *acb = opaque; 3536 BlockDriverState *bs = acb->common.bs; 3537 3538 if (!acb->is_write) { 3539 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3540 acb->req.nb_sectors, acb->req.qiov, 0); 3541 } else { 3542 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3543 acb->req.nb_sectors, acb->req.qiov, 0); 3544 } 3545 3546 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3547 qemu_bh_schedule(acb->bh); 3548 } 3549 3550 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3551 int64_t sector_num, 3552 QEMUIOVector *qiov, 3553 int nb_sectors, 3554 BlockDriverCompletionFunc *cb, 3555 void *opaque, 3556 bool is_write) 3557 { 3558 Coroutine *co; 3559 BlockDriverAIOCBCoroutine *acb; 3560 3561 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3562 acb->req.sector = sector_num; 3563 acb->req.nb_sectors = nb_sectors; 3564 acb->req.qiov = qiov; 3565 acb->is_write = is_write; 3566 3567 co = qemu_coroutine_create(bdrv_co_do_rw); 3568 qemu_coroutine_enter(co, acb); 3569 3570 return &acb->common; 3571 } 3572 3573 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3574 { 3575 BlockDriverAIOCBCoroutine *acb = opaque; 3576 BlockDriverState *bs = acb->common.bs; 3577 3578 acb->req.error = bdrv_co_flush(bs); 3579 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3580 qemu_bh_schedule(acb->bh); 3581 } 3582 3583 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3584 BlockDriverCompletionFunc *cb, void *opaque) 3585 { 3586 trace_bdrv_aio_flush(bs, opaque); 3587 3588 Coroutine *co; 3589 BlockDriverAIOCBCoroutine *acb; 3590 3591 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3592 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3593 qemu_coroutine_enter(co, acb); 3594 3595 return &acb->common; 3596 } 3597 3598 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3599 { 3600 BlockDriverAIOCBCoroutine *acb = opaque; 3601 BlockDriverState *bs = acb->common.bs; 3602 3603 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3604 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3605 qemu_bh_schedule(acb->bh); 3606 } 3607 3608 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3609 int64_t sector_num, int nb_sectors, 3610 BlockDriverCompletionFunc *cb, void *opaque) 3611 { 3612 Coroutine *co; 3613 BlockDriverAIOCBCoroutine *acb; 3614 3615 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3616 3617 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3618 acb->req.sector = sector_num; 3619 acb->req.nb_sectors = nb_sectors; 3620 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3621 qemu_coroutine_enter(co, acb); 3622 3623 return &acb->common; 3624 } 3625 3626 void bdrv_init(void) 3627 { 3628 module_call_init(MODULE_INIT_BLOCK); 3629 } 3630 3631 void bdrv_init_with_whitelist(void) 3632 { 3633 use_bdrv_whitelist = 1; 3634 bdrv_init(); 3635 } 3636 3637 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs, 3638 BlockDriverCompletionFunc *cb, void *opaque) 3639 { 3640 BlockDriverAIOCB *acb; 3641 3642 if (pool->free_aiocb) { 3643 acb = pool->free_aiocb; 3644 pool->free_aiocb = acb->next; 3645 } else { 3646 acb = g_malloc0(pool->aiocb_size); 3647 acb->pool = pool; 3648 } 3649 acb->bs = bs; 3650 acb->cb = cb; 3651 acb->opaque = opaque; 3652 return acb; 3653 } 3654 3655 void qemu_aio_release(void *p) 3656 { 3657 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p; 3658 AIOPool *pool = acb->pool; 3659 acb->next = pool->free_aiocb; 3660 pool->free_aiocb = acb; 3661 } 3662 3663 /**************************************************************/ 3664 /* Coroutine block device emulation */ 3665 3666 typedef struct CoroutineIOCompletion { 3667 Coroutine *coroutine; 3668 int ret; 3669 } CoroutineIOCompletion; 3670 3671 static void bdrv_co_io_em_complete(void *opaque, int ret) 3672 { 3673 CoroutineIOCompletion *co = opaque; 3674 3675 co->ret = ret; 3676 qemu_coroutine_enter(co->coroutine, NULL); 3677 } 3678 3679 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3680 int nb_sectors, QEMUIOVector *iov, 3681 bool is_write) 3682 { 3683 CoroutineIOCompletion co = { 3684 .coroutine = qemu_coroutine_self(), 3685 }; 3686 BlockDriverAIOCB *acb; 3687 3688 if (is_write) { 3689 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3690 bdrv_co_io_em_complete, &co); 3691 } else { 3692 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3693 bdrv_co_io_em_complete, &co); 3694 } 3695 3696 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3697 if (!acb) { 3698 return -EIO; 3699 } 3700 qemu_coroutine_yield(); 3701 3702 return co.ret; 3703 } 3704 3705 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3706 int64_t sector_num, int nb_sectors, 3707 QEMUIOVector *iov) 3708 { 3709 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3710 } 3711 3712 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3713 int64_t sector_num, int nb_sectors, 3714 QEMUIOVector *iov) 3715 { 3716 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3717 } 3718 3719 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3720 { 3721 RwCo *rwco = opaque; 3722 3723 rwco->ret = bdrv_co_flush(rwco->bs); 3724 } 3725 3726 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3727 { 3728 int ret; 3729 3730 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3731 return 0; 3732 } 3733 3734 /* Write back cached data to the OS even with cache=unsafe */ 3735 if (bs->drv->bdrv_co_flush_to_os) { 3736 ret = bs->drv->bdrv_co_flush_to_os(bs); 3737 if (ret < 0) { 3738 return ret; 3739 } 3740 } 3741 3742 /* But don't actually force it to the disk with cache=unsafe */ 3743 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3744 return 0; 3745 } 3746 3747 if (bs->drv->bdrv_co_flush_to_disk) { 3748 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3749 } else if (bs->drv->bdrv_aio_flush) { 3750 BlockDriverAIOCB *acb; 3751 CoroutineIOCompletion co = { 3752 .coroutine = qemu_coroutine_self(), 3753 }; 3754 3755 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3756 if (acb == NULL) { 3757 ret = -EIO; 3758 } else { 3759 qemu_coroutine_yield(); 3760 ret = co.ret; 3761 } 3762 } else { 3763 /* 3764 * Some block drivers always operate in either writethrough or unsafe 3765 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3766 * know how the server works (because the behaviour is hardcoded or 3767 * depends on server-side configuration), so we can't ensure that 3768 * everything is safe on disk. Returning an error doesn't work because 3769 * that would break guests even if the server operates in writethrough 3770 * mode. 3771 * 3772 * Let's hope the user knows what he's doing. 3773 */ 3774 ret = 0; 3775 } 3776 if (ret < 0) { 3777 return ret; 3778 } 3779 3780 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3781 * in the case of cache=unsafe, so there are no useless flushes. 3782 */ 3783 return bdrv_co_flush(bs->file); 3784 } 3785 3786 void bdrv_invalidate_cache(BlockDriverState *bs) 3787 { 3788 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 3789 bs->drv->bdrv_invalidate_cache(bs); 3790 } 3791 } 3792 3793 void bdrv_invalidate_cache_all(void) 3794 { 3795 BlockDriverState *bs; 3796 3797 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3798 bdrv_invalidate_cache(bs); 3799 } 3800 } 3801 3802 void bdrv_clear_incoming_migration_all(void) 3803 { 3804 BlockDriverState *bs; 3805 3806 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3807 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 3808 } 3809 } 3810 3811 int bdrv_flush(BlockDriverState *bs) 3812 { 3813 Coroutine *co; 3814 RwCo rwco = { 3815 .bs = bs, 3816 .ret = NOT_DONE, 3817 }; 3818 3819 if (qemu_in_coroutine()) { 3820 /* Fast-path if already in coroutine context */ 3821 bdrv_flush_co_entry(&rwco); 3822 } else { 3823 co = qemu_coroutine_create(bdrv_flush_co_entry); 3824 qemu_coroutine_enter(co, &rwco); 3825 while (rwco.ret == NOT_DONE) { 3826 qemu_aio_wait(); 3827 } 3828 } 3829 3830 return rwco.ret; 3831 } 3832 3833 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 3834 { 3835 RwCo *rwco = opaque; 3836 3837 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 3838 } 3839 3840 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 3841 int nb_sectors) 3842 { 3843 if (!bs->drv) { 3844 return -ENOMEDIUM; 3845 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 3846 return -EIO; 3847 } else if (bs->read_only) { 3848 return -EROFS; 3849 } else if (bs->drv->bdrv_co_discard) { 3850 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 3851 } else if (bs->drv->bdrv_aio_discard) { 3852 BlockDriverAIOCB *acb; 3853 CoroutineIOCompletion co = { 3854 .coroutine = qemu_coroutine_self(), 3855 }; 3856 3857 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 3858 bdrv_co_io_em_complete, &co); 3859 if (acb == NULL) { 3860 return -EIO; 3861 } else { 3862 qemu_coroutine_yield(); 3863 return co.ret; 3864 } 3865 } else { 3866 return 0; 3867 } 3868 } 3869 3870 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 3871 { 3872 Coroutine *co; 3873 RwCo rwco = { 3874 .bs = bs, 3875 .sector_num = sector_num, 3876 .nb_sectors = nb_sectors, 3877 .ret = NOT_DONE, 3878 }; 3879 3880 if (qemu_in_coroutine()) { 3881 /* Fast-path if already in coroutine context */ 3882 bdrv_discard_co_entry(&rwco); 3883 } else { 3884 co = qemu_coroutine_create(bdrv_discard_co_entry); 3885 qemu_coroutine_enter(co, &rwco); 3886 while (rwco.ret == NOT_DONE) { 3887 qemu_aio_wait(); 3888 } 3889 } 3890 3891 return rwco.ret; 3892 } 3893 3894 /**************************************************************/ 3895 /* removable device support */ 3896 3897 /** 3898 * Return TRUE if the media is present 3899 */ 3900 int bdrv_is_inserted(BlockDriverState *bs) 3901 { 3902 BlockDriver *drv = bs->drv; 3903 3904 if (!drv) 3905 return 0; 3906 if (!drv->bdrv_is_inserted) 3907 return 1; 3908 return drv->bdrv_is_inserted(bs); 3909 } 3910 3911 /** 3912 * Return whether the media changed since the last call to this 3913 * function, or -ENOTSUP if we don't know. Most drivers don't know. 3914 */ 3915 int bdrv_media_changed(BlockDriverState *bs) 3916 { 3917 BlockDriver *drv = bs->drv; 3918 3919 if (drv && drv->bdrv_media_changed) { 3920 return drv->bdrv_media_changed(bs); 3921 } 3922 return -ENOTSUP; 3923 } 3924 3925 /** 3926 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 3927 */ 3928 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 3929 { 3930 BlockDriver *drv = bs->drv; 3931 3932 if (drv && drv->bdrv_eject) { 3933 drv->bdrv_eject(bs, eject_flag); 3934 } 3935 3936 if (bs->device_name[0] != '\0') { 3937 bdrv_emit_qmp_eject_event(bs, eject_flag); 3938 } 3939 } 3940 3941 /** 3942 * Lock or unlock the media (if it is locked, the user won't be able 3943 * to eject it manually). 3944 */ 3945 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 3946 { 3947 BlockDriver *drv = bs->drv; 3948 3949 trace_bdrv_lock_medium(bs, locked); 3950 3951 if (drv && drv->bdrv_lock_medium) { 3952 drv->bdrv_lock_medium(bs, locked); 3953 } 3954 } 3955 3956 /* needed for generic scsi interface */ 3957 3958 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 3959 { 3960 BlockDriver *drv = bs->drv; 3961 3962 if (drv && drv->bdrv_ioctl) 3963 return drv->bdrv_ioctl(bs, req, buf); 3964 return -ENOTSUP; 3965 } 3966 3967 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 3968 unsigned long int req, void *buf, 3969 BlockDriverCompletionFunc *cb, void *opaque) 3970 { 3971 BlockDriver *drv = bs->drv; 3972 3973 if (drv && drv->bdrv_aio_ioctl) 3974 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 3975 return NULL; 3976 } 3977 3978 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 3979 { 3980 bs->buffer_alignment = align; 3981 } 3982 3983 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3984 { 3985 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 3986 } 3987 3988 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 3989 { 3990 int64_t bitmap_size; 3991 3992 bs->dirty_count = 0; 3993 if (enable) { 3994 if (!bs->dirty_bitmap) { 3995 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 3996 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 3997 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 3998 3999 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 4000 } 4001 } else { 4002 if (bs->dirty_bitmap) { 4003 g_free(bs->dirty_bitmap); 4004 bs->dirty_bitmap = NULL; 4005 } 4006 } 4007 } 4008 4009 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4010 { 4011 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4012 4013 if (bs->dirty_bitmap && 4014 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4015 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] & 4016 (1UL << (chunk % (sizeof(unsigned long) * 8)))); 4017 } else { 4018 return 0; 4019 } 4020 } 4021 4022 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4023 int nr_sectors) 4024 { 4025 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4026 } 4027 4028 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4029 { 4030 return bs->dirty_count; 4031 } 4032 4033 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4034 { 4035 assert(bs->in_use != in_use); 4036 bs->in_use = in_use; 4037 } 4038 4039 int bdrv_in_use(BlockDriverState *bs) 4040 { 4041 return bs->in_use; 4042 } 4043 4044 void bdrv_iostatus_enable(BlockDriverState *bs) 4045 { 4046 bs->iostatus_enabled = true; 4047 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4048 } 4049 4050 /* The I/O status is only enabled if the drive explicitly 4051 * enables it _and_ the VM is configured to stop on errors */ 4052 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4053 { 4054 return (bs->iostatus_enabled && 4055 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC || 4056 bs->on_write_error == BLOCK_ERR_STOP_ANY || 4057 bs->on_read_error == BLOCK_ERR_STOP_ANY)); 4058 } 4059 4060 void bdrv_iostatus_disable(BlockDriverState *bs) 4061 { 4062 bs->iostatus_enabled = false; 4063 } 4064 4065 void bdrv_iostatus_reset(BlockDriverState *bs) 4066 { 4067 if (bdrv_iostatus_is_enabled(bs)) { 4068 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4069 } 4070 } 4071 4072 /* XXX: Today this is set by device models because it makes the implementation 4073 quite simple. However, the block layer knows about the error, so it's 4074 possible to implement this without device models being involved */ 4075 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4076 { 4077 if (bdrv_iostatus_is_enabled(bs) && 4078 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4079 assert(error >= 0); 4080 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4081 BLOCK_DEVICE_IO_STATUS_FAILED; 4082 } 4083 } 4084 4085 void 4086 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4087 enum BlockAcctType type) 4088 { 4089 assert(type < BDRV_MAX_IOTYPE); 4090 4091 cookie->bytes = bytes; 4092 cookie->start_time_ns = get_clock(); 4093 cookie->type = type; 4094 } 4095 4096 void 4097 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4098 { 4099 assert(cookie->type < BDRV_MAX_IOTYPE); 4100 4101 bs->nr_bytes[cookie->type] += cookie->bytes; 4102 bs->nr_ops[cookie->type]++; 4103 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4104 } 4105 4106 int bdrv_img_create(const char *filename, const char *fmt, 4107 const char *base_filename, const char *base_fmt, 4108 char *options, uint64_t img_size, int flags) 4109 { 4110 QEMUOptionParameter *param = NULL, *create_options = NULL; 4111 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4112 BlockDriverState *bs = NULL; 4113 BlockDriver *drv, *proto_drv; 4114 BlockDriver *backing_drv = NULL; 4115 int ret = 0; 4116 4117 /* Find driver and parse its options */ 4118 drv = bdrv_find_format(fmt); 4119 if (!drv) { 4120 error_report("Unknown file format '%s'", fmt); 4121 ret = -EINVAL; 4122 goto out; 4123 } 4124 4125 proto_drv = bdrv_find_protocol(filename); 4126 if (!proto_drv) { 4127 error_report("Unknown protocol '%s'", filename); 4128 ret = -EINVAL; 4129 goto out; 4130 } 4131 4132 create_options = append_option_parameters(create_options, 4133 drv->create_options); 4134 create_options = append_option_parameters(create_options, 4135 proto_drv->create_options); 4136 4137 /* Create parameter list with default values */ 4138 param = parse_option_parameters("", create_options, param); 4139 4140 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4141 4142 /* Parse -o options */ 4143 if (options) { 4144 param = parse_option_parameters(options, create_options, param); 4145 if (param == NULL) { 4146 error_report("Invalid options for file format '%s'.", fmt); 4147 ret = -EINVAL; 4148 goto out; 4149 } 4150 } 4151 4152 if (base_filename) { 4153 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4154 base_filename)) { 4155 error_report("Backing file not supported for file format '%s'", 4156 fmt); 4157 ret = -EINVAL; 4158 goto out; 4159 } 4160 } 4161 4162 if (base_fmt) { 4163 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4164 error_report("Backing file format not supported for file " 4165 "format '%s'", fmt); 4166 ret = -EINVAL; 4167 goto out; 4168 } 4169 } 4170 4171 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4172 if (backing_file && backing_file->value.s) { 4173 if (!strcmp(filename, backing_file->value.s)) { 4174 error_report("Error: Trying to create an image with the " 4175 "same filename as the backing file"); 4176 ret = -EINVAL; 4177 goto out; 4178 } 4179 } 4180 4181 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4182 if (backing_fmt && backing_fmt->value.s) { 4183 backing_drv = bdrv_find_format(backing_fmt->value.s); 4184 if (!backing_drv) { 4185 error_report("Unknown backing file format '%s'", 4186 backing_fmt->value.s); 4187 ret = -EINVAL; 4188 goto out; 4189 } 4190 } 4191 4192 // The size for the image must always be specified, with one exception: 4193 // If we are using a backing file, we can obtain the size from there 4194 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4195 if (size && size->value.n == -1) { 4196 if (backing_file && backing_file->value.s) { 4197 uint64_t size; 4198 char buf[32]; 4199 int back_flags; 4200 4201 /* backing files always opened read-only */ 4202 back_flags = 4203 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4204 4205 bs = bdrv_new(""); 4206 4207 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4208 if (ret < 0) { 4209 error_report("Could not open '%s'", backing_file->value.s); 4210 goto out; 4211 } 4212 bdrv_get_geometry(bs, &size); 4213 size *= 512; 4214 4215 snprintf(buf, sizeof(buf), "%" PRId64, size); 4216 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4217 } else { 4218 error_report("Image creation needs a size parameter"); 4219 ret = -EINVAL; 4220 goto out; 4221 } 4222 } 4223 4224 printf("Formatting '%s', fmt=%s ", filename, fmt); 4225 print_option_parameters(param); 4226 puts(""); 4227 4228 ret = bdrv_create(drv, filename, param); 4229 4230 if (ret < 0) { 4231 if (ret == -ENOTSUP) { 4232 error_report("Formatting or formatting option not supported for " 4233 "file format '%s'", fmt); 4234 } else if (ret == -EFBIG) { 4235 error_report("The image size is too large for file format '%s'", 4236 fmt); 4237 } else { 4238 error_report("%s: error while creating %s: %s", filename, fmt, 4239 strerror(-ret)); 4240 } 4241 } 4242 4243 out: 4244 free_option_parameters(create_options); 4245 free_option_parameters(param); 4246 4247 if (bs) { 4248 bdrv_delete(bs); 4249 } 4250 4251 return ret; 4252 } 4253 4254 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs, 4255 int64_t speed, BlockDriverCompletionFunc *cb, 4256 void *opaque, Error **errp) 4257 { 4258 BlockJob *job; 4259 4260 if (bs->job || bdrv_in_use(bs)) { 4261 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs)); 4262 return NULL; 4263 } 4264 bdrv_set_in_use(bs, 1); 4265 4266 job = g_malloc0(job_type->instance_size); 4267 job->job_type = job_type; 4268 job->bs = bs; 4269 job->cb = cb; 4270 job->opaque = opaque; 4271 job->busy = true; 4272 bs->job = job; 4273 4274 /* Only set speed when necessary to avoid NotSupported error */ 4275 if (speed != 0) { 4276 Error *local_err = NULL; 4277 4278 block_job_set_speed(job, speed, &local_err); 4279 if (error_is_set(&local_err)) { 4280 bs->job = NULL; 4281 g_free(job); 4282 bdrv_set_in_use(bs, 0); 4283 error_propagate(errp, local_err); 4284 return NULL; 4285 } 4286 } 4287 return job; 4288 } 4289 4290 void block_job_complete(BlockJob *job, int ret) 4291 { 4292 BlockDriverState *bs = job->bs; 4293 4294 assert(bs->job == job); 4295 job->cb(job->opaque, ret); 4296 bs->job = NULL; 4297 g_free(job); 4298 bdrv_set_in_use(bs, 0); 4299 } 4300 4301 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp) 4302 { 4303 Error *local_err = NULL; 4304 4305 if (!job->job_type->set_speed) { 4306 error_set(errp, QERR_NOT_SUPPORTED); 4307 return; 4308 } 4309 job->job_type->set_speed(job, speed, &local_err); 4310 if (error_is_set(&local_err)) { 4311 error_propagate(errp, local_err); 4312 return; 4313 } 4314 4315 job->speed = speed; 4316 } 4317 4318 void block_job_cancel(BlockJob *job) 4319 { 4320 job->cancelled = true; 4321 if (job->co && !job->busy) { 4322 qemu_coroutine_enter(job->co, NULL); 4323 } 4324 } 4325 4326 bool block_job_is_cancelled(BlockJob *job) 4327 { 4328 return job->cancelled; 4329 } 4330 4331 struct BlockCancelData { 4332 BlockJob *job; 4333 BlockDriverCompletionFunc *cb; 4334 void *opaque; 4335 bool cancelled; 4336 int ret; 4337 }; 4338 4339 static void block_job_cancel_cb(void *opaque, int ret) 4340 { 4341 struct BlockCancelData *data = opaque; 4342 4343 data->cancelled = block_job_is_cancelled(data->job); 4344 data->ret = ret; 4345 data->cb(data->opaque, ret); 4346 } 4347 4348 int block_job_cancel_sync(BlockJob *job) 4349 { 4350 struct BlockCancelData data; 4351 BlockDriverState *bs = job->bs; 4352 4353 assert(bs->job == job); 4354 4355 /* Set up our own callback to store the result and chain to 4356 * the original callback. 4357 */ 4358 data.job = job; 4359 data.cb = job->cb; 4360 data.opaque = job->opaque; 4361 data.ret = -EINPROGRESS; 4362 job->cb = block_job_cancel_cb; 4363 job->opaque = &data; 4364 block_job_cancel(job); 4365 while (data.ret == -EINPROGRESS) { 4366 qemu_aio_wait(); 4367 } 4368 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret; 4369 } 4370 4371 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns) 4372 { 4373 /* Check cancellation *before* setting busy = false, too! */ 4374 if (!block_job_is_cancelled(job)) { 4375 job->busy = false; 4376 co_sleep_ns(clock, ns); 4377 job->busy = true; 4378 } 4379 } 4380